Subsections

Piecewise linear interpolation and bounds over large regions

For the finite element techniques we typically use piecewise linear functions: $a=x_0<x_1<\dots<x_{N-1}<x_N=b$, and the piecewise linear interpolant p(x) of s(x) is linear on each piece [xi,xi+1]. What we want is to bound the error e(x)=s(x)-p(x) or its derivative in either the $L^\infty$ or L2 norms over [a,b].

To obtain these bounds, we need to combine the bounds on each piece into a bound over the entire interval. We can't do it all in one go over the entire interval, because $e^{\prime}$ is not absolutely continuous across the boundaries of the ``pieces''.

For the analysis, let hi=xi+1-xi. Following the textbook, let h(x) = hi for x between xi and xi+1.

We use the notation ||f||L2(r,s) to denote the L2 norm of f(x) over the interval (r,s) or [r,s]. Similarly, $\vert\vert f\vert\vert _{L^\infty(r,s)}$ is the maximum of |f(x)| over $r\le x\le s$.

$L^\infty$ bounds

We start with the bound (1) for

\begin{displaymath}
\vert\vert s-p\vert\vert _{L^\infty(r,s)} \le
 \frac18(s-r)^2 \vert\vert s^{\prime\prime}\vert\vert _{L^\infty(r,s)} \end{displaymath}

if p(x) is the linear interpolant of s(x) over the interval [r,s]. In particular, if (r,s)=(xi,xi+1),

\begin{displaymath}
\vert\vert s-p\vert\vert _{L^\infty(x_i,x_{i+1})} \le
 \frac...
 ...\vert h_i^2s^{\prime\prime}\vert\vert _{L^\infty(x_i,x_{i+1})} \end{displaymath}

and taking the maximum over $i=0,1,2,\dots,N-1$, we get
\begin{displaymath}
\vert\vert s-p\vert\vert _{L^\infty(a,b)} \le
 \frac18 \vert\vert h^2s^{\prime\prime}\vert\vert _{L^\infty(a,b)}. \end{displaymath} (11)

If all we have is an L2 bound on $s^{\prime\prime}$, then we use the piecewise bound (6) to get
\begin{displaymath}
\vert\vert s-p\vert\vert _{L^\infty(a,b)} = \max_i\vert\vert...
 ...rt{3}}\vert\vert h^{3/2}s^{\prime\prime}\vert\vert _{L^2(a,b)}.\end{displaymath} (12)

L2 bounds

If we wanted L2 bounds we could use (7) to get

\begin{displaymath}
\begin{array}
{rcl}
 \vert\vert s-p\vert\vert _{L^2(a,b)}^2 ...
 ...t\vert h^2s^{\prime\prime}\vert\vert _{L^2(a,b)}^2.\end{array} \end{displaymath}

and so
\begin{displaymath}
\vert\vert s-p\vert\vert _{L^2(a,b)}\le \frac{1}{\sqrt{90}}
 \vert\vert h^2s^{\prime\prime}\vert\vert _{L^2(a,b)}.\end{displaymath} (13)

Derivative bounds

We can use (9) to obtain over-all bounds on ||s'-p'||L2(a,b):

\begin{displaymath}
\begin{array}
{rcl}
 \vert\vert s'-p'\vert\vert _{L^2(a,b)}^...
 ...vert\vert hs^{\prime\prime}\vert\vert _{L^2(a,b)}^2\end{array} \end{displaymath}

and
\begin{displaymath}
\vert\vert s'-p'\vert\vert _{L^2(a,b)}\le\frac1{\sqrt{3}}\vert\vert hs^{\prime\prime}\vert\vert _{L^2(a,b)}^2.\end{displaymath} (14)


David Stewart
10/5/1998