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Comments on the lectures and these notes

These notes are provided in support of the author’s 5 hour mini-course at the CIMPA research
school “Geometric and Homological Methods in the Representation Theory of Associative Algebras
and Their Applications”, held in Medelĺın, Colombia during June 2018. The author is very grateful
to the organizers for the opportunity to give the course, and meet many talented and motivated
students in the process.

The material does not contain any new results and does not attempt to broadly cover the entire
field of geometry of representations of finite-dimensional algebras. Quite the opposite, the intention
was to choose one theme (representation type of algebras) and present introductory examples and
classical results which might inspire students to pursue further studies in geometry of represen-
tations of algebras. Only the final lecture arrives at some open questions related to the author’s
research interests, about extending classical work on general representations of quivers to quivers
with relations. Corrections to historical inaccuracies or missed citations are welcome.

The background necessary to get started is just basic linear algebra, including the correspondence
between matrices and linear maps, and Jordan canonical form. Some facts and intuitions from
algebraic geometry are recalled as needed. An introduction to the theory of quiver representations
can be found in many accessible textbooks at this point, for example [ASS06, Sch14, DW17]. The
notes of Michel Brion [Bri12] provide a excellent companion to these notes, including a complete
proof of Gabriel’s theorem, and are freely available at the URL linked in the references. More
comprehensive treatments of advanced topics can be found in survey articles such as [Bon98, Rei08,
Zwa11, HZ14].

1. Representations of quivers

A “quiver” is just another name for a directed graph, when used in the context of representation
theory. Here is the formal definition.

Definition 1.1. A quiver is a quadruple Q = (Q0, Q1, s, t) where Q0 is a set of vertices, Q1 a set
of arrows, and s, t : Q1 → Q0 are functions give the source and target of each arrow, respectively.

For an arrow a ∈ Q1, we can visualize the relation as: s(a)
a−→ t(a).

Example 1.2. Here is a quiver with Q0 = {0, 1, 2} and Q1 = {a, b, c}. Notice a and b have the
same source and target. That is allowed, as are loops (arrows with source equal to their target).
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1.1. Quivers. We fix a base field k throughout the notes. We assume it is algebraically closed for
simplicity though this is not always required. All vector spaces and algebras are over k, so the field
is typically omitted from the notation.

Definition 1.3. A representation V of a quiver Q consists of a collection of finite dimensional
vector spaces (Vi)i∈Q0 , one for each vertex of Q, and a collection of linear maps

Va : Vs(a) → Vt(a), a ∈ Q1,

one for each arrow of Q. The collection of all representations of Q is denoted rep(Q).

An element d ∈ ZQ0

≥0 is called a dimension vector for Q, and given a representation V , its

dimension vector is d(V ) = (dimVi)i∈Q0 .

Many definitions associated to modules over rings have analogs for quiver representations. We
will see why below. The following is the analogue of “submodule”.

Definition 1.4. A subrepresentation V ′ ⊆ V is a collection of vector subspaces (V ′i ⊆ Vi)i∈Q0 such
that for all a ∈ Q1, we have Va(Vs(a)) ⊆ Vt(a), with each map V ′a being just the restriction of Va to
V ′s(a).

The quotient of V by a subrepresentation V ′ is the collection of vector spaces (Vi/V
′
i )i∈Q0 with

the linear maps induced by those in V (check that these are well-defined).

The analogue of a homomorphism between two representations (of the same quiver) is a collection
of maps associated to the vertices that respect the given maps over the arrows, in the following
sense.

Definition 1.5. Given two quiver representations V,W ∈ rep(Q), a morphism

ϕ = (ϕi)i∈Q0 : V →W

in rep(Q) is a collection of linear maps ϕi : Vi → Wi for each i ∈ Q0 which respect the maps over
the arrows in V and W , meaning that

ϕt(a)Va = Waϕs(a) for all a ∈ Q1.

In other words, the data of V,W and ϕ gives a square for each arrow of Q, and each of these squares
must commute for ϕ to be a morphism.

The kernel, image, and cokernel of a morphism ϕ : V → W are taken at each vertex. Check
that they are well-defined representations. For example, the kernel of ϕ is the subrepresentation
kerϕ = (kerϕi)i∈Q0 .

A morphism is said to be a monomorphism, epimorphism, isomorphism, etc. if every ϕi has the
corresponding property as a linear map.

Definition 1.6. The collection of all morphism from V to W is denoted HomQ(V,W ), and is a
subspace of the vector space

⊕
i∈Q0

Homk(Vi,Wi). The endomorphism ring of a representation V

is denoted by EndQ(V ) := HomQ(V, V ), and is a finite-dimensional k-algebra.

We will now briefly explain why quiver representations behave like modules over a ring, although
this isn’t strictly necessary for the remainder of the course. A path in Q has the obvious meaning
of a sequence of arrows a` · · · a2a1 such that s(ai) = t(ai−1) for all i, and we extend s, t to paths.
Note that the path is read right to left in the same order that functions are evaluated when taking
the input on the right. We also include a trivial path ei of length 0 at each vertex i ∈ Q0 with
s(ei) = t(ei) = i.
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Definition 1.7. Given a quiver Q, the path algebra of Q, written kQ, is a vector space with basis
consisting of all paths in Q. Multiplication pq of two paths p and q is the concatenation of the
paths, whenever that makes sense (i.e. s(p) = t(q)), and 0 otherwise. This extends by linearity to
make kQ an associative k-algebra.

Exercise 1. Give a definition of the path algebra kQ in terms of k-algebra generators and relations.
Hint: you only need paths of length 0 and 1 to generate kQ.

An oriented cycle in Q is a path p of length greater than zero in Q such that s(p) = t(p).

Exercise 2. Prove that kQ is finite-dimensional if and only if Q has no oriented cycles.

Every representation of Q determines a left kQ-module and vice versa. This correspondence
translates morphisms of representations of Q into kQ-module homomorphisms, and vice versa.
This can be formalized as an equivalence of categories. We mainly stick with the language of
representations throughout these notes.

Theorem 1.8. There is an equivalence of categories rep(Q) ' kQ-mod.

Notice that an arbitrary representation of Q can be explicitly written down in terms of elementary
linear algebra, which is not always the case when studying modules over rings in general.

Definition 1.9. Let V,W ∈ rep(Q). We define the direct sum V ⊕W as the representation with
vector space Vi ⊕Wi at each vertex i ∈ Q0, and direct sum of maps Va ⊕Wa over each arrow.

(V ⊕W )a : Vs(a) ⊕Ws(a) Vt(a) ⊕Wt(a)

[
Va 0
0 Wa

]

We now introduce two kinds of “building blocks” of representations. We use the symbol 0 ∈
rep(Q) to denote the unique representation of a given Q of dimension vector (0, 0, ..., 0).

Definition 1.10. Let V ∈ rep(Q). Then V is called irreducible, or simple, if it has exactly two
subrepresentations, 0 and V itself (in particular, V 6= 0). We say V is indecomposable if, whenever
V = V1 ⊕ V2 for subrepresentations V1, V2 ⊆ V , either V1 = 0 or V2 = 0 (or both).

Example 1.11. (Take it as an Exercise to work out the details using linear algebra and the
definitions above.)

(a) LetQ = • → •. There are 3 isomorphism classes of indecomposable representations, represented
by:

(1.12) k→ 0, 0→ k, k [1]−→ k.

The first 2 are simple. Note that we don’t write a matrix over an arrow when the 0 map is
the only possibility. In general, two representations are isomorphic if and only if they have the
same dimension vector and their maps have the same rank.

(b) Let Q = • → • → •. There are 6 isomorphism classes of indecomposable representations,
represented by:

k→ 0→ 0, 0→ k→ 0, 0→ 0→ k

k [1]−→ k→ 0, 0→ k [1]−→ k, k [1]−→ k [1]−→ k.
(1.13)

The first 3 are simple.
(c) Let Q be the quiver with one vertex and one loop at that vertex, hereafter known as the loop

quiver. A representation consists of a vector space kn and an n×n matrix. The representation
is indecomposable if and only if the matrix is similar (equal under conjugation action of GL(n))
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to a single Jordan block, since we assume k is algebraically closed. The simple representations
are exactly the representations with n = 1.

You can also note that the data of the quiver representation is the same data as a module M
over the polynomial ring k[x] such that dimkM < ∞. Since k[x] is a principal ideal domain,
you can use the classification of finite length modules over PIDs if you know this. �

There is a more computable criterion for indecomposability than the definition.

Theorem 1.14. A representation is indecomposable if and only if EndQ(V ) is a local ring, meaning
that it has a unique maximal left (equivalently, right) ideal.

Representations of quivers have the following very nice property. It does not hold for modules
over rings in general.

Theorem 1.15. (Krull-Schmidt Theorem). Each V ∈ rep(Q) admits a decomposition V ' V1 ⊕
· · · ⊕ Vr with each Vi indecomposable. Furthermore, if

V ' V ′1 ⊕ · · · ⊕ V ′s
is another decomposition with each V ′j also indecomposable, then r = s and there is a permutation

σ of {1, . . . , r} such that Vi ' V ′σ(i) for all i.

1.2. Quivers with relations.

Definition 1.16. Fix a quiver Q. A relation r is a k-linear combination of paths in Q

(1.17) r =
∑
i

λipi, λi ∈ k,

such that s(pi) = s(pj) and t(pi) = t(pj) for all i, j. A pair (Q,R) as above is called a quiver with
relations.

Let I = 〈R〉 be the two-sided ideal generated by a set of relations R. Then R (or I) is called
admissible if the following hold:

(a) for all r ∈ R written as in (1.17), every pi has length at least 2;
(b) there exists N ∈ Z≥0 such that I contains all paths of length N .

A pair (Q,R) as above is called a quiver with admissible relations or a bound quiver.

The following exercise is useful for understanding the significance of conditions (a) and (b) in
the previous definition, but note that we do not assume relations are admissible unless we say so.

Exercise 3. Let Q be a quiver, R a set of relations (not necessarily admissible), and A = kQ/〈R〉
be the quotient algebra. Prove that if (a) fails to hold, then there is a quiver Q′ properly contained
in Q, and set of relations R′ on Q′ such that A ' kQ′/〈R′〉. Also prove that (b) is equivalent to A
being finite-dimensional over k.

Given a finite dimensional algebra A, it may not be isomorphic to one given by a quiver with
relations. Even when it is, it may be challenging to find a quiver with admissible relations such
that A ' kQ/〈R〉.

Exercise 4. Fix a positive integer n and assume k contains ζ a primitive nth root of unity (ζn = 1
in k and ζm 6= 1 for 1 ≤ m < n). Consider the algebra T (n) with generators g, x satisfying relations

(1.18) gn = 1, xn = 0, xg = ζgx

(a) Write down a quiver with any relations (not admissible) (Q,R) such that kQ/〈R〉 ' T (n). You
can do it with 1 vertex and 2 arrows.
(b) Do the same but with admissible relations. The quiver will be much more complicated than in
part (a)–it requires n vertices.
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Warning: this exercise is probably difficult for most students who have not seen quiv-
ers before. Everyone should try it with n = 2 (so ζ = −1) using elementary methods. It
may be quite difficult for general n for students who have not studied group algebras.

Hint for n = 2: find two elements e1, e2 ∈ T (n) satisfying e2i = ei and e1e2 = e2e1 = 0. These
correspond to your vertices and can be written as a linear combination of powers of g. Then for
each ordered pair of vertices (i, j), compute eixej to figure out how many paths, up to relations, go
from vertex i to j. From this, maybe you can reverse engineer the number of arrows between any
pair of vertices and the relations.

Hint for arbitrary n: find a collection of n orthogonal idempotents by using that T (n)/〈x〉 is
isomorphic to a group algebra. Then follow the hint above. Start with n = 2, 3, 4, ...

We use the following shorthand for composing maps along arrows: let p = a` · · · a1 be a path in
Q and V ∈ rep(Q). We write

(1.19) Vp := Va` ◦ · · · ◦ Va1 .

Definition 1.20. We say V ∈ rep(Q) satisfies the relation r =
∑

i λipi if

(1.21)
∑
i

λiVpi = 0.

Let R be a set of relations on Q. We write rep(Q,R) for the full subcategory of rep(Q) consisting
of representations satisfying all the relations in R, or rep(Q, I) where I = 〈R〉 ⊆ kQ.

Note that a representation of (Q,R) is also a representation of Q. Morphisms in rep(Q,R) are
the same as morphisms in rep(Q). In the next lemma, we observe some properties which don’t
depend on which context we use.

Lemma 1.22. Suppose V,W ∈ rep(Q,R). Then every subrepresentation and quotient representa-
tion of V satisfies the set of relations R.

Now we see that representations of quivers with relations can be used to study representations
of a quite general class of algebras.

Theorem 1.23. Suppose k is algebraically closed, and let A be an arbitrary finite-dimensional,
associative k-algebra. Then there exists a bound quiver (Q,R) such that A-mod ' rep(Q,R)

Example 1.24. (a) If A is the algebra of upper triangular n × n matrices, then A is isomorphic
to the path algebra of the quiver • → • → · · · → • with n vertices.

(b) If A is the algebra k[t]/〈tn〉, then A is isomorphic to the path algebra of the loop quiver (say
the loop is labeled α) with the relation αn = 0.

(c) If A is the full algebra of n× n matrices, then A-mod ' k-mod (the fundamental example of a
Morita equivalence), so the corresponding quiver has one vertex and no arrows. �

With this in mind, we can use quivers with relations to study the following major problem when
A is finite-dimensional and associative (and k algebraically closed, still).

Central Problem of representation theory of algebras: Classify the (finite-dimensional) rep-
resentations of a given algebra A (or equivalently, given quiver with relations), up to isomorphism.

We remark that infinite-dimensional representations are also very interesting but not within
the scope of these lectures. I recommend the following resources to begin exploring this topic
[Rin79, CB98, Rin00]. The Krull-Schmidt theorem reduces classification of (finite-dimensional)
quiver representations to classification of indecomposables (all up to isomorphism, of course). For
most algebras, no one has any idea how to do this.
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2. Representation varieties

In this section we define (affine) representation varieties.

2.1. Quivers without relations. For positive integers k, l, we let Mat(k× l) denote the space of
k × l matrices over k.

Definition 2.1. Fix a quiver Q and dimension vector d. The representation space of (framed)
representations of Q of dimension vector d is

(2.2) rep(Q,d) :=
⊕
a∈Q1

Mat(d(t(a))× d(s(a))).

We denote a typical element of rep(Q,d) by V = (Va)a∈Q1 . Since d determines a vector space

kd(i) associated to each vertex i, and for each arrow the matrix Va determines a linear map between
these spaces, each point of rep(Q,d) determines a representation of Q with a fixed basis (sometimes
called a framed representation). Many points of rep(Q,d) correspond to isomorphic representations
of Q.

Example 2.3. (a) Let Q = • α−→ • β−→ • and d = 2 → 3 → 1. Then we get the space of pairs of
matrices

(2.4) rep(Q,d) =

(Vα, Vβ) =

a1 a2
a3 a4
a5 a6

 , [b1 b2 b3
]

where the sizes are fixed, while each entry varies over all elements of k. Note that rep(Q,d) ' k9
as a vector space.

(b) If Q is the loop quiver, then rep(Q, d) just the space of d × d matrices, and isomorphic to kd2

as a vector space. �

Note that rep(Q,d) always has the structure of a vector space since each matrix space has the
natural structure of a vector space.

Exercise 5. Choose any quiver and dimension vector (Q,d) and calculate the dimension of rep(Q,d).
Then find a general formula for dimk rep(Q,d) for any (Q,d).

Definition 2.5. The base change group for (Q,d) is

(2.6) GL(d) :=
∏
i∈Q0

GL(d(i))

where for any positive integer n, we let GL(n) denote the general linear group of invertible n × n
matrices over k.

We denote a typical element of GL(d) by g = (gi)i∈Q0 . There is a natural left action of GL(d)
on rep(Q,d) by

(2.7) g · V = (gi)i∈Q0 · (Va)a∈Q1 = (gt(a) Va g
−1
s(a))a∈Q1 .

Proposition 2.8. Two points V, V ′ ∈ rep(Q,d) are in the same GL(d)-orbit if and only if V ' V ′
as representations of Q.

Proof. For any g = (gi)i∈Q0 ∈ GL(d), we have

(2.9) (gt(a) Va g
−1
s(a))a∈Q1 = (V ′a)a∈Q1 ⇐⇒ gt(a) Va = V ′ags(a) for all a ∈ Q1.

The existence of g satisfying the equation on the left is the definition of V, V ′ in the same orbit, while
the existence of g satisfying the equations on the right is the definition of V ' V ′ in rep(Q). �



INTRODUCTION TO GEOMETRY OF REPRESENTATIONS OF ALGEBRAS 7

Therefore, the set of isomorphism classes of representations of Q is in bijection with the union
of the sets of orbits in rep(Q,d), as d varies over all dimension vectors.

Example 2.10. We continue Example 2.3.
(a) The base change group is GL(d) = GL(2) × GL(3) × GL(1). A typical element is denoted
g = (g1, g2, g3) where g1 is 2× 2, g2 is 3× 3, and g1 is 1× 1, and we have

(2.11) g · V = (g2Vαg
−1
1 , g3Vβg

−1
2 ).

Let us consider in very concrete matrix terms what each factor does to Vα and Vβ. Each gi can
be factored into elementary matrices as in a standard linear algebra class, meaning the matrices
that represent individual row and column operations (depending which side they act one). The
factor g1 ∈ GL(2) acts by a series of column operations on Vα only, since the corresponding vertex
only touches the arrow α as the source. The inverse must be taken into account. An elementary
matrix in the factor g2 ∈ GL(3) is the most interesting: since the corresponding vertex is both the
target of α and sources of β, this factor simultaneously does a row operation on Vα and the inverse
column operation on Vβ. Then the factor g3 ∈ GL(1) acts just by row operations on Vβ.
(b) The base change group is just GL(d). Since the loop α has the single vertex as both the source
and target, the action is g · Vα = gVαg

−1. �

Exercise 6. For any (Q,d), the 1-dimensional normal subgroup of scalar multiples of the identity
{λ1}λ∈k ≤ GL(d) acts trivially on rep(Q,d). Therefore the group action factors through PGL(d) :=
GL(d)/{λ1}λ∈k.

2.2. Quivers with relations. Now we consider the effect of adding relations, which requires the
language of affine varieties. We only formally introduce the bare minimum of definitions from
algebraic geometry. Other facts will be recalled as necessary.

Definition 2.12. A closed subvariety of kn is a subset X ⊆ kn for which there exist polynomials
f1, . . . , fr ∈ k[x1, . . . , xn] such that

(2.13) X = {(c1, . . . , cn) ∈ kn | ∀1 ≤ i ≤ r : fi(c1, . . . , cn) = 0} .

The Zariski topology on kn is the topology where the closed sets are exactly the closed subvarieties.
The Zariski topology on a closed subvariety X ⊆ kn is the subspace topology inherited from kn.

Exercise 7. Show that the axioms of a topology are satisfied in the definition of Zariski topology.

We will refer to closed subvarieties of kn as simply “varieties” in these notes/lectures. But we
warn the reader that there is a much more general meaning of this word. For intuition, we note
that if k = C, Zariski-closed sets are also closed in the usual topology where we identify Cn ≈ R2n.
But the converse is not true.

Exercise 8. Prove that the only Zariski closed sets of k1 are finite sets of points, and all of k1. In
particular, if k = C, the unit disc {z ∈ C | |z| ≤ 1} is not closed in the Zariski topology. Its closure
is all of C.

We also remark that the list of polynomials f1, . . . , fr does not usually tell much about the
geometry of X without more work, because solving systems of nonlinear equations is hard.

Example 2.14. Note that kn is always a closed subvariety of itself by taking an empty list of
polynomials. Therefore, rep(Q,d) ' kn is a variety where n =

∑
a∈Q1

d(s(a))d(t(a)). �

Definition 2.15. Let (Q,R) be quiver with relations and d a dimension vector for Q. The repre-
sentation variety rep(Q,R,d) is defined as the set

(2.16) rep(Q,R,d) := {M ∈ rep(Q,d) |M satisfies all relations in R} .
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Example 2.17. We continue Examples 2.3 and 2.10.
(a) Keep (Q,d) as before and suppose we put the single relation R = {βα}. Then rep(Q,R,d) =
{(Vα, Vβ) ∈ rep(Q,d) | VβVα = 0}. To see this as a variety, we use the coordinates a1, . . . , a6, b1, . . . , b3
on rep(Q,d) ' k9 and multiply out:

(2.18) 0 = VβVα =
[
b1 b2 b3

] a1 a2
a3 a4
a5 a6

 =

[
b1a1 + b2a3 + b3a5
b1a2 + b2a4 + b3a6

]
.

So rep(Q,R,d) is defined inside rep(Q,d) as the solution set of the system of two quadratic equa-
tions given by setting the polynomials in the two matrix entries at right both equal to 0. We can
see that as d grows, the number of equations will grow.

(b) Consider the relation R = {α2}. Then rep(Q,R, d) = {Vα ∈ Mat(d × d) | V 2
α = 0}. Writing

this out as in part (a), we see it is defined as the solution set of d2 quadratic equations inside
Mat(d× d). But we can think of it more conceptually using Jordan canonical form: it is the subset
of Mat(d× d) consisting of matrices whose Jordan canonical form has all blocks with eigenvalue 0
and no blocks of size larger than 2.

Now consider specifically the case d = 2. We get 4 quadratic equations defining rep(Q,R, 2). If we
instead took the relation R = {α3} and d = 2, we have rep(Q,R, d) = {Vα ∈ Mat(d× d) | V 3

α = 0},
defined by 4 cubic equations. But a 2 × 2 matrix with cube 0 automatically has square 0, so
these different equations actually have the same solution set. In other words rep(Q, {α2}, 2) =
rep(Q, {α3}, 2) ⊂ rep(Q, 2), even though they have different defining equations. �

We refer to the variables in the matrix entries as coordinates on rep(Q,R,d). We see in the
previous example that different collections of equations can be used to define the same variety. It is
generally very difficult to find a minimal set of equations of smallest degree defining a given variety.

Exercise 9. Let (Q,R) be the square quiver with commuting relation. Find equations defining
rep(Q,R,d) for d = (1, 2, 3, 1) and d = (2, 2, 2, 2).

Exercise 10. Let R,R′ be two sets of relations on a quiver Q which generate the same ideal in kQ.
Show that rep(Q,R,d) = rep(Q,R′,d) for every d. If I = 〈R〉, this justifies the alternate notation
rep(Q, I,d) sometimes used.

From what we have seen above, we get the following.

Proposition 2.19. For any (Q,R,d), the set rep(Q,R,d) is a closed subvariety of rep(Q,d)
which is sent to itself by the action of GL(d). Furthermore, its GL(d)-orbits are in bijection with
isomorphism classes of representations of (Q,R) of dimension vector d.

Geometric reformulation of the Central Problem: Classify GL(d)-orbits on the representa-
tion varieties rep(Q,R,d) of a given quiver with relations (Q,R).

Of course, we don’t get anything for free by translating a hard problem in terms of new definitions.
Indeed, classifying orbits of a group G acting on a variety V is in general a very difficult problem,
even when V = kn (i.e. the case R = 0). What we get from the translation is the opportunity to use
new tools. At the 1980 Workshop on Representations of Algebras in Puebla, Mexico [Kra82], Kraft
proposed following philosophy to divide the study representation varieties into two subproblems.

Horizontal problem: Find nice GL(d)-stable subsets U ⊂ rep(Q,R,d) in which the orbits can
be parametrized by continuous data.

For example, “nice” subsets can be representations with a fixed dimension of endomorphism ring.
“Parametrize” can mean we associate to U another algebraic variety (even kn) whose points are in
bijection with GL(d)-orbits in U .
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Vertical problem: Describe containment of orbit closures by discrete or combinatorial data.

Kraft’s key example is a classical one: representations of the loop quiver, Q or the polynomial
ring kQ = C[x] (infinite dimensional!). Here, we already know the classification of representations.
The example is only meant to illustrate the philosophy.

Fix a dimension n and we find rep(Q,n) = Mat(n × n). We think of M ∈ rep(Q,n) both as a
matrix and as C[x]-module. Thinking of points as modules, let

rep(Q,n)d =
{
M | dim EndC[x](M) = d

}
, d ≥ 1.

so rep(Q,n) is a disjoint union of these. It can be shown that each of these decomposes into con-
nected components indexed by partitions λ = (λ1 ≥ λ2 ≥ · · · ) of n. These connected components
are called sheets rep(Q,n)λ.In the horizontal problem, we fix a sheet and consider the orbits just in
this sheet. Kraft showed that the orbits (so, isomorphism classes) can be naturally parametrized
by kλ1 .

The vertical part asks when one orbit is in the closure of another. This can be roughly thought
of as how the sheets glue together. This reduces to the case of nilpotent linear operators. Let
M,N be two nilpotent n × n matrices. Then N is in the closure of the orbit of M if and only if
rankN i ≤ rankM i for all i. This can be encoded in purely combinatorial terms.

3. Geometry and representation type

We now survey some notable results on geometry and indecomposable representations which can
be stated (though not necessarily proven) using only the elementary notions introduced in the first
two sections.

3.1. Quivers without relations.

Definition 3.1. A quiver Q is of finite representation type if rep(Q) has only finitely many iso-
morphism classes of indecomposable objects.

We have seen in previous examples that the quivers • → • and • → • → • are finite representation
type, while the one vertex and one loop quiver is not. A quiver which is not of finite representation
type is of infinite representation type.

Theorem 3.2 (Gabriel [Gab72]). A connected quiver Q is of finite representation type if and only
if its underlying graph (i.e. ignore the directions of the arrows) is one of the following:

An : Dn :

E6 : E7 : E8 :

Note that the subscript indicates the number of vertices, with the first two diagrams indicating
infinite families of graphs.

Definition 3.3. The graphs appearing in the theorem are known as the ADE Dynkin diagrams.
A quiver whose underlying graph is an ADE Dynkin diagram will be called a Dynkin quiver for
short.

There are a number of very different proofs of Gabriel’s theorem. We sketch a proof of the
easy direction here using geometry, due to Jacques Tits. First, we make the following elementary
observation.
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Observation 3.4. If Q admits a dimension vector d such that rep(Q,d) has infinitely many orbits,
then Q is not of finite representation type. Equivalently, if Q is of finite representation type, then
rep(Q,d) has finitely many orbits for any dimension vector d.

Executive summary of dimension of varieties.

• Every variety has a well defined dimension.
• When the defining equations are linear, it coincides with vector space dimension.
• If k = R, then dimension of a variety (solution set of system of polynomials) is what you

picture from the “real world”. If k = C, it is half what you picture, i.e. complex plane or
Riemann sphere are 1-d over C. If the solution set is smooth, i.e. a manifold, the dimension
as a variety is the same as the manifold dimension.
• For arbitrary variety over arbitrary k, the dimension can roughly be described as follows.

At each point, consider the largest number of parameters from k needed to “describe” the
variety in a neighborhood of the given point. The dimension is the largest number of such
parameters occurring amongst all points of the variety.

We require the following two standard facts.

Fact 1: If rep(Q,d) has finitely many GL(d)-orbits, one of the orbits must have dimension equal
to the dimension of rep(Q,d). That is, rep(Q,d) cannot be written as a disjoint union
of finitely many closed subvarieties of strictly smaller dimension. Note that here we are
using that k is infinite, and one can picture the analogous statement for subspaces of Rn
for intuition.

Fact 2: The dimension of any GL(d)-orbit in rep(Q,d) is ≤ dim GL(d) − 1. This is because the
dimension of an orbit cannot be greater than the dimension of the group that sweeps it
out, and the −1 comes from a one dimensional normal subgroup of GL(d) acting trivially
(Exercise 6). The analogous statement for finite groups, where dimension is replaced by
cardinality, is well known.

Proof of ⇒ direction of Gabriel’s Theorem, with some details left as exercises. Combining Facts
1 and 2, we get

Q of finite representation type

⇒ rep(Q,d) has finitely many orbits ∀d
⇒ dim GL(d)− 1 ≥ dim rep(Q,d) ∀d.

(3.5)

With these facts in mind, we consider the following quadratic form on ZQ0 :

(3.6) qQ(d) = dim GL(d)− dim rep(Q,d) =
∑
i∈Q0

d(i)2 −
∑
a∈Q1

d(s(a))d(t(a)).

(Note that it does not depend on the directions of the arrows, only the underlying graph of Q.) So
(3.5) says:

(3.7) If Q is of finite representation type, then qQ(d) ≥ 1 for all d ∈ ZQ0

≥0.

Note this is just a combinatorial statement! We need the results of the following combinatorial
exercises.

Exercise 11. Let Q be a quiver and Q′ a subquiver of Q (i.e. Q′ is obtained from Q by deleting
some arrows and vertices). Given a dimension vector d′ for Q′, let d be the dimension vector for
Q obtained by using 0 at the deleted vertices. Prove that qQ(d) ≤ qQ′(d′).

Exercise 12. Suppose Q is not a Dynkin quiver. Prove that Q contains a subquiver Q′ whose
underlying graph is one of the following. Hint: you may find it easier to prove the contrapositive,
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using case-by-case analysis.

Ãn : D̃n :

Ẽ6 : Ẽ7 : Ẽ8 :

These graphs have various names including (ADE) extended Dynkin, affine Dynkin, and Euclidean
diagrams. The marked vertex shows how they differ from the corresponding Dynkin diagram by one
vertex.

Exercise 13. For each extended Dynkin quiver/diagram Q′, explicitly exhibit a dimension vector
d′ such that qQ′(d′) = 0.

Now we prove the half of Gabriel’s theorem by contradiction. Suppose Q is of finite representation
type, by not a Dynkin quiver. Then by the previous three exercises, Q contains an extended Dynkin
quiver Q′, which gives a dimension vector d for Q such that qQ(d) = 0. This contradicts (3.7). �

Remark 3.8. It is a classical result from Lie theory/combinatorics that a graph giving rise to a
quadratic form with this property is an ADE Dynkin diagram. If one knows this, it can be quoted
to make the proof much shorter. �

This illustrates how to use only geometry and combinatorics to give a short, conceptual proof of
one direction. We never had to compute with explicit representations (in particular, our proof is
independent of k). One very good feature is that the ideas have potential to generalize to quivers
with relations.

Remark 3.9. The reader familiar with tame algebras will note that the quivers appearing in
Exercise 12 are precisely the tame quivers which are not finite type. In Exercise 13, there is in
fact a unique smallest such dimension vector δQ for each such quiver Q, and there are infinitely
many orbits of indecomposable representations of dimension vector δQ, each having endomorphism
ring k. Every dimension vector in which there are infinitely many orbits of indecomposables is a
multiple of δQ. So the infinite families of indecomposables of the same dimension vector are well
understood in this tame case. �

The other direction of Gabriel’s theorem requires more work. A (mostly) geometric proof can
be found in the summer school notes of Michel Brion [Bri12]. Other methods include elementary
linear algebra (Gabriel’s original idea [Gab72]), and a categorification of Coxetor combinatorics
(Bernstein-Gelfand-Ponomarev reflection functors [BGP73]).

We should mention in passing that V. Kac gave a characterization for arbitrary Q of which
dimension vectors d admit an indecomposable representation, and how many there are. His proof
used powerful methods of geometry (in particular, he works over many finite k simultaneously, so
they are not algebraically closed) and uses invariant theory which are beyond the scope of this
mini-course, and even stating his result precisely would take us too far out of the way.
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3.2. Quivers with relations. We define finite representation type for a quiver with relations
(Q,R) in the same way. We can have Q of infinite type but (Q,R) of finite representation type
since we restrict the representations of Q we consider. In fact, there is no easy characterization
which (Q,R) are representation finite, nor a list of smallest (Q,R) which are representation infinite.
But geometric methods (e.g. dimension count as above) can be useful in cases where it is hard to
produce explicit infinite families of nonisomorphic representations. Recommended reading includes

Let A = kQ/〈R〉 and for the rest of this subsection assume Q has no oriented cycles.
Choose (Q,R) admissible and with a minimal number of elements (not unique!). Let Rij be the
set of relations from i to j. It is a fact that #Rij is uniquely determined by Q. Define a quadratic

form on ZQ0

≥0 by

(3.10) qA(d) =
∑
i∈Q0

d(i)2 −
∑
a∈Q1

d(s(a))d(t(a)) +
∑
i,j∈Q0

#Rijd(i)d(j).

Exercise 14. (For those who know Ext now–we will give an elementary characterization of this
later, so others can come back and do this later.)
Prove that if (Q,R) is admissible, then

(3.11) # {a ∈ Q1 | s(a) = i, t(a) = j} = dim Ext1A(S(i), S(j)).

It is also true that, when (Q,R) is admissible and R is chosen minimally, we have

(3.12) #Rij = dim Ext2A(S(i), S(j)).

(In particular, #Rij independent of R as long as #R minimal.) So qA(d) can be written in
homological terms, kind of a truncated Euler form.

Another interpretation of the new term: a relation from i to j corresponds to a d(j) × d(i)
matrix of polynomial entries being set to 0, so each relation gives rise to d(j) × d(i) polynomial
equations which must be satisfied by points of rep(Q,R,d) inside rep(Q,d). See Example 2.17.

Therefore, the new term in qA counts the number of equations being used to define rep(Q,R,d)
as a closed subvariety of rep(Q,d) when R is chosen minimally. (This does not necessarily give
the minimal number of equations needed to define rep(Q,R,d) in rep(Q,d), that is generally a
very hard problem in commutative algebra. A good general reference is the freely available book
[AK13], linked in the references.) Krull’s height theorem from commutative algebra implies that

(3.13) dim rep(Q,R,d) ≥
∑
a∈Q1

d(s(a))d(t(a))−
∑
i,j∈Q0

#Rijd(i)d(j).

Remark 3.14. Intuitively, it says that the drop of dimension from rep(Q,d) to rep(Q,R,d) is at
most the number of equations. By induction, this reduces to Krull’s Principle Ideal theorem, which
says that each equation cuts the dimension down by at most 1. �

So we have

(3.15) qA(d) ≥ dim GL(d)− dim rep(Q,R,d)

which gives the following purely combinatorial necessary condition for (Q,R) to be finite represen-
tation type.

Proposition 3.16. (a) If A is of finite representation type, then qA(d) ≥ 1 for all d ∈ ZQ0

≥0.

(b) If A is of tame representation type, then qA(d) ≥ 0 for all d ∈ ZQ0

≥0.

Proof. Part (a) follows from the same reasoning as when R = ∅. Part (b) is straightforward but
not within the scope of these notes since we didn’t discuss tameness in detail (see [dlPn96]). �
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Example 3.17. In these examples we see how geometry leads to purely combinatorial (elementary)
check for infinite and even wild type. They are taken from a paper of Sheila Brenner [Bre74].
(a) Consider the quiver with relations and dimension vector shown below.

1 2 3

2

2

3 2 1

The dashed edge - - - is standard notation for a commuting relation (i.e. the relation that going
around the square either way is the same). It can be directly checked from the definition that
qA(d) = 0. Therefore, A is not of finite representation type.
(b) Consider the quiver with relations and dimension vector shown below.

1 2 3 4

2

2

3 2 1

It can be directly checked from the definition that qA(d) = −4. Therefore, A is of wild representa-
tion type. �

There are other ways to find the conclusions of this example, but the point is that this method
just uses combinatorics of the graph.

Exercise 15. Produce your own examples of quivers with relations which you are not sure if they
are representation finite or not, then try to prove they are not by finding a d such that qA(d) ≤ 0.

Just as in the case without relations, this is the “easy” direction and only eliminates candidates
for finite (or tame) representation type. It cannot be used to prove a quiver is finite or tame
representation type. In fact, the converse is not true, in contrast to the case of quivers without
relations.

Example 3.18. This example was taken from unpublished lecture notes of de la Peña. Consider
the quiver

α1

α2

α3

β1

β2

and two sets of relations:

R1 = {α3α2α1 − β2β1}, R2 = {α3α2α1}.

Write Ai = kQ/〈Ri〉. Since there is one relation between the same two vertices in each case, it is
immediate that qA1 = qA2 as quadratic forms. We a lot more work, this form can be factored into
a sum of squares even qAi(d) > 0 for all d ∈ Z8

≥0. But it turns out that A1 is finite representation
type while A2 is not. �
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The converse can be true if we have some additional assumptions on A. The Auslander-Reiten
quiver of an algebra A is said to have a preprojective component if it has a connected component in
which every indecomposable can be taken to a projective by repeated application of the Auslander-
Reiten translation, and furthermore the component has no oriented cycles.

Theorem 3.19 (Bongartz [Bon83]). Let A = kQ/〈R〉 as above and assume Q has no oriented
cycles. Furthermore assume that the Auslander-Reiten quiver has a preprojective component (e.g.

R = ∅). Then A is representation finite if and only if qA(d) ≥ 1 for all d ∈ ZQ0

≥0. Furthermore,

the map M 7→ dim(M) gives a bijection between indecomposables and roots of qA(d) (i.e. d such
that qA(d) = 1).

The following is an analogue of the above result for tame representation type. We refer the
reader to the referenced article for the relevant definitions.

Theorem 3.20 (Brüstle-de la Peña-Skowroński [BdlPS11]). If A is strongly simply connected, then

A is tame if and only if qA(d) ≥ 0 for all d ∈ ZQ0

≥0.

3.3. Finite representation type versus finite orbit type. Here we make some brief remarks
on geometry and a difficult problem in representation theory. The following definition will be
temporarily useful.

Definition 3.21. Say a quiver with relations (Q,R) is of finite orbit type if rep(Q,R,d) has finitely
many orbits for all dimension vectors d.

Observation 3.4 holds for quivers with relations for the same reason, and says finite representation
type implies finite orbit type. A nontrivial geometric consequence of Gabriel’s theorem is the
converse for quivers without relations:

Q is of finite orbit type

⇒ Q is a Dynkin quiver

(harder direction) ⇒ Q of finite representation type

This is not at all obvious since, a priori, the dimensions of indecomposables could grow without
bound, but each rep(Q,d) still have only finitely many orbits. But even the harder direction of
Gabriel’s Theorem could be covered in complete detail in a few lectures, so this is not overwhelm-
ingly difficult.

Could this possibly be true for all (Q,R)? The question becomes much more difficult! Again we
must worry about the dimensions of indecomposables growing without bound, as in the following
example.

Example 3.22. Let A = k[[t]] be the algebra of formal power series over k. Then the finite-
dimensional indecomposable representations of A are exactly A/〈ti〉 for i ≥ 1. Thus there are
infinitely many isomorphism classes, but only finitely many (just one) in each dimension. �

But this algebra is infinite-dimensional, and its module category is not equivalent to that of any
quiver with relations. The following problem appeared in the work of Jans in the 1950s [Jan57].
It was only resolved in the 1980s (see [NRt75, Bau85, Fis85, BT86]). I am not aware of any proof
that could be presented in detail in a few lectures.

Theorem 3.23 (2nd Brauer-Thrall Conjecture). Recall that we assume k is algebraically closed. If
a quiver with relations (Q,R) is of infinite representation type, then there exists a dimension vector
d such that (Q,R) has infinitely many indecomposables of dimension vector d, or equivalently,
(Q,R) is not of finite orbit type. In fact, there exists infinitely many such d.

(The statement is actually “if and only if” because the converse is true by Observation 3.4. But
we state it this way to emphasize the nontrivial direction.)
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4. Relaxations of finite representation type inspired by geometry

Since classifying all representations of a given quiver with relations is generally out of reach of
current technology, an alternate approach is to restrict the kind of representations we consider, and
try to classify only those. One approach is to work with general representations, meaning to restrict
to representations in a dense subset of each rep(Q,R,d) (exactly which subset depends on context).
Classical work of Kac [Kac80] and Schofield [Sch92] addresses this problem in the case of quivers
without relations. Inspired by the work cited above, the following three finiteness properties for
quivers with relations were introduced in joint work with Chindris and Weyman [CKW15]. They
depend only on A = kQ/〈R〉 and not the specific (Q,R), so we can also say an algebra has these
properties.

Definition 4.1. A quiver with relations (Q,R) has the dense orbit property if, for all d, the variety
rep(Q,R,d) has an dense subset with finitely many orbits.

Informally, we can think of such an algebra as representation finite for general representa-
tions. For each d, all infinite families of nonisomorphic representations occur in the “boundary” of
rep(Q,R,d) (i.e. the complement of a finite set of orbits).

Recall that M ∈ rep(Q,R) is called Schur or a brick if EndQ(M) = k.

Definition 4.2. We say (Q,R) is Schur representation finite if for all d, there are finitely many
Schur representations of dimension vector d.

The following problem is open, to my knowledge. If you solve it, please let me know! It is an
analogue of the 2nd Brauer-Thrall Conjecture for Schur representations.

Problem 4.3. Suppose (Q,R) is Schur representation finite in the above sense. Must (Q,R) have
only finitely many Schur representations overall? Or can (Q,R) have Schur representations of
arbitrarily large dimension?

The next definition will only be mentioned a few times in these notes for completeness. It is not
essential for the reader unfamiliar with Geometric Invariant Theory (GIT). We are in the general
situation of wanting to describe the orbits of a group G acting on a variety X (where our group and
the action have some nice properties). The most straightforward way of constructing a quotient
topological space “X/G” will not have a natural structure of a variety.

Exercise 16. Let Q = • → • and d = (1, 1). Describe the topological quotient of rep(Q,d) by
GL(d) and why it is not homeomorphic to a variety.

GIT is a general technique from algebraic geometry to make the best approximation to a quotient.
The survey of Reineke [Rei08] provides an excellent introduction to the subject in the case of quivers
without relations. A.D. King’s article [Kin94] treating the general case is the original source.

Definition 4.4. We say (Q,R) is GIT finite if for all d, each GIT moduli spaces of representations
of (Q,R) of dimension vector d is a finite sets of points.

This is equivalent to the property that is called multiplicity free in [CKW15]. The present
terminology gives a more intuitive connection to representation theory. The following lemma relates
these properties and requires only a little more knowledge of representation varieties beyond what
is presented in this course.

Lemma 4.5. For any quiver with relations (Q,R), we have:
(4.6)

finite representations type ⇒ dense orbit property ⇒ Schur representations finite ⇒ GIT finite.

Furthermore, by combining classical results it can be seen that these are all equivalent for quivers
without relations. This fact generalizes to the following class of (Q,R), since a quiver without
relations always has a preprojective component.
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Theorem 4.7 ([CKW15]). If the Auslander-Reiten quiver of (Q,R) admits a preprojective compo-
nent, then (Q,R) has all of the 4 conditions above, or has none of them.

We conjecture the last 2 are equivalent, and verified this for tame algebras.

Conjecture 4.8. A quiver with relations is Schur representation finite if and only if it is GIT
finite.

Theorem 4.9 ([CKW15]). Conjecture 4.8 is true for the class of tame algebras.

The other converses do not hold. We will see this by explicit examples in what follows.

Example 4.10. Consider the quiver with relations

(4.11) Q =

1 2

3

4 5

a

c

b

d

e f

R the set of all length 2 paths: ea, eb, fa, and fb. This example is Schur representation finite but
does not have the dense orbit property. Indeed, every infinite family of isomorphism classes of the
same dimension vector occurs in a multiple of d = (1, 1, 2, 1, 1). It can be directly checked that
every member of these infinite families admits a nilpotent endomorphism, and thus the algebra is
Schur representation finite. But it can also be shown that rep(Q,R,d) is an irreducible variety
with a 1-parameter family of maximal orbits, thus no dense orbit. �

We consider the remaining converse statement in the next section.

4.1. The dense orbit property. Further discussion of the dense orbit property requires intro-
ducing another fundamental concept of algebraic geometry.

Definition 4.12. A nonempty variety X is said to be irreducible if it cannot be written in the
form X = X1 ∪ X2 where X1, X2 ( X are proper closed subsets. A maximal irreducible closed
subvariety of a given variety Y is an irreducible component of Y .

A basic result in algebraic geometry is that every variety has a well-defined, finite set of irreducible
components.

Example 4.13. Continuing earlier examples, we take Q = • α−→ • β−→ • and R = {βα} and consider
rep(Q,R,d) for various dimension vectors below. The reader can verify the statement in (a) easily,
while the statements of the other two are not elementary.
(a) For d = (1, 1, 1), the variety has 2 irreducible components. They are the closed subvarieties
where one of the 1× 1 matrices is set to 0 and the other is arbitrary.
(b) For d = (2, 3, 1) it can be show that the representation variety is irreducible.
(c) For d = (n, n, n), the representation variety has n + 1 irreducible components C0, C1, . . . , Cn
where

Cr = {(Vα, Vβ) | rankVα ≤ r, rankVβ ≤ n− r} .
�

Generally speaking, it can be very difficult to find the irreducible components of a given variety.
The following lemma says that irreducible components are at least preserved by the base change
group.

Lemma 4.14. If C ⊆ rep(Q,R,d) is an irreducible component, then GL(d) · C = C.
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Each orbit and each orbit closure of GL(d) in rep(Q,R,d) is irreducible. If (Q,R) has the dense
orbit property, then every irreducible component of every rep(Q,R,d) has a unique dense orbit.
This associates a well-defined isomorphism class of representations (not necessarily indecomposable)
to each of the finitely many irreducible components of each rep(Q,R,d) when (Q,R) has the dense
orbit property. This is why

A very useful result is the geometric Krull-Schmidt decomposition due to de la Peña [dlP91]
and Crawley-Boevey–Schröer [CBS02]. It greatly restricts the number of irreducible components
of representation varieties which must be studied.

Proposition 4.15. To check that (Q,R) has the dense orbit property, it is enough to check only
that every irreducible component C ⊆ rep(Q,R,d) which has a dense subset of indecomposable
representations has a single dense orbit.

Remark 4.16. The Artin-Voigt lemma [Voi77] says that if M ∈ rep(Q,R,d) has the property
that Ext1(Q,R)(M,M) = 0 (i.e. has no self extensions), then the orbit of M is open in rep(Q,R,d),

and thus dense in the irreducible component of rep(Q,R,d) in which it lies. The converse is false,
however. I do not know any such concise, purely algebraic characterization of when a representation
has a dense orbit in an irreducible component. �

The following theorem shows that there are nontrivial examples of dense orbit algebras, meaning
ones which are not of finite representation type. It shows that it is in principle possible to classify
indecomposable representations with dense orbits even for a wild algebra.

Theorem 4.17 ([CKW15]). Consider the quiver

(4.18) Q =
1 2

b
a

and for positive integers k ≤ n, let R(k, n) = {bn, bka}. Then (Q,R(2, n)) has the dense orbit
property for any n, but is wild for n ≥ 7.

Furthermore, the (finitely many) indecomposables with dense orbits appear precisely with dimen-
sion vectors

(1, 0), (0,m), (1, 1), (1,m), (2,m), (1, 1 + n), (2,m+ n)

where 2 ≤ m ≤ n except in the last case, where 2 ≤ m ≤ n−2, and for each dimension vector there
is exactly one indecomposable with a dense orbit.

The proof technique is (mostly) elementary but tedious. Here are the main ideas:

(1) By Proposition 4.15, we can reduce to studying d such that there exists an indecomposable
representation of dimension vector d. For example, if d 6= (1, 0), this forces d(1) ≤ d(2),
since otherwise a simple direct summand supported at vertex 1 splits off.

(2) We show that if rep(Q,R,d) has an indecomposable representation, then rep(Q,R,d) is
irreducible (this uses slightly more advanced geometry: vector bundles on flag varieties).

(3) Finally we use matrix methods to find explicitly the dense orbit in each such rep(Q,R,d).

There are many natural questions that arise. The first is a natural place to start before attempt-
ing to develop deeper theory.

Problem 4.19. Construct more examples of dense orbit algebras which are not representation
finite.

It would be nice to classify the dense orbit algebras which are not representation finite. A natural
way to go about this is to describe minimal ones. But in contrast to the finite representation type
property, we do not know if the dense orbit property is preserved by quotients.
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Question 4.20. Let A be an algebra with the dense orbit property. Does every quotient of A have
the dense orbit property?

Every example or suspected example known to me has at least one loop in the quiver.

Question 4.21. Does there exist (Q,R) which is representation infinite but has the dense orbit
property and Q does not have any oriented cycle?

We can also take any classical theorem for representations of algebras and ask if it hold for general
representations. We note that there is some flexibility in formulating the relevant properties for
general representations, so we don’t suggest precise versions here. Certainly there should be more
examples found before seriously attempting these.

Question 4.22. Which of the following have true analogues for general relations?

(a) Tame-wild dichotomy
(b) Brauer-Thrall conjectures

Note that in Theorem 4.17, there are not just finitely many general representations for each d,
but finitely many overall. So the analogue of Brauer-Thrall 2 for general representations holds in
this example.
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