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ABSTRACT

The mathematics of tangles has been very useful in studying recombinases which act
processively and which require DNA to be in a certain configuration in order for the
enzyme to act. Electron micrographs of the enzyme-DNA complex show the enzyme as
a blob with DNA looping out of it. The configuration of the DNA within the blob cannot
be determined from the electron micrographs. However, mathematics can in some cases
determine the configuration of the DNA within the enzyme blob as well as the enzyme
action.

In this paper, several theorems used to analyze recombinase experiments are sum-
marized. In particular Xer recombinase, an enzyme which does not act processively is
analyzed. Unfortunately, for enzymes which do not act processively, infinitely many
possibilities exist. Several experiments are proposed to reduce this number and to em-
phasize both the usefulness and limitations of tangle analysis. Although the local action
cannot be mathematically determined without more biological assumptions, it is pos-
sible to determine the topology of the synaptic complex through additional biological
experiments.
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Tangle calculus has been successfully used to study certain enzymes called re-
combinases [1]. In sections 1 and 2, the necessary biology and mathematics are
summarized. In sections 3, 4, and 5, current techniques to analyze recombinase
action are presented. In section 6, these techniques are applied to the enzyme Xer
recombinase. Section 7 emphasizes some shortfalls in the mathematical analysis of
the local action of an enzyme which does not act processively and suggests focusing
on the entire synaptic complex instead. Section 8 analyzes four different synaptic
complex models for Xer and proposes experiment which may determine the topology
of the synaptic complex.



1. A Recombinase Primer

Recombinases are enzymes which cut two segments of DNA and interchange the
ends and can thus change the topology of closed circular DNA. Some recombinases,
called site-specific recombinases, bind to two specific sequences which are identical
or nearly identical. If the two sequences appear on the same strand in the same
direction (for example, -CTTGA——CTTGA-), then the sequences are oriented as
direct repeats. If the two sequences appear on complementary strands in opposite
directions (for example, -CTTGA—— AGTTC_ ), then the sequences are oriented
as inverted repeats. In the figures below, the arrows denote the orientation of these
sequences. Recombination allows viruses to integrate into and excise out of host
genomes and can be involved in the regulation of transcription by turning genes on
or off by inverting segments of DNA. Note that deletions and fusions occur with
direct repeats, resulting in a change in the number of components, and inversions
occur with inverted repeats with no change in the number of components.
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Fig. 1. Direct repeats recombination: deletion, fusion.

-0

Fig. 2. Inverted repeats recombination: inversion.

Since they break and rejoin DNA strands, recombinases produce knots and links
when acting on closed circular DNA. Two main techniques, gel electrophoresis and
electron microscopy, can be used to identify these knots and links. Gel electrophore-
sis does not give as much information as electron microscopy but is much simpler.
In gel electrophoresis, an agarose gel is used to separate some knots and links by
crossing number and sometimes even by knot type [2][3]. Agarose is a sugar poly-
mer which forms a matrix through which the negatively charged DNA can travel
when a positive electrode is put at the bottom of the gel. For DNA molecules with



the same number of base pairs, gel velocity is determined by the average geometric
conformation of each molecule as it migrates through the obstruction field imposed
by the gel. Knotted DNA travels faster than unknotted DNA because a knot is
more compact than an unknot when tied in a molecule with the same number of
base pairs. Similarly, for low crossing number knots, gel velocity is determined by
the crossing number of the knot. In some circumstances knots of the same crossing
number can also be separated by gel electrophoresis. For example, torus knots have
been separated from twist knots [3][4]. Thus the five crossing torus knots can also
be distinguished from the five crossing twist knots via gel electrophoresis. However,
no one has been able to separate out all of the six crossing knots or all of the seven
crossing knots, etc.

Electron microscopy is another method used to identify knotted DNA. The DNA
is coated with the protein RecA in order to thicken the strand to better identify
crossings. This RecA coated DNA is spread out on a slide, and electron micrographs
(EMs) are taken. If the crossings can be determined, then the knot can be identified.
However, this method is time consuming, requires equipment and expertise to which
some labs may not have easy access, and can be misleading. Certain knots spread
out better and thus their EMs are easier to identify. And if an EM cannot be
identified, it is ignored. Due to the difficulties with EM, biologists do not always
fully identify the knotted and linked products, relying instead on information such
as crossing number obtained through the much easier and faster technique of gel
electrophoresis. Fortunately some mathematical analysis of these experiments only
require knowledge of the crossing number.

Electron micrographs of recombinases bound to DNA show an enzyme “blob”
with 2-3 loops of DNA sticking out of this blob. Biologists would like to know what
is happening within this enzyme blob, but since this cannot be determine from the
pictures, the mathematics of tangles have been used instead to model the enzyme
action [5].

2. A 2-string Tangle Primer

For a more in depth introduction to 2-string tangles see chapter 9 in [6]. For a
more in depth introduction to rational 2-string tangles see [7].
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Fig. 3. Some tangles.



A 2-string tangle is a pair (B, t) where B is a 3-dimensional ball and t is a
pair of arcs properly embedded in B. The enzyme blob can be thought of as the
3-dimensional ball and the DNA strands within the enzyme blob can be thought of
as arcs embedded in the 3-ball. A tangle is rational if it can be formed from either
the zero tangle or the infinity tangle by alternating between rotating the NE and
SE endpoints of the tangle and rotating the SW and SE endpoints of the tangle.
Observe that the tangle (2, 3, 4) is obtained from the zero tangle by rotating NE
and SE 2 x 180°, followed by rotating SW and SE 3 x 180°, and then rotating NE
and SE 4 x 180° (figure 4). By convention, the tangle corresponding to (cy, ..., ¢p)
always ends with horizontal crossings. Thus the tangle with two horizontal crossings
followed by three vertical crossings in figure 4 is the (2, 3, 0) tangle since it ends
with zero horizontal crossings.
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Fig. 4. Drawing the (2,3,4) tangle

The tangles are called rational because the rational number corresponding to
its continued fraction can be used to identify the tangle. For example (2, 3, 4)
30 30

corresponds to the = tangle since 4 + il— = 5. Two tangles are said to be
2

equivalent if one can be deformed (via an ambient isotopy) to the other keeping
the boundary of the 3-ball fixed. Two rational tangles are equivalent if and only if
the rational numbers corresponding to their continued fraction are the same. For
example the tangle (-2, -4, 1, 3) is the same as the tangle (2,3,4) since both tangles
correspond to @ A rational tangle is called integral if its rational number is an

integer and thus consists solely of horizontal crossings.
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Fig. 5. The 2 —tangle Fig. 6. Adding tangles

Tangles can be added as shown in figure 6. A knot or link can also be formed
from a tangle or a sum of tangles by taking its numerator closure as shown in figure 7
or its denominator closure as shown in figure 8. Both the numerator closure and the
denominator closure of a rational tangle give a particular type of knot or link called



a 4-plat (or 2-bridge knot/link). All DNA knots and links that have been identified
so far are 4-plats or a composite of 4-plats. This is actually not as surprising
as it may at first seem since most small crossing knots and links are 4-plats. In
fact all knots of less than eight crossings are 4-plats or composites of 4-plats. For
a list of 4-plats knots up to 10 crossings and 4-plat links up to 9 crossings see
http://www.utdallas.edu/~darcy. The 4-plat corresponding to N(a/b) is S(a, —b).
Four-plats are prime knots when a is odd and are prime links when a is even. To
avoid additional terminology, we will avoid using the normal 4-plat notation and
will instead use N(a/b), rational tangle notation.
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N(A) N(A+C) D(A) D(A+C)
Fig. 7. Numerator closure Fig. 8. Denominator closure

Useful facts about tangles:

(1) Both N(a/b) and D(a/b) are 4-plats. The knot/link N(a/b) is the 4-plat
S(a,—b). The knot/link D(a/b) is the 4-plat S(b,a).

2) The tangle corresponding to #* is the same as the tangle corresponding to 22 if
b1 b2
and only if g—ll = ‘;—j
(3) The 4-plats N(a;/b1) and N(az/b2), a; > 0, are are the same if and only if
a1 = ay and blb§IEl ~ 1 (mod ay).

NP +)= N(igigﬂgz’ﬁ) where abby — axbh =1 [5].

‘;—11 + ‘;—22 # a rational tangle unless either by = 1 or by = +1.

(4)
()
(6) §+1t= 23
(7) D(A+C) = D(A)#D(C).
=+ + ...+ 7=) is a Montesinos knot which is not a 4-plat unless at most two
N(p 42) is a Montesinos knot which i 4-plat unl
of the tangles ¢* are non-integral.

(9) N(A + C) = 4-plat implies at least one of A or C is rational or locally knotted
[8][9]-

(10) If A is a prime tangle and C is locally unknotted and not the oo-tangle, then
A + C is a prime tangle [9][10].

The tangle, C, is locally unknotted if every 3-ball which intersects the two arcs
of C in exactly two points contains an unknotted spanning arc. A tangle is locally
knotted if it is not locally unknotted. A tangle is prime if it is neither rational nor
locally knotted.



WARNING: The sum of two rational tangles is a rational tangle if and only if
at least one of the two rational tangles is integral.

Even though the numerator closure of the sum of two rational tangles is the
numerator closure of a rational tangle by (4), the sum of two rational tangles is
not a rational tangle unless one of the tangles is integral (5), (6). The denominator
closure of the sum of two tangles, A and C, is D(A)#D(C) which is a composite
knot unless one of D(A) or D(C) is the unknot. But D(a/b) = S(b,a) = unknot
if and only if b = £1, i.e., a/b is an integral tangle. Since 4-plats are prime and
the denominator closure of a rational tangle is a 4-plat and thus prime, the sum of
two rational tangles is not a rational tangle unless one of the tangles is integral. In

a+bt

this case the tangle ¢ +1 is the rational tangle *t**(6). The sum of rational tangles

where at least two of the tangles is non-integral is called a Montesinos tangle.

3. Tangle Calculus and Processive Recombination

Tn3 Resolvase was the first recombinase to be studied using the mathematics
of tangles. The mathematical model describing Tn3 Resolvase action is shown in
figure 9 [5]. In general, the substrate DNA is written as the numerator closure of
the sum of the two tangles U and P. The tangle U stands for the outside tangle,
which is outside of the enzyme action and remains unchanged during the reaction
(U is used instead of O to avoid confusion with the 0 tangle = zero tangle). The
recombinase action can be modeled by replacing the tangle P with the tangle R.
We thus have the following two equations with 3 unknowns U, P, and R:

N(U + P) = substrate, N(U + R) = product

In processive recombination the enzyme remains bound to the DNA but acts
multiple times. Processive recombination has been modeled by adding additional
copies of R thus obtaining the following additional equations:

N(U + R + R) = 2nd processive product

N(U + R + R + R) = 3rd processive product

N@U + R+ ... + R) = nth processive product

One can then solve these equations for U and R, giving new biological infor-
mation. For example, Ernst and Sumners determined that Tn3 Resolvase uses the
following configuration [5].



e — ] — DR — QIR

N(U + P) = unknot N(U +R) = N(2/1) N(U + R +R) = N(5/2) N(U +R+R+R) =N(8/3)
Fig. 9. Tn3 Resolvase recombination

Note that the tangle P only appears in one equation N(U + P) = unknot.
Thus it is not possible to find a unique solution for P. If P is rational, solving the
equation, N(=} + P) using tangle fact (4) gives P = ; 43z = (2,3,0) [5]. However,
P need not be rational (figure 10). See section 6 for a more in depth discussion of

non-unique solutions.

Fig. 10. N(U + P) = unknot

Ernst and Sumners have proven that if the first three products of processive
recombination are known, then the solutions for U and R are unique (assuming P
= 0-tangle) using the following theorems:

Theorem 1 [5] Let U and R be tangles such that N(U +iR) =4-plat for some
i > 2, and N({U + jR) # N(U + iR) for some j. Then R is a rational tangle. If
1 > 3, then R is an integral tangle.

Proof [10].

If R were locally knotted, then N(U + iR),i > 2 would be composite. Since
4-plats are prime, R cannot be locally knotted. Suppose R is a prime tangle. By
tangle fact (9) U + (¢ — 1) R is rational or locally knotted. By tangle fact (10), R
prime implies (i — 1)R prime and U must be the co-tangle or locally knotted.

Note that U cannot be the oo-tangle. If U were the infinity tangle, then N(U +
iR) = D(iR) = D(R)#...#D(R). Since 4-plats are prime, D(R) = unknot. But
N(U +iR) = D(iR) = unknot = D(jR) = N(U + jR), a contradiction. Thus if U
is locally unknotted, R must be rational.

If i > 3, then R does not have parity oo since 4-plats have at most two compo-
nents. If 4 > 3, U is locally unknotted, and R is not integral, then if U is not integral,
U + R and (i — 1) R are prime by tangle facts (5) and (10). But N(U + iR) =4-plat
would then contradict tangle fact (9). If U is integral and if R is rational, then
N(U +1iR) = 4-plat, ¢ > 3, if and only if R is integral by tangle fact (8). Thus if U
is locally unknotted and ¢ > 3, R must be integral.

Suppose U is locally knotted. Then if U’ is the tangle formed from U by removing
the local knot, then N(U’ + iR) =unknot, since 4-plats are prime. N (U + jR) #
N(U + iR) implies that N(U' + jR) # N(U' + iR). Since the unknot is a 4-plat
and U’ is locally unknotted, R is rational if ¢ > 2 and integral if 1 > 3 [1.



Theorem 2 [11] If N(U + P) =4-plat and N(U + R) =4-plat where P = B
R= ‘;—22, a1by —agxby # £1, then U is either a rational tangle or ambient isotopic to
a sum of two rational tangles.

Proof. If N(U + P) =4-plat and N(U + R) =4-plat where P = §*, R = 2

Ea
a1by —asb; # £1, then the cyclic surgery theorem implies that the double branched
cover of the tangle U is a Seifert fibered space. In [11], Ernst proved that this means

that U is ambient isotopic to a Montesinos tangle .

[11] actually stated that U is a Montesinos tangle, but the following counter-
example (figure 11) to corollary 10 in [11] shows that when gluing U back to P,
additional twists may be necessary. In fact in this case there is no rational or
Montesinos tangle solution to the system of equations N(U + 0) = N(5/ — 1) and
N(U +2) = N(7/ — 3). Fortunately by pushing any extra crossings into P and R,
using flypes [7], and the euler bracket function [12], it can be shown that given the
three equations, N(U +iR) = K; for 1 < i < 3 where the K; are 4-plats, then U is
either rational or the sum of two rational tangles.

N(5/-1) N(7/-3)
Fig. 11. N(U + 0) =N(5/— 1) and N(U + 2) =N(7/—3)

Theorem 3 [10] Let U and R be tangles such that N(U+iR) = K; for0 <1 <3,
where the K; are 4-plats and {K;, Ko, K3} represent at least 2 different link or knot
types. Then there is at most one solution for U and U is either rational or the sum
of two rational tangles.

Theorem 4 [10] Let U and R be tangles such that U is either rational or a sum
of two rational tangles, and R = (n). Moreover, suppose that N(U + iR) = K; for
0 < i < 3, where the K; are 4-plats with crossing number c;. Then |n| is determined
as follows:

(i) If co < c3 > ca > c1, then |n| = ¢z — co.

(i) If co = c3 and ¢y = ca, then |n| =c3 —ca =cp —cy.

(i) If co = c3 and ¢y # co then |n| = 1.

(11) If co # c3 and ca < ¢1, then |n| =co —c1.

The tangle facts (3), (4), and (7) can be used to solve for the tangle U, or
similarly, an algorithm given in [10] can be used.

Note that only the crossing numbers of the 4-plats were needed to determine
|R|. This is very useful for analyzing biological experiments since gel electrophoresis
cannot fully identify a knot but can identify its crossing number for small crossing
knots.



4. Tangle Distances and Recombination

The above section gave a unique solution to tangle equations (with P = 0) result-
ing from processive recombination where U and R are constant. Tangle equations
can be difficult to solve, however, if the enzyme (such as one of the recombinases,
A-Integrase, Flp, and mutant Gin) does not require the DNA to be in a specific
configuration before the enzyme acts (meaning U is not constant) or if the recom-
binase (such as one of the recombinases, A-Integrase, Xer, and possibly Flp) does
not act processively. Distributive recombination adds additional complications. In
distributive recombination, the enzyme releases the DNA between each round of
recombination. Thus in the above equations, the enzyme first binds onto the sub-
strate, N(U; + P). One round of recombination is modeled as before by replacing
P with R thus obtaining product 1, N(U; + R). This product is then released by
the enzyme. The enzyme may then rebind product 1. However, the DNA configu-
ration may have changed since it was released and product 1 may now be written
as N(Us + P) where Us may be completely different from U;. The second round
of recombination is modeled again by replacing P with R thus obtaining product
2, N(Uz + R). Note that for all rounds of recombination, it is assumed that the
enzyme is always replacing a P tangle with an R tangle. Thus if an enzyme some-
times replaces a P tangle with an R tangle and at other times replaces a P’ tangle
with an R' tangle where P # P' and/or R # R', the above model does not work
for this enzyme.

Whether or not an enzyme requires a unique configuration, acts processively or
distributively, or even if it uses more than one mechanism, tangle distances can be
used to model enzyme action.

Definition The link L is said to be obtained from the link L; by a [P,R] move
if Ly is obtained from L; by replacing a P tangle with an R tangle.

Definition The [P, R]-distance between L; and Ly = dip, R](L1, L) = the min-
imum number of [P, R] moves required to change L; into Ly where the minimum is
taken over all diagrams of the knot.

In biological terms djp,gj(L1, L2) is the minimum number of times an enzyme
needs to act to convert Ly into Lo if the enzyme uses only [P, R] moves. When P
is the zero tangle, [0, R] move will be shortened to R move and djg,g)(L1, L2) will
be shortened to dgr(L1, L2)

For example, d2(01,31) = 1 (figure 12) and dso/7(01,52) = 1 (figure 13).

—_— _
+2-move 30/7-move

0.

1

Fig. 12. dy2(01,31) = 1. Fig. 13. d3o/7(01,52) = 1.



Definition Ao B = or
where B = (c1, ..., ¢p)

n odd neven

When P and R are rational, the following two theorems can be used to determine
when the [P, R] distance between two 4-plats is one. The first theorem assumes
P = 0-tangle and is a generalization of [13] which classified d2(N(a/b),0:1) = 1, of
[14] which classified d2(N(a/b),03) = 1 and of [15], [16] and unpublished by John
Berge which classified dz(N(a/b), N(z/v)) = 1 and a modification of theorem 1 in
[17].

Theorem 5. [17] Let R = t/w-tangle, (w,t) =1, and ay — bx = 1. Then the
following are equivalent for |t| > 2. For t = +1, (2) and (8) are equivalent and
imply (1):

(1) dr(N(a/b),N(z/v)) < 1.

(2) If w % £1 mod t, N(z/v) = N((tb+ (tk + w)a)/(—ty — (tk + w)zx))

or N((—tz+ (tk+w)a)/(—ty+ (tk+w)b)).
Else w = 41 mod t and N(z/v) = N((tp*b + sa)/(—tp’y — sz))
or N((—tp*z + sa)/(—tp*y + sb))
where s = tp(—q + pk) £ 1, (p,q) =1,p >0

(8) N(a/b) = N(U + 0) and N(z/v) = N(U + t/w) has the following solutions
when [t| > 2: If w # £1 mod t, then U must be rational and U = 3% or — S
If w = £1 mod t, then U must be ambient isotopic to a sum of at most two rational
tangles and U = (Uy + Uz) o (h,0) where U; = _pl,’;{:zﬁi]g) or fg;:é?&ﬁg) and
Us=j/p, pd—qj=1, and h = _“;il if %ﬂ € Z. If t = £1, then the above list
contains all solutions when U is ambient isotopic to a sum of rational tangles.

Proof.

dr(N(a/b), N(z/v)) < 1 if and only if there exists a U such that N(a/b) =
N(U +0) and N(z/v) = N(U + t/w). By Ernst’s theorem 2, U is either a rational
tangle or ambient isotopic to the sum of two rational tangles If U is rational,
N(U + 0) = N(a/b) implies by tangle fact 4 that U = 3% or 35 and N(z/v) =
N(U+t/w) = N((tb+ (tk+w)a)/(—ty — (tk+w)x)) or N((—tz+ (tk+w)a)/(—ty+
(tk + w)b)). If U is ambient isotopic to the sum of two rational tangles, Uy + Us,
then since N(U + 0) is a 4-plat, U = (U1 + Uz) o (h,0). Solving N((Uy + £) o
(h,0) + 0)‘ = N(a/b) implies U; = ;?)T;ngc:’;])) or _z;;‘_‘é‘(zck];) where pd qgj = 1.
N((U + 2) o (h,0) + t/w) = N(Ur + L + (t/w) o (h,0)) = N(U1 + L + 3)- I
U, or U, is integral (U1 + Us) o (h,0) is rational. If U; and U, are non-integral,
NU, + Uz + ht+ ) is a 4-plat if and only if ht + w = +1, i.e. w = 1 mod ¢ in
which case h = =%EL if =uEl ¢ 7,

or




By tangle facts 4 and 6, if s = tp(—¢ + pk) £1, N({Uy + Uz + £t) =
N((tplpb+ (pk—q)al+a)/(~tplpy + (pk—q)z]F2)) = N((tp*b+sa)/(~tp’y —sz)) or
N((tpl—pz+(pk—q)al+a)/(=tplpy— (pk—q)b] b)) = N((—tp’z+sa)/(=tp’y+sb))

-

A computer program which solves for Uy, Uz, t/w given a, b, z, v is available at
http://www.utdallas.edu/~darcy. Since U is known, the above theorem also gives
a classification of oriented distance one oriented 4-plats when ¢ # +1 [18].

For example solving N(U +0) = N(5/ —1) and N(U + £47) = N(7/ — 3) gives
U=1/2+1/3,t=-2,and if w=—2i+ 1, then h = —i or if w = —2{ — 1, then
h = —i—1. In particular, U =1/34+1/2, t = =2 and U = (1/3+ 1/2) 0o (-1,0),
t = 2 (figure 11) are the only solutions when ¢/w is integral. Also note that since
a 2-move is equivalent to a crossing change, this also implies that N(7/-3) can be
obtained from N(5/-1) by changing one negative crossing to a positive crossing but

not by changing one positive crossing to a negative crossing.

A X
AN /
positive crossing negative crossing

Fig. 14. Signed crossings.

However if t = £1, U need not be ambient isotopic to a Montesinos tangle and
thus the distance one classification is not yet complete. If ¢ = +1, then unless the
classification determines that the distance is one (and thus there exists a U which
is ambient isotopic to a Montesinos tangle), then it is unknown whether or not the
distance is one unless other mathematical bounds apply or a projection is found in
which such a [P,R]-move can be made. For example theorem 5 gives no information
as to whether or not dy (63,22) = 1. However, the following example (figure 15) in
which U is not ambient isotopic to a Montesinos tangle shows that d; (65,2%) = 1.

e B N
LA XX

Fig. 15. d1(63,22) = 1.

Theorem 6. [17] The link Ly can be obtained from the link Ly by replacing
the f1/g1-tangle with the fa/go-tangle if and only if dyyy(L1,L2) = 1, where L =

%, hi1, 11 such that g1hy — f191 = 1. In this case if % = (b, ...,b;) and g—z =

(di,...,dm) then there exists a continued fraction expansion of g—i = (€1, s Cn)s

t _ g1fe—gafn __ _ _ _ fo _ thatwfr __
odd such that - = §L2=9221 = (di,-eeydm —Cny—Cn_1,-..,—¢1) and 2= it =

(bl, vy b + €1, ...,Cn)

3

These theorems can be used to determine all possible [P, R]—moves to change a



particular 4-plat into another 4-plat where P and R are rational tangles except in
the case when P = ﬁ—i, R = g—z and fi1gs2 — fagr # £1 [17]. Theorem 5 can be used
to determine all possible R-moves. Theorem 6 states that solving the equations:

NU + ﬁ) = substrate NU + é) = product (4.1)
il 92
is the equivalent to solving the equations:
t
N(U' 4+ 0) = substrate NU' + E) = product (4.2)
where £ = =almooh — (g, d, —cp,—Cn_1,-..,—C1), for some continued fraction

T higa—iifa T
expansion of 51 (c1y--y¢n),n 0odd and g—z = (di,...,dp). See figure 16 below.

= ©

Fig. 16. N(U + 5_1) S NU + ;‘_z)_

Since A+Bo(c1,¢2, -+, ¢n) = A0 (Cn,Cn1, -, ¢1)+B when nis odd, N(U+4) =
NWU + 00 (c1,...,¢)) = N(U o (cp,y...,c1) +0) and N(U + ;—z) =NU+ Lo
(¢1yycn)) = N(U o (cpy-.yc1) + t/w) Thus if U is a solution to eq. (4.1), then

U o (cn, -..,c1) is a solution to eq. (4.2).

NU'"+0) = NU' + (cl, ,¢n) © (—Cpyeey—c1)) = N(U' o (—c1, .., —cp) +
(c1ymCn)) = N(U' o (=c, .o ) L) and N(U' + t/w) = N(U' + (d1, ., dm) ©
(—Cnyery—1)) = N({U' o (—C1y ey —n) + (d1, ..oydrn)) = N(U' o (—c1, ey —Cn) + g—z)
Thus if U’ is a solution to eq. 4.2, then U'o(—cy,...,—¢p) a solution to eq. 4.1.

Since U'o(—c¢1, ..., —¢p)o(cpn,...,c1) = U and Uo(cy,...,c1)0(=cC1y ooy —Cp) = U,
U is a solution to eq. 4.1 if and only if U = U’ o (—c¢y, ..., —¢y,) for some U’ where

U’ is a solution to eq. 4.2.

Note that U is rational if and only if U’ is rational and U is ambient isotopic
to a sum of two rational tangles if and only if U’ is ambient isotopic to a sum of
two rational tangles. Thus U is ambient isotopic to a sum of at most two rational
tangles when f1g> — fog1 # £1 which corresponds to the case t # +1.

Normally, when f1g2 — fog1 = £1, U does not need to be ambient isotopic to
a sum of rational tangles. However, Hirasawa and Shimokawa have proved that U
must be rational when the substrate is unknotted and the product is N(2z/1) when

fig2 — fogr = 1.



Theorem 7 [19] If N(U + £) = unknot and N(U + £) = N(22/1) where
f192 — fog1 = £1, then U is ratlonal

Theorems 8 and 10 can be used when not all the knots involved are 4-plats and
are a generalization of [20] and [21], respectively.

Theorem 8 [16] If d;/,,(L, N(a/b)) = 1, then for some integer n, and s = w
mod t, |H1(z)| =< m, Ly | tnLy + sm,al; — bnm >.

Corollary 9 If d;,,(N(a/b), K) = 1, then there exists an integer n such that
|H1(MKk)| = |aw + tbn?| (mod ta).

Theorem 10 [22] If di(K,K') = 1, then there exist a € Hi(Mk) and o’ €
Hy(Mk-) such that A(a,a) = n/|H1(Mk)| and A(a',a') = m/|H1(M})| (mod 1),
where

+1
m = n = —=(Hi(Mg)| = |Hi(M)])
or
+1 ,
—m = n = S (H (M) |+ H (M)

Note that theorem 10 also give information regarding ktt? moves since these
moves are equivalent to +¢ moves.

5. Computer algorithm for solving tangle equations

To solve N(U + P) = N(a/b) and N(U + R) = N(c/d) where P and R are
rational, theorem 5 can be used to find all rational solutions for R assuming P is
the 0 tangle. If R # 1/j, theorem 5 can also be used to find all solutions for U.
Theorem 6 can then be used to find all rational solutions for R given any rational

. All solutions for U can then be found unless R = 1/j was a solution when P = 0
whlch corresponds to the case figs — fog1 = £1 where P = fl and R = g 2

The classification of distance one 4-plats gives a formula which can be solved
in order to determine which [0, ¢/w] moves are possible when t # +1. A com-
puter program which outputs all possible moves when ¢ # =+1 is available at
http://www.utdallas.edu/~darcy. The program is currently being updated to be
more user-friendly. It will eventually allow the user to input the knot/link types
of the substrate and all products in order to calculate all possible reaction path-
ways noting whether processive recombination, distributive recombination, and/or
multiple products from one round of recombination are possible. Currently, one
can input each pair of knots and then analyze the output by hand. However, these
calculations are easily programmable and will be available soon. Although using
Ernst and Sumners’ theorem 4 is the fastest method to determine R in the case of
processive recombination, the program allows for other possibilities in addition to
processive recombination and will not require P to equal the zero tangle.

For example the products of Tn3 Resolvase acting on unknotted substrate con-
taining direct repeats are N(2/1), N(5/2),N(8/3). When the recombinase equa-
tions were originally solved, it was assumed that N(2/1),N(5/2), N(8/3) were
the products of the first, second, and third round of recombination, respectively



(figure 9). Suppose one instead assumes processive recombination, but allowing
the same product for two different rounds of recombination and without assum-
ing the order of the products. Thus the processive recombination equations are
N@U+iR) = K;, i =1,...,n, n > 3 where K; € {N(1/0), N(2/1), N(5/2), N(8/3)}.
The three knotted/linked products must appear at least once in these equations;
however, the substrate, N(1/0) need not. Recall that R must be an integral tan-
gle by theorem 1, and note that dsg(K;,K3) = 1. Thus there must exist an
even t such that d;(K;,K3) = 1. By using the program to calculate all possible
integral distances between N(1/0), N(2/1),N(5,2), and N(8/3), it is easily deter-
mined that exactly three round of recombination occurred and that Ko = N(5/2)
and {Ky,K3} = {N(2/1),N(8/3)} where t = £2 and thus R = £1. Since U
must be either a rational tangle or the sum of two rational tangles, one obtains
either the original solution shown in Fig. 9 or that N(11/3 + P) = unknot,
N(11/3 4+ —1) = N(8/3), N(11/3 4+ —2) = N(5/3), N(11/3 + —=3) = N(2/1).
Since N(2/1) is a more abundant product than N(8/5), it was a biologically rea-
sonable assumption to assume that N(2/1) is the product of one and not three
rounds of recombination. Also U = —1/3 is more likely than U = 11/3 when the
substrate is negatively supercoiled DNA. But with the program, it is easy to solve
recombinase equations with as few or as many assumptions as desired; although in
some cases, the list of solutions may be extensive (see section 6).

Since determining possible R moves is fast, an option to enter the crossing
number of the knot rather than the actual identity of the knot will also be available
to analyze experiments for which only the crossing number of the product is known.
For example, if a seven crossing knot is produced, it is easier and much faster
to mathematically analyze all seven crossing equations rather than to biologically
identify the knot.

6. Example: Xer recombination

Xer recombinase acting on unknotted substrate produces only one product, the
link N(4/1) [23]. Thus there are only two equations for which to solve for 3 un-
knowns resulting in an infinite number of solutions.

N(Uy + P) = unknot N({U1 +R) =N(4/1) . (6.1

This enzyme cannot act processively. Thus there is no experiment that can
be done to reduce the infinite number of solutions to a finite number. However,
what mathematics can do is list all possible solutions and propose experiments to
reduce this list to a smaller number of infinite solutions which can then be analyzed
for which solutions are the most biologically relevant using additional biological
assumptions. For example, if P and R are restricted for biological reasons to have
at most 4 crossings, then the list becomes finite. In this section, we will list all
possible solutions given a few assumptions and propose experiments to reduce this
list.



If P is the zero tangle and R is the rational tangle ¢/w, by theorem 5, R is % =

(4,0) or % =(3,4,0) or % = (5,4,0) or ﬁ = (—4,j,k,0) where j and
k are any integers. By theorem 6, if P is the rational tangle fi/g1 = (c1,..,¢n), 1
odd, and R is the rational tangle fo/ga, then fo/gs = i’:ll:;’gfll, and g1hy — f1i1 =
1. Or equivalently, fa/g2 = (j,¢1,.-,¢n) Or (3,4,¢1,.y¢n) Or (5,4,¢1,...,¢n) OF
(—4,4,k,c1,...,cn). However, P and R may not be rational.

For some recombinases one round of recombination will result in various products

rather than a unique product. In this case one is solving the equations:

N(U; + P) = substrate N(U; + R) = product 1
N(U; + P) = substrate N(U; + R) = product 2
N (U, + P) = substrate N(U, + R) = product n

If the substrate is unknotted DNA and at least two different products result
from one round of recombination, then P is rational by lemma 11. Unfortunately
Xer only produces a unique product and thus lemma 11 cannot be used to show
that P is rational for the recombinase Xer.

Lemma 11 [5] If N(U;+ P) = unknot, i = 1,2 and U; # Us, then P is rational.

In order to obtain more equations, Colloms et al [24] used different substrates.
The enzyme A-Integrase is another recombinase which produces (p,2) torus knots,
N(p/1), p odd, when acting on substrates containing inversely oriented sites and
produces (p,2) torus links, N(p/1), p even, when acting on substrate containing
directly oriented sites. It was determined by gel electrophoresis that the majority
of the (p, 2) torus links contained 4, 6, 8, 10,and 12 crossings. When these (p, 2) torus
links were used as substrates for Xer recombination, products resulted containing
7,9, and 11 crossings. It has previously been shown that Xer will not act on the 4
crossing torus link [23]. In order to determine which of the other (p,2) torus links
produced which products, the six and eight crossing torus links were purified from
the mixture of torus links. Xer recombinase acting on the six crossing torus link
produced a seven crossing product. When the eight crossing torus link was used as
a substrate, a nine crossing product resulted.

N({U + P) # N(4/1) (6.2)
N(U; + P)=N(6/1) N(Us; + R) = seven crossing product  (6.3)
N(Us + P) = N(8/1) N(Us + R) = nine crossing product  (6.4)

Eq. (6.2) cannot reduce the number of mathematical solutions, but can be used
for biological analysis. Eq. (6.4) involves a nine crossing knot. Unfortunately,
theorem 5 only applies to 4-plats. Up to mirror images, there are 49 nine crossing
prime knots of which 25 are 4-plats. Since it is unknown whether or not the nine



crossing knot produced by Xer is a 4-plat, eq. (6.4) will not be used in this paper
to reduce the number of mathematical solutions. There are other methods such as
theorem 8 which may be of use, but these methods are not nearly as efficient as
theorems 5 and 6. Since most small crossing knots are 4-plats and the number of
knots with a particular crossing number increases exponentially, products with at
most 7 crossings are strongly preferred.

Eq. (6.3) can be used to reduce the number of mathematical solutions. Recall
that by eq. (6.1), if P is the zero tangle and R is the rational tangle t/w, R is
%, %, % or ﬁ. Recall that theorem 5 cannot be used to eliminate
R= % All seven crossing 4-plats knots (which includes all 7 crossing prime knots)

were checked using the computer program to determine if R = %, or :[—g] satisfies
eq. (6.3). If K = N(21/8) = 7, then R = ;13- is still a possible solution. A
C program was written to determine what rational tangles t/w,w % +1 satisfy
both equations. If K = N(13/ — 10) = 73, then R = 4:—:;;;' is still a possible

solution. If K = N(15/4) = 7}, then R = 4:—33‘ is still a possible solution. If

K is a seven crossing composite knot, then theorem 8 rules out everything except

_1 43 _—13
R= 7, 1355 10135

Seven crossing 4-plat links were also checked, and it was determined that R =
% is the only rational tangle which satisfies both eq. (6.1) and (6.3) when P =0
in which case K is the link N(18/5) = 72. However, a link is not the biologically
expected product. The six crossing link was constructed with a recombination site
on each component of the link. Thus if P and R are the same in eq. (6.1) and (6.3),
the product must be a knot and not a link (see figure 1). Therefore, seven crossing

non 4-plat links were not considered.

Colloms et al [23] were also able to determine the orientation of N(4/1), the
product of Xer recombination on unknotted DNA substrate. Tn3 Resolvase is an-
other site-specific recombinase. Tn3 Resolvase binds to specific DNA sequences
called res sites. Tn3 Resolvase will not act on N(4/1) when the two res sites are
oriented in a parallel fashion, but will act when the sites are in anti-parallel ori-
entation (figure 17). A substrate that contained two res sites in addition to two
sites for Xer was used to determine that the product of Xer recombination acting
on unknotted substrate is N(4/1) with an anti-parallel orientation (Lk = -2). In
Figure 18, the Xer binding sites are represented with open triangles and the res
sites are represented by black arrows.

%2\\28\\2

anti-parallel res sites parallel ressites

Fig. 17. Parallel versus anti-parallel



By theorem 5, P = 0 and R = %, 4:3;3': 413;" results in N(4/1) with parallel

sites (Lk = +2), whereas P =0 and R = 4:—gj results in N(4/1) with anti-parallel
sites. By Hirasawa and Shimokawa’s theorem 7, U; is rational when P = 0 and

R =1/j. Thus N(4/1) is anti-parallel when R = 1/j. Thus by theorem 5, theorem
7, and tangle facts 4 and 8, if P = 0 and R is rational, then U; = _% and R = =2

1-9;
or U; = _3,1_4 and R = % If P= fi/g1 = (c1,...,¢,) and if R is rational, then
h —9hy+(4—9j hatj .

R = f2/gs = ihli;‘)’;ll = _9i11+((4_9]’.))gfll or hli;gfll and the solutions to eq. (6.1)

assuming (6.3) also holds are of the form:

N((=j,—c1y .., —Cn) + (€1, ...s¢n)) = unknot 6.5)
N((_ja —C1y -0y _cn) + (_47 _2>ja C1, "'7cn)) = N(4/1) .
or

N({(—j—4,—c1y...,—cn) + (c1, .-y ¢n)) = unknot
N((=j—4,—c1ye,—Cn) + (J,c1, ..y ¢n)) = N(4/1)

If U, is ambient isotopic to a sum of rational tangles, and R is rational, the
solutions to eq. (6.3) assuming (6.1) also holds are of the form

(6.6)

N((67 _j7 —C15 - _Cn) + (Cla ...,Cn)) = N(ﬁ/l)

N((6,—j, —C1, ey —Cn) + (—4, =2, ], 1, ..., ¢)) = N(15/4) (6.7
or
N((_1/3 + _1/3) o (_.7 - ]-5 —C1y - _cn) + (cla “‘JC")) = N(G/l) (6 8)
N((_1/3 + _1/3) o (_.7 - ]-a —C1 ey _Cn) + (J; C1, ...,Cn)) = N(15/4) ‘
or
N((6,k,—c1,...,—¢p) + (c1, -, ¢n)) = N(6/1)
N((67k5 —C1, ey —Cn) + (J) C1, ...,Cn)) = N(w) (69)

—6
where the seven crossing product is N(7/1)if j+k =1or N(11/6) if j+k = —2.

If P and R are rational and if U, is ambient isotopic to a sum of rational
tangles, the seven crossing product is N(15/4)) = 7%, N(7/1) = 7%, or N(11/6)) =
72. However, Us may not be ambient isotopic to a sum of rational tangles when
f192 — f2g1 = £1 which is the case in eq. (6.8) and (6.9).

Note that the two equations below not only imply that djp, R](01,4%) =1 and
dip,r)(63, seven crossing product) = 1, but they also imply that djy, 1,(01,67) = 1
and d{Ul,UQ](Alf, seven crossing product) = 1:

N(U; + P) = unknot N(U; + R) = N(4/1) (6.10)



N, +P)=N(6/1) N(Usz + R) = seven crossing product (6.11)

Using theorem 5, if U; = 0-tangle and U, is rational, then Uy = 1/j or Uy =

76‘1131]. is a possibility when the seven crossing product is N(7/1) = 77 and Uy =
—g+13; 18 also a possibility when this product is N(11/ —9) = 7.

If P or R are not rational, then U; and Us must be rational by tangle fact (9).
But by theorem 5 and Hirasawa and Shimokawa’s theorem 7, P is rational.

Although P must be rational, R may not be rational. Recall that if U; = f1/g1
and Uz = fa/g2, f192 — fag1 # *1, then P and R are ambient isotopic to a sum of
at most two rational tangles. Note, however, that if U; = 0-tangle = 0/1 and U, =
1/4, then 0j - 1(1) = -1 and thus R need not be rational or even ambient isotopic
to a Montesinos tangle in this case.

Proposed experiment 1: Use any of the knots, K = 4;, 63,75, 77, 8, or any of
the links K = 52,62, 62, or their mirror images as substrate. Since d; (01, K) > 1 by
theorem 8, if the recombinase can act on any of these substrates, then P and R are
either rational or ambient isotopic to the sum of two rational tangles. Depending
on the resulting product, it may be possible to show that P and R are rational.

Drawback: Experiments are time consuming. First sufficient amounts of the
knotted/linked substrate must be constructed. T4 topoisomerase acting on su-
percoiled DNA produces twist knots such as 4; and 8;. The link 52* is a minor
product of Tn3 resolvase recombination meaning that a very large reaction would
be required in order to produce a sufficient amount to use as a substrate for Xer
recombination. If the recombinase does not act on the constructed knot/link, no
information regarding P and R would be gained. If the recombinase does act, then
the infinite list of mathematically possible solutions can be shown to be complete;
however, it may not be worth the time to rule out prime tangle solutions which may
not be biologically reasonable.

7. P and R versus F and F

If a recombinase acts processively, mathematicians can easily solve for the tangles
U and R, and the number of solutions will be finite. If the enzyme cannot act
processively, mathematicians can list all rational tangle solutions for R assuming
that P is a particular rational tangle, but this list will be infinite. It may also be
possible to prove that P and R are rational if the enzyme will act on an appropriate
knotted substrate (proposed experiment 1). However, no matter what biological
experiment is done, the list of mathematically possible solutions for P and R will
still be infinite for enzymes that do not act processively. Since crossings can be
pushed in or out of the tangles P and R, many distances are equivalent. For
example figure 18 shows that a t-move is equivalent to any ¢/w-move where w = 1
mod t. Experiments were proposed in this paper in part to point out the limitations
of tangle analysis.



t-tangle
t/w-move|

O-tangle
Fig. 18. Replacing the 0-tangle with the ¢-tangle via a t/w-move

Many biologists assume that for all recombinases, P and R have at most one
crossing. However, [25] proposed that Xer may use a 1/2-move. This is math-
ematically possible. In fact, if P is the zero tangle, up to three crossings, R =
00,+1,+1/2,+1/3 are all possible solutions. However, if one only looks at the knot
types of the products, then it is not possible to narrow this list further. Thus it is
up to biologists to decide if the information gained is worth the experimental time.

The tangle model can still be very useful in analyzing Xer recombinase reactions.
The full tangle model divides the tangle U into the tangles Uy and U, where the
tangle Uy is bound by the enzyme but outside of the enzyme action and the tangle
Uy represents the free DNA not bound by the enzyme (figure 19). Because Xer
produces a unique topological product for each substrate used, U; is believed to
remain constant for all reactions. The tangle model currently assumes that Uj is a
two string tangle, but note that the more general model shown in figure 20 is also

a possibility.
enzyme

Fig. 19. Tangle model for recombination.



Fig. 20. Alternate tangle model for recombination.

Rather than combining U and Uy into the tangle U, it is also relevant to combine
the tangles Up and P into a tangle B and the tangles U, and R into a tangle £ with
the resulting tangle equations N(Uy + B) = substrate and N(Uy + E) = product.
There are two main differences between these equations and the equations involving
U, P and R. First, it is possible to biologically determine Uy by taking an electron
micrograph of the synaptic complex. Thus there are biological experiments which
can reduce the infinite list of solutions for B and E to a finite or even unique
topological answer (see proposed experiments 2 and 3 in section 8). Secondly, the
tangles B and E represent the DNA bound by the enzyme and not just the local
action which is represented by the tangles P and R. Since the tangles P and R
represent the local action of breaking and rejoining two strands of DNA, these
tangles are almost certainly 2-string tangles and thus U is also a 2-string tangle.
There is no biological evidence that a third strand of DNA is directly involved in the
local action. For some recombinases such as Tn3 resolvase, electron micrographs
of the synaptic complex show that Uy is a 2-string tangle and thus E and B are
also 2-string tangles. However, electron micrographs of the synaptic complex of the
recombinase Gin show three strands of DNA looping out of the enzyme complex
and therefore, Uy is a 3-string tangle. Currently the only mathematical method
to handle this is to mathematically push one of the three strands into the enzyme
complex and treat the tangles as though they were 2-string tangles.

8. Determining B and E.

Note that the tangle analysis done in section 6 also applies to equations (8) and
(9) below assuming Uy is a 2-string tangle.

N(Uy, + B) = unknot N{Uy, + E) = N(4/1) (8.1)

N(Uyg, + B) =N(6/1) N(Uy, + E) = seven crossing product (8.2)

Thus B must be rational. If R is rational and Uy, is ambient isotopic to a
sum of rational tangles, all the solutions to eq. (8.1) and (8.2) are listed in eq.
(6.5) - (6.9). Since this list is rather extensive, in this section four different models
will be analyzed. These models, drawn in figures 21-24, have been proposed to
explain the topological product of Xer recombination on unknotted substrate with
Uy, = O-tangle.
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Fig. 21. N(Us + —-1/5) = N(Uy +4/5)

In figure 21, the -1/5 tangle is replaced by the 4/5 tangle. This is mathematically
equivalent to replacing the zero tangle with the -25/4 tangle. However, by section
6, -25/4 is not a possible solution to equation (9). Thus Xer cannot use the model
shown in figure 21.

OO

Fig. 22. N(Us + —1/4) - N({Us + R)

In figure 22, the -1/4 tangle is replaced by a tangle containing the local link
N(4/1). Thus any product according to this model would be of the form N (4/1)#K
where K is some knot or link including possibly the unknot. If the substrate is a
link, then Uy must have parity infinity. But if Uy has parity infinity, then K is a link
and not a knot. However, there are no seven crossing links of the form N(4/1)#K
where K is not a knot. Thus R cannot contain any local knots or links and Xer
cannot use the model shown in figure 22.

OO

Fig. 23. N(Us + —1/3) - N(Uy + —4/3)

In figure 23, the -1/3 tangle is replaced by the -4/3 tangle. In this case if the
product is a seven crossing knot, Uy, must be a rational tangle. Suppose Uy, = %,
N(% +-L)=N(6/1), and N(% + ) = seven crossing product. Then .= -1/3=
(—3,0) tangle and the seven crossing product is the knot 74 (figure 25).
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Fig. 24. N(Us +1/0) - N(Uy + 4)

In figure 24, the infinity tangle is replace by the +4-tangle. If N(Uy, + %) =
N(6/1) and N(Uy, + 2) = seven crossing product, then by eq. 6.8 and 6.9, Uy, =
—31/6 = (—6,—5) and the seven crossing product is the knot 77 (figure 26) or
Uy, = —13/6 = (—6,—2) and the seven crossing product is the knot 75 (figure 27)
or Us, = (—=1/3+ —1/3) 0 (2,1,—1) and the seven crossing product is the knot 7}
(figure 28). Note, however, that Uy, could be a prime tangle which is not ambient
isotopic to a Montesinos tangle. In this case, the seven crossing product is not the
knot 73 or its mirror image by theorem 8. Unfortunately, theorem 8 does not give
any information regarding the other seven crossing knots.

L0 - 000

Fig. 25. N(=1/3 + —1/3) — N(=1/3+ —4/3) =T}

S A S~ A

Fig. 26. N(—31/6+1/0) — N(—31/6+4) = 7%

S~ 4 S X

Fig. 27. N(=13/6 +1/0) - N(—=13/6+4) =7,



Fig. 28. N((=1/3+ —1/3) 0 (2,1,—1) + 1/0) = N((=1/3 + =1/3) 0 (2,1, -1) + 4) = 7}

If Uy, is ambient isotopic to a sum of rational tangles, then the only possible
topological solutions assuming models 23 and 24 are drawn in figures 25 and 26-28,
respectively. If the recombinase sites are used to orient the links N(4/1) and N(6/1),
then the linking number of N(4/1) is -2 [23] and the linking number of N(6/1) is
-3 [24]. Note that for the model shown in figures 24 and 26, the orientation of the
recombinase sites when the substrate is unknotted is different than the orientation
of the recombinase sites when the substrate is N(6/1), whereas the orientations
agree for both substrates in figures 25, 27, and 28. If Uy, is ambient isotopic to
a sum of rational tangles and the orientation of the sites agree, then 77 is not a
possible product from N(6/1) irregardless of the model proposed. The tangle Uy is
also much simpler in model 25. Thus the figure 23 model is most likely biologically
more reasonable than the figure 24 model for Xer recombination.

Note however, that the solutions drawn are topological solution. The geometrical
solutions drawn in figure 29 are topologically equivalent to the solution drawn in
figure 23 and thus are also possible models for Xer recombination (observe, though,
that if the double helical nature of DNA is taken into consideration, ALk may be
different in figures 23, 29 depending on assumptions regarding ATw). The top
drawing in figure 29 is the same as figure 2b in [24].

i

$

Sk
IR

Fig. 29. Topologically equivalent to figure 23.



Proposed experiment 2. Take a picture of the synaptic complex using both
the unknot and the link N(6/1) as substrate.

If Uy, = O-tangle, then by eq. (8.1), B = 1/n tangle. If Uy, = -1/3 tangle, then
by equation (8.2), B = g}:g,f for some k. If both equations hold with these Uy,’s,

then B = 3 is the unique solution.

If Uy, = O-tangle and if E is a rational tangle, then by equation 8, E' = - 4k
tangle. Suppose Uy, = -1/3 tangle. If both equations hold with these Uy,’s, then
E= _T4 is the only rational tangle solution (figure 23). E cannot be a Montesinos
tangle but can be ambient isotopic to a Montesinos tangle or some other prime

tangle.

However, an electron micrograph showing Uy, as a-1/3 tangle would look exactly
like an electron micrograph showing Uy as a 3 tangle. Thus Uy, = 3 tangle must
also be considered. But by the solutions to eq. (6.10) and (6.11), if Uy, = O-tangle,
then Uy, = 1/7, —6+31]’ or _6+13J Thus Uy, # 3 tangle.

Therefore, if we assume FE is a sum of rational tangles and if is determined that
Uy, = 0-tangle and Uy, = -1/3 tangle, then B must be the -1/3 tangle and E must
be the -4/3 tangle.

Proposed experiment 3. Take a picture of the synaptic complex using both
the unknot and a different knot or link as substrate.

Rather than redoing the Xer reaction using N(6/1) as substrate, more informa-
tion may be gained by using another knot or link as substrate. If it is assumed that
Uy is a rational tangle and that the model shown in figure 23 is correct, then it is
easy to predict products of Xer recombination and to predict what Uy should look
like. Rational tangles are often simpler than non-rational tangles, and in biology
often the simpler model is the correct model.

If Uy = ¢ and the substrate is N(a/b), then N(J + =3) = N(a/b) and 2=
2 where bv*! = 1 mod a. The product of recombination is N(3-2— + =) =
N (__92”1)14&“) The easiest knots/links to make in the lab are torus knots/links and
negative twist knots.

If the torus knot/link N(a/1) is the substrate, then one simple Uy is 71— with an
expected product of N( __9;;_4@“). In particular if the five crossing torus knot, N(5/1)
is the substrate of Xer recombination, then Uy is expected to be the _71 tangle and
the product is expected to be a six crossing knot if the substrate contains inverted
repeats. Note Uy cannot be the +2 tangle if Uy, is the zero tangle. If both Uy = St
and a six crossing knotted product is confirmed by biological experiments, then
B = —1/3 and E is either a prime tangles which is not ambient isotopic to the sum
of rational tangles or E must be the -4/3 tangle, a slightly stronger conclusion than
that for the N(6/1) substrate.

If the twist knot, N (“), a odd with crossing number 2£2 is the substrate, then
one simple Uy is 52~ (famig 18) (2,%57,1,3) which is
a link with one additional crossing if the crossing number of the negative twist knot
is greater than four. If the substrate is the four crossing twist knot, an expected

product is the two crossing link, N(2/1).




In particular, if the five crossing twist knot, N(7/2), is the substrate, then Uy
is expected to be the -2 tangle with N(10/3), a six crossing link, as the expected
product. If it is experimentally determined that Uy is the -2 tangle, then £ must
be either a rational tangle or ambient isotopic to a Montesinos tangle by theorems
5 and 6. However, an electron micrograph showing Uy as a -2 tangle, would look
exactly like an electron micrograph showing Uy as a 1/2 tangle. Since it is math-
ematically unknown whether or not dy (01,52) = 1, the electron micrograph could
be interpreted either way. However d1(N(4/1),N(10/3) # 1. Thus if Uy, is the
zero tangle, Uy could not be the 1/2 tangle in the equations N (U, + B) = N(4/1)
and N(Uy + E) = N(10/3). The solutions in this case are B =-1/3 or 1/4 and E
= -4/3 and both B and E must be rational.

Although it is not possible to mathematically determine P and R, these addi-
tional experiments could allow the exact determination of the topology of B and
E. However, the experiments proposed are neither simple nor quick, but the list of
possible models can be analyzed so that biologists can decide the relevance of an
experiment.
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