Lecture 1: What is a knot?

$$S^{n} = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$$

$$= \mathbb{R}^{n} \cup \{\infty\}$$

$$= \mathbb{D}^{n} \cup \mathbb{D}^{n} \text{ where } \mathbb{D}^{n} = \{x \in \mathbb{R}^{n} : ||x|| \le 1\}$$

$$= \mathbb{D}^{n+1}$$

$$S^{o} = \{-1, 1\}$$

$$S' = \{-1, 1\}$$

$$\frac{1}{2} \cup \{\infty\} = \{-1, 1\}$$

$$\frac{1}{2} \cup \{\infty\} = \{-1, 1\}$$

K is an n-dimensional knot if K is homeomorphic to Sⁿ

Alternative definition:

A knot is an *embedding* $f: S^n \rightarrow M$

Our main focus will be 1-dimensional knots embedded in S³, K: S¹ \rightarrow S³

K is a *link* if K is homeomorphic to a disjoint union

We will work in the Piecewise-Linear (PL) category (In S3, PL = smooth) No WILD KNOTS Suppose K₁, K₂ are knots in M.

 K_1 , K_2 are equivalent if there exists a homeomorphism of pairs h: $(M, K_1) \rightarrow (M, K_2)$

That is h: $M \rightarrow M$ and $h(K_1) = K_2$

Mirror image

Map equivalence: equivalence plus require $ho K_1 = K_2$

Oriented equivalence: equivalence plus require h preserve orientation

3, # 3,*

Ambient isotopy: Lim C

K₁ and K₂ are ambient isotopic in M if there exists a map h: M x $[0, 1] \rightarrow M$ such that

- 0.) ht is a homeomorphism for all t in [0, 1] where $h_t: M \rightarrow M, h_t(x) = h(x, t).$
- 1.) $h_0 = identity$
- 2.) $h_1(K_1) = K_2$

Two knots in S³ are ambient isotopic iff one can be obtained from the other via a sequence of Reidemeister moves:

A function f: set of knots → X is a knot invariant if

$$f(K_1) = f(K_2)$$
 whenever $K_1 = K_2$

Ex: f: set of knots →{3-colored, not 3 colored}
where f(K) = 3-colored iff the arcs of a diagram of
K can be colored with exactly 3 colors such that at
each crossing either all three colors appear or only

Check if c-coloring is a knot invariant = Check RI, R2, R3

Chapter 2

Note Title 1/19/2010

Jordan Curve Thm: If J is a simple closed curve in R², then R² – J has two components and J is the boundary of each.

Schonflies Thm: If J is a simple closed curve in R², then one of the components of R² – J is homeomorphic to the unit disk D².

HW 3: Show that $S^2 = D^2 \cup D^2$ where $D^2 \cap D^2 = J$

Lemma (Alexander): Suppose A and B are homeomorphic to D^n . Any homeomorphism h: $A \rightarrow B$ extends to a homeomorphism h: $A \rightarrow B$.

Cor: Any two S¹ knots in S² are equivalent.

Annulus Thm: The closure of the region between two disjoint simple closed curves in S^2 is an annulus ($S^1 \times [0, 1]$).

Lemma: Any homeomorphism

h: $S^1 \times O \rightarrow S^1 \times O$ extends to a homeomorphism

Cor: Any two links in S2 are equivalent.

Cor: Any two knots in S² are ambient isotopic.