$$\frac{d}{dx}[sin(x)] = cos(x)$$

$$\frac{d}{dx}[cos(x)] = -sin(x)$$

$$\tfrac{d}{dx}[tan(x)] = sec^2(x)$$

$$\frac{d}{dx}(sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(tan^{-1}x) = \frac{1}{1+x^2}$$

Ex:
$$\frac{d}{dx}(cos^{-1}(tan^{-1}(x^3)))$$

Ex:
$$\frac{d}{dx}(ln(x)) =$$

Suppose $s(t) = t^2 + 3t - 1$ represents position at time t.

Then velocity =
$$v(t) = \frac{d}{dt}(s(t)) = s'(t) =$$

and acceleration =
$$a(t) = \frac{d}{dt}(v(t)) = v'(t) = s''(t) =$$

jerk = change in acceleration
=
$$D(a(t)) = \frac{d}{dt}(a(t)) = a'(t) = v''(t) = s'''(t) =$$

Ex: Find
$$\frac{d^{50}}{dx^{50}}(sin(x)) =$$

Ex: Find y'' if $2x^2y - 3y^2 = 4$