5.3: Series solutions near an ordinary point, part II

A power series solution exists in a neighborhood of xy when the
solution is analytic at xp. I.e, the solution is of the form y =
Y2 oan(x — xo)™ where this series has a nonzero radius of con-
vergence about x.

That is f(x) = ;‘f:o%(x — x9)" for x near z.

(n)
Thus there are constants a,, = ! n(!mo) such that,
F(2) = B gan (@ — ao)".

When do we know an analytic solution exists? I.e, when is this
method guaranteed to work?

Special case: P(x)y” + Q(z)y + R(x)y =0
Then y(x) = ~[Fy + £

/
y" (@) ==[(%)y + 3y + £y + £y

_ " (20)

If f(z) = X)2oan(x — 20)" is a solution where a,, = =%, then
ao = f(zo),a1 = f'(zo)
2lay = f"(w0) = ~[F ' (w0) + Ef(w0)] = ~[Far + Fao]

Blag = f"(x0) = —[(L) f'(w0) + Lf" (wo) + &' (o) + £ f ()]

To find a,, we could continue taking derivative including derivatives
of % and % (but much easier to plug series into equation — ie 5.2
method).

Definition: The point zq is an ordinary point of the ODE,

P(z)y" + Q(z)y’ + R(z)y =0
if % and % are analytic at zg. If x¢ is not an ordinary point, then
it is a singular point.

Theorem 5.3.1: If z( is an ordinary point of the ODE
P(2)y" +Q(x)y"+ R(z)y = 0, then the general solution to this ODE

" Y = X5 gan (T — 20)" = appo(r) + a1¢1(x)

where ¢; are power series solutions that are analytic at xg. The
solutions ¢q, ¢1 form a fundamental set of solutions. The radius of
convergence for each of these series solutions is at least as large as

the minimum radii of convergence of the series for % and %.

Theorem: If P and @ are polynomial functions with no common

factors, then y = Q(x)/P(x) is analytic at x if and only if

P(z¢) # 0. Moreover the radius of convergence of Q(x)/P(x) is
min{||zo — z|| | v € C, P(x) = 0}

where ||zg — z|| = distance from zy to x in the complex plane.

2
Ex: z(z+ 1)y" + x§+1y’ + L5y =0

1 _
V' + ey T eemy =0
Then xy = —1, 2 are singular points. All other points are ordinary
points.
The zeros of the denominators are x = +i, —1,2

Radius of convergence for the series solution to this ODE about the
point xg if xg # —1,2 is at least as large as

minimum{y/x3 + (£1)2, |zo — (—1)|,|z0 — 2|}
If zg = 0, radius of convergence > 1
If xo = —3, radius of convergence > 2

If ¢y = 3, radius of convergence > 1

If zg = %, radius of convergence > \/(%)2 +(£1)2 = @



5.4: Euler equation: 2%y” + axy’ + By =0 (—2)"[r* —r+ar+p]=0
Let L(y) = 2*y" + azy' + By (=2)"[r* + (@ =1)r+ 8] =0
Recall that L is a linear function and if f is a solution to the euler Thus (—z)" is a solution iff 72 + (o — 1)r+ =0

equation, then L(f) = 0.
Thus 7 — —(a—l):]:\/z(a—l)Q—élﬁ

Note that if  # 0, then z is an ordinary point and if z = 0, then z

is a singular point. r  ifxr>0
Recall o] = { —z itz <0
Suppose x > 0. Claim L(z") = 0 for some value of r
- x” itz >0
— oy =ra" Ly = r(r — 1)a" 2 Thus |z|" = (—2)" ifz<0
22y + axy + By =0 —(a— [(a—1)2—
Thus if r = —@~D* Q(Q L’ 46, then y = |z|" is a solution to
22r(r — 1)z" 2 + azra™ ' 4+ B2" =0 Euler’s equation for x # 0.
(r2 —r)a” + ara” + Ba" =0 Case 1. 2 real distinct roots, r1, ro:

General solution is y = ¢;|z|™ + co|z|™.
2" r?—r+ar+p8]=0

2?4+ (a-1)r+p6]=0 Case 2: 2 complex solutions r; = A £ iy :
Thus 2" is a solution iff 2 + (a — 1)r + 5 =0 Convert solution to form without complex numbers.
; Ati . .
Thus 7 — —(a—l):l:\/m Note |x|)\:i:zu — eln(|x| "y e()cl:zu)ln|x| — e)\ln|w|ez(:i:,uln\x\)

2

_ A . .
Suppose z < 0. Claim L((—x)") = 0 for some value of r = [o[*[cos(Epin]z]) + isin(Epuin|z])]

y=(-2)",y = —r(-2) ",y = r(r — 1)(~z)?

2y +axy' + By =0

= |2 Mcos(uln|z|) £ isin(uln|z|)]

221 (r — 1) (=)™ — awr(—z)" + f(—2)" = 0 Case 3: 1 repeated root: Find 2nd solution.

(12 = )(=e)” +ar(=a)" + B(=a)" = 0



