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Abstract. Assuming a special version of the Montgomery-Odlyzko law on the
pair correlation of zeros of the Riemann zeta function conjectured by Rudnick
and Sarnak and assuming the Riemann Hypothesis, we prove new results on the
prime number theorem, difference of consecutive primes, and the twin prime con-
jecture.

1. Introduction. Assuming the Riemann Hypothesis (RH), let us denote by � � 1=2� ig a
nontrivial zero of a primitive L-function L�s;p� attached to an irreducible cuspidal
automorphic representation of GLm; m ^ 1, over Q. When m � 1, this L-function is the
Riemann zeta function z�s� or the Dirichlet L-function L�s; c� for a primitive character c.
Rudnick and Sarnak [13] examined the n-level correlation for these zeros and made a far
reaching conjecture which is called the Montgomery [9]-Odlyzko [11], [12] Law by Katz and
Sarnak [6]. Rudnick and Sarnak also proved a case of their conjecture when a test function f
has its Fourier transform bf supported in a restricted region.

In this article, we will show that a version of the above conjecture for the pair correlation
of zeros of the zeta function z�s� implies interesting arithmetical results on prime
distribution (Theorems 2, 3, and 4). These results can give us deep insight on possible
ultimate bounds of these prime distribution problems. One can also see that the pair (and n-
level) correlation of zeros of zeta and L-functions is a powerful method in number theory.
Our computation shows that the test function f and the support of its Fourier transform bf
play a crucial role in the conjecture.

To see the conjecture in Rudnick and Sarnak [13] in the case of the zeta function z�s� and
n � 2, the pair correlation, we use a test function f �x; y� which satisfies the following three
conditions:

(i) f �x; y� � f �y; x� for any x; y 2 R,
(ii) f �x� t; y� t� � f �x; y� for any t 2 R, and

(iii) f �x; y� tends to 0 rapidly as j�x; y�j ! 1 on the hyperplane x� y � 0.
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Define the function

W2�x; y� � 1ÿ sin 2p�xÿ y�
�p�xÿ y��2 :

Denote the Dirac function by d�x� which satisfies
�
R

d�x�dx � 1 and defines a distribution

f 7! f �0�. We then define the pair correlation sum of zeros gj of the zeta function:

R2�T; f ; h� �
P

g1;g2
distinct

h
g1

T
;
g2

T

� �
f

Lg1

2p
;
Lg2

2p

� �
;

where T ^ 2, L � log T, and h�x; y� is a localized cutoff function which tends to zero rapidly
when j�x; y�j tends to infinity. The conjecture proposed by Rudnick and Sarnak [13] is that

R2�T; f ; h� � 1
2p

TL
�
R

h�r; r�dr
�
R2

f �x; y�W2�x; y�d x� y
2

� �
dx dy�1�

holds universally for any function f satisfying the three conditions, and for a sufficiently rich
family of localized cutoff functions h.

Now we turn to the version of Montgomery-Odlyzko Law which we will use in this paper.
Denote w�u� � 4=�4� u2� and define h�r1; r2� to be the characteristic function of
�Lÿ4; 1� � �Lÿ4; 1�. Our goal is to estimate the sumP

TLÿ4 % g1 ;g2 % T

w�g1 ÿ g2�e�x�g1 ÿ g2��;

where e�x� � e2pix. Note that the terms with g1 � g2 contribute the sum
P

TLÿ4 % g % T
1. Using

the function h�r1; r2� above, we can find a function fT on R2 satisfying the three conditions
such that

R2�T; fT ; h� �
X

TLÿ4 % g1;g2 % T
distinct

fT
Lg1

2p
;

Lg2

2p

� �

�
X

TLÿ4 % g1;g2 % T
distinct

w�g1 ÿ g2�e�x�g1 ÿ g2��:
�2�

More precisely, we can take

fT�x;ÿx� � w�4px=L� cos �8p2xx=L� if jxj % TL=�4 p�;
0 otherwise

(
on the line x� y � 0 and then extend its definition to R2 by fT��x; y� � �t; t�� � fT�x; y�,
x; y 2 R. Here x is a positive parameter. Note that this function satisfies the three conditions.
We will assume the following conjecture in this article.

Conjecture 1. With the above notation and functions fT and h, we have

R2�T; fT ; h� � 1
2 p

TL
�
R2

fT�x; y�W2�x; y�d x� y
2

� �
dx dy�O�T��3�

where the constant in O is independent of x:
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We note that for the function h chosen above, we have
�
R

h�r; r�dr � �1
Lÿ4

dr � 1ÿ Lÿ4:As

pointed out in [13], our function h localizes g to be of order T, and the normalization
gL=�2p� in R2�T; fT ; h� is the same as eg � g log jgj=�2p�.

From Theorem 1 and its Corollary below we can see that Conjecture 1 implies the original
Montgomery Conjecture [9]. The strength of Conjecture 1, as a special version of the
Montgomery-Odlyzko law conjectured by Rudnick and Sarnak [13], lies in the remainder
term O�T� in (3). When the test function fT is independent of T and has a restricted
support of its Fourier transform, this remainder term was indeed proved in [13], p. 284,
taken into account that the number of nontrivial zeros with 0 % g % T is �1=2p�TL�O�T�.
We also want to point out that the fact that our test function fT depends on T can
be obtained by requiring the conjecture in (1) to hold uniformly for f in a certain
sense.

The authors would like to thank the referee for helpful suggestions in detail.

2. The main results. We will compute the integral on the right side of (3) and prove the
following theorem in Section 3.

Theorem 1. For T ^ 2 and x > 0 denote

F�T; x� � P
TLÿ4<g1 ;g2 % T

w�g1 ÿ g2�e�x�g1 ÿ g2��

where g1 and g2 run through the imaginary part of the non-trivial zeros � � 1=2� ig of z�s�
counting multiplicities. Then under the Riemann Hypothesis and Conjecture 1 we have

F�T; x� � TL
2p

min 1;
2 px

L

� �
� TL2

2p
eÿ4px �O�T��4�

uniformly for x:

Corollary. For T ^ 2 and x > 0 we set

G�T; x� � P
0<g1 ;g2 % T

w�g1 ÿ g2�e�x�g1 ÿ g2��:

Then, assuming RH and Conjecture 1, we have

G�T; x� � TL
2 p

min 1;
2 px

L

� �
� TL2

2p
eÿ4px �O�T��5�

uniformly for x:

In Section 4 we will estimate S�T; 0; x� based on this corollary, where

S�T; v; x� � P
0<g % T

e�g�v� x��:

Recall the following classical results under RH by von Koch [7] and CrameÂr [1]

y�x� � x�O�x1
2 log 2x�;

pn�1 ÿ pn � p
1
2
n log pn:
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Here, as usual, y�x� is the sum of the von Mongoldt function L�n� up to n % x, and pn is the
n-th prime. By assuming Montgomery�s pair correlation conjecture in addition to RH,
Gallagher and Mueller [3] improved the prime number theorem to the form

y�x� � x� o�x1
2 log 2x�;

and Mueller [10] showed that

pn�1 ÿ pn � p
1
2
n log

3
4�ex

for any e > 0. Under the same assumptions, the last result was further improved by Heath-
Brown [4] and Heath-Brown and Goldston [5]:

pn�1 ÿ pn � o�p1
2
n log

1
2pn�:

In Section 5, we will prove the following theorems in this direction.

Theorem 2. Assume RH and Conjecture 1. Then

y�x� � x�O�x1
2 log

5
4x�:

Here we remark that our Theorem 2 is closer to the best possible bound, in view of the
W-result

y�x� ÿ x � W�x1
2 log log log x�

of Littlewood [8].

Theorem 3. Assume RH and Conjecture 1. Then

pn�1 ÿ pn � p
1
2
n log

1
4pn:

A classical conjecture states that there is always a prime between two consecutive squares.
One easily sees that Theorem 3 is weaker than this conjecture by a factor of log

1
4pn.

The twin prime conjecture states that lim inf
n!1 �pn�1 ÿ pn� � 2. Assuming Montgomery�s

pair correlation conjecture and RH, Heath-Brown [4] showed that

lim inf
n!1

pn�1 ÿ pn

log pn
� 0:

We will prove the following theorem.

Theorem 4. Assume RH and Conjecture 1. We have

lim inf
n!1

pn�1 ÿ pn

log
2
3pn

< �1 :

3. Estimation of F (T, x) and G (T, x). In this section we first compute the integral�
R2

fT�x; y�W2�x; y�d x� y
2

� �
dx dy:

Recall that d�x� is the Dirac mass at zero. Changing variables u � xÿ y and t � �x� y�=2,
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we get fT�x; y� � fT�xÿ t; yÿ t� � fT�u=2; ÿu=2�: Note that W2�x; y� � 1ÿ sin2pu=�pu�2.
Hence �

R2

fT�x; y�W2�x; y�d x� y
2

� �
dx dy

�
�TL=�2p�

ÿTL=�2p�

w
2 pu

L

� �
e

2 pxu
L

� �
1ÿ sin pu

pu

� �2
 !

du
�
R

d�t�dt

� 1
p

�TL=2

ÿTL=2

w
2 x
L

� �
e

2 xx
L

� �
1ÿ sin x

x

� �2
 !

dx

� 1
p

�
R

e4pixx=L dx

1� �x=L�2 ÿ
1
p

�
R

e4pixx=L � sin 2x

x2�1� �x=L�2�dx�O
L
T

� �
:

By
1

x2�1� �x=L�2� �
1
x2 ÿ

1
L2 � x2

we get �
R2

fT�x; y�W2�x; y�d x� y
2

� �
dx dy

� min 1;
2 px

L

� �
ÿ 1� L� 1

2L

� �
eÿ4px ÿ 1

4L
eÿ�4px�2L� ÿ 1

4L
eÿj4pxÿ2Lj �O

L
T

� �
:

Consequently the conjectured asymptotic formula in (3) implies that

R2�T; fT ; h� � TL
2p

min 1;
2 px

L

� �
ÿ TL

2p
� TL2

2p
eÿ4px �O�T�:

Recall that

R2�T; fT ; h� �
P

T=L4 % g1;g2 % T
w�g1 ÿ g2�e�x�g1 ÿ g2�� ÿ

P
T=L4 % g % T

1

� P
T=L4 % g1;g2 % T

w�g1 ÿ g2�e�x�g1 ÿ g2�� ÿ
TL
2p
�O�T�:

We therefore get a proof of Theorem 1.
To prove the Corollary, we observe that

G�T; x� ÿ F�T; x� � jG�TLÿ4; x�j � jQj;�6�
where

Q � P
0<g1 % TLÿ4;

0<g2 % T

w�g1 ÿ g2�e�x�g1 ÿ g2��:

To estimate Q, we let k�u� � 2p exp�ÿ4pjvj�, and set

S�T; v; x� � P
0<g % T

e�g�v� x��:�7�

Then we have
�
R

k�v�e�vx�dv � w�x� and consequently
�
R

k�v�jS�T; v; x�j2dv � G�T; x�:

45Vol. 76, 2001 Riemann zeta function and primes



Applying the above two formulae to Q, we get

Q � ��1
ÿ1

k�v�S�TLÿ4; v; x�S�T; v; x�dv

� ��1
ÿ1

k�v�jS�TLÿ4; v; x�j2dv
� �1

2 ��1
ÿ1

k�v�jS�T; v; x�j2dv
� �1

2

� jG�TLÿ4; x�j12 jG�T; x�j12:

Inserting this into (6) and then using the trivial bound G�t; x� � t log 2t, which holds for all t
and x, we get

G�T; x� ÿ F�T; x� � TLÿ2 � �TLÿ2�12�TL2�12 � T:

Then the corollary is a consequence of this result and (4).

4. Estimation of S (T, 0, x). In this section we give an estimate of the exponential sum
S�T; x� � S�T; 0; x� defined as in (7). Let

Gb�T; x� �
X

0<g1;g2 % T

w
g1 ÿ g2

b

� �
e�x�g1 ÿ g2��:

Obviously G1�T; x� � G�T; x�. We bound S�T; x� via Gb�T; x� rather than appeal to the
estimate for G�T; x� directly. This approach, used by Heath-Brown and Goldston [5]
for the first time, can give us extra saving on the upper bound of S�T; x�. The first two
lemmas below are Lemmas 1 and 2 in [5]; note that our x and their x are related by
x � log x=�2p�.

Lemma 1. We have

S�T; x� � T
b

max
t % T

Gb�t; x�
� �1

2

uniformly for all 0 < b % T and x > 0:

Lemma 2. For b > 0; t ^ 2 and x > 0, we have

Gb�t; x� � b2G�t; x� � b�1ÿ b2� �
R

G�t; u�min fe2b�uÿx�; e2b�xÿu�gdu:

Lemma 3. Assume RH and the Conjecture 1. Then uniformly for log T � x; we have

S�T; x� � T log
1
4T:

P r oof o f Le mm a 3 . We write

�
R

G�t; u�min fe2b�uÿx�; e2b�xÿu�gdu � �x2
ÿ1
� ��1

x
2

;
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and estimate the last two integrals separately. First

�x2
ÿ1
� t log 2t

�x2
ÿ1

e2b�uÿx�du� t log 2t
b

eÿbx;

by G�t; u� � G�t;ÿu� and the trivial estimate G�t; x� � t log 2t. By the corollary, we have��1
x=2

�
��1

x=2

t log t
2 p
�O�t�

� �
min fe2b�uÿx�; e2b�xÿu�gdu

� t log t
2 p
�O�t�

� � �x
x
2

e2b�uÿx�du� ��1
x

e2b�xÿu�du

0@ 1A
� t log t

2 pb
�O

t
b

� �
�O

t log t
b

eÿbx

� �
:

Therefore �
R

G�t; u�min fe2b�uÿx�; e2b�xÿu�gdu � t log t
2 pb

�O
t
b

� �
�O

t log2t
b

eÿbx

� �
:

Now we apply the above estimate and the corollary to the formula in Lemma 2. Then,
uniformly for t % T, we get

Gb�t; u� � b2G�t; x� � b�1ÿ b2� t log t
2 pb

�O
t
b

� �
�O

t log2t
b

eÿbx

� �� �
� t log t

2p
�O�b2t� �O�b2eÿbxt log2t�:

Inserting this into Lemma 1, we obtain

S�T; x� � T log
1
2T

b
1
2

� b
1
2T � b

1
2eÿ

bx
2 T log T;

which is � T log
1
4T, by choosing b � log

1
2T and using x� log T. h.

5. Distribution of primes.

Lemma 4. Assume RH. Then for x;T ^ 2 we have

y�x� � xÿ
X
jgj % T

x
1
2�ig

1
2� ig

� E�x� � F�x�;

where E�x� � E�x;T� � 1=x2 � x�log xT�2=T; and F�x� � F�x;T� � L�n� for nÿ 1
2 < x %

n� 1
2.

This follows from Davenport [2], Chapter 17. See also Heath-Brown [4], Lemma 1.

P roo f o f The or e m 2 . Taking T � x in Lemma 4, we get by partial summation that

y�x� ÿ x� x
1
2 1� jS�x; x�j

x
�
�x
2

jS�t; x�j
t2 dt

8<:
9=;;
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where x � log x=�2p�. For 2 % t % x, we trivially have log t� x, so Lemma 3 gives us

y�x� ÿ x� x
1
2 1� log

1
4x�

�x
2

log
1
4t

t
dt

8<:
9=;� x

1
2 log

5
4x:

This is the desired result. h

P roo f o f The or e m 3 . Let 1 < h < x. For x % y % x� h, we get by Lemma 4 that

y�y� h� ÿ y�y� ÿ h � ÿ
X
jgj % x

�y� h�� ÿ y�

�
�O�log 2x�;

where � � 1
2� ig is a non-trivial zero of the zeta-function. Therefore,�x�h

x

�y�y� h� ÿ y�y��dyÿ h2 � ÿ
�x�h

x

X
jgj % x=h

�y� h�� ÿ y�

�
dy

ÿ
�x�h

x

X
x=h<jgj % x

�y� h�� ÿ y�

�
dy�O�h log 2x�:

�8�

Denote by I1 the first integral on the right side and by I2 the second integral. The integral I1

can be written as

I1 �
�x�h

x

�y�h

y

P
jgj % x=h

z�ÿ1

 !
dz dy �

�x�h

x

�y�h

y

zÿ
1
2S

x
h
; x

� �
dz dy;

with x � log z=�2p�. Clearly log �x=h� � log x; so Lemma 3 implies that

I1 � h2

x
1
2

x
h

� �
log

x
h

� �1
4� hx

1
2 log

1
4x:�9�

To estimate I2, we note that

I2 �
X

x=h<jgj % x

�x� 2h���1 ÿ 2�x� h���1 � x��1

���� 1� :

By partial summation and Lemma 3 with x � log x=�2p�, we have

X
x=h<jgj % x

x��1

���� 1� � x
3
2
jS�x; x�j

x2 � jS�x=h; x�j
�x=h�2 �

�x
x=h

jS�t; x�j
t3 dt

8><>:
9>=>;

� x
3
2

log
1
4x

x
� h log

1
4x

x
�
�x

x=h

log
1
4t

t2 dt

8><>:
9>=>;� hx

1
2 log

1
4x:

The sums X
x=h<jgj % x

�x� 2h���1

���� 1� ;
X

x=h<jgj % x

�x� h���1

���� 1�
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can be estimated by the same method. Thus I2 � hx
1
2 log

1
4x: Inserting this and (9) into (8), we

get �x�h

x
�y�y� h� ÿ y�y��dy � h2 �O�hx

1
2 log

1
4x�;�10�

where the O-constant is absolute. Let h � Cx
1
2 log

1
4x; where C is an absolute constant such

that h2 �O�hx
1
2 log

1
4x� ^ h2=2: Then (10) implies that there exists y0 with x % y0 % x� h

such that y�y0 � h� ÿ y�y0� ^ h=2: Therefore y�x� 2h� ÿ y�x� ^ y�y0 � h� ÿ y�y0� ^ h=2;
because y�t� is non-decreasing in t. This shows that there is a prime in every interval
�x; x� 2h�, from which the theorem follows. h

Before proving Theorem 4, we need a lemma which is Theorem 3 in Heath-Brown [5].

Lemma 5. Assume RH and set x � log x=�2p�. Suppose

jG�T; x� ÿ Txj % d�x�T log T�11�
for some function d�x� with logÿ

1
3x % d�x� % 1 and for x log ÿ2x % T % x log x. Then there

exist numerical constants c1; c2 such that

min
x=c1<pn % c1x

pn�1 ÿ pn

log pn
% c2d�x�:

P r oof o f The or e m 4 . By the corollary, the conjecture in (3) implies for log T � x that

G�T; x� � T log T
2p

min 1;
2px

log T

� �
�O�T�:�12�

If x log ÿ2x % T % x, then
2px

log T
^ 1 and log T � log x�O�log log x�: Hence in this case (12)

becomes G�T; x� ÿ Tx� T log log x: It is easy to check that the above estimates is still true
when x % T % x log x, thus (11) holds with d�x� � c3 log ÿ

1
3x; where c3 ^ 1 is a numerical

constant. Theorem 4 now follows from Lemma 5. h
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