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A tangle is a pair (B, T ), where B is a 3-ball, T is a pair of properly embedded arcs.

When there is no ambiguity we will simply say that T is a tangle. Let E(T ) = B −

IntN(T ) be the exterior of T , usually called the tangle space. T is simple if E(T ) is

a simple manifold, that is, it is irreducible, ∂-irreducible, atoroidal, and anannular. By

Thurston’s geometrization theorem, simple tangle spaces admit hyperbolic structures with

totally geodesic boundary. When embedding the tangle space into S3 in the natural way,

the complement is a handlebody of genus two. Hence, detecting simple tangles is the same

as detecting embedded genus two handlebodies with simple complement.

In general, it is difficult to determine if a tangle is simple. The first simple tangle

(see Figure 1.5(a)) was suggested by Jaco [7, P194], and was verified by Myers [8] with a

rather lengthy argument. Due to the nature of the problem, such kind of argument seems

unavoidable before a general theory of detecting simple tangles is developed. A similar

tangle is the one in Figure 1.5(b), which was proved simple by Ruberman [10]. Another

simple tangle is the one in Figure 1.6. Its tangle space was called the tripos manifold, and

was proved to be hyperbolic by Thurston [12, Chapter 3]. These have been used by Adams

and Reid [1] to discuss quasi-Fuchsian surfaces in knot complements. It seems that these

are essentially the only tangles which were known to be simple.

A tangle is called an algebraic tangle if it can be obtained by summing up finitely

many rational tangles in various ways. An algebraic tangle is a Montesinos tangle if all the

gluing disks are disjoint from each other. By analyzing incompressible annuli in exteriors

of algebraic tangles, we will be able to prove Theorem 4.9, which completely classifies all

nonsimple algebraic tangles.

The paper is organized as follows. In Section 1 we will state the classification theorems,

prove corollaries, and show some examples. Section 2 is to classify all marked tangles

containing either a monogon or a bigon. The results will be used in Section 3 to give the

proofs of Theorem 3.6. In Section 4 we will determine all marked algebraic tangles which

are ∆-annular (see Section 1 for definitions), and use the result to prove the classification

theorem of nonsimple algebraic tangles.
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1 Main theorems and examples

Let (B, T ) be a tangle. Fix an embedding of B in R3, and fix 4 points P = {a, b, c, d}

as shown in Figure 1.1. Two tangles (B, T ) and (B ′, T ′) are said to be equivalent or w-

equivalent if there is a homeomorphism ϕ : (B, T ) → (B ′, T ′). They are s-equivalent if ϕ|∂B

is the identity map.

The double cover of ∂B branched over P is a torus, whose universal cover is R2. This

gives rise to a map ϕ : R2 → ∂B such that ϕ−1(P) is the set of integral points. If l is a line

with slope a rational number r, then ϕ(l) is a circle or an arc connecting two points of P.

We say that ϕ(l) has slope r. Thus the curve Cx and Cy in Figure 1.1 have slopes 0 and ∞

respectively.
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Figure 1.1

(B, T ) is a rational tangle of slope r if T is rel ∂T isotopic to two slope r arcs on ∂B. In

this case we denote it by M(r). Since all rational tangles are w-equivalent to the “trivial”

one in Figure 1.2(a), they will also be called trivial tangles.

A marked tangle is a triple (B, T,∆), where (B, T ) is a tangle, and ∆ is a disk on

∂B containing two endpoints of T . ∆ is called the gluing disk. Two marked tangles are

equivalent if there is a homeomorphism of triples. Given a tangle (B, T ), the two disks on

∂B on the left and right of Cy are called the left disk and right disk , respectively. Unless

otherwise stated, we will always choose the left disk as a gluing disk. If M(r) is a rational

tangle, then we use M [r] to denote the corresponding marked rational tangle. By definition

it is clear that M [r] = M [r′] if and only if r ≡ r′ mod Z. Thus the tangles in Figure 1.2 are

M [0],M [∞] and M [1/5] respectively. The tangle M [1/q] is called a q-twist tangle.
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Given two marked tangles (B1, T1,∆1) and (B2, T2,∆2), we may choose a map ϕ : ∆1 →

∆2 with ϕ(∆1 ∩ T1) = ∆2 ∩ T2, and use it to glue the two tangles together to get a new

tangle (B, T ). We say that (B, T ) is the sum of (B1, T1,∆1) and (B2, T2,∆2), or simply that

T is the sum of T1 and T2, and write (B, T ) = (B1, T1,∆1) + (B2, T2,∆2), or T = T1 + T2.

Note that the sum T = T1 + T2 depends on the choice of the gluing disks ∆i on ∂Bi, and

the gluing map ϕ. It is called a nontrivial sum if neither (Bi, Ti,∆i) is M [0] or M [∞].

Given rational tangles M(r1) . . . ,M(rk), we can glue the right disk of M(ri) to the left

disk of M(ri+1) to get a tangle M(r1, . . . , rk), called a Montesinos tangle. To avoid trivial

sums, we will always assume that ri are non-integral rational numbers.

Figure 1.2

We will use E(T ) to denote the exterior of T , i.e. E(T ) = B − IntN(T ). Similarly, if

T = t1 ∪ t2, then E(ti) = B − IntN(ti).

There is a smallest class of tangles which contains all the rational tangles, and is closed

under nontrivial tangle sums. A tangle in this class is called an algebraic tangle. In other

words, a tangle is algebraic if it is a sum of finitely many rational tangles. An algebraic

tangle is a Montesinos tangle if and only if all the gluing disks are disjoint to each other.

We define the length of an algebraic tangle T to be the least number L(T ) so that T is

a sum of L(T ) rational tangles. When L(T ) = 1, T is a rational tangle.

Suppose that r1 and r2 are non-integral rational numbers. For r3 = 1/q or 0, we define

a class of marked tangle R[r1, r2; r3] so that its underlying tangle is the Montesinos tangle

M(r1, r2), its gluing disk ∆ contains the lower left end of the strings, and ∂∆ has slope r3

on ∂B. One can see that as marked tangles they are equivalent to the tangles in Figure

1.3, with left disk as gluing disk. The tangle on the left is R[r1, r2; r3] with r3 = 1/q, and

the one on the right is R[r1, r2; 0].
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Figure 1.3

Given numbers r1, r2, r3, the four tangles R[r1, r2; r3], R[−r1,−r2;−r3], R[r2, r1; r3] and

R[−r2,−r1;−r3] are all said to be similar to R[r1, r2; r3]. One can see that R[−r1,−r2;−r3]

is a mirror image of R[r1, r2; r3], and R[r2, r1; r3] can be obtained from R[r1, r2; r3] by taking

the right disk as the gluing disk. The tangle M [r] is similar to itself.

Let S be the set of those tangles which are similar to one of the following.

(1) R[1
2
, 1

q
;−1

2
], where |q| ≥ 3;

(2) R[1
2
,−1

3
;−1

4
];

(3) R[1
2
,−1

3
;−1

6
];

(4) R[2
3
,−1

3
;−1

3
];

(5) R[1
3
,−1

3
; 0];

(6) M [ 1

2n
] with |n| ≥ 2.

Notice that every tangle in S has the property that one of its strings has both ends

on the gluing disk. In practice this is helpful to determine whether a tangle is in S (see

Example 4).

We can now state the classification theorem of nonsimple algebraic tangles. Recall that

a tangle is a trivial tangle if and only if it is a rational tangle.

Theorem 4.9. A nontrivial algebraic tangle T is nonsimple if and only if one of the

following holds.

(a) T = M( 1

2
, p

q
);

(b) T = M( 1

q
, 1

q′
), q and q′ are odd numbers;

(c) T = T1 + T2, each Ti is R[1
2
,−1

3
; 0] or R[− 1

2
, 1

3
; 0], and the unknotted string of T1 is

glued to the unknotted string of T2;

(d) T = T1 + T2, and T1 ∈ S.

Corollary 1.1 Let M(r1, . . . rm) be a Montesinos tangle with non-integral ri.
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(a) If m = 2, M(r1, r2) is nonsimple if and only if either both M [ri] are twist tangles,

or one of them is a (2n)-twist tangle, n 6= 0.

(b) If m ≥ 3, M(r1, . . . , rm) is nonsimple if and only if either M [r1] or M [rm] is a

(2n)-twist tangle with |n| ≥ 2.

Proof. If (B, T ) = (B ′, T ′,∆′)+ (B′′, T ′′,∆′′) is a nontrivial sum, we call the disk ∆′ = ∆′′

a cutting disk of (B, T ). Two disjoint cutting disks ∆1,∆2 are called parallel if the part

of (B, T ) between then is a product ∆1 × I. A set of cutting disks ∆1 ∪ . . . ∪ ∆k is called

a maximal cutting set if they are mutually disjoint, mutually nonparallel, and is maximal

subject to these conditions. It is easy to show that if a tangle is atoroidal, then up to

isotopy of the pair (B, T ) there is a unique maximal cutting set C (possibly empty). Thus

up to isotopy any cutting disk is contained in C. A Montesinos tangle is characterized by

the fact that C cuts (B, T ) into rational tangles.

A nontrivial sum of two tangles can not be a rational tangle (see for example Lemma

3.3 below.) Hence (a) follows immediately from Theorem 4.9.

Now suppose T = M(r1, . . . , rm) is nonsimple, m ≥ 3, and suppose M [r1] and M [rm] are

not (2n)-twist tangles with |n| ≥ 2. Then by Theorem 4.9, (B, T ) is a sum (B1, T1,∆1) +

(B2, T2,∆2), and T1 is of the type R[r1, r2; r3]. Since r3 6= ∞, the gluing disk of R[r1, r2; r3]

has to intersect the (unique) cutting disk in M(r1, r2). Thus if C is a maximal cutting set of

(B, T ) containing ∆1, then C ∩ B1 = ∆1, so (B1, T1) = M(r1, r2) is a component of (B, T )

cutting along C. Since M(r1, r2) is not a rational tangle, it follows that (B, T ) is not a

Montesinos tangle. 2

Example 1. The tangle in Figure 1.4 is a sum of a 3-twist tangle and a (−3)-twist tangle.

It was suggested to be simple in [7, P194], but it was noticed by Adams and Reid that it

contains an essential annulus. Their annulus is different from that shown in Figure 1.4.

Figure 1.4
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Example 2. The tangle in Figure 1.5(a) was suggested to be simple in [7, Page 194], and

was proved so by Myers [8]. It is Montesinos tangle of length 3, and the two end tangles

are not even-twist tangles, so Corollary 1.1 tells immediately that it is simple. Similarly,

the tangle in Figure 1.5(b) is simple, which was first proved by Ruberman [10].

Figure 1.5

Example 3. The exterior of the graph in Figure 1.6(a) was shown by Thurston [12, Chapter

3] to admit a hyperbolic structure with totally geodesic boundary, so it is simple. This also

follows from the above results. By shrinking one of the edges to a point then removing a

neighborhood of it, one can see that the exterior of the graph is the same as the exterior of

the tangle in Figure 1.6(b), which is a sum of two rational tangles. The associated rational

numbers are 2/5 and 1/3, respectively, so by Corollary 1.1 the sum is a simple tangle.

Figure 1.6

Example 4. The left hand side of the tangle in Figure 1.7(a) is a nontrivial sum of two

tangles, so it is not a rational tangle. It can not be in S either because its two ends on the

gluing disk are on different strings. By Theorem 4.9 the sum is simple. It can be converted

to that in Figure 1.7(b). This is probably the “simplest” simple tangle as it has a projecting

diagram with only six crossings.
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Figure 1.7

Suppose T = T1 + T2 is a nontrivial sum. It is easy to show that if one of the Ti has

an essential torus, then it remains essential in T . Therefore a necessary condition for T to

be simple is that both Ti are atoroidal. Theorem 3.6 classifies all nonsimple sums of such

tangles. It will be applied to prove Theorem 4.9. We need the following definitions.

Definition. (1) A marked tangle (B, T,∆) is called a wrapping tangle if (i) one of the string

t1 is unknotted and has exactly one end on ∆; (ii) t2 is rel ∂t2 isotopic in E(t1) to an arc

on ∂E(t1) which intersects each of ∆ and ∂N(t1) in two arcs; and (iii) it is nontrivial. See

Figure 1.8(a) for a typical example of the arc to which t2 is isotopic. The tangle in Figure

1.8(b) is equivalent to the tangle of 1.8(a). The wrapping number of T is defined intuitively

as the number of times the knotted string wrapping around the unknotted one. Thus the

tangle in Figure 1.8(b) is a 3-wrapping tangle, and its mirror image is a (−3)-wrapping

tangle. When the wrapping number is 1, the picture can be simplified to that in Figure

1.8(c), which is the simplest nontrivial wrapping tangle. Notice that a 1-wrapping tangle is

equivalent to R[− 1

2
, 1

3
; 0].

Figure 1.8

(2) (B, T,∆) is called a torus tangle if (i) one of the string t1 has both ends on either ∆

or ∂B − ∆, and is unknotted (i.e E(t1) is a solid torus); (ii) there is an arc α on ∂B − ∂∆
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connecting the two ends of t2, and t2 is rel ∂t2 isotopic in E(t1) to an arc β on ∂E(t1) which

meets α only at its endpoints. Thus α ∪ β is a (p, q) curve with respect to the standard

longitude-meridian pair of the torus ∂E(t1). When p or q is ±1, it is a twist tangle. To

avoid trivial cases, we further assume (iii) p ≥ 2, and |q| ≥ 2. T is called a (p, q) torus

tangle. There are actually two such tangles. When l1 has ends on ∂B − ∆ (resp. ∆), it is

called a left (resp. right) torus tangle. See Figure 1.9 for a (2, 5) left torus tangle.

Figure 1.9

(3) Let (B, T,∆) be a marked tangle. A properly embedded annulus A in E(T ) is called

∆-essential if (i) A is incompressible, (ii) ∂A is disjoint from the surface P = ∆ ∩ E(T ),

and (iii) there is no ∂-compressing disk of A disjoint from P .

(4) (B, T,∆) is ∆-anannular if E(T ) contains no ∆-essential annulus. Otherwise it is

∆-annular.

Theorem 3.6. Suppose T = T1 + T2 is a nontrivial sum of atoroidal tangles. Then T is

nonsimple if and only if, up to relabeling of Ti, one of the following holds.

(1) T1 is a 2-twist tangle, and T2 is a rational tangle;

(2) Both Ti are twist tangles;

(3) Both Ti are wrapping tangles, and the unknotted string of T1 is glued to the unknotted

string of T2;

(4) T1 is ∆-annular.

Remark. In case (1) of the theorem, the tangle space is a handlebody. In case (2) and (3),

the tangle space contains an essential annulus except when one of the Ti in case (2) is a

2-twist tangle, in which case it is a handlebody. When both Ti are twist tangles, an annulus

or Möbius band is shown in Fig 1.4. Notice that when E(T ) has a Möbius band, the frontier

of its regular neighborhood is an annulus. Similarly, if T1 and T2 are both twist tangles

or both wrapping tangles, then an annulus or Möbius band can be formed by putting two
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bigons together. See section 2 for details about bigons. We will show in Lemma 3.5 that

these annuli are essential unless one of the Ti is a 2-twist tangle. In case (4), a ∆-essential

annulus of T1 becomes an essential annulus in E(T ).

2 Marked tangles containing monogons or bigons

Suppose (B, T,∆) is a marked tangle. We use E = E(T ) the denote the tangle space, and

E(ti) the exterior of the string ti. Let Ai be the annulus N(ti) ∩ E, let P be the twice

punctured disk ∆∩ ∂E, and Q the closure of ∂E − (P ∪A1 ∪A2). Thus, ∂E is decomposed

into four parts: A1, A2, P and Q. A properly embedded surface F in E is in general

position if the intersection of ∂F with each of the four surfaces consists of essential arcs

and/or essential circles. If F is a compressing disk or essential annulus in E, then it can be

isotoped to be in general position, so we will always assume this below.

A compressing disk D of ∂E is called a monogon of E if ∂D intersects P in a single arc;

it is a bigon if ∂D intersects P in two arcs. We call ∂0 = P ∩ Q the outer boundary of P ,

and call the other two components ∂1, ∂2 of ∂P the inner boundary. The situation is quite

simple when E has a monogon.

Lemma 2.1 If a nontrivial atoroidal tangle T contains a monogon D, then it is a 2-twist

tangle, and ∂D ∩ P is an arc with both ends on the outer boundary of P .

Proof. Let α be the arc ∂D ∩ P . There are four possibilities:

(i) α has one end on each of ∂1 and ∂2;

(ii) α has both ends on ∂1 or ∂2;

(iii) α has exactly one end on ∂0;

(iv) α has both ends on ∂0.

One can check that in the first three cases, T would be either M [0] or M [∞]. So we

concentrate on Case (iv). We want to show that in this case T is a 2-twist tangle.

By our convention D is in general position. In particular, both boundary components of

Ai intersects ∂D at the same number of points. If ∂D is disjoint from both Ai, one can see

that T is a trivial tangle, contradicting the assumption. Thus the two circles ∂1 and ∂2 on

P must be on the same annulus, say A1, because they are both disjoint from ∂D. Consider

the arcs Q ∩ ∂D on Q. Since none of the arcs is inessential, and since the two circles ∂A2

contain the same number of endpoints of the arcs, it is easy to see that, except for the two

arcs running from ∂α to ∂A2, all the other arcs run from one component of ∂A2 to another.

Suppose there are k such arcs. Then ∂D ′ intersects a meridian of A2 at k + 1 points in the

same direction, so a neighborhood of ∂B ∪N(t2)∪D would be a punctured lens space in B
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with first homology Zk+1, which is absurd unless k = 0. Therefore, ∂D intersects A2 just

once. Such a disk can be used to isotop t2 to the arc ∂D ∩ ∂E. Since T is atoroidal, the

other string is also unknotted. It is now easy to see that T is a 2-twist tangle. 2

(2) (3)

(4) (5) (6)

(7) (8) (9)

(1)

c

d e

Figure 2.1

Now suppose E contains a bigon D, with α1, α2 the two arcs of ∂D ∩ P . Up to homeo-

morphism of D there are nine possibilities for the configuration of α1, α2, as shown in Figure
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2.1 (1)–(9), where the outer circle on each figure represents the boundary component of P

which lies on Q. Label this boundary of P as ∂0, let ∂1 be the upper inner boundary, and

∂2 the lower inner boundary. The two inner boundaries may or may not be on the same

annulus, but if they have different number of intersection points with ∂D, then they are

definitely on different Ai’s, in which case we assume ∂i lies on the boundary of Ai. The

following lemma classifies all atoroidal tangles containing a bigon.

Lemma 2.2 Suppose (B, T,∆) is a marked atoroidal tangle which contains a bigon. Cases

(1)–(3) in Figure 2.1 cannot happen. In cases (4)–(6), T is a wrapping tangle with t1 the

unknotted string. In case (7)–(9) it is either a twist tangle or a left torus tangle.

Proof. Notice that if one of the string, say t2, can be isotoped in E(t1) to an arc on

∂E(t1), then E(t1) can be embedded into E. Since E is irreducible and atoroidal, the

image of ∂E(t1) bounds a solid torus, so E(t1) must be a solid torus, that is t1 is a trivial

arc in B. We discuss the nine cases separately.

Case (1). In this case, ∂D is disjoint from A2, and intersect A1 twice. Since the two arcs

of ∂D on Q are essential, one can check that each of them has ends on different components

of ∂Q, so ∂D intersects A1 twice in the same direction. A neighborhood of D ∪N(t1)∪ ∂B

would then be a punctured lens space in the 3-ball B, which is absurd.

Case (2). If the two circles in P are the boundary of a single annulus Ai, one can

get contradiction just as in Case (1). So assume they are on different Ai. As before one

can show that ∂D intersects each Ai twice in the same direction. In particular, D is a

nonseparating disk in E. The set E − IntN(D) is contained in E and bounded by a torus,

so by atoroidality of E it is a solid torus. Let D ′ be another disk so that D and D′ cut

E into a 3-cell. Then B can be obtained from (∂B) ∪ N(T ) by adding the two 2-handles

D and D′, then attaching a 3-cell. Each ti represents a generator of the first homology of

(∂B) ∪ N(T ), and ∂D represents 2t1 + 2t2. Thus the homology after adding both D and

D′ would either be infinite or have a Z2 subgroup. But since the 3-ball B is obtained by

attaching a 3-cell onto this space, the group should be trivial, a contradiction.

Case (3). Consider the two essential arcs β1, β2 of ∂D on Q. One can see that they lie

on Q in the same pattern as α1, α2 lie on P . The four arcs of ∂D on A1 connect the ends of

αi to that of βi with a permutation so that the union is a connected curve. One can check

that when considering ∂D as a curve on the torus ∂E(t1)), it is isotopic to a meridian of

A1. But such a curve can never bound a disk in B − IntN(t1), so it could not have bound

a disk in E.

Case (4). As the two circles in P intersect ∂D in different number of points, they belong

to different annuli Ai. Recall our convention that in this case A2 is the annulus which
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contains ∂2, the lower inner circle, as a boundary component. Since D intersects A2 in a

single essential arc, the string t2 can be isotoped through D to the arc α = ∂D −A2 on the

boundary of E(t1). As we noticed at the beginning of the proof, this implies that the arc

t1 is an unknotted arc. Since α intersects each of D and A1 twice, T is a wrapping tangle

by definition.

Case (5). Suppose A2 is the annulus intersecting ∂D at a single arc. The string t2 can

be isotoped through D to lie on the boundary of E(t1), so by the remark at the beginning

of the proof, t1 is unknotted. Up to homeomorphism of B fixing ∆ there are two choices for

the arcs ∂D∩A1 on A1. One is that shown in Figure 2.2, the other is its mirror image. Since

t2 is isotopic to ∂D ∩ ∂E(t1), it is isotopic to the knotted arc in Figure 1.8(c). Therefore,

T is a 1-wrapping tangle.

Figure 2.2

Case (6). Since ∂D intersects ∂0 at one point, it is a nonseparating disk. So when

cutting E(t1) along the disk D, we get a manifold in B bounded by a sphere, which must

be a 3-ball B ′. Since T is atoroidal, the arc t2 is unknotted in B ′. Hence there is a disk

D′ in B′ such that ∂D′ = t2 ∪ β, where β can be any arc on ∂B ′, so it can be any arc on

∂E(t1) which is disjoint from ∂D and connects the two ends of t2. One can draw such a

curve β so that β ∩ P consists of two arcs as that in Figure 2.1(5). Therefore D ′ gives rise

to a bigon of Case (5), and T is a 1-wrapping tangle, as we have just shown.

Case (7). Again the two circles belong to different annuli, and t1 can be isotoped to an

arc α = ∂D∩∂B on the boundary of E(t2) = B− IntN(t2). The intersection α∩Q consists

of two arcs, one arc b1 connects the point c in Figure 2.1(7) to either d or e, and the other

one b2 connects d or e to the end of t1 on Q. We assume the later. By a homeomorphism of

(B,∆) fixing ∆ and twisting on ∂B − ∆, we may assume that b2 looks like that in Figure
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2.3. Now there is only one way to draw b1, as in the figure. Since the tangle is atoroidal,

the string t2 is unknotted, so the tangle space looks exactly like that in the figure, with the

boundary arc replaced by a nearby string. One can see that T is a 3-twist tangle. Similarly,

if the arc b1 connects c to d, T is a (−3)-twist tangle.

c

d

e

b

b1

2

Figure 2.3

Case (8). There are two possibilities, depending on whether the two circles on P belong

to the same annulus Ai.

If the two circles are on A1, say, then one can use D to isotop t1 to the arc β = ∂D−A1

lying on the torus ∂E(t2), and there is an arc α on ∆ connecting the two ends of β and is

disjoint from the interior of β. Since T is atoroidal, t2 is a trivial arc, so by definition T is

a left torus tangle or a twist tangle.

If the two circles are on different Ai, the disk D can be expanded to a disk D ′ in B with

∂D′ consisting of t1, t2 and two arcs on ∂B. Consider D′ as a band in a 3-ball. Since T

is atoroidal, the complement of the band is a solid torus, i.e the band is trivial in B. It is

clear that in this case the tangle is a twist tangle.

Case (9). The intersection ∂D∩Q is a set of essential arcs on Q, which has four endpoints

on ∂Q ∩ ∂P , and has same number of points on the other two components of ∂Q. There

are four possibilities as shown in Figure 2.4 (a) – (d). One can check that in subcase (a)

T is a 2-twist tangle, and in subcase (b) it is a 4-twist tangle. Subcase (c) cannot happen

because then ∂D would intersect one of the Ai at least twice in the same direction, which

would lead to a contradiction as in Case (1). We want to show that in subcase (d) T is a

left torus tangle.
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... ...

(a) (b)

(c) (d)


Figure 2.4

Let A1 be the annulus with boundary on Q. Let X = E(t1) − IntN(D). If D is a

nonseparating disk of E(t1), then X is bounded by a sphere, so it is a 3-ball containing

t2. Since X − IntN(t2) is bounded by a torus and is a subset of the atoroidal irreducible

manifold E, it is a solid torus, that is, t2 is an unknotted arc in X. If D is separating, let

X1, X2 be the two components of X. One of these, say X1, is bounded by a sphere, so is

a 3-ball. Since D is a compressing disk of ∂E, the string t2 must be contained in X1. The

other component X2 is now contained in E. Again by the property of E we see that X2 is

a solid torus, and t2 is a trivial arc in X1. In either case, we conclude that E(t1) is a solid

torus containing t2 as a trivial arc. Let γ be an arc on the gluing disk ∆ connecting the two

ends of t2 and intersecting ∂D twice. It remains to show that t2 can be rel ∂t2 isotoped to

an arc β on ∂E(t1) disjoint from γ.

Let D1, D2 be the two copies of D on ∂X. If D is nonseparating, X is a 3-ball. Since

γ intersects ∂D twice, γ is cut into three segments γ1, γ2, γ3 on ∂X. Notice that each ∂Di

intersects ∪γi twice. Therefore when shrinking each Di to a point, ∪γi is a 1-manifold on

∂X with ∂t2 as its boundary. Hence we can find a simple arc β on ∂X connecting the two

14



ends of t2, so that β is disjoint from (∪γ i) ∪ D1 ∪ D2. Since t2 is unknotted, it is isotopic

to β by an isotopy fixed on its endpoints. The corresponding isotopy in E(t1) moves t2 to

the arc β which is disjoint from γ. If D is separating, we can consider the component X1

instead, and get the required isotopy in a similar way. 2

3 Nonsimple tangle sums

Lemma 3.1 Suppose (B, T ) is an atoroidal tangle. Then the punctured sphere P = ∂B−T

is compressible if and only if T is a rational tangle.

Proof. Cutting B along a compressing disk D of P yields two balls B1 and B2, with each

Bi containing a single component ti of T . The boundary of Bi − IntN(ti) is a torus, which

must be compressible because T is atoroidal. Therefore ti are unknotted in Bi. 2

Lemma 3.2 If T = T1 + T2 is a nontrivial sum of atoroidal tangles, then T is atoroidal.

Proof. The tangle space E(T ) is the union of E(T1) and E(T2) along a twice punctured

disk P . Since the sum is nontrivial, it is easy to see that P is incompressible in both E(Ti).

Let F be a torus in E(T ), isotoped so that F ∩ P has minimal number of components. As

P is incompressible, F ∩ P consists of circles which are essential in both P and F . Hence,

each component of F ∩ E(Ti) is an essential annulus in E(Ti) with boundary on P .

Since T is a tangle, it has no circle component. Hence one of the tangles, say T1,

has the property that both strings have an end on the gluing disk D, so the homology

map H1(P ) → H1(E(T1)) is an isomorphism. Let A be a component of F ∩ E(T1). By

homological reason, the two boundary components of A must be parallel on P , bounding

an annulus A′ on P . Since T1 is atoroidal, the torus A ∪A′ bounds a solid torus V . Notice

that A is compressible in the 3-ball B1, so A must be longitudinal on V , otherwise B1 would

contain a punctured lens space. It follows that we can isotop A through V to reduce the

number of components in F ∩ P , a contradiction. 2

Lemma 3.3 Suppose T = T1 + T2 is a nontrivial sum of atoroidal tangles. Then T is a

nontrivial tangle, and it is ∂-reducible if and only if, up to relabeling, T1 is a 2-twist tangle,

and T2 is a rational tangle, in which case E(T ) is a handlebody.

Proof. Suppose T1 is a 2-twist tangle, and T2 is a rational tangle. Let P be the gluing

surface ∆− IntN(T ), let ∂1, ∂2 be the inner boundary components of P . Since E(T1) has a

monogon, by compressing along it E(T1) becomes a product A× I, where A is an annulus,

so that E(T ) is obtained from E(T2) by gluing A × 0 to a neighborhood of ∂1, and A × 1
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to that of ∂2. Since T2 is a rational tangle there is a compressing disk D of E(T2) disjoint

from ∂1 ∪ ∂2. Such a disk is disjoint from A × I, so it gives rise to a compressing disk of

∂E(T ). Cutting along D produces a manifold with each component bounded by a torus.

Since E(T ) is atoroidal by Lemma 3.2, each of these components is a solid torus, so E(T )

is a handlebody. This proves the sufficiency.

Suppose that T is ∂-reducible. Consider a compressing disk D of ∂E(T ) which has

minimal intersection with P . Since P is incompressible, by innermost circle outermost arc

arguments we may assume that D ∩ P consists of essential arcs in P . Let α be an arc of

D ∩P cutting off an outermost disk D′ from D. Without loss of generality we may assume

that D′ lies in E(T1). Then D′ is a monogon of E(T1). By Lemma 2.1, T1 is a 2-twist

tangle.

We now consider the other tangle T2. Among all the components of D ∩ E(T2), choose

one, say D′′, which is outermost on D. Let α1, . . . , αk and β be the arcs of ∂D′′ ∩ P ,

where the αi’s are outermost arcs on D. There are at least one αi, for otherwise by the

above argument T2 would also be a 2-twist tangle, so T would contain a closed circle

component, contradicting the definition of tangles. By the above argument, all the α i have

both endpoints on ∂0. Since there is at least one αi, the arc β cannot have one end on

∂1 and the other on ∂2. So it is either an arc with both ends on ∂0, or it has one end on

∂0, and the other on ∂1, say. Let A′

1, A
′

2 be the two annuli N(T2) ∩ ∂E(T2). Since T has

no circle components and T1 is a 2-twist tangle, each A′

i must have exactly one boundary

component on P . Hence if β has both ends on ∂0, then it is disjoint from A′

1 ∪ A′

2, so ∂D′′

is a compressing disk of ∂B2 − T2. By Lemma 3.1, this implies that T2 is a rational tangle.

If β has one end on ∂1, then ∂D′′ intersects A′

1 at a single essential arc, and is disjoint from

A′

2. Such a disk can be used to isotop the string t′1 of T2 to an arc on ∂B2 without crossing

t′2, so again ∂B2 − T2 is compressible, and T2 is a rational tangle.

If T is a trivial tangle, there is a compressing disk D of ∂E(T ) disjoint from ∂N(T ).

But from the proof above we know that D ∩ E(Ti) contains a monogon which intersects

∂N(Ti). 2

Lemma 3.4 Let T = T1 + T2 be a nontrivial sum of atoroidal tangles. Suppose E(T )

contains an essential annulus Q. Then up to relabeling of Ti one of the following holds:

(i) T1 is ∆-annular, and Q can be isotoped to a ∆-essential annulus in E(T1).

(ii) T1 is a q-twist tangle with q odd, and T2 is either a left torus tangle or a p-twist

tangle with |p| ≥ 3.

(iii) Both Ti are wrapping tangles, and the unknotted string of T1 is glued to that of T2.

Moreover, in cases (ii) and (iii), Q intersect each Ti in bigons.
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Proof. Isotop Q in E(T ) so that the number of components in P ∩ Q is minimal, where

P = E(T1)∩E(T2). If Q is disjoint from P , then up to relabeling we may assume that Q is

in E(T1), and one can see that it is ∆-essential in E(T1), so (i) follows. Thus we may assume

that P ∩ Q 6= ∅. Since Q is essential, by an innermost circle outermost arc argument we

may assume that P ∩Q consists of essential arcs and circles on P . As P is incompressible,

we may also assume that each circle component of P ∩ Q is essential on Q.

Case (1). P ∩ Q consists of essential circles only.

Since T is a tangle, one of the Ti, say T1, has the property that each string has exactly

one endpoint on ∆. Consider a component A of Q ∩ E(T1), an annulus with one or both

boundaries on P . Since Q is disjoint from ∂P , ∂A lies on the sphere ∂B1, so ∂A bounds an

annulus A′ on ∂E(T1). The torus A ∪ A′ bounds a solid torus V in E(T1) because E(T1)

is irreducible and atoroidal. Since A is compressible in B1, for homological reason A must

run once along the longitude of V . Therefore A is parallel to A′, so we can isotop A off P

to reduce the number of components in P ∩ Q, a contradiction.

Case (2). P ∩ Q are arcs which are essential on both P and Q.

Then P cuts Q into bigons of E(Ti). By Lemma 2.2, they are not of types (1) – (3). If

none of the bigons are of types (4)–(6), then E(Ti) are twist tangles or left torus tangles.

But they cannot both be left torus tangles, otherwise T would have a closed circle. Also, Ti

cannot be 2-twist tangle, for then E(T ) would be a handlebody (by Lemma 3.3) if the other

Tj is a twist tangle, and T would have a closed circle component if Tj is a torus tangle.

Therefore conclusion (ii) follows. Suppose one of the bigons D is of types (4)–(6). Such a

bigon is characterized by the fact that one of the arcs of ∂D∩P has both ends on the inner

circles of P . Hence, if D lies in E(T1), then the bigon in E(T2) which intersects D at the

above mentioned arc is of type (4)–(6) also. Therefore both Ti are wrapping tangles. If t1

is a component of T1, by the proof of Lemma 2.2 we see that t1 is the unknotted arc if and

only if D ∩ P has a component α with both ends on ∂1 or one end on ∂1 and the other on

∂0, where ∂1 is the circle lying on ∂N(t1). Therefore the knotted arc of T1 is connected to

the knotted arc of T2. Conclusion (iii) follows.

Case (3). P ∩ Q contains inessential arcs of Q but no essential arcs.

An outermost inessential arc on Q cuts off a disk which is a monogon of one of the

tangles, say T1. By Lemma 2.1 T1 is a 2-twist tangle. We claim that all arcs of P ∩ Q are

outermost on Q. If not, choose an α which cuts off a disk D containing some outermost

arcs, and outermost arcs only, in its interior. D ∩ E(T2) is a compressing disk of ∂E(T2)

which intersects ∂N(T2) at most once, because α is the only arc on D which may have an

end on the inner circles of P . By the argument of Lemma 3.3 we see that T2 is a rational

tangle. But then by Lemma 3.3 E(T ) is a handlebody, which could not contain any essential
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annulus, contradicting the assumption.

Hence, a component A of Q ∩ E(T2) is an annulus with ∂A lying on ∂B2. As in case

(1), A is boundary parallel in E(T2), which implies that either A can be isotoped off E(T2),

or Q is ∂-compressible. Neither case is possible.

Case (4). P ∩ Q contains both essential arcs and inessential arcs on Q.

Since all inessential arcs are outermost as we have shown in case (3), a component D

of Q∩E(T2) is a disk such that ∂D contains two essential arcs α1, α2 and some inessential

arcs of Q. In general D is not a bigon, but the two essential arcs lie on P in one of the type

shown on Figure 2.1. Since P ∩ Q contains some inessential arcs, which have both ends on

the outer circle of P , we see that type (2)–(6) do not happen. Type (1) can be ruled out

similarly as in Lemma 2.2. In all the remaining cases, ∂D intersects each of the inner circle,

and hence each of the annuli in ∂N(T2), at most once. By the arguments of Lemma 3.3

and Case (8) of Lemma 2.2, the tangle T2 is a rational tangle, so by Lemma 3.3 E(T ) is a

handlebody and contains no essential annuli. 2

Lemma 3.5 The converse of Lemma 3.4 is true. That is, if (i), (ii), or (iii) in Lemma

3.4 holds, then E(T ) contains an essential annulus.

Proof. First assume (i) of Lemma 3.4 holds, and let A be a ∆-essential annulus in E(T1).

We will show that A is essential in E(T ). As before, let P = E(T1) ∩ E(T2) = ∆ ∩ E(T1).

Suppose D is a ∂-compressing disk of A. By definition of ∆-essential annulus, we must

have D ∩ P 6= ∅. As the sum is nontrivial, P is incompressible in E(T ), so we may assume

that D ∩ P is a set of essential arcs in P . There is at least one disk (an outermost disk)

D′ in D with interior disjoint from P , such that ∂D ′ consists of an arc of D ∩ P and an

arc on ∂D − A. By definition such a disk is a monogon, so by Lemma 2.1 one of the Ti

is a 2-twist tangle. It must be T2, because by Lemma 4.4 a 2-twist tangle is ∆-anannular.

But by Lemma 4.1(i) the two ends of ∆ ∩ T1 belong to the same string of T1, which is a

contradiction because then T would have a closed circle component.

Now consider (ii) and (iii) of Lemma 3.4. From the proof of Lemma 2.2 one can see

that if (Bi, Ti,∆) is a twist tangle or left torus tangle there is a bigon Di such that Di ∩∆

is the arcs in Figure 2.1(8), and if (Bi, Ti,∆) is a wrapping tangle there is a bigon Di with

Di ∩ ∆ the arcs in Figure 2.1(4). Call these the preferred bigons. In case (ii) or (iii), we

glue the two preferred bigons D1, D2 together to form a surface Q. If Q is an annulus, let

A = Q. If Q is a Möbius band, let A be the frontier of N(Q) in E(T ).

Since ∂Q intersects ∂2 at one point, each component of ∂A intersects ∂2 once, so it is

an essential curve on ∂E(T ). If A is compressible in E(T ), each component of ∂A bounds a

disk in E(T ), therefore ∂E(T ) is compressible. Now suppose A is ∂-compressible. If Q is an
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annulus, a ∂-compression of A produces a disk D with ∂D intersects ∂2 an odd number of

points, so again ∂E(T ) is compressible. If Q is a Möbius band and A has a ∂-compressing

disk D, then N(Q) ∪ N(D) is a solid torus submanifold of E(T ) whose frontier is a disk.

Since ∂E(T ) has genus 2, this disk is a compressing disk of ∂E(T ). In all cases we have

shown that ∂E(T ) is compressible. By Lemma 3.3, one of Ti is a 2-twist tangle. Since none

of the tangles in (ii) or (iii) is such, we get a contradiction. 2

Theorem 3.6 Suppose T = T1 + T2 is a nontrivial sum of atoroidal tangles. Then T is

nonsimple if and only if, up to relabeling of Ti, one of the following holds.

(1) T1 is a 2-twist tangle, and T2 is a rational tangle;

(2) Both Ti are twist tangles;

(3) Both Ti are wrapping tangles, and the unknotted string of T1 is glued to the unknotted

string of T2;

(4) T1 is ∆-annular.

Proof. In case (1), by Lemma 3.3 T is ∂-reducible. In case (2), (3) or (4), by Lemma 3.5

E(T ) contains an essential annulus unless T2 in case (2) is a 2-twist tangle, which has been

covered by (1). This proves sufficiency. Now suppose T is nonsimple. As a tangle space

E(T ) is irreducible. By Lemma 3.2 it is also atoroidal. Hence E(T ) is either ∂-reducible

or annular. In the first case by Lemma 3.3 the conclusion (1) holds. In the second case by

Lemma 3.4 one of the conclusion (i), (ii) or (iii) of Lemma 3.4 holds. These are covered

by (2) – (4) here, except when T2 in (ii) of Lemma 3.4 is a left torus tangle. Here one is

referred to the last paragraph of the proof of Lemma 4.3, which shows that a left torus

tangle is ∆-annular, hence in this case (4) holds after relabeling of T1 and T2. 2

4 ∆-annular algebraic tangles

The following lemma gives some basic properties of ∆-annular tangles.

Lemma 4.1 Suppose (B, T,∆) is a nontrivial atoroidal tangle containing a ∆-essential

annulus A. Let P = ∆∩E(T ), Ai = ∂N(ti)∩∂E(T ), and P ′ = (∂B∩E(T ))− IntP . Then

(i) One of the Ai, say A1, has both boundary components contained in P ;

(ii) A is disjoint from A1;

(iii) A can not be isotoped so that ∂A is disjoint from m2, where m2 is a meridian of

t2, i.e. an essential loop on A2;

(iv) If no component of ∂A is parallel to ∂∆, then ∂A bounds an annulus A′ on P ′∪A2,

such that A ∪ A′ bounds a solid torus V , and A runs at least twice around the longitude of

V .
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(v) If ∂A = ∂1∪∂2 has one component ∂1 parallel to ∂∆, then A is an essential annulus

in E(T ).

(vi) If E(T ) is ∂-irreducible, then any ∆-essential annulus is essential.

Proof. (i). Assume that both Ai intersect ∆. Then P ′∪A1 ∪A2 is isotopic to P ′, so by an

isotopy we may assume that ∂A ⊂ P ′. In this case the natural map H1(P
′) → H1(E(T ))

is an isomorphism. Thus the two components of ∂A are parallel on P ′, hence bound an

annulus A′ on P ′. Since E(T ) is atoroidal, A∪A′ bounds a solid torus V in E(T ). A can not

be meridional on ∂V , because it is incompressible in E(T ). A can not be longitudinal either,

otherwise A is rel ∂A isotopic to A′, contradicting the assumption that it is ∆-essential.

Hence A runs at least twice along the longitude of V . Since ∂A lies on ∂B, A bounds a

two handle H in B − V . But then V ∪H would be a punctured lens space in the 3-ball B,

which is absurd.

(ii). H1(E(T )) is generated by m1 and m2, where mi is an essential loop on Ai. Thus

none of the curves on P ′ ∪ A2 is homologous to m1. It follows that either ∂A ⊂ A1, or

∂A ⊂ P ′ ∪A2. If ∂A ⊂ A1, one can use the above argument to show that there would be a

punctured lens space in B.

(iii). Now ∂A is contained in P ′ ∪ A2. If after some isotopy ∂A is disjoint from m2,

then ∂A can be isotoped into P ′. For homological reasons ∂A can not have one component

parallel to ∂∆ while the other parallel to m2. Therefore, after isotoping a component of ∂A

through A2 if necessary, we may assume that ∂A are parallel circles on P ′. By the proof of

(i) this is impossible.

(iv). P ′ ∪ A2 is a once punctured torus, so if no component of ∂A is parallel to ∂∆,

then ∂A bounds an annulus A′ on P ′ ∪A2. As in the proof of (i), one can show that A∪A′

bounds a solid torus V , and A is neither meridional nor longitudinal on ∂V .

(v). A ∂-compressing disk of A has to intersect both components of ∂A. Since ∂ 1

separates ∂2 from P , no ∂-compressing disk of A could intersect P .

(vi). By (v) and (iv), we may assume that the two components of ∂A bound an annulus

A′ on ∂E(T ). Let D be a ∂-compressing disk of A. Since A is not parallel to A′, D∩A′ = ∅.

Therefore, after surgering A along D, we get a disk D ′ properly embedded in E(T ) whose

boundary is essential on ∂E(T ). 2

There are many ∆-annular tangles. The following lemma gives some sufficient condi-

tions, which are easy to check in practice.

Lemma 4.2 A nontrivial atoroidal tangle (B, T,∆) with T = t1 ∪ t2 is ∆-annular if it

satisfies the following conditions.
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(1) t1 has both ends on ∆;

(2) there is a solid torus V in B disjoint from t1, such that V ∩ ∂B is a disk ∆′ in

∂B − ∆;

(3) t2 lies on ∂V , so that if D is a meridional disk of V disjoint from ∂B, then t2

intersect ∂D algebraically at least twice.

Proof. The punctured torus ∂V − Int∆′ intersects E(T ) in an annulus A disjoint from ∆.

Condition (3) implies that A runs around V at least twice. So A must be incompressible in

E(T ), for otherwise the union of V with a regular neighborhood of a compressing disk of A

would be a punctured lens space in B, which is impossible. Therefore, we need only show

that all ∂-compressing disks of A intersects ∆.

Let V ′ = V ∩ E(T ). Then ∂A bounds an annulus A′ = V ′ ∩ ∂E(T ), and A ∪ A′ = ∂V ′.

Assume A is ∂-compressible and let D be a ∂-compressing disk. Since A run more than

once around V ′, ∂D can not be contained in A ∪ A′. Therefore, after surgery along D, A

becomes a compressing disk Q of ∂E(T ). Note that ∂Q bounds a once punctured torus F

on ∂E(T ), which is the union of A′ with a regular neighborhood of the arc ∂D ∩ ∂E(T ).

If ∂D is disjoint from ∆, then F lies in ∂E(T ) − ∆, so ∂D = ∂F is parallel to ∂∆, which

implies that Q is a compressing disk of ∂B − T , contradicting Lemma 3.1. Therefore, A is

a ∆-essential annulus. 2

Lemma 4.3 Any (B, T,∆) in the set S is ∆-annular.

Proof. After an isotopy, the tangles R[r1, r2; r3] in (1) – (5) of the definition of S can be

drawn as in Figure 4.1.

For all of them except the last one, it is easy to find a solid torus V satisfying the

conditions of Lemma 4.2. Figure 4.2(a) illustrates a solid torus for the tangle R[ 2

3
,−1

3
;−1

3
].

One can also find a torus if T is a 2n-twist tangle with |n| ≥ 2. Hence T is ∆-annular

by Lemma 4.2. For the tangle R[ 1

3
,−1

3
; 0], an annulus is shown in Figure 4.2(b). It has

one boundary component parallel to ∂∆, so it is incompressible. Since its two boundary

components are not parallel, if it is ∂-compressible, then ∂E(T ) would be compressible,

which is impossible by Lemma 3.3.

We need to show that if T is similar to one of the above, then it is also ∆-annular.

Since (B, T ;∆) = R[−r1,−r2;−r3] is the mirror image of (B ′, T ′;∆′) = R[r1, r2; r3], there

is an orientation reversing map sending E(T ) to E(T ′) which maps ∆∩E(T ) to ∆′∩E(T ′).

Hence T is ∆-annular if and only if T ′ is. Now consider R[r2, r1; r3]. If R[r2, r1; r3] is not

R[1
q
, 1

2
;−1

2
] or R[− 1

3
, 1

2
;−1

4
] , one can prove that R[r2, r1; r3] is ∆-annular by finding a solid

torus above. Notice that R[ 1

q
, 1

2
;−1

2
] is a (2, q) left torus tangle, and R[− 1

3
, 1

2
;−1

4
] is a (3, 2)

left torus tangle, so it remains to show that a left torus tangle is ∆-annular.
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Figure 4.2

Recall from the definition that for a (p, q) left torus tangle (B, T,∆) with T = t1 ∪ t2,

E(t1) is a solid torus V , ∆ is a disk on ∂V , and t2 is a string isotopic to some arc β on

∂V , and there is an arc α on ∆ such that α ∪ β is a simple closed curve running p times

around V . By definition of torus tangles, we have |p| ≥ 2. Let A be the frontier of a regular

neighborhood of α ∪ β which contains t2 ∪ ∆. Then A is a ∆-essential annulus. 2

Suppose (B, T,∆) is ∆-annular, with A a ∆-essential annulus. By Lemma 4.1(i) we

may assume that ∂t1 ⊂ ∆. Consider B as a 3-ball in S3. Connecting the ends of t1 (resp.
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t2) by an arc in ∆ (resp. ∂B − ∆), we obtain a link L = l1 ∪ l2, where li ⊃ ti. Call L the

induced link of (B, T,∆). Clearly, the link exterior E(L) can be obtained by attaching a

2-handle to E(T ) along ∂∆.

Lemma 4.4 A nontrivial rational tangle (B, T,∆) = M [p/q] is ∆-annular if and only if it

is a (2n)-twist tangle with |n| ≥ 2.

Proof. By our definition, M [r1] is equivalent to M [r2] if and only if r1 is equivalent to r2

mod Z, so we may assume that 1 ≤ |p| < q. The induced link L is a 2-bridge link associated

to the same rational number p/q, which we denote by L(p/q). Let A′ and V be as in Lemma

4.1(iv), now considered as in E(L) = E(T ) ∪ H, where H is a 2-handle attached to E(T )

along ∂∆. Let M be the manifold obtained by Dehn filling on E(L) along the central curve

of A′. Then A′ bounds a 2-handle H ′ in the attached solid torus. Hence M contains the

punctured lens space V ∪ H ′, so it is reducible.

Consider l2 as a knot in the solid torus W = E(l1) = S3 − IntN(l1). Since p/q 6= 1/0,

L is not a trivial link, so ∂W is incompressible in E(L). As the reducible manifold M is

obtained from W by Dehn surgery on l2, by [11] l2 is a cable knot in W . Since L is a

2-bridge link, there is no essential torus in E(L) (see the proof of [6, Theorem 1(a)]). Thus

l2 is isotopic to some (r, s) knot on ∂W with s > 1, i.e. it runs r times along the longitude

and s times along the meridian of l1. However, as a component of a 2-bridge link, l2 is a

trivial knot in S3, so we must have r = ±1. It follows that L is a (2, 2n) torus link (n = ±s),

which is a 2-bridge link associated to the rational number 1/2n. By the classification of

2-bridge links (see [3, Theorem 12.6]), p/q = 1/2n, so (B, T,∆) is a (±2n)-twist tangle.

Since |n| = s ≥ 2, the result follows. 2

If (B, T ) is a tangle, we can glue the left disk to the right disk by the reflection along

the plane containing Cy. The image of T is a link in S3. When T is the Montesinos tangle

M(r1, . . . , rn), the link so obtained is called a Montesinos link, denoted by L(r1, . . . rn). We

refer the reader to [3] for classifications of Montesinos links. We need the following lemma,

which is a consequence of a result of Bonahon and Siebenmann [2, Theorem A8].

Lemma 4.5 If L = L(r1, r2, r3) (ri are non-integral rational numbers) is a two component

Montesinos link such that E(L) is a Seifert fiber space, then L is either L( 1

2
, 1

q
, −1

2
) or

L(±1

2
, ∓1

3
, ∓1

4
). 2

Here is the idea of the proof of Lemma 4.5. The double branch cover X of S3 branched

over L has a natural Seifert fibration with 3 singular fibers. If E(L) is a Seifert fiber space,

then X has another fibration in which the lift of L are fibers. There are only a few manifolds
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which have different Seifert fibrations. The result then follows by calculating the Seifert

invariants of X. See [2] for details.

Lemma 4.6 Suppose (B, T,∆) is ∆-annular, and suppose the tangle (B, T ) is M( 1

2
, p

q
).

Then (B, T,∆) is similar to one of the R[ 1

2
, 1

q
,−1

2
], R[1

2
,−1

3
,−1

4
] or R[1

2
,−1

3
,−1

6
].

Proof. By assumption (B, T ) = (B1, T1,∆1) + (B2, T2,∆2). We claim that ∂∆1 is not

parallel to ∂∆ on the punctured sphere ∂B − T .

Since T1 is a 2-twist tangle, T2 can not be a (2n)-twist tangle, otherwise T would have a

circle component. Thus by Lemma 4.2, both Ti are ∆i-anannular, so A can not be isotoped

to be disjoint from ∆1 = ∆2. On the other hand, if ∂∆i is parallel to ∂∆, then A can be

isotoped to be disjoint from ∂∆i. Let P = ∆∩E(T ). By Lemma 4.1(iii), A has to intersect

the inner boundaries of P , so A ∩ P has some arc components. Thus some components of

A ∩ E(Ti) are monogons or bigons disjoint from the outer boundary of P . But by Lemma

2.1 and 2.2, this can not happen. This proves the claim.

Let L = l1 ∪ l2 ⊂ S3 be the induced link of (B, T,∆). Clearly, one component, say l1,

is a trivial knot in S3, and the other component l2 is a p/q 2-bridge knot. (S3, L) can be

obtained by taking the union of (B, T ) with a trivial tangle (B ′, T ′), so that ∂∆ bounds

a disk in B ′ − T ′. Hence, L is actually a Montesinos knot L( 1

2
, p

q
, p′

q′
) for some p′/q′. The

above claim means that ∂∆1 does not bound disk in B ′−T ′, so q′ 6= 0. In particular, E(L)

is irreducible [9].

Since E(T ) is a handlebody (Lemma 3.3), by Lemma 4.1(v) ∂A has no component

parallel to ∂∆, so we can apply Lemma 4.1(iv). Let A′ and V be the annulus and torus

given there. Let ∂1, ∂2 be the components of ∂N(L). We may assume that A′ is on ∂1. Let

A′′ = ∂1 − IntA′. Pushing A ∪ A′′ into E(L), we obtain a torus S. It separates the two

component of ∂E(L). Since E(L) is irreducible, S must be incompressible. S cuts E(L)

into two pieces. Since A runs at least twice around the longitude of ∂V (Lemma 4.1(iv)),

the component of E(L)− IntN(S) containing ∂1 is a cable space (i.e. the exterior of a knot

K in a solid torus W such that K lies on a torus parallel to ∂W and K runs at least twice

around W ). In particular, S is not parallel to ∂1. Therefore, either S is essential in E(L),

or it is parallel to ∂2. We separate the two cases.

CASE 1. (S is essential.)

Up to reflection there are four Montesinos links whose complement contains some es-

sential torus, only one of which has two components, and has a 2-twist tangle as one of its

rational tangles (see [9]). It is the link L( 1

2
,−1

3
,−1

6
). Since the sum of a 2-twist tangle with

a 6-twist tangle has a closed circle component, it follows that T2 must be a (−3)-twist tangle.

Thus the tangle (B, T ) is the one inside the rectangle (which represents ∂B) of Figure 4.3(a).
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The disk ∆ is determined by the property that ∂∆ bounds a disk in the (−6)-twist tangle.

By an isotopy of the triple (S3, ∂B,L) we get Figure 4.3(b). It is now clear that (B, T ;∆)

is either R[ 1
2
,−1

3
;−1

6
] or R[1

3
,−1

2
;−1

6
]. If the link is L(− 1

2
, 1

3
, 1

6
), the corresponding tangle

is the reflection of the above tangles. They are all similar to R[ 1

2
,−1

3
;−1

6
].

Figure 4.3

CASE 2. (S is parallel to ∂2.)

In this case E(L) is a cable space, so it is a Seifert fiber space. By Lemma 4.5, L is one

of the L( 1

2
, 1

q
, −1

2
) or L(± 1

2
, ∓1

3
, ∓1

4
). With the same method as in Case 1, one can see

that (B, T ;∆) is a tangle similar to R[ 1

2
, 1

q
;−1

2
] or R[1

2
,−1

3
;−1

4
]. 2

Proposition 4.7 A marked algebraic tangle (B, T,∆) is ∆-annular if and only if either it

is in S, or (B, T ) is a nontrivial sum (B1, T1,∆1) + (B2, T2,∆2), such that ∆ ⊂ ∂B2, and

(B1, T1,∆1) ∈ S.

Proof. If (B, T,∆) is in S then by Lemma 4.3 it is ∆-annular. If (B, T ) = (B1, T1,∆1) +

(B2, T2,∆2), ∆ ⊂ ∂B2, and (B1, T1,∆1) ∈ S, then by Lemma 3.5 a ∆1-essential annulus

A is essential in E(T ). Since A is disjoint from ∆, it is a ∆-essential annulus of (B, T,∆).

Thus the conditions are sufficient.

Now assume (B, T,∆) is ∆-annular. Let A be a ∆-essential annulus in E(T ). If T is

either rational or a sum of a 2-twist tangle and a rational tangle, we are done by Lemma

4.4 and Lemma 4.6. So we may assume that (B, T ) is a nontrivial sum (B1, T1,∆1) +

(B2, T2,∆2), and it is not a sum of 2-twist tangle and a rational tangle. By Lemma 3.3 this

implies that E(T ) is ∂-irreducible. By Lemma 4.1(vi), the annulus A is essential in E(T ).

Applying Lemma 3.4 to this case, we see that one of the (i), (ii) or (iii) of Lemma 3.4 holds.

We separate the discussion into two cases.

CASE 1. (Conclusion (i) of Lemma 3.4 holds, i.e. A can be isotoped to a ∆1-essential

annulus in (B1, T1,∆1).)
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Thus (B1, T1,∆1) is ∆1-annular. Let ∂1, ∂2 be the two boundary components of the

punctured sphere ∂B ∩ E(T ) which lie on ∂B1. By Lemma 4.1 (ii) and (iii), we know that

α = ∂A∩∂B consists of arcs connecting ∂1 and ∂2. Since ∆ is disjoint from ∂A, this implies

that it is disjoint from the connected set ∂1 ∪∂2 ∪α. It follows that ∆ can be isotoped into

∂B2. If (B1, T1,∆1) is in S then we are done. If (B1, T1,∆1) is not in S, the result follows

by induction on the length of the tangle.

CASE 2. (A can not be isotoped into E(T1).)

By Lemma 3.4, A is then a union of bigons in E(Ti). Let Ai be the annulus ∂N(ti)∩E(T ),

where ti are strings of T . Lemma 4.1(i) says that A is disjoint from some Ai, say A1. Look

at the nine possible configurations of the bigons in Figure 2.1. By Lemma 2.2 (1) – (3) can

not happen. In Case (4) and (5) the bigon intersect the two inner circles in different number

of points, so they belong to different Ai, which is impossible because then A would intersect

both Ai. In Case (6) one can see from the proof of Lemma 2.2 that ∂A ∩ ∂E(T ) has some

circles surrounding ∂Ai for some i, and has an edge connecting the boundary circles of the

other Aj , so no component of (∂E(T ) ∩ ∂B) − ∂A could contain the twice punctured disk

∆ ∩ E(T ).

Consider Case (9). By the proof of Lemma 2.2 the tangle T1 containing this bigon is

either a 2-twist tangle, 4-twist tangle, or a left torus tangle. Since A is essential, T1 can

not be a 2-twist tangle. In the other cases from Figure 2.4 we see that one of the Ai, say

A1 is in E(T1), and A intersects A1. A bigon on the other tangle T2 can not be of type

(9), otherwise T would have a closed circle component. Hence it is of of type (7) because

that is the only other type which has an arc disjoint from the inner circles. But then from

the figure we see that A intersects A2 as well, contradicting Lemma 4.1. Similarly one can

show that Case (8) can not happen.

In Case (7), the tangle is a (±3)-twist tangle. There is a unique gluing disk on ∂B which

is disjoint from A. The curves A ∩ ∂Bi appear in Figure 2.3. By drawing the picture on

∂B, one can see that T is similar to either R[ 1

3
,−1

3
; 0] or R[ 2

3
,−1

3
;−1

3
]. 2

Lemma 4.8 A k-wrapping tangle T is algebraic if and only if k = ±1, in which case

T = R[∓1

2
,±1

3
; 0].

Proof. The tangle space E(T ) of a wrapping tangle or torus tangle is ∂-reducible because of

the existence of bigons, so by Lemma 3.3, if (B, T ) is homeomorphic to a nontrivial algebraic

tangle (B ′, T ′), then (B ′, T ′) = M(1

2
, r

s
) for some rational number r/s, the exterior of the

knotted string of T ′ is the same as the exterior of an r/s 2-bridge knot in S3.

Without loss of generality we may assume that the wrapping number of T is k > 0. The

exterior of the knotted arc of T is the exterior of a (2, 2k + 1) torus knot in S 3, which is a

26



2-bridge knot with associated rational number 1/(2k +1). If T = T ′, then r/s = 1/(2k +1)

mod Z, i.e. T is the sum of a 2-twist tangle and a 2k + 1 twist tangle.

From Figure 1.8 one can see that the induced link L of a wrapping tangle is a trivial

knot. Thus there are arcs α1, α2 on ∂B′ such that T ′ ∪ α1 ∪ α2 is a trivial knot in S3. On

the other hand, T ′ as shown in Figure 4.4(a) has the property that when connecting the

ends with vertical lines we get a composite link. According to a theorem of Eudave-Muñoz

[5, Theorem 6], if there are arcs α1, α2 on ∂B′ connecting the ends of T ′ to produce a trivial

knot, then αi intersects the circle C in Figure 4.4(a) only once. The knot K = T ′ ∪α1 ∪α2

can be drawn as in Figure 4.4(b). After changing a single crossing, it becomes a (2, 2k + 1)

torus knot, which has unknotting number k. Hence K can not be a trivial knot unless

k = 1. From Figure 1.8 it is clear that (±1)-wrapping tangle is an R[∓ 1

2
,±1

3
; 0]. 2

C

....

....

Figure 4.4

Theorem 4.9 A nontrivial algebraic tangle T is nonsimple if and only if one of the fol-

lowing holds.

(a) T = M( 1

2
, p

q
);

(b) T = M( 1

q
, 1

q′
), q and q′ are odd numbers;

(c) T = T1 + T2, each Ti is R[1
2
,−1

3
; 0] or R[− 1

2
, 1

3
; 0], and the unknotted string of T1 is

glued to the unknotted string of T2;

(d) T = T1 + T2, and T1 ∈ S.

Proof. Apply Theorem 3.6 to algebraic tangles. Consider the four cases (1) – (4) in the

conclusion of Theorem 3.6. Case (1) is the same as (a) above. In case (2), if both Ti are

odd-twist tangles, we get (b). If one of them is an even-twist tangle, then it is in S, so (d)

holds. In case (3), (c) follows from Lemma 4.8. Finally in case (4), T = T ′ + T ′′ and T ′ is

∆-annular, so by Proposition 4.7, T ′ can be written as (B1, T1,∆1) + (B2, T2,∆2), so that

the gluing disk ∆ between T ′ and T ′′ is on ∂B2, and T1 is in S. Therefore, T can be written

as a sum T1 + (T2 + T ′′) with T1 ∈ S, as described in (d). 2
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