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or more than thirty years, research in

mathematics education has tried to clar-

ify, through work both theoretical and ex-

perimental, the processes of learning in

mathematics. It has tried also to develop
strategies for teaching that take into account the
knowledge that it progressively constructed, and
then to test it. Research was first carried out on
the earliest stages of learning, those of elementary
school, with work concerning high school and the
university, beyond the required schooling, being
relatively marginal. But the great increase in the
number of students taking mathematics at these
more advanced levels today poses educational
problems that again constitute new challenges for
research. In this article we will be interested in these
problems and will try to make more precise the po-
tential as well as the limitations of work conducted
so far.

The discussion is from a personal point of view,
marked by my own European and French culture;
other researchers would doubtless have a consid-
erably different overview. In effect, it is not as
easy in education as in mathematics to give an over-
all picture of the state of development of research
in a given area and to identify clearly the results
that have been obtained there. This results ini-
tially from the fact that this field of research is not
at all unified. Diverse approaches coexist, making
generalizations difficult, as the recent ICMI study
edited by A. Sierpinska and J. Kilpatrick and ded-
icated to mathematics education as a research do-
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main attests. This diversity is doubtless tied to the
relative youth of the field, but it results also from
the complexity of the studied phenomena; a sin-
gle point of view seems insufficient to encompass
this complexity. The diversity results also from the
fact that the processes of teaching and learning are
partially dependent on the social and cultural en-
vironments in which they develop; the results of
the research thus depend on the social and cultural
environments also, and it is not always easy to
make precise the field of validity for them. The di-
versity results finally from the fact that although
the benchmarks acquired by research allow one to
understand better the difficulties that students
have, as well as the dysfunctions of our teaching,
they more rarely give us inexpensive means of ac-
tion to make teaching better in an immediate and
sensible way.

In spite of these difficulties it is undeniable
that research advances, producing at the same
time theoretical frameworks for the problems of
teaching and learning, methodologies for their
study, and results concerning learning in any given
domain. In what follows, after having raised the
question of the foundations of the research, I shall
concentrate on two types of results that seem to
me as cutting across the range of approaches: one
concerning the discontinuities and breaks in learn-
ing, the other concerning questions of cognitive
flexibility. I shall illustrate them with precise ex-
amples taken from the two mathematical areas
that have been favored so far for research at the
university level—calculus and linear algebra. In a
last section I shall point out a few questions that
strike me as insufficiently addressed in research.
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An expanded version of the present article with
more references appears with the title “What can
we learn from educational research carried out at
university level” in a forthcoming ICMI study to be
published by Kluwer. For further reading about the
levels of teaching that interest us here, the reader
may wish to consult [1, 2, 3, 4].

The Foundations of Educational Research

For the past twenty years educational research
has been marked by the preeminence of con-
structivist approaches based on the work of Piaget.
Learning is known in these approaches as a process
of adaptation in the biological sense of the term,
based on processes of assimilation and accom-
modation: assimilation when newly encountered
situations can be managed by a simple adaptation
of cognitive schemes already constructed; accom-
modation when an important imbalance occurs, ne-
cessitating a reorganization of previous knowl-
edge. These constructivist approaches have
permitted people to have a new look at learning,
showing that it cannot be reduced to a simple
process of transmission of facts. What can be
learned is strongly constrained by the subjects’ ini-
tial conceptions—by the situations that are pro-
posed to them and the means of action that are
given to them for these situations. These things
have thus contributed to explaining the recorded
limits of teaching strategies that attribute a dom-
inant role to what the teacher says.

As formulated initially, constructivist ap-
proaches are increasingly considered as insufficient
for modeling in a satisfactory way the processes
of learning in mathematics, because the social and
cultural dimension of this learning is not suffi-
ciently taken into account. As A. Sierpinska and
S. Lerman emphasized in a 1996 article on these
questions, awareness of these limitations leads to
various constructions that are differentiated no-
tably by the way in which the relationships among
the individual, the social, and the cultural are con-
ceived. I am not going to revisit the analysis of this
diversity, but I would like to illustrate with two ex-
amples how this intervention of the social and the
cultural leads one to relativize the classical cog-
nitive analyses. I shall do so by relying on two the-
oretical frameworks that are particularly familiar
to me: the theory of didactic situations [5], whose
founding father is G. Brousseau, and the anthro-
pological theory of education developed more re-
cently by Y. Chevallard [6].

In the theory of didactic situations, learning is
indeed seen as a process of adaptation, but one rec-
ognizes that the processes of adaptation used by
the student in a given teaching situation are not
all of a mathematical nature. The student adapts
by relying on mathematical knowledge, but adapts
also by relying on knowledge of the teaching sys-
tem, its norms and customs, and guesses about the
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expectations of the teacher—what G. Brousseau iso-
lated and defined as the “didactic contract”. A
good number of scholastically well-adapted stu-
dents succeed, including at the university, more by
learning to decode the terms of the didactic con-
tract and by conforming to it than by really learn-
ing mathematics. Because of the strong effects of
the didactic contract, it is not easy to construct
learning situations where we can ensure that stu-
dents’ success implies real mathematical engage-
ment. Evaluation in these circumstances is even
more difficult, as various works have shown. The
theory of didactic situations has developed a set
of conceptual tools and techniques to analyze
teaching situations from this point of view and to
guide the construction of those that optimize the
relationships between the mathematical activity of
the teacher and activities that can be the students’
responsibility. A little later I shall give an example
related to integration in calculus.

Anthropological theory is quite distinct from the
dominant constructivism. The emphasis in it is
on the institutional dimension of learning; our re-
lationships with mathematical objects emerge, ac-
cording to it, from institutional relationships in
force where we encounter them, the term “insti-
tution” being understood here in a very broad
sense. As different works show, these relation-
ships for an object are not absolute, but vary con-
siderably from one institution to another.

These differences are particularly important to
clarify when one studies the problems of institu-
tional transition: for example, the problems of
transition between high school and university,
which concern us here. A part of the difficulty of
this transition can be better understood if one
considers that, beyond the common vocabulary
and the apparent similarity of tasks and tech-
niques, high school and the university develop
profoundly different relationships for common
mathematical objects, for example, those of cal-
culus—Ilimits, derivatives, and so on. For this rea-
son university teachers encounter serious diffi-
culties in bringing out the knowledge of the
students and are led to the impression that the stu-
dents know nothing. In addition, the difficulties tied
to the culture gap are reinforced by another type
of phenomenon brought out by educational re-
search: the fact that much of our knowledge re-
mains strongly contextual, that is, dependent on
the situations from which it arises. Some teachers
know this phenomenon well and with one word are
able to evoke a situation, a moment of their com-
mon history with the students, to bring out this
type of knowledge in a new context. But changes
of class and a fortiori of institution cut the ties of
this common memory, thereby limiting the field
of knowledge usable to the ones that are already
context-independent. Recent research such as in
the ongoing thesis of F. Praslon concerning the
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notion of derivative is devoted to understanding
all these phenomena. It constructs mechanisms for
university teaching that allow people to work with
students to fill the “educational void” of the tran-
sition that only a minority of our present-day stu-
dents seem capable of filling by themselves.

I have discussed in this section the variety of
approaches in mathematical education in the light
of an increasing recognition of the cultural and so-
cial dimension of the learning process. Other evo-
lutions play a role too, some overlapping with the
above. For instance, for more than twenty years,
research has brought out the fact that the learn-
ing of mathematics is not a continuous process,
that it necessitates reconstructions, reorganiza-
tions, even sometimes veritable breaks with ear-
lier knowledge and modes of thought. This fact has
often nourished a vision of a hierarchy in learning,
conceived as the progression through a succession
of stages, as a progression toward increasing lev-
els of abstraction. More and more, research shows
that learning rests, in a quite decisive way, on the
flexibility of mathematical functioning via articu-
lation! of points of view, “registers of representa-
tion”, and “settings of mathematical functioning”.
Conceptualization appears also more and more
dependent on the concrete and symbolic tools of
mathematical work. This dependence, which con-
cerns at the same time what is learned and the
methods of learning, is particularly important to
take into account today, because of the rapid evo-
Iution of tools resulting from technological ad-
vances.

Even if certain researchers have been led to de-
velop specific approaches, such as the APOS the-
ory initiated by Ed Dubinsky, it is in this global per-
spective that research concerning university
teaching fits. In effect, even if the concerned au-
diences of students are cognitively and emotion-
ally more mature, with relationships to mathe-
matics already based on a long history, and if the
sought-after knowledge is more complex and more
formalized, nothing today says that there exist re-
ally specific processes of learning for this level of
teaching or that the constructed models are un-
suitable for it. This is why we have chosen in what
follows to organize the presentation of some re-
sults around two questions that simultaneously
transcend, it seems to me, the variation in ap-
proaches and the levels of teaching: the question
of reconstructions and breaks on the one hand, that
of flexibility on the other.

L“Articulation” refers to the connections between a part
and the whole, or between one part and another part. At
the same time it calls to mind both the switching from one
part to another and the technical means for making these
connections.
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Reconstructions and Breaks in
Mathematical Learning

The necessity of reconstructions and breaks in
the learning of mathematics might seem banal.
However, teaching tends to live on the fiction that
learning processes are continuous. It is a fiction
that is doubtless convenient for separating the re-
spective responsibilities of the students from those
of the teachers. But it is a fiction that generates real
difficulties.

The example of calculus illustrates well the va-
riety of discontinuities to take into account. To
structure this diversity, we shall distinguish three
principal types of reconstructions.

The Reconstruction of Relationships to Familiar
Objects

The learning of calculus presupposes first the re-
construction of relationships with mathematical ob-
jects that existed for our students even before the
official teaching of analysis began. Take an object
like the tangent, for example. Research shows, in
this case, the difficulties generated by the usual
teaching strategies in high school that do not man-
age this reconstruction, but also the very reason-
able cost and efficiency of taking responsibility for
it at that level [7]. The real numbers provide an-
other example where the necessary reconstruc-
tions prove to be much less easy. Real numbers
enter the secondary school curriculum early as al-
gebraic objects with a dense order and a geomet-
rical representation as the real line, and with dec-
imal approximations that can be easily obtained
with pocket calculators. Nevertheless, many pieces
of research show that even upon entering a uni-
versity students retain fuzzy conceptions that are
barely coherent and poorly adapted to the needs
of the calculus world [8]. For instance, real num-
bers are recognized as having no gaps in their or-
dering, but, depending on the context, students
manage to reconcile this property with the exis-
tence of numbers just before or after a given num-
ber (0.999... is thus often seen as the predecessor
of 1.000...). More than 40 percent of students en-
tering French universities consider that if two num-
bers A and B are closer than 1/N for every posi-
tive N, then they are not necessarily equal, just
infinitely close. Relations between irrational num-
bers and their decimal approximations remain
fuzzy. No doubt reconstructions are necessary for
understanding “calculus thinking modes”. Research
proves that these are not easily induced by the kind
of intuitive and algebraic analysis that is mainly
at play at the high school level and that the con-
structions of the real number field introduced at
the university level remain largely ineffective if
students are not confronted with the incoherences
of their conceptions and the resulting cognitive
conflicts.
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Figure 1.

Integrating New Facets of a Concept

The necessary reconstructions are not limited to
those of familiar objects preexisting at the en-
trance to this area of mathematics. Other recon-
structions are going to prove necessary because
only certain facets of a concept can be presented
on a first exposure. The case of the integral seems
to illustrate this situation well. In France, as in nu-
merous other countries, the integral is introduced
at the end of secondary school via the notion of
indefinite integral, thus as a process inverse to dif-
ferentiation. It is immediately exploited in simple
calculations of areas and volumes that are based
on an intuitive approach to these notions and a
pragmatic presentation of the Fundamental The-
orem of Calculus. It is at the university level that
a theory of integration is introduced, via the Rie-
mann integral and then, at more advanced levels,
the Lebesgue integral. Necessarily successive re-
constructions of relationships to the notion of in-
tegral are in play.

During the past twenty years numerous pieces
of educational research have been devoted to the
concepts of derivative and integral, with a great
convergence of results obtained, whatever coun-
try is involved. This research shows that students
attain a reasonable level of performance in the
handling of standard tasks, in particular of tasks
of a computational nature, but nothing more. As
appears clearly in [9], if, for example, one asks
students to decide by themselves whether such-
and-such situation in a problem of modeling comes
under an integration procedure, they find them-
selves completely at a loss. They owe their salva-
tion only to the linguistic clues with which the
wording of this kind of problem is in general filled
and that they have learned to recognize (slices, el-
ements of area or work or force, infinitesimal de-
composition, and so on). Worse, a certain number
directly questioned, including the best students
among them, do not hesitate to declare that in
this area the surest thing is not to try to understand
but to function mechanically. This circumstance
does not need to be seen as a sort of cognitive fa-
tality. What we are observing are the economical
ways of adaptation our students develop when ex-
posed to inadequate educational practices.
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Fortunately, research is not limited to such neg-
ative reports. We come now to a situation con-
structed by M. Legrand in order to make first-year
university students realize by themselves the ne-
cessity of the integral concept. The situation is
based on the following, apparently simple, prob-
lem: a linear bar of mass M; and a point mass M»
are located as in Figure 1, and students are asked
to calculate the magnitude of the attracting force
between the two masses. This situation has been
proved to be effective through various experi-
ments in different contexts. What makes it effec-
tive? In order to answer the question, we have to
make a brief didactic analysis of it.

When asked this question without any linguis-
tic hint, first-year students do not recognize an in-
tegration problem. But they are not blocked, as they
can rely on a strategy often used in physics: con-
centrating the mass of the bar at its center of grav-
ity and applying the familiar attraction law be-
tween two point masses. In experiments this
strategy was always the predominant one. But in
a group of reasonable size, as is easily the case at
university level, there are always students who
have some doubts: “Is the gravity principle valid
in that particular case?” One strength of the situ-
ation is that one can test the validity of the grav-
ity principle simply by applying it in another way.
What is generally proposed by students is in fact
the following: to cut the bar into two halves and
apply the gravity principle to each of these parts.
Of course, this does not give the same result, and
the gravity principle is proved to be invalid in that
particular case. But the negative answer is also a
positive one, since it brings out one essential fact:
the contribution of a piece of the bar to the at-
traction force depends on its distance to the point
mass, and this allows students to propose upper
and lower bounds for the required intensity. More-
over, the technique upon which the invalidation
process was based can be then engaged in a pro-
gressive refinement process, and this leads stu-
dents to the conviction that the force, whose ex-
istence is physically attested, can be approached
as accurately as one wants. What is implicitly going
on here is the fundamental integration process. Of
course, in the educational design elaborated by M.
Legrand, this is just the starting point. Students
have then to work on situations that, in different
contexts, require the same process for being solved.
Then they have to look for and discuss the exist-
ing analogies between them in order to make the
integration process an explicit tool (according to
the distinction between the tool and object di-
mensions of mathematical concepts introduced
by Douady [10]). It is only at this point that the
teacher connects this mathematical work with the
theory of Riemann integral and develops the no-
tion of integration as a mathematical object that
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will be then reinvested in more complex situa-
tions.

Before leaving this example, let me stress the
following point: efficiency here is not only linked
to the characteristics of the problem that I have
just described; it strongly depends on the kind of
scenario developed in order to organize the meet-
ing of students with this new facet of the integral
concept. This scenario depends in a crucial way on
the social character of learning processes: it is
through group discussion that the initial strategy
is proved to be erroneous; it is the collective game
that allows one to find some solution in a reason-
able amount of time. Working as a class fosters reg-
ularities in the dynamics of the situation that might
not be present if students were faced with the
same problem individually or in very small groups.
No doubt also, the effect would be different if the
teacher were simply explaining this particular ex-
ample during a lecture session.

This example may appear to be idyllic. Unfor-
tunately, educational research does not provide us
with effective means to deal with all necessary re-
constructions as easily. For instance, differences
are evident if one considers the concept of limit,
at the core of the field. With the example of the limit
concept we come to a third category of recon-
structions, reconstructions necessary because, as
was already acknowledged by Henri Poincaré at the
beginning of this century, concepts cannot always
be taught from the start in their definitive form [11].

Changes of Level of Conceptualization

At the high school level in most countries today
the impossibility of beginning calculus with a for-
mal development has been acknowledged. Teach-
ing relies both on a dynamic conception of the limit,
based on graphical and numerical explorations, and
on techniques of an algebraic nature. These things
allow students to solve simple but interesting
problems of variation and optimization. The tran-
sition towards more formal approaches, which
takes place at the university level, represents a
tremendous jump, both conceptually and techni-
cally.

From a conceptual point of view, one crucial
point is that the formalization of the limit concept
responds to the needs of foundational work, uni-
fication, and generalization. Through formalization
the concept of limit becomes a “proof-generated
concept” in a sense described by Lakatos [12]. It
is not easy to make young students sensitive to
such concerns; such concerns are not really part
of their mathematical culture. And it is not easy
to find situations analogous to the bar problem de-
scribed above to support such concerns. For this
reason researchers such as A. Robert (in [3]) sug-
gest for such reconstructions specific educational
designs that allow the cultural dimension to be
taken into account better.
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Nevertheless, one must not underestimate the
technical difficulties of this reconstruction. From
a technical point of view, one essential point is the
following: in the algebraic version of calculus that
one meets on first exposure, technical work does
not really break with ordinary algebraic work. This
is no longer the case when one advances to the
more formalized aspects of the subject. For ex-
ample, students have to reconstruct the meaning
of equality and understand that equality does not
necessarily result from successive equalities as in
algebra, but can instead result from e-proximity for
every positive €. We noted at the beginning of this
section the difficulties that students have in learn-
ing that e-proximity for every positive € implies
equality.

Another point is that inequalities become pre-
dominant over equalities. This change results in a
great increase in technical complexity, all the more
so as the associated modes of reasoning often rely
on sufficient conditions that are not also necessary.
These new modes of reasoning require a carefully
controlled loss of information based on a good
awareness of the respective orders of magnitude
of the different parts of the expressions students
have to deal with. In short, students have to iden-
tify and learn to master a completely new techni-
cal world. Doing so is far from easy; it is necessarily
a long-term process.

The mathematical needs for reconstructions
discussed above help us to understand, it seems
to me, what can separate the capacity to give an
intuitive sense to the notion of limit—even to il-
lustrate it by examples and counterexamples—
from the capacity to manipulate operationally this
notion with its status of constructed object, sub-
ject to formal proofs. In the context of increased
numbers of secondary school students to be taught,
such a reconstruction, without any doubt, is the
responsibility of university teaching, to the extent
that the university regards this evolution as nec-
essary. But the reconstruction must be carried out
within the length of time of the course that is
being taught.

In this section we have explained matters in
terms of reconstructions of relationships to math-
ematical objects by distinguishing three different
types of reconstructions. We would like, however,
to make it clear that, even if researchers recognize
the importance of the qualitative changes we have
emphasized above, the researchers who work at the
university level do not express them forcefully in
these terms. Certain researchers express matters
more clearly in terms of breaks by referring to the
notion of epistemological obstacle borrowed from
the philosopher G. Bachelard [13]. This is the case,
for example, in various works concerning the no-
tion of limit, such as those cited in the survey ar-
ticle by Cornu [1]. Others, such as E. Dubinsky and
A. Sfard, center their study more on the importance
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and the difficulty of the transition between process
and object conceptions. In the first ones, the math-
ematical notions are conceived as dynamic
processes, resulting from the internalizing of ef-
fective actions. In the second ones, mathematical
notions are perceived as static objects that can be,
in their turn, involved in more complex processes.
The work they have conducted on the notion of
function is in some way prototypical of these ap-
proaches [14]. They demonstrate well the type of
relationship to functions that a process conception
permits and its effectiveness at the high school
level. They demonstrate also the limits to such
conceptions when in calculus at the university
level, one is no longer interested necessarily in
particular functions but in classes of functions, de-
fined by properties such as conditions of regular-
ity for which one again envisions processes. These
works have shown also the disastrous effects of
teaching strategies that aim too soon at set-
theoretic static definitions of functional objects
without allowing sufficient time for the “process”
phase. They have shown finally that programming
in specific languages, such as the language ISETL,
can help the internalizing of actions into processes
and, more delicately, the encapsulizing into objects
of the processes.

The results obtained by the research on recon-
structions necessary to mathematical learning, on
the epistemological obstacles inherent in one kind
of learning or another, and on the difficulties on
transition between processes and objects certainly
help us to understand better the difficulties en-
countered by students and to take responsibility
for these difficulties more effectively in our teach-
ing. However, as was said at the beginning of this
article, the results tend to favor a “vertical” and hi-
erarchical vision of mathematical learning and
consequently to mask the importance of what one
might like to describe in the “horizontal” dimen-
sion. It is to restore in some way the equilibrium
between these two dimensions that we concen-
trate in the next section on questions of cognitive
flexibility.

Flexibility and Mathematical Learning

Knowledge of the role played by a certain cogni-
tive flexibility in improving mathematical work is
not arecent thing. As T. Dreyffus and T. Eisenberg
recall in a 1996 article on the multiple facets of
mathematical activity, the book How To Solve It?
by the mathematician H. Polya testifies to this fact.
What does educational research add to these ini-
tial works? Without any doubt, it adds:
= a better knowledge of the different types of
flexibility in play in mathematical activity
= the proof of the limits of teaching strategies
that are aimed at developing these flexibilities
as skills cutting across different areas but do
not take seriously into account the distinctive

NOTICES OF THE AMS

features of knowledge that support these types
of flexibility within the mathematical areas in
question [15]

= development and experimentation with teach-
ing designs that aim to make up for the
recorded dysfunctions of teaching flexibility
in the subject.

To illustrate this, we are going this time to favor
the area of linear algebra, more recently investi-
gated in educational research. There these ques-
tions are at the heart of various research projects.
We are going to rely in particular on the synthesis
realized in the work [4] edited by J. L. Dorier. As
this author emphasizes, linear algebra finds its
source in different mathematical settings that it has
allowed us to unify in a certain sense: a geomet-
ric setting, a setting of systems of linear equa-
tions (finite or infinite dimensional), a setting of
matrix calculus, a setting of differential equations,
and so on. The development of a flexible articula-
tion among these different settings, as between
each of them and abstract linear algebra, appears
then as an essential component of learning in this
area. This development relies, in turn, on articu-
lation between levels of language and description,
between modes of reasoning, between “registers
of representation”, and between points of view.

Flexibility between Levels of Language and
Modes of Reasoning
In [4] J. Hillel analyzes the different languages and
associated ways of representing constructs in the
subject of linear algebra, as well as their modes of
interaction. Principally, he distinguishes three of
these: the language of the general theory, the lan-
guage of R", and the geometric language of space
in two and three dimensions, which is also used
in a metaphorical way in dimensions greater than
three. He describes their characteristics and modes
of interaction, listing the difficulties that they can
induce and to which teaching must be sensitive.
Moreover, analyzing videotapes of lectures in
courses of five experienced teachers on eigenval-
ues and eigenvectors, he presents evidence of per-
manent changes in the language and notation, usu-
ally carried out without pause and without any
attempt to warn the students that a change is oc-
curring.

A. Sierpinska, A. Defence, T. Khatcherian, and
L. Saldanha, also in [4], distinguish three modes of
reasoning in linear algebra: a synthetic-geometric
mode, where the objects are in some way given di-
rectly in the spirit that tries to describe them, and
two analytic modes where the objects are given in-
directly. In the latter two, objects are constructed
only by definitions, by properties of their elements.
It is the analytic-arithmetic mode if the object is
defined by a formula that allows one to calculate
it, or the analytic-structural mode if the object is
defined by a set of properties. According to these
authors: If one thinks about possible solutions of
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a system of three linear equations in three un-
knowns by imagining the respective positioning of
three planes in space, one is in the synthetic-geo-
metric mode. If one thinks of this problem in terms
of the possible results from reducing a 3-by-3 ma-
trix, one is in the analytic-arithmetic mode. One is
in the analytic-structural mode if, for example,
one thinks in terms of singular and regular ma-
trices.

Historically the development of linear algebra
owes a great deal, as the authors emphasize, to the
interaction of these three modes. But, as shown by
fine analysis of tutoring situations in the univer-
sity where this research was carried out, both the
tasks proposed to the students and the observed
interactions between teachers and students hardly
favor the development of flexible coherent man-
agement of these different modes. The students
on their side develop original systems of inter-
mediate forms among these three modes, and rea-
sons of economy cause mixed forms to appear in-
corporating the analytical-structural mode. This
creativity could, according to the authors, be a
source of inspiration for teaching, the educational
problem in need of solution being that of finding
the means for allowing a consciously controlled
management of these different modes and of their
flexible articulation. The collected data show clearly
that this is not the case if the students are left on
their own to do this, despite their manifest cre-
ativity.

Flexibility among Registers of Representation

Mathematical work in linear algebra mobilizes sev-
eral registers of semiotic representation,? including
graphics, pictures, symbolic writing, natural lan-
guage, and others. As R. Duval [16], among others,
emphasizes, semiotic representations are ab-
solutely necessary for mathematical activity be-
cause mathematical objects are not directly ac-
cessible to perception. Semiotic registers do not
have merely a simple function of exteriorization
of mental representations, of communication; they
are essential to cognitive functioning, to concep-
tualization. However, according to him, teaching
tends to reduce them to this role of exteriorization
and communication. Thus it tends to see the ca-
pacity to recognize semiotic representations, to
form them, to treat them, or to convert them into
another register as a simple byproduct of con-
ceptualization. The research of K. Pavlopoulou in
his 1994 Strasbourg thesis (cf. [3]) on the coordi-
nation of registers of representation in linear al-
gebra brings out well that the relationships between
conceptual learning and semiotic learning are much
more complex. The module of experimental teach-

2R. Duval [16] defines a “register of semiotic representa-
tion” as a system of representations by signs that allows
the three fundamental activities tied to processes of using
signs: the formation of a representation, its treatment in
the same register, its conversion into another register.
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ing prepared for beginning students in the context
of this research tends again to show that teaching,
when it wants to be sensitive to this semiotic di-
mension of mathematical work, allows one to over-
come difficulties, however resistant they appear.

Flexibility between Points of View

Flexibility in articulation between mathematical
points of view has been emphasized by several au-
thors, among them M. Alves Diaz in his 1998 the-
sis at Université Paris VII (cf. [4]). Such a flexibil-
ity enters linear algebra in the relationships
between “implicit” and “parametric” points of
view.3 In linear algebra one must often pass from
one point of view to the other—in a computational
way at first, later in a more metaphorical way. The
thesis of M. Alves Diaz, conducted at the same time
with French and Brazilian students of various lev-
els, shows the great difficulties that students have
in developing a flexible articulation between the
two points of view. The small percentage of suc-
cess at all levels in solving the following simple ex-
ercise illustrates matters.

In R3 let a=(2,3,-1), b=(1,-1,2),
c=(5,0,7),andd = (0,0, 1). Find an im-
plicit representation of the intersection
of the vector spaces E and F generated
respectively by {a,b} and {c,d}.

Solving this exercise in the style in which these stu-
dents have been taught requires passing via Gauss-
ian elimination from a parametric representation
to an implicit representation for each of the sub-
spaces E and F, and then the union of the sets of
equations for each is the required answer.4

The solution of this task leads in particular to
numerous formal slips. Students confuse coordi-
nates with parameters and end up with intersec-
tions that are in R? or R* rather than in R3. They
brutally associate equations with vectors, and so
on. Visibly the cues from the geometric setting,
which ought to be easy to use, have been brought
to bear by the questioned students only a little.
When geometric intuition has been used, it has not
necessarily been used effectively. Finally, contrary
to what one might think, the percentage of success
is not improved when one speaks to more ad-
vanced students.

What this research shows as well, through the
analysis of representative teaching manuals in the
two countries, is the weak sensitivity to these dif-
ficulties that teaching seems to show. Certainly the
students are able automatically to use the solution

3With respect to a vector space, one is thinking about the
vector space implicitly if one regards it as a set of solu-
tions of a system of linear equations, parametrically if one
thinks about it in terms of a system of generators.

4Let us emphasize, however, the perturbation arising
here in using the standard technique: the equation of the
subspace F is y = 0, an equation that can moreover be
obtained without the least calculation.
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techniques that permit them to manage the artic-
ulation technically, but this willingness is insuffi-
cient to give the articulation a meaning, to permit
them to manage it and control it in an effective way.

Duality, when it is introduced later, ought to
allow them to rethink this articulation and to un-
derstand better the role that the association of
equation with vector plays in it. But the technical
world of systems and the theoretical world of
duality, as they are classically presented, remain
for most present-day students two worlds too
weakly connected.

No doubt there would be a need to construct an
intermediate discourse permitting the students to
put into place, as a reflex action, cues to the tech-
nical work of articulation. The history of the de-
velopment of the notion of rank, such as analyzed
in [4], provides interesting insights into this sub-
ject, helping us to restore to our understanding of
this articulation a complexity that modern pre-
sentations, in their apparent simplicity, tend to
make us forget. This complexity does not appear
in the manuals, where the ability to articulate be-
tween points of view is assumed to be automatic
once the techniques for it are available.

This weak effect of standard teaching practices
on articulation is not an isolated phenomenon.
Whether it is a question of articulation of settings,
of registers, or of points of view, analysis tends to
show that it is difficult for teaching to assume re-
sponsibility for the learning of effective indepen-
dent thinking as part of the articulation. Flexibil-
ity seems to be considered as automatically
internalized once one has “understood” the notion,
as if it were a simple question of homework that
one can leave to the private work of the student.
Research shows that this is unfortunately not the
case. It shows also that flexibility is not out of
range of what can be taught if one is attentive to
its development. The works cited above tend to
show this in the case of linear algebra, and it is also
the case in calculus. Much research carried out in
the latter area shows in particular that computer
technology, if its use is carefully thought out, can
play a decisive role in the development of a flexi-
ble articulation between the algebraic and graphic
registers and can make of this articulation a really
efficient instrument of mathematical activity [2].
My own research on the teaching of differential
equations goes in the same direction [14], show-
ing notably how the use of computer technology
can make approaches via qualitative solutions vi-
able, even with beginning students, and can bring
university teaching closer to the present-day de-
velopment of the field. But the research shows
also that the viability of these new teaching strate-
gies requires important changes in the status of
the graphical register. Indeed, with beginners via-
bility requires the acceptance of qualitative proofs
based on specific graphical arguments. This is
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hard to negotiate with university teachers, at least
in France, where such proofs are not generally ac-
cepted at the university level.

Potential and Limits of the Research
Enterprise

As this article has tried to show, research carried
out at the university level helps us to understand
better the difficulties in learning that our students
have to face, the surprising resistance to solutions
of some of these difficulties, and the limits and dys-
function of our teaching practices. In various cases
research has led to the development of teaching
designs that have proved to be effective, at least
in experimental environments. This article gives
only a very partial vision of the diversity of the re-
search enterprise and the results obtained through
it. Because of limited space, we have chosen to
focus on a few points and to omit others that are
certainly also very important. But the presentation
here, even though only partial, should be sub-
stantial enough to allow me to discuss some lim-
its of the research enterprise in its present state
and to suggest some themes for future develop-
ment.

As to research undertaken up to now, my feel-
ing is that efforts have been concentrated on just
a few areas with respect to the diversity of the
mathematical topics taught at university level. As
was said above, the main effort has been with cal-
culus, a mathematical area that was seen as the
main source of failure at the undergraduate level.
More recently researchers have investigated the
field of linear algebra, and important projects are
now going on. But important areas such as prob-
ability and statistics remain poorly addressed.
Moreover, my feeling is that research in mathe-
matics education, by and large, has more or less
consciously taken as a reference point the train-
ing of future mathematicians at the expense of the
great variety of students taking university-level
mathematics courses at university. Without a
doubt, research in mathematics education has to
be partially reoriented in order to give the place it
deserves to issues linked to the mathematical train-
ing of elementary and secondary teachers and,
more globally, to the mathematical training of all
kinds of professionals.

The way the issue of computer technologies
has been generally addressed up to now evidences
these limitations, in my opinion. It mainly focuses
on the ways computer technologies can support
conceptualization and the cognitive flexibility rec-
ognized as an essential component of it. Research
does not investigate with the same attention what
a professional mathematical activity assisted by
computer technologies really is, as well as what its
specific and nonspecific mathematical needs are.
These needs might depend on professional spe-
cialties if one wants to overcome the mere status
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of blind user and become an efficient and critical
user. As a consequence, research does not pay
enough attention to the ways the corresponding
knowledge can be constructed in ordinary or ser-
vice mathematics courses. Nevertheless, this is a
real challenge we have to face today, taking into
account the fact that at university our main con-
cern is no longer the development of some kind
of general mathematical culture.

The limits of the research enterprise are not only
those mentioned above, which are linked to the
state of development of the field. As university
teachers we are faced with more fundamental ones.
We would like research to provide us with easy and
rather inexpensive means for improving our teach-
ing strategies. But as a researcher I have to con-
cede that only rarely does research give us evidence
that through minimal and inexpensive adaptations
can we obtain substantial gains. On the contrary,
most research designs that have proved to be ef-
fective require more engagement and expertise on
the part of teachers and significant changes in
practices. One essential reason is that the problems
are not only with the content of teaching (it is not
enough to write or adopt new textbooks); the prob-
lems are related to the forms of students’ work,
the modes of interaction between teachers and
students, and the forms and content of students’
assessment. Changes are not so easy to achieve;
they require time and institutional support, and
they are not merely a matter of personal good will.

Another crucial point is the complexity of the
systems where teaching and learning processes
take place. Because of this complexity the knowl-
edge we can infer from educational research, how-
ever useful it is, is necessarily very partial. The mod-
els we can elaborate are necessarily simplistic
ones. As mathematicians we are well aware that we
can learn a great deal even from simplistic mod-
els, but we cannot expect them to give us the
means to really control educational systems. So we
have to be realistic in our expectations, careful
with generalizations. This does not mean, in my
opinion, that the world of research and the world
of practice have to live and develop as separate
ones—far from it. But I am convinced that finding
the ways of making research-based knowledge
useful outside the educational communities and
experimental environments where it develops can-
not be left solely to the responsibility of re-
searchers. It is our common task.
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