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ARTICLE INFO ABSTRACT
Keywords: A class of evolutionary variational-hemivariational inequalities with a convex constraint is
Variational-hemivariational inequality studied in this paper. An inequality in this class involves a first-order derivative and a history-

Convex constraint
Rothe method
Existence and uniqueness

dependent operator. Existence and uniqueness of a solution to the inequality is established by
the Rothe method, in which the first-order temporal derivative is approximated by backward
Lipschitz continuous dependence Euler’s formula, and the history—dgpendent oPerator is gpproxin?ated bya m.odified left en'dpoint
Viscoelastic material rule. The proof of the result relies on basic results in functional analysis only, and it does
Frictional contact not require the notion of pseudomonotone operators and abstract surjectivity results for such
operators, used in other papers on the Rothe method for other evolutionary variational-
hemivariational inequalities. Moreover, a Lipschitz continuous dependence conclusion of the
solution on the right-hand side is proved. Finally, a new frictional contact problem for
viscoelastic material is discussed, which illustrates an application of the theoretical results.

1. Introduction

In the study of nonlinear nonsmooth problems arising in science and engineering, hemivariational inequalities have been shown
to be a powerful mathematical tool. Since the early 1980s [1], the mathematical theory of hemivariational inequalities has developed
rapidly; see [2-5]. Meanwhile, considerable progress has been made on numerical methods for solving hemivariational inequalities;
see [6-12] and the lengthy survey paper [13].

In [14], a class of evolutionary hemivariational inequalities without constraint is studied. Through applications of the theory
of pseudomonotone operators, a well-posedness result of the inequalities is proved, and a Céa-type inequality is derived for fully
discrete approximation. In [15,16], minimization principles serve as a starting point to prove existence and uniqueness results of
stationary hemivariational inequalities. Under suitable assumptions, the solution of certain hemivariational inequality is also the
minimizer of a corresponding energy functional. Then for general variational-hemivariational inequalities, existence and uniqueness
of solutions are proved by an additional fixed-point argument.

Motivated by [15,16], in this paper, we explore well-posedness results for a class of evolutionary variational-hemivariational
inequalities without the need of the notion of the pseudomonotone operator and an abstract surjectivity result for such an operator.
In contrast to [14], we study variational-hemivariational inequalities in this paper, and the inequalities are posed over a convex
set. The Rothe method has been applied to the study of evolutionary hemivariational inequalities, starting with [17], followed
by [8,18-21], etc. Using the arguments on stationary variational-hemivariational inequalities in [15,16], we show the existence
and uniqueness of temporally semi-discrete solutions to the evolutionary inequality. Furthermore, piecewise affine functions and
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piecewise constant functions are constructed based on the semi-discrete solutions and are proved to converge to the solution of the
evolutionary inequality.

The rest of the paper is as follows. In Section 2, some preliminaries in nonlinear functional analysis are recalled. In Section 3, an
evolutionary variational-hemivariational inequality and assumptions on the problem data are introduced. In Section 4, the Rothe
method is considered to solve the inequality. Well-posedness results of the inequality are presented in Section 5. Finally, a new
frictional contact problem for viscoelastic material is analyzed in Section 6, which illustrates an application of the theoretical results.

2. Preliminaries

We review some basic notions and results in this section. Let X be a normed space with a dual space X* and (-, -) y«xx be the
duality pairing between X and X*. Let Y be a normed space. The norms in X and Y are written by || - ||x and || - ||y, respectively.
The symbol — denotes strong convergence, and the symbol — means weak convergence.

Definition 2.1. Let ¥ : X — R be a locally Lipschitz function. The generalized (Clarke) directional derivative of ¥ at a point x € X
in the direction z € X is defined by

L4 Az) -
P0(x;z) = lim sup —(y *+42) (y)'
y=x,A10 A

Definition 2.2. The generalized gradient of ¥ : X — R at a point x € X is defined by
W (x)=1{Ee X" PO(x;z) > (&, 2)xrxx forall ze€ X}.

Let (0, T) be the time interval, where T > 0 is a fixed.

Definition 2.3 ([22]). An operator S : L*(0,T;X) — L*(0,T; X*) is called history-dependent, if there exists a constant Cr > 0 such
that

'
1(Sx)(@) — (Sx)@®)|| x+ < CT/ [, (s) — x5(s)|| yds for all x;,x, € L*0,T; X), ae. 1t €(0,T).
0

Let [0, T] be divided into a finite number of disjoint subintervals ;= [/;, r;] such that [0,T] = U;’:] A;. Such a partition is denoted
by I1, and the family of all such partitions is denoted by P. Let 1 < p,q < co. We introduce the space

BVIO,T; X) :={x : (0,T) > X | x|l pyao:x) < o},
where ||x|| gyq(o.1.x) Stands for the seminorm of x € BV9(0,T; X) given by

D lxr) = xUIY,

”X”q = sup
BV4(0.T:X)
11€P yem

If X and Y are Banach spaces and the embedding X C Y is continuous, then the space
MP4(0,T; X,Y) := LP(0,T; X)n BV4(0,T;Y)

is a Banach space equipped with the norm || - I areaorx,yy =11 Neoorx) + - gvaoriv)-
We recall a compactness result next (cf. [17, Proposition 2.8]).

Lemma 2.4. Let1 < p,q < oo and X; C X, C X5 be Banach spaces such that X, is reflexive, the embedding X, C X, is compact and
the embedding X, C X5 is continuous. Then, any bounded subset of M?%(0,T; X, X3) is relatively compact in LP(0,T; X,).

3. An evolutionary variational-hemivariational inequality

In this section, we introduce an evolutionary variational-hemivariational inequality which involves a first-order temporal
derivative and a history-dependent operator. Let ¥V ¢ H C V* be an evolution triple, where V is a separable Hilbert space with
the dual V*, H is a separable Hilbert space, the dual of H is identified with H itself, the embedding V' c H is compact, and the
embedding of H C V* is continuous. Let K be a nonempty convex and closed subset of V. The duality pairing between V and V*
is denoted by (-, -), and the norms in V, H, V* are written by |- ||, || - | 7> |l - I+, respectively. Let X be a Banach space with a dual
space X* and (-, -) y=xx be the duality pairing.

For a fixed T > 0, denote I = (0,T) and T = [0,T]. Let ¥V = L2(I;V), H = L*(I;H), V* = L2;V*), ¥ = L*(I;X) and
X* = L*(I; X*). Identifying H with its dual, we have the continuous embeddings V ¢ H c V*. Define

T
(U, V)pixy = / W@, v@))dt Yv* eV ,veV. (3.1
0
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Denote v = dv/ot the time derivative of v in the sense of distributions. Define

T
(X™, X) prsp :/ (x*(@1), x(D)) yrxxdt VX" € X*,x € X. (3.2)
0

LetA:V >V*B:V >V* R:V ->V* y:V - X be given operators with norms ||Al|, || B, ||R|| and ||y||, respectively. Let
g : IxT — L(V;V) be an operator-valued function. Define an operator S : ¥ — V* by

t
(So)t) = R( /0 q(t, $)u(s)ds + ho) forall v €V, ae. 1€, (3.3)

where hy € V. Let @ : V - R, ¥ : X - R be given functionals.

3.1. An evolutionary variational-hemivariational inequality

The evolutionary variational-hemivariational inequality to be studied is as follows.

Problem 3.1. Find a function u € ¥ such that u € V, for a.e. t € I, u(t) € K,

(Au(?) + Bu(t) + (Su)(®), v — u()) + @) — Pu®)) + (€®), v (v — u®))) xoxx 2 (f@v—u@®)) VveEK, B4
where

EEX*, D)€ dP(ult)) ae. te, (3.5)
and

u(0) = u,. (3.6)

On the problem data, we introduce the following hypotheses.
H(A): The operator A : V — V* satisfies
@ AeLW; V™),
(b) (Av,v) > aylv]|? for all v € V with ay > 0;
(c) (Av,w) = (Aw, v) for all v,w e V.
H(B): The operator B : V — V* satisfies
(@ Be LW; V™),
(b) (Bv,v) > ag||v||? for all v € V with ap > 0.
H(S): The operator S : ¥V — V* is defined by (3.3), where hy € V, Re L(V;V*), and q € CAXT,LOV;V)) is uniformly Lipschitz
continuous with respect to the first variable, i.e., there exists a constant L,>0 such that

[lg(y, s) = q(tz, Il < Lylty — 15| for ace. 11,1,,s € 1.

H(®): The functional @ : ¥V — R is convex and bounded above on a non-empty open set in V.
H(¥): The functional ¥ : X — R satisfies

(a) ¥ is locally Lipschitz;

D) 0P ()|l x+ < cy+cyllzlly for all z € X with ¢y, ¢; > 0;

(c) there exists a constant ay > 0 such that

POz 2y — 2) + (20521 — 25) < aglzy — z2||§( for all z;,z, € X.

H(y): The operator y : V — X satisfies
@ r € LV; X);
(b) its Nemytskii operator 7 : M>*(I;V,V*) — X is compact, where 7 is defined by

uv)@)=yv() forallveV, ae. te€l.

H(f): fe H\UI; V).
H(P): ag > aylly|I*.

The novelty in the problem we consider is that the inequality (3.4) is posed over a convex set K C V. The operator S is a
history-dependent operator according to Definition 2.3, due to H(S). Denote ||q|| = ||ql| COxT-LY VY for simplicity. From H(®), @
is locally Lipschitz continuous on V (cf. [16, Lemma 2.2]). H(y) is used in analysis of evolutionary hemivariational inequalities
(cf. [21]), and specific examples of Nemytskii operators are described in [17,18].
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3.2. A stationary variational-hemivariational inequality

We introduce a stationary variational-hemivariational inequality and recall an existence and uniqueness result which will be
used to show the well-posedness of the temporally semi-discrete solution to Problem 3.1.

Problem 3.2. Find a function z € K such that
(G, v — ) + D) — D@) + (&, y0 — yi) yuxx = (fro—u) VveEK, 3.7)
where G : V — V* is an operator, E € 0¥ (yu) C X*.

Similar to [16, Theorem 4.3], we have the following result.

Lemma 3.3. Assume H(®), H(y) (a), H(¥) (a),(c), and 7 € V*. Assume G is Lipschitz continuous and strongly monotone with a constant
ag such that ag > ay|ly||>. Then, Problem 3.2 has a unique solution.

Remark 3.4. Assume the hypotheses of Lemma 3.3 are satisfied. If, in addition, G is a potential operator with the potential F;
(cf. [23, Section 41.3]), then there exists a unique function u € K such that

u € argmin E(v),
veK

where E(v) = F5(v) + @(v) + P (yv) — (7, v), v € V. Moreover, u is also the solution of Problem 3.2.

4. Rothe method

In this section, the Rothe method is used to prove the existence and uniqueness result for Problem 3.1. Let N be a positive integer
and k =T /N be the temporal step-size. Denote ¢, = kn and u, = u(t,) for n =0, 1, ..., N. Furthermore, the following approximations
are adopted. Let i, ~ (u, —u,_;)/k for n = 1,2,..., N. Denote v* := {vn}r’:’=0 for vy, ..., vy € V. To approximate S, a modified left
endpoint rule S* is defined by

R(hgy), n=0,

Skpk = n=lehg
n R(Z/ q(t,,,s)ul-ds+h0), n=12,...,N.
i=0 i

4.1)

Moreover, we define

«_J 10, n=0,
I ‘{ %/,:j] f(s)ds, n=1,2,...,N. “4-2)

On the basis of (4.2), we construct a piecewise constant by

ko f(0) for t=t,,
fc(t)—{ fri( forte (t,_y,t,], n=12,...,N. (43)

Then, a temporally semi-discrete scheme for Problem 3.1 is as follows.

Problem 4.1. Find a discrete solution u* := {u¥}" ' K such that

(AU + kBuf + kS*uF, 0 — uf) + k@ (v) — k@WE) + k(E, y (0 = u)) yorxx 2 (kfF+ AUE_ L v—ub) voek, (4.4)
forn=1,2,..., N, where

e aruby c x~, (4.5)
and

Uy = ug. (4.6)

k
0
Next, we consider the existence and uniqueness of a solution to Problem 4.1.

Lemma 4.2. Assume H(A), H(B), H(S), H(®@), H¥), H(y), H(f), and H(P). Then, Problem 4.1 has a unique solution u*.

Proof. We prove the result by an induction argument. Note that uf = u, is given. For 1 < n < N, assume {uf}'"' and {&F}/—) are
known. We rewrite (4.4) as follows: find ufj € K such that

((A+ kB, v — uk) + k@(v) = kD) + k(&5 7 (0 — ) xoxcx
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n=l e
> (kfF+ Ak —kR(Z/ qlty, ubds + hy),v—uk) VveKk, (4.7)
i=0 71

where 5{: € aY/(yuﬁ). The operator (A + kB) is Lipschitz continuous and strongly monotone with a constant a, + kayz. Moreover,
ay + kap > kay|ly||? is satisfied for any k > 0, due to H(A) (b), H(B) (b), and H(P). Then, we utilize Lemma 3.3 to deduce that the
inequality (4.7) has a unique solution u’;. By induction, Problem 4.1 has a unique solution u*. [ ]

Recall the modified Cauchy-Schwarz inequality
abﬁeaz+4lb2 Va,b€R, Ve > 0. (4.8)
€

This inequality is usually applied with e sufficiently small. Denote v, a fixed element in K. Below, we will use ¢ for a generic
constant that depends only on [|All, | BIl, IRIl, llgll, i1, lAgll, llugll, llvgll, T, and e. Define

ko ok _ k _
Su,, .—(un—unil)/k, n=1,2,...,N.

Now, we show the boundedness of u¥, £F and u¥, respectively.

Lemma 4.3. Assume H(A), H(B), H(S), H(®), HW¥), H(y), H(f), and H(P). Then, there exists a constant ¢ such that

max_[lu¥]l < e, (4.9)
1<n<N
k . <
| max I, llx= <c, (4.10)
N
kY lsuf? <. (4.11)

n=1

Proof. Choose any element v, € K. In (4.4), we take v = v, and get

(A@WE — k), vp) + k(Buk + SKuk, vy — uf) + kdd(vy) — kd(uk)

+ R(EE y (0o = u)) yuxex + K(FE U —vg) > (A —ub_ ), ub). (4.12)
Next, we bound each term in (4.12). Using H(A), we obtain
1 1 1
(Auk — Auk_ | uky = §(<Auﬁ,uﬁ> — (AU ) (AW =k o -k ) > §<Auﬁ,u’;> - E(Au:_l,ulj_])‘ (4.13)

We apply Cauchy-Schwarz inequality and (4.8) to derive that for any small e > 0, there exists a constant ¢ such that
(S = v0) < K=yl + ool < € I + ¢ LAY I +c. (4.14)
Utilizing H(B), we get
(Buy, vo —uy) = (Buy, vg) — (Buf,uf) < (e — ap) Il |I* + . (4.15)
Denote a,_; = Y1y llu

(Sku, v =) < 1SEF Ny llog = sl < IR (Kllglla,, + Wgll) (ol + k1) < e (14 Ka,_y) bl + ek, +ec. (4.16)

|| for convenience. Then,

Apply (4.8) on the first term on the right side of (4.16):

2
c(T+ka,_y) k)l < ellub | + ¢ (ka,,)" +ec, (4.17)
moreover,
ka,_; < (ka,_,)’ +1/4. (4.18)
Note that
) n—1 n—1
(ka,1)” <k2n Y I < Tk Y (lub]l?. (4.19)
i=0 i=0

Together with (4.16)-(4.19), we have
n—1

(Skuk, vy —uly < ellub I + ck Y ub))* +c. (4.20)
i=0

Thanks to H(®), @ is bounded below by an affine functional ([24, Lemma 11.3.5]). Thus, there exist two constants oy Cop, such
that

k k
D) 2 cp, + co, lluyll.
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Hence,

D(vg) — D(uy) < —cqy || - cq) + P(vg) < € luf|I* +c. (4.21)

With a fixed &, € 0¥ (y(vy)), we use H(¥) (b) to derive that
[(€0» 7@l = 0o)) xrsexc | < M€l xe ly @l = )l < g k11 +c. (4.22)
By H(¥)(c) and H(y) (a), the following inequality holds:
(&8, 70y — ) xosx + (G0 YUl = 00D xoxcx < WOrudls yug — yul) +WO(yvg; yull — yuvo)
<apllyIPll® + 5 gl +e. (4.23)
Together with (4.22) and (4.23), we derive
(&7 (0o = u)) xox < (@ 717 + ) lluyl1® + e (4.24)

Combining (4.13)—(4.15), (4.20), (4.21), and (4.24), we derive from (4.12) that
n—1
1 1
E(Auﬁ,u’;) - E(Au’,;_l,u’;_l> < (aglly* = ag + 5k uk]|* + c k? Z N1 + e kI - + ¢k + (Al —ul_ ), vp). (4.25)
j=0

Replacing n by i and adding (4.25) from i = 1 to i = n, we have
n i-1

n n

1 1

5 (A ) = > (Aufug) < @pllyIP = ag + 5ok Y I + ek 37 3 W1 +ck Y IFEIG. + (Al = u). vo) +c. (4.26)
i=1 i=1 j=0 i=1

For the second term on the right side of (4.26),

n i-1

n—1 n—1
kY Iek)? < nk% lluk 12 STZ:;IIM?IIZ. (4.27)
1=\ =l

i=1 j=0

Note that || f¥|%., =k TN, /5112, ¥ - f in V* ([20, Lemma 3]), and we have

n N
kYA <k D AR <c. (4.28)
i=1 i=1
Moreover,
(AW = uf), vo) < ANl lINLX ]l + llupll) < € lluk]|* +c. (4.29)

Combining (4.26)—(4.29), we have
n n—1
1 1
E(Auﬁ,u’;) - E(M’(;,ug> < (g llyl? = ag + 50k D Ul +ck Y ufl? + e lub]| +c. (4.30)
i=1 i=0

Because of H(P), we may choose a positive number ¢ < min{ %(aﬂ —ayllyI?), lazA}. Using H(A) (b), we find from (4.30) that
n—1
1 k2 k)2
(324 =€)l Sck%llui I +ec. (4.31)
We then apply a discrete Gronwall’s inequality (cf. [25, Lemma 7.25]) to get (4.9). In addition, (4.10) follows from (4.9) and
H(®P)(b).
Next, we prove the relation (4.11). Let

u’il = uy + kA~ (Bug + R(hg) + g + 7* &y — f(O)),

where A™! : V* — V is the inverse operator of A, 1, € d®(u), Eo € 0¥ (yuy), and y* : X* - V* is the adjoint operator of y. Then,
duf = A7 (f(0) = Buy — R(hg) = g — v*&y).

Similar to (4.13),

1 1
(A@ul — ouk_ ), 6uk) > §<A(5u’;), suby - 5(A(au’;_l), suf ). (4.32)
Take v = u’;_l in (4.4) and divide the inequality by k to get
k(AuE), 5uk) + k(Buf + S*uF, 6uy + D) — DWE_ ) + k(&K y(5u8)) xoux < K(FE, SuE). (4.33)
Then we take v = u¥ in (4.4) with n replaced by n— 1,
— k(A@GuE_ ), 0ub) — k(BuF |+ S*_ uF suly + D) — D@l — k(EF |y (1)) yunx < —K(fE | 8uE). (4.34)

We add (4.33) and (4.34), and divide k on its both sides,
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(AUt — u_ ), 6uF) + (Buf — Buf | + SKuk =S¥ uF suk) + (& — &y (6ub)) youx < (FF - fF L 8uE).

Combine (4.32) and (4.35) to get

-<A(5uk) 5uk)——(A(6u _D-0ub )+ (Buf — But | 6ub)

n—1°
<(EF =By Oul)) e + (SE_ b = SEUE suby + (fF - fF s,
Adding (4.36) fromn=1ton= N, we have

-(A(auN) ouk) - —(A(5u0) Sul) + Z(Bu - Buf_ |, 5uk)

n=1

n—1’

N
Z woi = & (0 »X*xX"’Z(Sk uk — Skuk suky +
n=1 n=1

n=1

To proceed further, we bound each term in (4.37) in turn. Using H(B) (b), we have

N N

Y (Buk — Buk_ | 6uk) > apk Y l|sul||?.

n=1 n=1

Moreover, we utilize H(¥)(b) and H (y) (a) to derive

N

1
DE | — B ox < ¢ Z(T"(yuﬁ,l;yuﬁ =)+ POk b = ) )
n=1 n=1

N
<ay Iy IPk Y lI5ub ),
n=1
By (4.1) and H(S), we obtain

nol ety
||S U k— sk, = IR Z/ 1, l,s)uf.‘ds—Z/ q(r,,,s)uffds)lly*
i=0 /1

tit1 Iy
<uri() [t = at, i omkasi i [ o asi)
i=0 fi Th-1

n-=2
<RI L, Y el + Kllall_11)-
i=0
Apply the bound (4.9),
ISk uk — SEuk |y <ck.
Then, we apply (4.40) on the second term on the right side of (4.37):
N N N
D (SE ik = SEuk suly < N ISE b = Skl kIl < ek Y 116Uk + e

n=1 n=1

Define f(¢) = f(0) for t € (—k,0) and ¢_; = —k. By the definition (4.2),

f:_ :_1=%'/"(f(5) f(S—k) ds__/ / f(r)drds

n—1

Then,

o b 1
Ilff—f,f_lllws/ ||f<s>||y*dssx/ﬂ(/ I/ @)Ids ).
[)

2

Since f(f) =0 for a.e. 1 € (—k,0),
1 < T
k_ ok 2 SN2 de — Al £112
Enz:;llfn Sl Y | S4/_k £ wds =41 f 13-
Utilizing (4.44), we obtain

N
(k- nl,éu"><2||f" f"1||V*||au"||<ek2||5u"||2+c||f||2*
n=1

=1 n=1
Using (4.38)-(4.39), (4.41), and (4.45) in (4.37),

N
1 : 1
(ap = aylyIP =200k 3, 6uk 2 + Say 5112 < A1, + 5 IANNSu ] + c.

n=1

Then, (4.11) follows from (4.46) with a sufficiently small £ > 0. [ ]

Z(f" £ ouk).

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)
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Based on u¥, we construct a piecewise constant u* and a piecewise affine function u* by
k
k(z):{ uﬁ" fort € [t,_;,t,), 1 <n <N, 4.47)
Uy for t =ty,
and
k e
u,;(t): u%71+ ‘(u —u _) fortelt, y,t,), 1<n<N, (4.48)
Ny forr=iy.
Moreover, we define & by
k  fort€lt,,t,), l<n< N
CIORE S A (4.49)
&y forr=iy.
Regarding the sequences u¥, u* and &£*, we have the following property.
Lemma 4.4. Assume H(A), H(B), H(S), H(®), H¥), H(y), H(f), and H(P). Then, there exists a constant ¢ such that
”uf”v + ”ulcc”BVz(I;V* <gc, (4.50)
N1l + ikl < e, (4.51)
iy < e (4.52)
Proof. Using (4.9), we have
N-1
k|1 = / IO =k 3, I < (4.53)
0

Without loss of generality, we assume the semi-norm of u* in BV2(I;V*) is achieved on a division 0 = sy < s; < =+ <'s ;=T and
each s, in different interval [m;k, (m; + 1)k) such that u*(s;) = uk_ with my =0, m; = N and m;,; > m; fori=1,...,j — 1. Then,
J Miy1 = I
k)12 k k2
N1 2 ey = 2 e, =l 2. < Z((m,+l m) D b, =l )
ni=m;

miyy—1

i = Nl

(Z(mm m; >)(Z I R EA R N W o 9 (4.54)
n=m; n=0

— u¥||},. Together with (4.54) and (4.11), we derive

Note that the embedding V' C V* is continuous, then [k
N-1

Mg 1132y S €N D Nk, =l < chZ lldufll® < c. (4.55)
n=0 =

—uflly~ < cllu

n+1 n+l

Combining (4.53) and (4.55), we get (4.50). Similarly, we have

Ik 12+ N 1, = Z/ i+ u—un1)||dr+2/ i "‘||dz
<2 " (e e 2)dr+ kY llsut?
< 2‘1 iy 1P+ == Ny = I )+ Zuun

pa

-1

|
<2k Z(nu’;_l P+ 2l = ||2) +k 2 ll6u¥ |12, (4.56)
n=1 n=1

Then, we obtain (4.51). In addition, (4.52) follows from (4.10). [

On the basis of Lemma 4.4, we investigate weak convergence of these sequences.
Lemma 4.5. Assume H(A), H(B), H(S), H(®), H(¥Y), H(y), H(f), and H(P). Let {k} be a sequence converging to zero. Then, there
exists a subsequence, still denoted by {k}, such that
u';—\uinv, ul;—\uinv, u’;Auinv, andfi‘—\éin)ﬁ*. (4.57)
where u and ¢ satisfy Problem 3.1.
Proof. Recall that V is a reflexive Banach space, and the sequence {uf} is bounded by (4.50). Hence, there exists an element u € V

and a subsequence, still denoted by {uﬁ}, such that uif — y in V. Similarly, there exists an element ¢ € X* and a subsequence, still
denoted by {&F}, such that & — & in x*.
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The sequence {u*} is bounded in ¥ by (4.51). There exists a subsequence, still denoted by u¥, and an element u; € V, such that
uk = in V. Hence u¥ —u* — u; —u in V. Moreover,

(- )
flu —u"||252/ "‘ |k =k |Pdr = —Zuaukuz

Hence, we derive ||u"j - uifllv — 0 as k - 0 from (4.11). Thus, u = u, is valid. Furthermore, we use [26, Proposition 23.19] to get
ik = ain V.
Next, let us show u and ¢ satisfy Problem 3.1. Firstly, we establish an inequality that corresponds to (3.4). Rewrite (4.4) to get

the following relation
k _ k

u u
(A("T"_l) + Buk + S*uF v — k) + D) - D) + (EF (0 - i) yox 2 (FRv - by Veek, (4.58)

for n=1,2,..., N. Denote
n—1

i+1
Z/ q(tn,s)uf.‘ds +hy fortelt, y,t,), n=12,...,N,
= /1

nfm =4 =0 - (4.59)
> / qty, sukds+hy fort=1y.
i=0 Jti
Combining (4.58), (4.59), (4.47)-(4.49), we derive a pointwise inequality
(AGE®) + Buk () + R ), v(0) = uk ) + @) — DWr (1)
+ (D WO = uf () xoy 2 ([ 00 —uf()) Vo€ LK), ae. 1€ (4.60)

Define Nemytskii operators <, %,%,.7: V — V* by (Zv)t) = Av@), (Bv)t) = Bu(), (Zv)t) = R@@)), and (FLv)t) =
R(/O’ q(t, s)v(s)ds) for any v € V, a.e. t € I. Moreover, define 5(v) = fOT @(v(1))dt for v € V. Integrate (4.60) over 1,

(0,0 = uFY sy +(BUE 0 = Uy + (B, 0 = U ey + B(0) — D)
+(E T =t s > (fE 0= tF )y Vv e LAI:K). (4.61)

Secondly, we use Lemma 4.5 to illustrate the convergence result of (4.61) as k — 0. By H(A)(a), the operator &/ : V — V* is
bounded and linear, hence it is weakly continuous. For #* — i in ¥, we have &k — ou in V* as k — 0. Similarly, the operator %
is weakly continuous on V. For u¥ — u in V, the relation u* — Zu is valid. In addition, the functional V' 3 u — (Au,u) is weakly
Ls.c. on V, due to the convexity and continuity of A (cf. [25, Corollary 1.50]). Analogously, ¥V 3 v > (Bv, v)yyy is weakly Ls.c.
on V. Note that

lim sup(duz, v— “f)v*xv < lil’;’l s(l)lp(;zﬁtfj, D)ypixy — liin_}(r))f(du';, MIZ)v*xv + lirzl s(l)lp(@iuz, u'[j - “f)v*xv- (4.62)

k=0

Moreover, the following equation holds:
T
X . 1 1

(A U Yy = /0 (Adk@),ub()dt = E<AM§(T),L4{;(T)) - E(Au(O),u(O)). (4.63)
By (4.57), we get u¥ — u in W'2(I; V). Furthermore u¥ — u in C(1;V) is valid, due to the continuous embedding W1(I;V) c
C(I;V). Then, for all t € I, we have u’(j(t) — u(t) in V. In particular, u"j(T) — u(T). Hence,

lim i{I)lf(Aul;(T), ub (1)) 2 (Au(T), u(T)).
We take the lower limit of (4.63) to get

li inf (7,15 ey > %(Au(T),u(T)) - %(Au(O),u(O)) = (b, upory. (4.64)
Together with (4.62) and (4.64), we have

lim sup(sz{u’a‘, v— ”f)v*xv (L, 0 — U)pryy. (4.65)
k—0

Similar to the derivation of (4.65), we get

lim sup(Bu¥, v — Yy < 11m sup(véu V)pixy — 11m 1nt(</?uc,uk)v* p < (Bu, U — U)piyy. (4.66)
k=0

To proceed further, we have

lim sup(%’nf, v— “lC()v*xv <lim sup(%(r,i‘ — hy) — esﬂui‘, v— u’c‘)v*xv + lim sup(:yui‘, V) pescy
k=0 k=0 k=0
~ lim i(r)lf(fu’c‘, ub Yoy + lim sup(Zho, v — uE Yy, (4.67)
= k—0

For 1 € [t,_;,t,), we use (4.59) and H(S) to derive that
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! nol ety !
llk (1) = B — / q(t, ul(s)dsll < 1| Y / q(t,, sufds — / q(t, sk (s)ds|
0 i=0 /i 0

t, Iy
< II/ (q(t, 5) = q(t, ) ds|| + II/ q(t, Sl (s)ds|| < ck lluf |l ooy
0 t
Therefore, | Z(n* — hy) — S uk|lpe < ck |uF]| poo(ryy- Thus, Z(n¥ — hg) — Su — 0 in V* as k — 0. Note that . is weakly continuous
and the functional v — (.#v, v)yyy is weakly l.s.c. on V. Applying these properties on (4.67), we obtain

lim sup(%nf, v— u’c‘)v*xv SA{( LU, 0 — Uy + (Zhg, U — W)y = (S, U — U sy (4.68)
k—0

Let us show that & is weakly L.s.c. on V. Assume w, ¢V and w, - w in V. Utilizing [3, Theorem 2.39], passing to a subsequence
if necessary, we have w, (1) - w(t) in V for a.e. t € I. In addition, we have that

D(w, (1) > Cpy T+ Co, [Jw,®] forae. tel.
Using Fauto’s lemma (cf. [3, Theorem 1.64]) and the lower semicontinuity of @, we obtain

lim inf d(w,) > /O ' lim inf ®(w, (1)d1 > d(w),
i.e., @ is Ls.c. on V. The convexity of & is obvious. Applying [25, Corollary 1.50] again, we know that & is weakly l.s.c. on V.
Therefore,

lim sup(@(v) ~ D)) = ) ~ liminf B(uf) < D) ~ D). (4.69)
k—0 -

The relation u’c‘ — uin M%2(I;V,V*) is valid, due to (4.50). Therefore, we use H(y)(b) to get Fuf — yu in X. Together with ff - &
in X*, we have

lim sup(&7. 70 = ey = (70 =)o (4.70)
Observing f* — f in V*, we get

ummfc’% V=t Dy = (10 = ) pey. (4.71)
Combining (4.61), (4.65), (4.66), (4.68)—(4.71), we obtain that for all v € L2(I; K),

(it + But+ St 0 — Wy + PO) — BW) + (£, 70 — ) yrsgze = (f+ 0 = Uy (4.72)

Thirdly, we illustrate that ¢ satisfies (3.5). Note that 55(1) € aw(yu’;(z)) for a.e. t € I, and 7u’c‘ — 7u in X. By the converse
Lebesgue’s dominated theorem [3, Theorem 2.39], by passing to a subsequence if necessary, yu’g(t) — yu(t) in X for a.e. r € 1. It
follows from [3, Theorem 3.13] that &(r) € 0¥ (yu(t)) for a.e. t € I. Thus, we draw the conclusion that « and ¢ satisfy Problem 3.1.

The uniqueness of u can be proved through a standard procedure (cf. [14, Theorem 11]) and the argument is omitted here. |l

5. Main results
We summarize the lemmas proved in the previous section in the form of a theorem.

Theorem 5.1. Assume H(A), H(B), H(S), H(®), H¥), H(y), H(f), and H(P). Then, there exists a unique solution to Problem 3.1.
Moreover, an equivalent form for Problem 3.1 is illustrated as follows.
Problem 5.2. Find a function u € ¥ such that : € V, for a.e. t € I, u(t) € K,
(Au(t) + Bu(t) + (Su)(®), v — u(®)) + @(v) — D(u(?)) + POyu); yo — yu()) > (f@®),v—u() VYveK, (5.1)
and

u(0) = uy. (5.2)

Theorem 5.3. Assume H(A), H(B), H(S), H(®), H(¥), H(y), H(f), and H(P). Then, there exists a unique solution of Problem 5.2.

Proof. Let u be the solution of Problem 3.1. For &(r) € 0¥ (yu(?)), we have
(€@, 70— u®)) xrxx <POu();yv — yu(t)). (5.3)
Thus, we derive (5.1) from (3.4), i.e., u is the solution of Problem 5.2. The argument of the uniqueness of u is standard and is hence

omitted. [

10
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Next, we provide the Lipschitz continuous dependence of the solution on the right-hand side.

Theorem 5.4. Assume H(A), H(B), H(S), H(®), HY¥), H(y), H(f), and H(P). Then, the solution u of Problem 3.1 depends Lipschitz
continuously on f.

Proof. Let u;,u, be the solutions of Problem 3.1 corresponding to f,, f, respectively, where f,, f, € H'(I; V*). Thus, we have

(Au (1) + Buy (1) + (Sup)(0), v — uy (1)) + @) = @ (1) + (&, 1), y(V — u; (D)) xoxx = ([1O,v—u (D)) VvEK, (5.4
where & € X%, &,(t) € 0¥ (yu, (1)), and

(A (1) + Buy (1) + (Sup)(0), v — up (1) + P(v) = DP(uy(1)) + (5,1, ¥ (v — (N x2xx 2 (2D, v—u(D)) Vv EK, (5.5
where &, € X*, & (1) € 0¥ (yu,(1)). Taking v = u,(r) in (5.4) and v = u,(¢) in (5.5), then we add the resulting inequalities to get

(A () = iy (@), uy (1) — uy (@) + (Bluy (1) — uy (), uy (1) — uy (1))

< A{(Su)®) = (Sup) (@), ur () — uy () + (f1(1) = [0, u, (1) — uy (1))
+ 0y (0); yuy (1) = yuy () + POy (0); yuy () = yuy (1) (5.6)

Applying H(B) (b), H(S), H(¥)(c) and Cauchy-Schwarz inequality on (5.6), we obtain

%%(A(ulm =y (1)), 1y (1) = uy () + (ag — ay |7 |I* = ©)lluy (1) — ()]

t
<IIRIlliqll /0 lley (s) = up(s)lldislluy (1) — up (DI + i 11D = L0 5.7)
Since u;(0) — u,(0) = 0, then we integrate (5.7) over [0,7] to get
t 2 t
LA 0 = 1000 = w0) < R [ (o) = 10as) + 3= [ 15760 = s 5.8
0 € Jo
By H(A)(a), we derive
t 2 T
Laall 0= w0l < IR [ o = wonas) + L [T 170 - £o.ds (5.9
0 €Jo
Thus, we get

2||R ! 1
6= 0l < 3 2 [ i) = ols + 4[5y = Sl (5.10)

Now, we use Gronwall’s inequality (cf. [25, Lemma 7.24]) to obtain
[ 20Rilllgll 7 1
luy () —up (|| < eV 4 m”fl = fally=. (5.11)

Finally, we utilize (5.11) to derive the inequality that

2lIRIlllgll T
oy = ally eV ST = Fales (512)

which shows the Lipschitz continuity of u respect to f. [ ]

6. Application in contact mechanics

In this section, we study a frictional contact problem between a viscoelastic body and a rigid foundation. The viscoelastic body
occupies a domain £ ¢ R? with a Lipschitz boundary I'. The boundary is divided into three measurable parts I', I, and I}, and
(d — 1)-dimensional measure |I';| > 0. The body is fixed on I, thus the displacement field vanishes there. A volume force of density
fo acts in ©, and a surface contraction of density f, acts on I,. On I3, the body is in frictional contact with the foundation, which
is made of a rigid obstacle covered with a layer of elastic material. A unilateral constraint condition combined with Tresca friction
law [25] is used to describe the frictional contact behavior.

We recall the canonical inner product and norm in R? that

1
u-v=uv;, |ul=wu?2 foraluve R4,
Let S? be the space of d x d symmetric matrices. The corresponding inner product and norm are defined by

6 T =0;T

1
Tj» ltl=(.0)2 forallo,r €S

Since I is Lipschitz, the outward unit normal v exists a.e. on I'. The quantities v, :=v-v and v, := v —v,v are the normal and
tangential components of v, respectively. For a stress tensor o, ¢, :=(cv)-v and ¢, := 6v—o,Vv represent the normal and tangential

11
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components of o, respectively. For a displacement field u, e(u) := (Vu + (Vu)")/2 is the linearized strain tensor. Denote by u the
time derivative of u. The classical formulation of the frictional contact problem is as follows.

Problem 6.1. Find a displacement u : 2 x I — R? and a stress field 6 : 2 x I — S¢ such that for a.e. r € I,

o(t) = Ae(u(r)) + Be(u(t)) + fot R(t — s)e(u(s))ds in L, (6.1)
Dive(t) + fo(t) =0 in 2, (6.2)
u(t)y=0on I}, (6.3)
o()v = fo(t) on I}, (6.4)
u,) <g, o,()+&,(0) <0,
(@,()+&,M)(u, (1) —g) =0, ¢ on I3, (6.5)
£,(1) € oy, (u, (1)
lo.(O| < Fy, —0,(1) = Fyu ()/|u ()| if u () # 0 on I3, (6.6)
and
u(0) = u, in Q. 6.7)

We give a brief description on Problem 6.1. Eq. (6.1) is the constitutive law of the viscoelastic material, where A, B and R

describe the viscous, elastic and relaxation properties, respectively, and the integration term characterizes the long memory of the
material. Relation (6.2) is the equilibrium equation, where Div is the divergence operator defined by Dive = (%), £ is the volume

force density acting on €. The body is clamped on I'j. A surface traction of density f, is applied on I. The relation (6.5) is a
unilateral constraint condition on I';. The relation (6.6) is the Tresca law for friction. In (6.5), the function g denotes the thickness
of the elastic layer, and u, < g sets a restriction on the normal displacement. If the normal penetration does not reach the bound
g, i.e.,, u, < g, the relation —o, = ¢, € dy, (u,) holds, which is the usual normal compliance condition. In (6.6), F, represents the
friction bound. When |o,| < F;, the material point is in the stick zone; when |6 | = F,, i.e., the friction traction reaches the bound,
the material point is in the slip zone. Eq. (6.7) is the initial condition. For details of this kind of contact models, we refer the reader
to [11,27].
To introduce a weak formulation of Problem 6.1, we need an evolution triple of spaces. Define

V={v=@w)e H @R | v=0ae. on I}
which is a subspace of H!(Q;R?). Let V* be the dual space of V. Define
H = L*(Q;RY)
and
H={r=(r) € L*(2S) | 1, =1;,1<i,j<d}.
Moreover, the space H is equipped with the inner product
(1,0)y = /Q 7;;(x)o;;(x)dx for all 7,0 € H.
On V, an inner product is defined by
(u,v)y = (s(u), e(u))H for all u,v e V.

Since |I}| > 0, it follows from Korn’s inequality that V' is a Hilbert space. Then, V' c H C V* forms an evolution triple. Besides, we
define

U={veV |v <gae on I3}

which is a nonempty, closed and convex subset of V. Denote X = L?(I). Furthermore, we define a space of fourth-order tensor
fields

Qw0 ={0=Qiji) | Qijis = Qjixs = Quuij € L¥(), 1 < i j k1 < d}.
This is a Banach space with the norm defined by

0o, = X 1Qullie@)

1<i,j.kI<d

Definey, : V - X by p,v=v, and y, : V —» L*(I';;RY) by y,v = v,, i.e.,, y, and y, denote the trace operators for the normal
and tangential components on I}, respectively.

12
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Assumptions on the data of Problem 6.1 are listed as follows. On the viscosity tensor .4, assume

A Q- Q satisfies that

(a) A= (aijkl) €9,;

(b) there exists a constant @; > 0 such that
A€ - € > a; le|? for all e €S9, ae. in Q.

On the elasticity tensor 3, assume

B: Q- Q9 satisfies that

@ B = (b)) € Quo:

(b) there exists a constant @, > 0 such that
Be - > (12|E|2 for all € €S9, ae. in Q.

For the relaxation tensor R, assume
R:1- Q, is Lipschitz continuous with a constant Lz > 0.
On the function y,, assume

y, : I3 X R — R satisfies that

(a) w,(x,) is locally Lipschitz on R for a.e. x € I5;

(b) w, (-, r) is measurable on I3 for any r € R, and there exists e € L2(F3)
such that y, (-, e(-)) € L1 (I3);

(c) there exist ¢y, c¢; > 0 such that [dy, (r)] <cy+c¢|r] VreR;

(d) there exists a3 > 0 such that
y/‘?(rl;rz —-rp)+ y/?(rz;rl —ry) <mlry — r2|2 Vry,r, €R.

On the densities of volume force f,, and surface contraction f,, assume
fo€ H'(I L2(Q:RY), f, € H'(I L*(IFy:RY)).
For the functions F, and g, assume
F;, and g are measurable on I3, F,(x) and g(x) are nonnegative for a.e. x € I5.
On the parameters a, and a3, assume
@ 2 alln 7
On the initial displacement u, assume
uy €U.
By the Riesz representation theorem, we define a function f : I — V* by

(f,0) = (o). V) 2qpey + (f2(0.V)12(rpey forallveV, ae.rel

Following a standard approach (cf. [3,25]), we can derive the following weak formulation for Problem 6.1.

Problem 6.2. Find a displacement u : 2 x I — R such that for a.e. r € I,

(Ae(t’t(l)) + Be(u()) + / R(t = s)e(u(s))ds, e(v) — e(u(t)))H + / y/?(uv(t); v, —u,®)dI’
0

I3
+ / Fyv, - lu, DT > (f@).0—u()) YveU.,
I3
and

u(0) = uy.

Now we apply Theorem 5.3 to study Problem 6.2. Define an operator A : V — V* by
(Avy,vy) = (Ae(vl),e(vz))H Yv,v, €V.
Define an operator B : V — V* by
(Bvy,v;) = (Be(v)),e(wy)),, Yv,v,€V.

For all w,,w, € V, a.e. t € I, define S : V - V* by

(Sw)(O), wy(D) = (/0 R(t = s)e(w(s))ds, 8(wz(t)))H-
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Define a functional ¥ : X — R by

T(z):/ v, (2)dl VzeX, (6.21)
I3

and define @ : V — R by
@(v):/ Fylv. |dI' YveV. (6.22)
r

Then we obtain the following result.

Theorem 6.3. Assume (6.8)—(6.15). Then, there exists a unique solution u to Problem 6.2. Moreover, the solution u depends Lipschitz
continuously on f.

Proof. Let us verify all the assumptions of Theorem 5.3 for Problem 6.2. By (6.8), H(A) is valid with a, = a;. By (6.9), H(B) is
valid with ap = a,. It follows from (6.10) that the operator S : ¥ — V* is history-dependent with Cr = [[Rll¢(s,0_)- It is easy to
see H(®) is satisfied. According to (6.11), we know that H(¥) is satisfied with ¢ = ¢y/[T3], ¢; = ¢; and ay = a;. Next, we check
v, : V — X satisfies the conditions in H(y). Note that y, is linear and continuous by the Sobolev trace theorem (cf. [3,25]).

1
Moreover, for 4 € (0, %), the embedding M22(I;V,V*) c L2(I; Hz**(Q)) is compact by Lemma 2.4. Le]t {w,} be a bounded
sequence in M22(I;V,V*). Then, there exists a subsequence {w,,} of {w,} and an element w € L>*(I; H 3+4(Q)), such that w,

converges strongly to w in L*(I; H %“(_Q)). Since the trace operator which maps L2(I; H %“(.Q)) to L2(I; H(I'y)) is continuous, and
L*(I; HA(I'})) C X, we obtain 7vw,,l_ — 7,w in X (cf. [21]), where 7, is the Nemytskii operator of y,. H(f) and H(P) are valid due to
(6.12) and (6.14), respectively. By Theorem 5.3, we obtain Problem 6.2 has a unique solution u. Finally, the Lipschitz continuous
dependence of u on the right-hand side f is derived from Theorem 5.4. [ ]
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