
Journal of Computational and Applied Mathematics 459 (2025) 116366 

A
0

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Well-posedness of a class of evolutionary
variational–hemivariational inequalities in contact mechanics
Wei Xu a, Weimin Han b, Ting Li c,∗, Ziping Huang c

a Tongji Zhejiang College, Jiaxing 314051, China
b Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
c School of Mathematical Sciences, Tongji University, Shanghai 200092, China

A R T I C L E I N F O

Keywords:
Variational–hemivariational inequality
Convex constraint
Rothe method
Existence and uniqueness
Lipschitz continuous dependence
Viscoelastic material
Frictional contact

A B S T R A C T

A class of evolutionary variational–hemivariational inequalities with a convex constraint is
studied in this paper. An inequality in this class involves a first-order derivative and a history-
dependent operator. Existence and uniqueness of a solution to the inequality is established by
the Rothe method, in which the first-order temporal derivative is approximated by backward
Euler’s formula, and the history-dependent operator is approximated by a modified left endpoint
rule. The proof of the result relies on basic results in functional analysis only, and it does
not require the notion of pseudomonotone operators and abstract surjectivity results for such
operators, used in other papers on the Rothe method for other evolutionary variational–
hemivariational inequalities. Moreover, a Lipschitz continuous dependence conclusion of the
solution on the right-hand side is proved. Finally, a new frictional contact problem for
viscoelastic material is discussed, which illustrates an application of the theoretical results.

1. Introduction

In the study of nonlinear nonsmooth problems arising in science and engineering, hemivariational inequalities have been shown
to be a powerful mathematical tool. Since the early 1980s [1], the mathematical theory of hemivariational inequalities has developed
rapidly; see [2–5]. Meanwhile, considerable progress has been made on numerical methods for solving hemivariational inequalities;
see [6–12] and the lengthy survey paper [13].

In [14], a class of evolutionary hemivariational inequalities without constraint is studied. Through applications of the theory
of pseudomonotone operators, a well-posedness result of the inequalities is proved, and a Céa-type inequality is derived for fully
discrete approximation. In [15,16], minimization principles serve as a starting point to prove existence and uniqueness results of
stationary hemivariational inequalities. Under suitable assumptions, the solution of certain hemivariational inequality is also the
minimizer of a corresponding energy functional. Then for general variational–hemivariational inequalities, existence and uniqueness
of solutions are proved by an additional fixed-point argument.

Motivated by [15,16], in this paper, we explore well-posedness results for a class of evolutionary variational–hemivariational
inequalities without the need of the notion of the pseudomonotone operator and an abstract surjectivity result for such an operator.
In contrast to [14], we study variational–hemivariational inequalities in this paper, and the inequalities are posed over a convex
set. The Rothe method has been applied to the study of evolutionary hemivariational inequalities, starting with [17], followed
by [8,18–21], etc. Using the arguments on stationary variational–hemivariational inequalities in [15,16], we show the existence
and uniqueness of temporally semi-discrete solutions to the evolutionary inequality. Furthermore, piecewise affine functions and
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piecewise constant functions are constructed based on the semi-discrete solutions and are proved to converge to the solution of the
evolutionary inequality.

The rest of the paper is as follows. In Section 2, some preliminaries in nonlinear functional analysis are recalled. In Section 3, an
volutionary variational–hemivariational inequality and assumptions on the problem data are introduced. In Section 4, the Rothe

method is considered to solve the inequality. Well-posedness results of the inequality are presented in Section 5. Finally, a new
frictional contact problem for viscoelastic material is analyzed in Section 6, which illustrates an application of the theoretical results.

2. Preliminaries

We review some basic notions and results in this section. Let 𝑋 be a normed space with a dual space 𝑋∗ and ⟨⋅, ⋅⟩𝑋∗×𝑋 be the
uality pairing between 𝑋 and 𝑋∗. Let 𝑌 be a normed space. The norms in 𝑋 and 𝑌 are written by ‖ ⋅ ‖𝑋 and ‖ ⋅ ‖𝑌 , respectively.

The symbol → denotes strong convergence, and the symbol ⇀ means weak convergence.

Definition 2.1. Let 𝛹 ∶ 𝑋 → R be a locally Lipschitz function. The generalized (Clarke) directional derivative of 𝛹 at a point 𝑥 ∈ 𝑋
n the direction 𝑧 ∈ 𝑋 is defined by

𝛹 0(𝑥; 𝑧) = lim sup
𝑦→𝑥,𝜆↓0

𝛹 (𝑦 + 𝜆𝑧) − 𝛹 (𝑦)
𝜆

.

Definition 2.2. The generalized gradient of 𝛹 ∶ 𝑋 → R at a point 𝑥 ∈ 𝑋 is defined by

𝜕 𝛹 (𝑥) = {𝜉 ∈ 𝑋∗ ∣ 𝛹 0(𝑥; 𝑧) ≥ ⟨𝜉 , 𝑧⟩𝑋∗×𝑋 f or all 𝑧 ∈ 𝑋}.

Let (0, 𝑇 ) be the time interval, where 𝑇 > 0 is a fixed.

Definition 2.3 ([22]). An operator  ∶ 𝐿2(0, 𝑇 ;𝑋) → 𝐿2(0, 𝑇 ;𝑋∗) is called history-dependent, if there exists a constant 𝐶𝑇 > 0 such
that

‖(𝑥1)(𝑡) − (𝑥2)(𝑡)‖𝑋∗ ≤ 𝐶𝑇 ∫

𝑡

0
‖𝑥1(𝑠) − 𝑥2(𝑠)‖𝑋𝑑 𝑠 f or all 𝑥1, 𝑥2 ∈ 𝐿2(0, 𝑇 ;𝑋), a.e. 𝑡 ∈ (0, 𝑇 ).

Let [0, 𝑇 ] be divided into a finite number of disjoint subintervals ▵𝑖= [𝑙𝑖, 𝑟𝑖] such that [0, 𝑇 ] = ∪𝑛𝑖=1 ▵𝑖. Such a partition is denoted
by 𝛱 , and the family of all such partitions is denoted by  . Let 1 ≤ 𝑝, 𝑞 <∞. We introduce the space

𝐵 𝑉 𝑞(0, 𝑇 ;𝑋) ∶= {𝑥 ∶ (0, 𝑇 ) → 𝑋 ∣ ‖𝑥‖𝐵 𝑉 𝑞 (0,𝑇 ;𝑋) <∞},

where ‖𝑥‖𝐵 𝑉 𝑞 (0,𝑇 ;𝑋) stands for the seminorm of 𝑥 ∈ 𝐵 𝑉 𝑞(0, 𝑇 ;𝑋) given by

‖𝑥‖𝑞𝐵 𝑉 𝑞 (0,𝑇 ;𝑋) ∶= sup
𝛱∈

∑

▵𝑖∈𝛱
‖𝑥(𝑟𝑖) − 𝑥(𝑙𝑖)‖𝑞𝑋 .

If 𝑋 and 𝑌 are Banach spaces and the embedding 𝑋 ⊂ 𝑌 is continuous, then the space

𝑀𝑝,𝑞(0, 𝑇 ;𝑋 , 𝑌 ) ∶= 𝐿𝑝(0, 𝑇 ;𝑋) ∩ 𝐵 𝑉 𝑞(0, 𝑇 ; 𝑌 )
is a Banach space equipped with the norm ‖ ⋅ ‖𝑀𝑝,𝑞 (0,𝑇 ;𝑋 ,𝑌 ) ∶= ‖ ⋅ ‖𝐿𝑝(0,𝑇 ;𝑋) + ‖ ⋅ ‖𝐵 𝑉 𝑞 (0,𝑇 ;𝑌 ).

We recall a compactness result next (cf. [17, Proposition 2.8]).

Lemma 2.4. Let 1 ≤ 𝑝, 𝑞 < ∞ and 𝑋1 ⊂ 𝑋2 ⊂ 𝑋3 be Banach spaces such that 𝑋1 is reflexive, the embedding 𝑋1 ⊂ 𝑋2 is compact and
the embedding 𝑋2 ⊂ 𝑋3 is continuous. Then, any bounded subset of 𝑀𝑝,𝑞(0, 𝑇 ;𝑋1, 𝑋3) is relatively compact in 𝐿𝑝(0, 𝑇 ;𝑋2).

3. An evolutionary variational–hemivariational inequality

In this section, we introduce an evolutionary variational–hemivariational inequality which involves a first-order temporal
derivative and a history-dependent operator. Let 𝑉 ⊂ 𝐻 ⊂ 𝑉 ∗ be an evolution triple, where 𝑉 is a separable Hilbert space with
the dual 𝑉 ∗, 𝐻 is a separable Hilbert space, the dual of 𝐻 is identified with 𝐻 itself, the embedding 𝑉 ⊂ 𝐻 is compact, and the
mbedding of 𝐻 ⊂ 𝑉 ∗ is continuous. Let 𝐾 be a nonempty convex and closed subset of 𝑉 . The duality pairing between 𝑉 and 𝑉 ∗

is denoted by ⟨⋅, ⋅⟩, and the norms in 𝑉 , 𝐻 , 𝑉 ∗ are written by ‖ ⋅ ‖, ‖ ⋅ ‖𝐻 , ‖ ⋅ ‖𝑉 ∗ , respectively. Let 𝑋 be a Banach space with a dual
space 𝑋∗ and ⟨⋅, ⋅⟩𝑋∗×𝑋 be the duality pairing.

For a fixed 𝑇 > 0, denote 𝐼 = (0, 𝑇 ) and 𝐼 = [0, 𝑇 ]. Let  = 𝐿2(𝐼 ;𝑉 ),  = 𝐿2(𝐼 ;𝐻), ∗ = 𝐿2(𝐼 ;𝑉 ∗),  = 𝐿2(𝐼 ;𝑋) and
∗ = 𝐿2(𝐼 ;𝑋∗). Identifying  with its dual, we have the continuous embeddings  ⊂  ⊂ ∗. Define

⟨𝑣∗, 𝑣⟩ ∗ =
𝑇
⟨𝑣∗(𝑡), 𝑣(𝑡)⟩𝑑 𝑡 ∀ 𝑣∗ ∈ ∗, 𝑣 ∈  . (3.1)
 × ∫0
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Denote 𝑣̇ = 𝜕 𝑣∕𝜕 𝑡 the time derivative of 𝑣 in the sense of distributions. Define

⟨𝑥∗, 𝑥⟩∗× = ∫

𝑇

0
⟨𝑥∗(𝑡), 𝑥(𝑡)⟩𝑋∗×𝑋𝑑 𝑡 ∀ 𝑥∗ ∈ ∗, 𝑥 ∈  . (3.2)

Let 𝐴 ∶ 𝑉 → 𝑉 ∗, 𝐵 ∶ 𝑉 → 𝑉 ∗, 𝑅 ∶ 𝑉 → 𝑉 ∗, 𝛾 ∶ 𝑉 → 𝑋 be given operators with norms ‖𝐴‖, ‖𝐵‖, ‖𝑅‖ and ‖𝛾‖, respectively. Let
𝑞 ∶ 𝐼 × 𝐼 → (𝑉 ;𝑉 ) be an operator-valued function. Define an operator  ∶  → ∗ by

(𝑣)(𝑡) = 𝑅
(

∫

𝑡

0
𝑞(𝑡, 𝑠)𝑣(𝑠)𝑑 𝑠 + ℎ0

)

f or all 𝑣 ∈  , a.e. 𝑡 ∈ 𝐼 , (3.3)

where ℎ0 ∈ 𝑉 . Let 𝛷 ∶ 𝑉 → R, 𝛹 ∶ 𝑋 → R be given functionals.

3.1. An evolutionary variational–hemivariational inequality

The evolutionary variational–hemivariational inequality to be studied is as follows.

Problem 3.1. Find a function 𝑢 ∈  such that 𝑢̇ ∈  , for a.e. 𝑡 ∈ 𝐼 , 𝑢(𝑡) ∈ 𝐾,

⟨𝐴 ̇𝑢(𝑡) + 𝐵 𝑢(𝑡) + (𝑢)(𝑡), 𝑣 − 𝑢(𝑡)⟩ +𝛷(𝑣) −𝛷(𝑢(𝑡)) + ⟨𝜉(𝑡), 𝛾(𝑣 − 𝑢(𝑡))⟩𝑋∗×𝑋 ≥ ⟨𝑓 (𝑡), 𝑣 − 𝑢(𝑡)⟩ ∀ 𝑣 ∈ 𝐾 , (3.4)

where

𝜉 ∈ ∗, 𝜉(𝑡) ∈ 𝜕 𝛹 (𝛾 𝑢(𝑡)) a.e. 𝑡 ∈ 𝐼 , (3.5)

and

𝑢(0) = 𝑢0. (3.6)

On the problem data, we introduce the following hypotheses.
𝐻(𝐴): The operator 𝐴 ∶ 𝑉 → 𝑉 ∗ satisfies

(a) 𝐴 ∈ (𝑉 ;𝑉 ∗);
(b) ⟨𝐴𝑣, 𝑣⟩ ≥ 𝛼𝐴‖𝑣‖2 for all 𝑣 ∈ 𝑉 with 𝛼𝐴 > 0;
(c) ⟨𝐴𝑣, 𝑤⟩ = ⟨𝐴𝑤, 𝑣⟩ for all 𝑣, 𝑤 ∈ 𝑉 .

𝐻(𝐵): The operator 𝐵 ∶ 𝑉 → 𝑉 ∗ satisfies
(a) 𝐵 ∈ (𝑉 ;𝑉 ∗);
(b) ⟨𝐵 𝑣, 𝑣⟩ ≥ 𝛼𝐵‖𝑣‖2 for all 𝑣 ∈ 𝑉 with 𝛼𝐵 > 0.

𝐻(): The operator  ∶  → ∗ is defined by (3.3), where ℎ0 ∈ 𝑉 , 𝑅 ∈ (𝑉 ;𝑉 ∗), and 𝑞 ∈ 𝐶(𝐼 × 𝐼 ;(𝑉 ;𝑉 )) is uniformly Lipschitz
continuous with respect to the first variable, i.e., there exists a constant 𝐿𝑞 > 0 such that

‖𝑞(𝑡1, 𝑠) − 𝑞(𝑡2, 𝑠)‖ ≤ 𝐿𝑞|𝑡1 − 𝑡2| f or a.e. 𝑡1, 𝑡2, 𝑠 ∈ 𝐼 .

𝐻(𝛷): The functional 𝛷 ∶ 𝑉 → R is convex and bounded above on a non-empty open set in 𝑉 .
𝐻(𝛹 ): The functional 𝛹 ∶ 𝑋 → R satisfies

(a) 𝛹 is locally Lipschitz;
(b) ‖𝜕 𝛹 (𝑧)‖𝑋∗ ≤ 𝑐0 + 𝑐1‖𝑧‖𝑋 f or all 𝑧 ∈ 𝑋 wit h 𝑐0, 𝑐1 > 0;
(c) there exists a constant 𝛼𝛹 ≥ 0 such that

𝛹 0(𝑧1; 𝑧2 − 𝑧1) + 𝛹 0(𝑧2; 𝑧1 − 𝑧2) ≤ 𝛼𝛹‖𝑧1 − 𝑧2‖2𝑋 f or all 𝑧1, 𝑧2 ∈ 𝑋 .

𝐻(𝛾): The operator 𝛾 ∶ 𝑉 → 𝑋 satisfies
(a) 𝛾 ∈ (𝑉 ;𝑋);
(b) its Nemytskii operator 𝛾̃ ∶𝑀2,2(𝐼 ;𝑉 , 𝑉 ∗) →  is compact, where 𝛾̃ is defined by

(𝛾̃ 𝑣)(𝑡) = 𝛾 𝑣(𝑡) f or all 𝑣 ∈  , a.e. 𝑡 ∈ 𝐼 .

𝐻(𝑓 ): 𝑓 ∈ 𝐻1(𝐼 ;𝑉 ∗).
𝐻(𝑃 ): 𝛼𝐵 > 𝛼𝛹‖𝛾‖2.

The novelty in the problem we consider is that the inequality (3.4) is posed over a convex set 𝐾 ⊂ 𝑉 . The operator  is a
history-dependent operator according to Definition 2.3, due to 𝐻(). Denote ‖𝑞‖ = ‖𝑞‖𝐶(𝐼×𝐼 ;(𝑉 ;𝑉 )) for simplicity. From 𝐻(𝛷), 𝛷
s locally Lipschitz continuous on 𝑉 (cf. [16, Lemma 2.2]). 𝐻(𝛾) is used in analysis of evolutionary hemivariational inequalities

(cf. [21]), and specific examples of Nemytskii operators are described in [17,18].
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3.2. A stationary variational–hemivariational inequality

We introduce a stationary variational–hemivariational inequality and recall an existence and uniqueness result which will be
used to show the well-posedness of the temporally semi-discrete solution to Problem 3.1.

Problem 3.2. Find a function 𝑢 ∈ 𝐾 such that

⟨𝐺𝑢, 𝑣 − 𝑢⟩ +𝛷(𝑣) −𝛷(𝑢) + ⟨𝜉 , 𝛾 𝑣 − 𝛾𝑢⟩𝑋∗×𝑋 ≥ ⟨𝑓 , 𝑣 − 𝑢⟩ ∀ 𝑣 ∈ 𝐾 , (3.7)

where 𝐺 ∶ 𝑉 → 𝑉 ∗ is an operator, 𝜉 ∈ 𝜕 𝛹 (𝛾𝑢) ⊂ 𝑋∗.
Similar to [16, Theorem 4.3], we have the following result.

Lemma 3.3. Assume 𝐻(𝛷), 𝐻(𝛾) (𝑎), 𝐻(𝛹 ) (𝑎), (𝑐), and 𝑓 ∈ 𝑉 ∗. Assume 𝐺 is Lipschitz continuous and strongly monotone with a constant
𝐺 such that 𝛼𝐺 > 𝛼𝛹‖𝛾‖2. Then, Problem 3.2 has a unique solution.

Remark 3.4. Assume the hypotheses of Lemma 3.3 are satisfied. If, in addition, 𝐺 is a potential operator with the potential 𝐹𝐺
cf. [23, Section 41.3]), then there exists a unique function 𝑢 ∈ 𝐾 such that

𝑢 ∈ argmin
𝑣∈𝐾

𝐸(𝑣),

where 𝐸(𝑣) = 𝐹𝐺(𝑣) +𝛷(𝑣) + 𝛹 (𝛾 𝑣) − ⟨𝑓 , 𝑣⟩, 𝑣 ∈ 𝑉 . Moreover, 𝑢 is also the solution of Problem 3.2.

4. Rothe method

In this section, the Rothe method is used to prove the existence and uniqueness result for Problem 3.1. Let 𝑁 be a positive integer
nd 𝑘 = 𝑇 ∕𝑁 be the temporal step-size. Denote 𝑡𝑛 = 𝑘𝑛 and 𝑢𝑛 = 𝑢(𝑡𝑛) for 𝑛 = 0, 1,… , 𝑁 . Furthermore, the following approximations

are adopted. Let 𝑢̇𝑛 ≈ (𝑢𝑛 − 𝑢𝑛−1)∕𝑘 for 𝑛 = 1, 2,… , 𝑁 . Denote 𝑣𝑘 ∶= {𝑣𝑛}𝑁𝑛=0 for 𝑣0,… , 𝑣𝑁 ∈ 𝑉 . To approximate , a modified left
endpoint rule 𝑘𝑛 is defined by

𝑘𝑛𝑣
𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑅(ℎ0), 𝑛 = 0,

𝑅
(

𝑛−1
∑

𝑖=0
∫

𝑡𝑖+1

𝑡𝑖
𝑞(𝑡𝑛, 𝑠)𝑣𝑖𝑑 𝑠 + ℎ0

)

, 𝑛 = 1, 2,… , 𝑁 . (4.1)

Moreover, we define

𝑓𝑘𝑛 =

{

𝑓 (0), 𝑛 = 0,
1
𝑘 ∫

𝑡𝑛
𝑡𝑛−1

𝑓 (𝑠)𝑑 𝑠, 𝑛 = 1, 2,… , 𝑁 . (4.2)

On the basis of (4.2), we construct a piecewise constant by

𝑓𝑘𝑐 (𝑡) =
{

𝑓 (0) f or 𝑡 = 𝑡0,
𝑓𝑘𝑛 f or 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛], 𝑛 = 1, 2,… , 𝑁 . (4.3)

Then, a temporally semi-discrete scheme for Problem 3.1 is as follows.

Problem 4.1. Find a discrete solution 𝑢𝑘 ∶= {𝑢𝑘𝑛}𝑁𝑛=0 ⊂ 𝐾 such that

⟨𝐴𝑢𝑘𝑛 + 𝑘𝐵 𝑢𝑘𝑛 + 𝑘𝑘𝑛𝑢𝑘, 𝑣 − 𝑢𝑘𝑛⟩ + 𝑘𝛷(𝑣) − 𝑘𝛷(𝑢𝑘𝑛) + 𝑘⟨𝜉𝑘𝑛 , 𝛾(𝑣 − 𝑢𝑘𝑛)⟩𝑋∗×𝑋 ≥ ⟨𝑘𝑓𝑘𝑛 + 𝐴𝑢𝑘𝑛−1, 𝑣 − 𝑢𝑘𝑛⟩ ∀ 𝑣 ∈ 𝐾 , (4.4)

for 𝑛 = 1, 2,… , 𝑁 , where

𝜉𝑘𝑛 ∈ 𝜕 𝛹 (𝛾 𝑢𝑘𝑛) ⊂ 𝑋∗, (4.5)

and

𝑢𝑘0 = 𝑢0. (4.6)

Next, we consider the existence and uniqueness of a solution to Problem 4.1.

Lemma 4.2. Assume 𝐻(𝐴), 𝐻(𝐵), 𝐻(), 𝐻(𝛷), 𝐻(𝛹 ), 𝐻(𝛾), 𝐻(𝑓 ), and 𝐻(𝑃 ). Then, Problem 4.1 has a unique solution 𝑢𝑘.

Proof. We prove the result by an induction argument. Note that 𝑢𝑘0 = 𝑢0 is given. For 1 ≤ 𝑛 ≤ 𝑁 , assume {𝑢𝑘𝑖 }
𝑛−1
𝑖=0 and {𝜉𝑘𝑖 }

𝑛−1
𝑖=0 are

known. We rewrite (4.4) as follows: find 𝑢𝑘𝑛 ∈ 𝐾 such that

⟨(𝐴 + 𝑘𝐵)𝑢𝑘, 𝑣 − 𝑢𝑘⟩ + 𝑘𝛷(𝑣) − 𝑘𝛷(𝑢𝑘) + 𝑘⟨𝜉𝑘, 𝛾(𝑣 − 𝑢𝑘)⟩
𝑛 𝑛 𝑛 𝑛 𝑛 𝑋∗×𝑋
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≥ ⟨𝑘𝑓𝑘𝑛 + 𝐴𝑢𝑘𝑛−1 − 𝑘𝑅
(

𝑛−1
∑

𝑖=0
∫

𝑡𝑖+1

𝑡𝑖
𝑞(𝑡𝑛, 𝑠)𝑢𝑘𝑖 𝑑 𝑠 + ℎ0

)

, 𝑣 − 𝑢𝑘𝑛⟩ ∀ 𝑣 ∈ 𝐾 , (4.7)

where 𝜉𝑘𝑛 ∈ 𝜕 𝛹 (𝛾 𝑢𝑘𝑛). The operator (𝐴 + 𝑘𝐵) is Lipschitz continuous and strongly monotone with a constant 𝛼𝐴 + 𝑘𝛼𝐵 . Moreover,
𝛼𝐴 + 𝑘𝛼𝐵 > 𝑘𝛼𝛹‖𝛾‖2 is satisfied for any 𝑘 > 0, due to 𝐻(𝐴) (𝑏), 𝐻(𝐵) (𝑏), and 𝐻(𝑃 ). Then, we utilize Lemma 3.3 to deduce that the
inequality (4.7) has a unique solution 𝑢𝑘𝑛 . By induction, Problem 4.1 has a unique solution 𝑢𝑘. ■

Recall the modified Cauchy–Schwarz inequality

𝑎𝑏 ≤ 𝜖 𝑎2 + 1
4 𝜖

𝑏2 ∀ 𝑎, 𝑏 ∈ R, ∀ 𝜖 > 0. (4.8)

This inequality is usually applied with 𝜖 sufficiently small. Denote 𝑣0 a fixed element in 𝐾. Below, we will use 𝑐 for a generic
onstant that depends only on ‖𝐴‖, ‖𝐵‖, ‖𝑅‖, ‖𝑞‖, ‖𝛾‖, ‖ℎ0‖, ‖𝑢0‖, ‖𝑣0‖, 𝑇 , and 𝜖. Define

𝛿 𝑢𝑘𝑛 ∶= (𝑢𝑘𝑛 − 𝑢𝑘𝑛−1)∕𝑘, 𝑛 = 1, 2,… , 𝑁 .

Now, we show the boundedness of 𝑢𝑘𝑛 , 𝜉𝑘𝑛 and 𝛿 𝑢𝑘𝑛 , respectively.

Lemma 4.3. Assume 𝐻(𝐴), 𝐻(𝐵), 𝐻(), 𝐻(𝛷), 𝐻(𝛹 ), 𝐻(𝛾), 𝐻(𝑓 ), and 𝐻(𝑃 ). Then, there exists a constant 𝑐 such that

max
1≤𝑛≤𝑁

‖𝑢𝑘𝑛‖ ≤ 𝑐 , (4.9)

max
1≤𝑛≤𝑁

‖𝜉𝑘𝑛‖𝑋∗ ≤ 𝑐 , (4.10)

𝑘
𝑁
∑

𝑛=1
‖𝛿 𝑢𝑘𝑛‖2 ≤ 𝑐 . (4.11)

Proof. Choose any element 𝑣0 ∈ 𝐾. In (4.4), we take 𝑣 = 𝑣0 and get

⟨𝐴(𝑢𝑘𝑛 − 𝑢
𝑘
𝑛−1), 𝑣0⟩ + 𝑘⟨𝐵 𝑢𝑘𝑛 + 𝑘𝑛𝑢

𝑘, 𝑣0 − 𝑢𝑘𝑛⟩ + 𝑘𝛷(𝑣0) − 𝑘𝛷(𝑢𝑘𝑛)
+ 𝑘⟨𝜉𝑘𝑛 , 𝛾(𝑣0 − 𝑢𝑘𝑛)⟩𝑋∗×𝑋 + 𝑘⟨𝑓𝑘𝑛 , 𝑢𝑘𝑛 − 𝑣0⟩ ≥ ⟨𝐴(𝑢𝑘𝑛 − 𝑢

𝑘
𝑛−1), 𝑢𝑘𝑛⟩. (4.12)

Next, we bound each term in (4.12). Using 𝐻(𝐴), we obtain

⟨𝐴𝑢𝑘𝑛 − 𝐴𝑢
𝑘
𝑛−1, 𝑢𝑘𝑛⟩ =

1
2
(

⟨𝐴𝑢𝑘𝑛 , 𝑢𝑘𝑛⟩ − ⟨𝐴𝑢𝑘𝑛−1, 𝑢𝑘𝑛−1⟩ + ⟨𝐴(𝑢𝑘𝑛 − 𝑢
𝑘
𝑛−1), 𝑢𝑘𝑛 − 𝑢𝑘𝑛−1⟩

)

≥ 1
2
⟨𝐴𝑢𝑘𝑛 , 𝑢𝑘𝑛⟩ −

1
2
⟨𝐴𝑢𝑘𝑛−1, 𝑢𝑘𝑛−1⟩. (4.13)

We apply Cauchy–Schwarz inequality and (4.8) to derive that for any small 𝜖 > 0, there exists a constant 𝑐 such that

⟨𝑓𝑘𝑛 , 𝑢𝑘𝑛 − 𝑣0⟩ ≤ ‖𝑓𝑘𝑛 ‖𝑉 ∗ (‖𝑢𝑘𝑛‖ + ‖𝑣0‖) ≤ 𝜖 ‖𝑢𝑘𝑛‖
2 + 𝑐 ‖𝑓𝑘𝑛 ‖

2
𝑉 ∗ + 𝑐 . (4.14)

Utilizing 𝐻(𝐵), we get

⟨𝐵 𝑢𝑘𝑛 , 𝑣0 − 𝑢𝑘𝑛⟩ = ⟨𝐵 𝑢𝑘𝑛 , 𝑣0⟩ − ⟨𝐵 𝑢𝑘𝑛 , 𝑢𝑘𝑛⟩ ≤ (𝜖 − 𝛼𝐵) ‖𝑢𝑘𝑛‖
2 + 𝑐 . (4.15)

Denote 𝑎𝑛−1 =
∑𝑛−1
𝑖=0 ‖𝑢𝑘𝑖 ‖ for convenience. Then,

⟨𝑘𝑛𝑢
𝑘, 𝑣0 − 𝑢𝑘𝑛⟩ ≤ ‖𝑘𝑛𝑢

𝑘
‖𝑉 ∗ ‖𝑣0 − 𝑢𝑘𝑛‖ ≤ ‖𝑅‖

(

𝑘‖𝑞‖𝑎𝑛−1 + ‖ℎ0‖
) (

‖𝑣0‖ + ‖𝑢𝑘𝑛‖
)

≤ 𝑐
(

1 + 𝑘 𝑎𝑛−1
)

‖𝑢𝑘𝑛‖ + 𝑐 𝑘 𝑎𝑛−1 + 𝑐 . (4.16)

Apply (4.8) on the first term on the right side of (4.16):

𝑐
(

1 + 𝑘 𝑎𝑛−1
)

‖𝑢𝑘𝑛‖ ≤ 𝜖 ‖𝑢𝑘𝑛‖
2 + 𝑐

(

𝑘 𝑎𝑛−1
)2 + 𝑐 , (4.17)

moreover,

𝑘 𝑎𝑛−1 ≤
(

𝑘 𝑎𝑛−1
)2 + 1∕4. (4.18)

Note that
(

𝑘 𝑎𝑛−1
)2 ≤ 𝑘2𝑛

𝑛−1
∑

𝑖=0
‖𝑢𝑘𝑖 ‖

2 ≤ 𝑇 𝑘
𝑛−1
∑

𝑖=0
‖𝑢𝑘𝑖 ‖

2. (4.19)

Together with (4.16)–(4.19), we have

⟨𝑘𝑛𝑢
𝑘, 𝑣0 − 𝑢𝑘𝑛⟩ ≤ 𝜖 ‖𝑢𝑘𝑛‖

2 + 𝑐 𝑘
𝑛−1
∑

𝑖=0
‖𝑢𝑘𝑖 ‖

2 + 𝑐 . (4.20)

Thanks to 𝐻(𝛷), 𝛷 is bounded below by an affine functional ([24, Lemma 11.3.5]). Thus, there exist two constants 𝑐𝛷0
, 𝑐𝛷1

such
that

𝑘 𝑘
𝛷(𝑢𝑛) ≥ 𝑐𝛷0
+ 𝑐𝛷1

‖𝑢𝑛‖.

5 



W. Xu et al.

𝐻

Journal of Computational and Applied Mathematics 459 (2025) 116366 
Hence,

𝛷(𝑣0) −𝛷(𝑢𝑘𝑛) ≤ −𝑐𝛷1
‖𝑢𝑘𝑛‖ − 𝑐𝛷0

+𝛷(𝑣0) ≤ 𝜖 ‖𝑢𝑘𝑛‖
2 + 𝑐 . (4.21)

With a fixed 𝜉0 ∈ 𝜕 𝛹 (𝛾(𝑣0)), we use 𝐻(𝛹 ) (b) to derive that

|⟨𝜉0, 𝛾(𝑢𝑘𝑛 − 𝑣0)⟩𝑋∗×𝑋 | ≤ ‖𝜉0‖𝑋∗‖𝛾(𝑢𝑘𝑛 − 𝑣0)‖𝑋 ≤ 𝜖
2
‖𝑢𝑘𝑛‖

2 + 𝑐 . (4.22)

By 𝐻(𝛹 ) (c) and 𝐻(𝛾) (a), the following inequality holds:

⟨𝜉𝑘𝑛 , 𝛾(𝑣0 − 𝑢𝑘𝑛)⟩𝑋∗×𝑋 + ⟨𝜉0, 𝛾(𝑢𝑘𝑛 − 𝑣0)⟩𝑋∗×𝑋 ≤ 𝛹 0(𝛾 𝑢𝑘𝑛 ; 𝛾 𝑣0 − 𝛾 𝑢𝑘𝑛) + 𝛹 0(𝛾 𝑣0; 𝛾 𝑢𝑘𝑛 − 𝛾 𝑣0)
≤ 𝛼𝛹‖𝛾‖

2
‖𝑢𝑘𝑛‖

2 + 𝜖
2
‖𝑢𝑘𝑛‖

2 + 𝑐 . (4.23)

Together with (4.22) and (4.23), we derive

⟨𝜉𝑘𝑛 , 𝛾(𝑣0 − 𝑢𝑘𝑛)⟩𝑋∗×𝑋 ≤ (𝛼𝛹 ‖𝛾‖2 + 𝜖) ‖𝑢𝑘𝑛‖
2 + 𝑐 . (4.24)

Combining (4.13)–(4.15), (4.20), (4.21), and (4.24), we derive from (4.12) that

1
2
⟨𝐴𝑢𝑘𝑛 , 𝑢𝑘𝑛⟩ −

1
2
⟨𝐴𝑢𝑘𝑛−1, 𝑢𝑘𝑛−1⟩ ≤ (𝛼𝛹‖𝛾‖2 − 𝛼𝐵 + 5𝜖)𝑘 ‖𝑢𝑘𝑛‖2 + 𝑐 𝑘2

𝑛−1
∑

𝑗=0
‖𝑢𝑘𝑗 ‖

2 + 𝑐 𝑘‖𝑓𝑘𝑛 ‖2𝑉 ∗ + 𝑐 𝑘 + ⟨𝐴(𝑢𝑘𝑛 − 𝑢
𝑘
𝑛−1), 𝑣0⟩. (4.25)

Replacing 𝑛 by 𝑖 and adding (4.25) from 𝑖 = 1 to 𝑖 = 𝑛, we have

1
2
⟨𝐴𝑢𝑘𝑛 , 𝑢𝑘𝑛⟩ −

1
2
⟨𝐴𝑢𝑘0 , 𝑢𝑘0⟩ ≤ (𝛼𝛹‖𝛾‖2 − 𝛼𝐵 + 5𝜖)𝑘

𝑛
∑

𝑖=1
‖𝑢𝑘𝑖 ‖

2 + 𝑐 𝑘2
𝑛
∑

𝑖=1

𝑖−1
∑

𝑗=0
‖𝑢𝑘𝑗 ‖

2 + 𝑐 𝑘
𝑛
∑

𝑖=1
‖𝑓𝑘𝑖 ‖

2
𝑉 ∗ + ⟨𝐴(𝑢𝑘𝑛 − 𝑢

𝑘
0), 𝑣0⟩ + 𝑐 . (4.26)

For the second term on the right side of (4.26),

𝑘
𝑛
∑

𝑖=1

𝑖−1
∑

𝑗=0
‖𝑢𝑘𝑗 ‖

2 ≤ 𝑛𝑘
𝑛−1
∑

𝑖=0
‖𝑢𝑘𝑖 ‖

2 ≤ 𝑇
𝑛−1
∑

𝑖=0
‖𝑢𝑘𝑖 ‖

2. (4.27)

Note that ‖𝑓𝑘𝑐 ‖
2
∗ = 𝑘

∑𝑁
𝑖=1 ‖𝑓

𝑘
𝑖 ‖

2
𝑉 ∗ , 𝑓𝑘𝑐 → 𝑓 in ∗ ([20, Lemma 3]), and we have

𝑘
𝑛
∑

𝑖=1
‖𝑓𝑘𝑖 ‖

2
𝑉 ∗ ≤ 𝑘

𝑁
∑

𝑖=1
‖𝑓𝑘𝑖 ‖

2
𝑉 ∗ ≤ 𝑐 . (4.28)

Moreover,

⟨𝐴(𝑢𝑘𝑛 − 𝑢
𝑘
0), 𝑣0⟩ ≤ ‖𝐴‖‖𝑣0‖(‖𝑢𝑘𝑛‖ + ‖𝑢0‖) ≤ 𝜖 ‖𝑢𝑘𝑛‖

2 + 𝑐 . (4.29)

Combining (4.26)–(4.29), we have

1
2
⟨𝐴𝑢𝑘𝑛 , 𝑢𝑘𝑛⟩ −

1
2
⟨𝐴𝑢𝑘0 , 𝑢𝑘0⟩ ≤ (𝛼𝛹‖𝛾‖2 − 𝛼𝐵 + 5𝜖)𝑘

𝑛
∑

𝑖=1
‖𝑢𝑘𝑖 ‖

2 + 𝑐 𝑘
𝑛−1
∑

𝑖=0
‖𝑢𝑘𝑖 ‖

2 + 𝜖 ‖𝑢𝑘𝑛‖
2 + 𝑐 . (4.30)

Because of 𝐻(𝑃 ), we may choose a positive number 𝜖 < min{ 1
5 (𝛼𝐵 − 𝛼𝛹‖𝛾‖2),

1
2𝛼𝐴}. Using 𝐻(𝐴) (b), we find from (4.30) that

( 1
2
𝛼𝐴 − 𝜖

)

‖𝑢𝑘𝑛‖
2 ≤ 𝑐 𝑘

𝑛−1
∑

𝑖=0
‖𝑢𝑘𝑖 ‖

2 + 𝑐 . (4.31)

We then apply a discrete Gronwall’s inequality (cf. [25, Lemma 7.25]) to get (4.9). In addition, (4.10) follows from (4.9) and
(𝛹 ) (b).
Next, we prove the relation (4.11). Let

𝑢𝑘−1 = 𝑢0 + 𝑘𝐴−1(𝐵 𝑢0 + 𝑅(ℎ0) + 𝜂0 + 𝛾∗𝜉0 − 𝑓 (0)),
where 𝐴−1 ∶ 𝑉 ∗ → 𝑉 is the inverse operator of 𝐴, 𝜂0 ∈ 𝜕 𝛷(𝑢0), 𝜉0 ∈ 𝜕 𝛹 (𝛾 𝑢0), and 𝛾∗ ∶ 𝑋∗ → 𝑉 ∗ is the adjoint operator of 𝛾. Then,

𝛿 𝑢𝑘0 = 𝐴−1(𝑓 (0) − 𝐵 𝑢0 − 𝑅(ℎ0) − 𝜂0 − 𝛾∗𝜉0).
Similar to (4.13),

⟨𝐴(𝛿 𝑢𝑘𝑛 − 𝛿 𝑢𝑘𝑛−1), 𝛿 𝑢𝑘𝑛⟩ ≥
1
2
⟨𝐴(𝛿 𝑢𝑘𝑛), 𝛿 𝑢𝑘𝑛⟩ −

1
2
⟨𝐴(𝛿 𝑢𝑘𝑛−1), 𝛿 𝑢𝑘𝑛−1⟩. (4.32)

Take 𝑣 = 𝑢𝑘𝑛−1 in (4.4) and divide the inequality by 𝑘 to get

𝑘⟨𝐴(𝛿 𝑢𝑘𝑛), 𝛿 𝑢𝑘𝑛⟩ + 𝑘⟨𝐵 𝑢𝑘𝑛 + 𝑘𝑛𝑢
𝑘, 𝛿 𝑢𝑘𝑛⟩ +𝛷(𝑢𝑘𝑛) −𝛷(𝑢𝑘𝑛−1) + 𝑘⟨𝜉𝑘𝑛 , 𝛾(𝛿 𝑢𝑘𝑛)⟩𝑋∗×𝑋 ≤ 𝑘⟨𝑓𝑘𝑛 , 𝛿 𝑢𝑘𝑛⟩. (4.33)

Then we take 𝑣 = 𝑢𝑘𝑛 in (4.4) with 𝑛 replaced by 𝑛 − 1,

− 𝑘⟨𝐴(𝛿 𝑢𝑘𝑛−1), 𝛿 𝑢𝑘𝑛⟩ − 𝑘⟨𝐵 𝑢𝑘𝑛−1 + 𝑘𝑛−1𝑢
𝑘, 𝛿 𝑢𝑘𝑛⟩ +𝛷(𝑢𝑘𝑛−1) −𝛷(𝑢𝑘𝑛) − 𝑘⟨𝜉𝑘𝑛−1, 𝛾(𝛿 𝑢𝑘𝑛)⟩𝑋∗×𝑋 ≤ −𝑘⟨𝑓𝑘𝑛−1, 𝛿 𝑢𝑘𝑛⟩. (4.34)

We add (4.33) and (4.34), and divide 𝑘 on its both sides,
6 
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⟨𝐴(𝛿 𝑢𝑘𝑛 − 𝛿 𝑢𝑘𝑛−1), 𝛿 𝑢𝑘𝑛⟩ + ⟨𝐵 𝑢𝑘𝑛 − 𝐵 𝑢𝑘𝑛−1 + 𝑘𝑛𝑢
𝑘 − 𝑘𝑛−1𝑢

𝑘, 𝛿 𝑢𝑘𝑛⟩ + ⟨𝜉𝑘𝑛 − 𝜉
𝑘
𝑛−1, 𝛾(𝛿 𝑢𝑘𝑛)⟩𝑋∗×𝑋 ≤ ⟨𝑓𝑘𝑛 − 𝑓𝑘𝑛−1, 𝛿 𝑢𝑘𝑛⟩. (4.35)

Combine (4.32) and (4.35) to get
1
2
⟨𝐴(𝛿 𝑢𝑘𝑛), 𝛿 𝑢𝑘𝑛⟩ −

1
2
⟨𝐴(𝛿 𝑢𝑘𝑛−1), 𝛿 𝑢𝑘𝑛−1⟩ + ⟨𝐵 𝑢𝑘𝑛 − 𝐵 𝑢𝑘𝑛−1, 𝛿 𝑢𝑘𝑛⟩

≤ ⟨𝜉𝑘𝑛−1 − 𝜉
𝑘
𝑛 , 𝛾(𝛿 𝑢𝑘𝑛)⟩𝑋∗×𝑋 + ⟨𝑘𝑛−1𝑢

𝑘 − 𝑘𝑛𝑢
𝑘, 𝛿 𝑢𝑘𝑛⟩ + ⟨𝑓𝑘𝑛 − 𝑓𝑘𝑛−1, 𝛿 𝑢𝑘𝑛⟩. (4.36)

Adding (4.36) from 𝑛 = 1 to 𝑛 = 𝑁 , we have

1
2
⟨𝐴(𝛿 𝑢𝑘𝑁 ), 𝛿 𝑢𝑘𝑁 ⟩ − 1

2
⟨𝐴(𝛿 𝑢𝑘0), 𝛿 𝑢𝑘0⟩ +

𝑁
∑

𝑛=1
⟨𝐵 𝑢𝑘𝑛 − 𝐵 𝑢𝑘𝑛−1, 𝛿 𝑢𝑘𝑛⟩

≤
𝑁
∑

𝑛=1
⟨𝜉𝑘𝑛−1 − 𝜉

𝑘
𝑛 , 𝛾(𝛿 𝑢𝑘𝑛)⟩𝑋∗×𝑋 +

𝑁
∑

𝑛=1
⟨𝑘𝑛−1𝑢

𝑘 − 𝑘𝑛𝑢
𝑘, 𝛿 𝑢𝑘𝑛⟩ +

𝑁
∑

𝑛=1
⟨𝑓𝑘𝑛 − 𝑓𝑘𝑛−1, 𝛿 𝑢𝑘𝑛⟩. (4.37)

To proceed further, we bound each term in (4.37) in turn. Using 𝐻(𝐵) (b), we have
𝑁
∑

𝑛=1
⟨𝐵 𝑢𝑘𝑛 − 𝐵 𝑢𝑘𝑛−1, 𝛿 𝑢𝑘𝑛⟩ ≥ 𝛼𝐵𝑘

𝑁
∑

𝑛=1
‖𝛿 𝑢𝑘𝑛‖2. (4.38)

Moreover, we utilize 𝐻(𝛹 ) (b) and 𝐻(𝛾) (a) to derive
𝑁
∑

𝑛=1
⟨𝜉𝑘𝑛−1 − 𝜉

𝑘
𝑛 , 𝛾(𝛿 𝑢𝑘𝑛)⟩𝑋∗×𝑋 ≤ 1

𝑘

𝑁
∑

𝑛=1

(

𝛹 0(𝛾 𝑢𝑘𝑛−1; 𝛾 𝑢𝑘𝑛 − 𝛾 𝑢𝑘𝑛−1) + 𝛹 0(𝛾 𝑢𝑘𝑛 ; 𝛾 𝑢𝑘𝑛−1 − 𝛾 𝑢𝑘𝑛)
)

≤ 𝛼𝛹 ‖𝛾‖2𝑘
𝑁
∑

𝑛=1
‖𝛿 𝑢𝑘𝑛‖2. (4.39)

By (4.1) and 𝐻(), we obtain

‖𝑘𝑛−1𝑢
𝑘 − 𝑘𝑛𝑢

𝑘
‖𝑉 ∗ = ‖𝑅

(

𝑛−2
∑

𝑖=0
∫

𝑡𝑖+1

𝑡𝑖
𝑞(𝑡𝑛−1, 𝑠)𝑢𝑘𝑖 𝑑 𝑠 −

𝑛−1
∑

𝑖=0
∫

𝑡𝑖+1

𝑡𝑖
𝑞(𝑡𝑛, 𝑠)𝑢𝑘𝑖 𝑑 𝑠

)

‖𝑉 ∗

≤ ‖𝑅‖
(

𝑛−2
∑

𝑖=0
‖∫

𝑡𝑖+1

𝑡𝑖
(𝑞(𝑡𝑛, 𝑠) − 𝑞(𝑡𝑛−1, 𝑠))𝑢𝑘𝑖 𝑑 𝑠‖ + ‖∫

𝑡𝑛

𝑡𝑛−1
𝑞(𝑡𝑛, 𝑠)𝑢𝑘𝑛−1𝑑 𝑠‖

)

≤ ‖𝑅‖
(

𝑘2𝐿𝑞
𝑛−2
∑

𝑖=0
‖𝑢𝑘𝑖 ‖ + 𝑘‖𝑞‖‖𝑢

𝑘
𝑛−1‖

)

.

Apply the bound (4.9),

‖𝑘𝑛−1𝑢
𝑘 − 𝑘𝑛𝑢

𝑘
‖𝑉 ∗ ≤ 𝑐 𝑘. (4.40)

Then, we apply (4.40) on the second term on the right side of (4.37):
𝑁
∑

𝑛=1
⟨𝑘𝑛−1𝑢

𝑘 − 𝑘𝑛𝑢
𝑘, 𝛿 𝑢𝑘𝑛⟩ ≤

𝑁
∑

𝑛=1
‖𝑘𝑛−1𝑢

𝑘 − 𝑘𝑛𝑢
𝑘
‖𝑉 ∗‖𝛿 𝑢𝑘𝑛‖ ≤ 𝜀𝑘

𝑁
∑

𝑛=1
‖𝛿 𝑢𝑘𝑛‖2 + 𝑐 . (4.41)

Define 𝑓 (𝑡) = 𝑓 (0) for 𝑡 ∈ (−𝑘, 0) and 𝑡−1 = −𝑘. By the definition (4.2),

𝑓𝑘𝑛 − 𝑓𝑘𝑛−1 =
1
𝑘 ∫

𝑡𝑛

𝑡𝑛−1

(

𝑓 (𝑠) − 𝑓 (𝑠 − 𝑘)) 𝑑 𝑠 = 1
𝑘 ∫

𝑡𝑛

𝑡𝑛−1
∫

𝑠

𝑠−𝑘
̇𝑓 (𝑟) 𝑑 𝑟 𝑑 𝑠. (4.42)

Then,

‖𝑓𝑘𝑛 − 𝑓𝑘𝑛−1‖𝑉 ∗ ≤ ∫

𝑡𝑛

𝑡𝑛−2
‖

̇𝑓 (𝑠)‖𝑉 ∗𝑑 𝑠 ≤
√

2𝑘
(

∫

𝑡𝑛

𝑡𝑛−2
‖

̇𝑓 (𝑠)‖2𝑉 ∗𝑑 𝑠
)

1
2 . (4.43)

Since ̇𝑓 (𝑡) = 0 for a.e. 𝑡 ∈ (−𝑘, 0),
1
𝑘

𝑁
∑

𝑛=1
‖𝑓𝑘𝑛 − 𝑓𝑘𝑛−1‖

2
𝑉 ∗ ≤ 4∫

𝑇

−𝑘
‖

̇𝑓 (𝑠)‖2𝑉 ∗𝑑 𝑠 = 4 ‖ ̇𝑓‖2∗ . (4.44)

Utilizing (4.44), we obtain
𝑁
∑

𝑛=1
⟨𝑓𝑘𝑛 − 𝑓𝑘𝑛−1, 𝛿 𝑢𝑘𝑛⟩ ≤

𝑁
∑

𝑛=1
‖𝑓𝑘𝑛 − 𝑓𝑘𝑛−1‖𝑉 ∗‖𝛿 𝑢𝑘𝑛‖ ≤ 𝜀𝑘

𝑁
∑

𝑛=1
‖𝛿 𝑢𝑘𝑛‖2 + 𝑐 ‖ ̇𝑓‖2∗ . (4.45)

Using (4.38)–(4.39), (4.41), and (4.45) in (4.37),

(𝛼𝐵 − 𝛼𝛹‖𝛾‖2 − 2𝜀)𝑘
𝑁
∑

𝑛=1
‖𝛿 𝑢𝑘𝑛‖2 +

1
2
𝛼𝐴 ‖𝛿 𝑢𝑘𝑁‖

2 ≤ 𝑐 ‖ ̇𝑓‖2∗ +
1
2
‖𝐴‖‖𝛿 𝑢𝑘0‖2 + 𝑐 . (4.46)

Then, (4.11) follows from (4.46) with a sufficiently small 𝜀 > 0. ■
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Based on 𝑢𝑘, we construct a piecewise constant 𝑢𝑘𝑐 and a piecewise affine function 𝑢𝑘𝑎 by

𝑢𝑘𝑐 (𝑡) =
{

𝑢𝑘𝑛−1 f or 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛), 1 ≤ 𝑛 ≤ 𝑁 ,
𝑢𝑘𝑁 f or 𝑡 = 𝑡𝑁 ,

(4.47)

and

𝑢𝑘𝑎(𝑡) =
{

𝑢𝑘𝑛−1 +
𝑡−𝑡𝑛−1
𝑘 (𝑢𝑘𝑛 − 𝑢

𝑘
𝑛−1) f or 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛), 1 ≤ 𝑛 ≤ 𝑁 ,

𝑢𝑘𝑁 f or 𝑡 = 𝑡𝑁 .
(4.48)

Moreover, we define 𝜉𝑘𝑐 by

𝜉𝑘𝑐 (𝑡) =
{

𝜉𝑘𝑛−1 f or 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛), 1 ≤ 𝑛 ≤ 𝑁 ,
𝜉𝑘𝑁 f or 𝑡 = 𝑡𝑁 .

(4.49)

Regarding the sequences 𝑢𝑘𝑐 , 𝑢𝑘𝑎 and 𝜉𝑘𝑐 , we have the following property.

Lemma 4.4. Assume 𝐻(𝐴), 𝐻(𝐵), 𝐻(), 𝐻(𝛷), 𝐻(𝛹 ), 𝐻(𝛾), 𝐻(𝑓 ), and 𝐻(𝑃 ). Then, there exists a constant 𝑐 such that

‖𝑢𝑘𝑐 ‖ + ‖𝑢𝑘𝑐 ‖𝐵 𝑉 2(𝐼 ;𝑉 ∗) ≤ 𝑐 , (4.50)

‖𝑢𝑘𝑎‖ + ‖𝑢̇𝑘𝑎‖ ≤ 𝑐 , (4.51)

‖𝜉𝑘𝑐 ‖ ≤ 𝑐 . (4.52)

Proof. Using (4.9), we have

‖𝑢𝑘𝑐 ‖
2
 = ∫

𝑇

0
‖𝑢𝑘𝑐 (𝑡)‖

2𝑑 𝑡 = 𝑘
𝑁−1
∑

𝑛=0
‖𝑢𝑘𝑛‖

2 ≤ 𝑐 . (4.53)

Without loss of generality, we assume the semi-norm of 𝑢𝑘𝑐 in 𝐵 𝑉 2(𝐼 ;𝑉 ∗) is achieved on a division 0 = 𝑠0 < 𝑠1 < ⋯ < 𝑠𝑗 = 𝑇 and
ach 𝑠𝑖 in different interval [𝑚𝑖𝑘, (𝑚𝑖 + 1)𝑘) such that 𝑢𝑘𝑐 (𝑠𝑖) = 𝑢𝑘𝑚𝑖 with 𝑚0 = 0, 𝑚𝑗 = 𝑁 and 𝑚𝑖+1 > 𝑚𝑖 for 𝑖 = 1,… , 𝑗 − 1. Then,

‖𝑢𝑘𝑐 ‖
2
𝐵 𝑉 2(𝐼 ;𝑉 ∗)

=
𝑗−1
∑

𝑖=0
‖𝑢𝑘𝑚𝑖+1 − 𝑢

𝑘
𝑚𝑖
‖

2
𝑉 ∗ ≤

𝑗−1
∑

𝑖=0

(

(𝑚𝑖+1 − 𝑚𝑖)
𝑚𝑖+1−1
∑

𝑛=𝑚𝑖

‖𝑢𝑘𝑛+1 − 𝑢
𝑘
𝑛‖

2
𝑉 ∗

)

≤
(

𝑗−1
∑

𝑖=0
(𝑚𝑖+1 − 𝑚𝑖)

)(

𝑗−1
∑

𝑖=0

𝑚𝑖+1−1
∑

𝑛=𝑚𝑖

‖𝑢𝑘𝑛+1 − 𝑢
𝑘
𝑛‖

2
𝑉 ∗

)

= 𝑁
𝑁−1
∑

𝑛=0
‖𝑢𝑘𝑛+1 − 𝑢

𝑘
𝑛‖

2
𝑉 ∗ . (4.54)

Note that the embedding 𝑉 ⊂ 𝑉 ∗ is continuous, then ‖𝑢𝑘𝑛+1 − 𝑢
𝑘
𝑛‖𝑉 ∗ ≤ 𝑐 ‖𝑢𝑘𝑛+1 − 𝑢

𝑘
𝑛‖𝑉 . Together with (4.54) and (4.11), we derive

‖𝑢𝑘𝑐 ‖
2
𝐵 𝑉 2(𝐼 ;𝑉 ∗)

≤ 𝑐 𝑁
𝑁−1
∑

𝑛=0
‖𝑢𝑘𝑛+1 − 𝑢

𝑘
𝑛‖

2
𝑉 ≤ 𝑐 𝑇 𝑘

𝑁
∑

𝑛=1
‖𝛿 𝑢𝑘𝑛‖2 ≤ 𝑐 . (4.55)

Combining (4.53) and (4.55), we get (4.50). Similarly, we have

‖𝑢𝑘𝑎‖
2
 + ‖𝑢̇𝑘𝑎‖

2
 =

𝑁
∑

𝑛=1
∫

𝑡𝑛

𝑡𝑛−1
‖𝑢𝑘𝑛−1 +

𝑡 − 𝑡𝑛−1
𝑘

(𝑢𝑘𝑛 − 𝑢
𝑘
𝑛−1)‖

2𝑑 𝑡 +
𝑁
∑

𝑛=1
∫

𝑡𝑛

𝑡𝑛−1
‖

𝑢𝑘𝑛 − 𝑢
𝑘
𝑛−1

𝑘
‖

2𝑑 𝑡

≤ 2
𝑁
∑

𝑛=1
∫

𝑡𝑛

𝑡𝑛−1

(

‖𝑢𝑘𝑛−1‖
2 +

(𝑡 − 𝑡𝑛−1)2

𝑘2
‖𝑢𝑘𝑛 − 𝑢

𝑘
𝑛−1‖

2
)

𝑑 𝑡 + 𝑘
𝑁
∑

𝑛=1
‖𝛿 𝑢𝑘𝑛‖2

≤ 2𝑘
𝑁
∑

𝑛=1

(

‖𝑢𝑘𝑛−1‖
2 + 1

3
‖𝑢𝑘𝑛 − 𝑢

𝑘
𝑛−1‖

2
)

+ 𝑘
𝑁
∑

𝑛=1
‖𝛿 𝑢𝑘𝑛‖2. (4.56)

Then, we obtain (4.51). In addition, (4.52) follows from (4.10). ■

On the basis of Lemma 4.4, we investigate weak convergence of these sequences.

Lemma 4.5. Assume 𝐻(𝐴), 𝐻(𝐵), 𝐻(), 𝐻(𝛷), 𝐻(𝛹 ), 𝐻(𝛾), 𝐻(𝑓 ), and 𝐻(𝑃 ). Let {𝑘} be a sequence converging to zero. Then, there
exists a subsequence, still denoted by {𝑘}, such that

𝑢𝑘𝑐 ⇀ 𝑢 in  , 𝑢𝑘𝑎 ⇀ 𝑢 in  , 𝑢̇𝑘𝑎 ⇀ 𝑢̇ in  , and 𝜉𝑘𝑐 ⇀ 𝜉 in ∗. (4.57)

where 𝑢 and 𝜉 satisfy Problem 3.1.

Proof. Recall that  is a reflexive Banach space, and the sequence {𝑢𝑘𝑐 } is bounded by (4.50). Hence, there exists an element 𝑢 ∈ 
and a subsequence, still denoted by {𝑢𝑘𝑐 }, such that 𝑢𝑘𝑐 ⇀ 𝑢 in  . Similarly, there exists an element 𝜉 ∈ ∗ and a subsequence, still
enoted by {𝜉𝑘}, such that 𝜉𝑘 ⇀ 𝜉 in ∗.
𝑐 𝑐
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The sequence {𝑢𝑘𝑎} is bounded in  by (4.51). There exists a subsequence, still denoted by 𝑢𝑘𝑎 , and an element 𝑢1 ∈  , such that
𝑢𝑘𝑎 ⇀ 𝑢1 in  . Hence 𝑢𝑘𝑎 − 𝑢𝑘𝑐 ⇀ 𝑢1 − 𝑢 in  . Moreover,

‖𝑢𝑘𝑎 − 𝑢
𝑘
𝑐 ‖

2
 ≤

𝑁
∑

𝑛=1
∫

𝑡𝑛

𝑡𝑛−1

(𝑡 − 𝑡𝑛−1)2

𝑘2
‖𝑢𝑘𝑛 − 𝑢

𝑘
𝑛−1‖

2𝑑 𝑡 = 𝑘3

3

𝑁
∑

𝑛=1
‖𝛿 𝑢𝑘𝑛‖2.

Hence, we derive ‖𝑢𝑘𝑎 − 𝑢
𝑘
𝑐 ‖ → 0 as 𝑘 → 0 from (4.11). Thus, 𝑢 = 𝑢1 is valid. Furthermore, we use [26, Proposition 23.19] to get

̇ 𝑘𝑎 ⇀ 𝑢̇ in  .
Next, let us show 𝑢 and 𝜉 satisfy Problem 3.1. Firstly, we establish an inequality that corresponds to (3.4). Rewrite (4.4) to get

the following relation

⟨𝐴(
𝑢𝑘𝑛 − 𝑢

𝑘
𝑛−1

𝑘
) + 𝐵 𝑢𝑘𝑛 + 𝑘𝑛𝑢

𝑘, 𝑣 − 𝑢𝑘𝑛⟩ +𝛷(𝑣) −𝛷(𝑢𝑘𝑛) + ⟨𝜉𝑘𝑛 , 𝛾(𝑣 − 𝑢𝑘𝑛)⟩𝑋∗×𝑋 ≥ ⟨𝑓𝑘𝑛 , 𝑣 − 𝑢𝑘𝑛⟩ ∀ 𝑣 ∈ 𝐾 , (4.58)

for 𝑛 = 1, 2,… , 𝑁 . Denote

𝜂𝑘𝑐 (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛−1
∑

𝑖=0
∫

𝑡𝑖+1

𝑡𝑖
𝑞(𝑡𝑛, 𝑠)𝑢𝑘𝑖 𝑑 𝑠 + ℎ0 f or 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛), 𝑛 = 1, 2,… , 𝑁 ,

𝑁−1
∑

𝑖=0
∫

𝑡𝑖+1

𝑡𝑖
𝑞(𝑡𝑁 , 𝑠)𝑢𝑘𝑖 𝑑 𝑠 + ℎ0 f or 𝑡 = 𝑡𝑁 .

(4.59)

Combining (4.58), (4.59), (4.47)–(4.49), we derive a pointwise inequality

⟨𝐴(𝑢̇𝑘𝑎(𝑡)) + 𝐵 𝑢𝑘𝑐 (𝑡) + 𝑅(𝜂𝑘𝑐 (𝑡)), 𝑣(𝑡) − 𝑢𝑘𝑐 (𝑡)⟩ +𝛷(𝑣(𝑡)) −𝛷(𝑢𝑘𝑐 (𝑡))
+ ⟨𝜉𝑘𝑐 (𝑡), 𝛾(𝑣(𝑡) − 𝑢𝑘𝑐 (𝑡))⟩𝑋∗×𝑋 ≥ ⟨𝑓𝑘𝑐 , 𝑣(𝑡) − 𝑢𝑘𝑐 (𝑡)⟩ ∀ 𝑣 ∈ 𝐿2(𝐼 ;𝐾), a.e. 𝑡 ∈ 𝐼 . (4.60)

Define Nemytskii operators A ,B,R,S :  → ∗ by (A 𝑣)(𝑡) = 𝐴𝑣(𝑡), (B𝑣)(𝑡) = 𝐵 𝑣(𝑡), (R𝑣)(𝑡) = 𝑅(𝑣(𝑡)), and (S 𝑣)(𝑡) =
(

∫ 𝑡0 𝑞(𝑡, 𝑠)𝑣(𝑠)𝑑 𝑠
)

for any 𝑣 ∈  , a.e. 𝑡 ∈ 𝐼 . Moreover, define 𝛷̃(𝑣) = ∫ 𝑇0 𝛷(𝑣(𝑡))𝑑 𝑡 for 𝑣 ∈  . Integrate (4.60) over 𝐼 ,

⟨A 𝑢̇𝑘𝑎 , 𝑣 − 𝑢𝑘𝑐 ⟩∗× + ⟨B𝑢𝑘𝑐 , 𝑣 − 𝑢𝑘𝑐 ⟩∗× + ⟨R(𝜂𝑘𝑐 ), 𝑣 − 𝑢𝑘𝑐 ⟩∗× + 𝛷̃(𝑣) − 𝛷̃(𝑢𝑘𝑐 )
+ ⟨𝜉𝑘𝑐 , ̃𝛾(𝑣 − 𝑢𝑘𝑐 )⟩∗× ≥ ⟨𝑓𝑘𝑐 , 𝑣 − 𝑢𝑘𝑐 ⟩∗× ∀ 𝑣 ∈ 𝐿2(𝐼 ;𝐾). (4.61)

Secondly, we use Lemma 4.5 to illustrate the convergence result of (4.61) as 𝑘 → 0. By 𝐻(𝐴) (a), the operator A ∶  → ∗ is
ounded and linear, hence it is weakly continuous. For 𝑢̇𝑘𝑎 ⇀ 𝑢̇ in  , we have A 𝑢̇𝑘𝑎 ⇀ A 𝑢̇ in ∗ as 𝑘 → 0. Similarly, the operator B

s weakly continuous on  . For 𝑢𝑘𝑐 ⇀ 𝑢 in  , the relation B𝑢𝑘𝑐 ⇀ B𝑢 is valid. In addition, the functional 𝑉 ∋ 𝑢 ↦ ⟨𝐴𝑢, 𝑢⟩ is weakly
.s.c. on 𝑉 , due to the convexity and continuity of 𝐴 (cf. [25, Corollary 1.50]). Analogously,  ∋ 𝑣 ↦ ⟨B𝑣, 𝑣⟩∗× is weakly l.s.c.
n  . Note that

lim sup
𝑘→0

⟨A 𝑢̇𝑘𝑎 , 𝑣 − 𝑢𝑘𝑐 ⟩∗× ≤ lim sup
𝑘→0

⟨A 𝑢̇𝑘𝑎 , 𝑣⟩∗× − lim inf
𝑘→0

⟨A 𝑢̇𝑘𝑎 , 𝑢𝑘𝑎⟩∗× + lim sup
𝑘→0

⟨A 𝑢̇𝑘𝑎 , 𝑢𝑘𝑎 − 𝑢𝑘𝑐 ⟩∗× . (4.62)

Moreover, the following equation holds:

⟨A 𝑢̇𝑘𝑎 , 𝑢𝑘𝑎⟩∗× = ∫

𝑇

0
⟨𝐴 ̇𝑢𝑘𝑎(𝑡), 𝑢𝑘𝑎(𝑡)⟩𝑑 𝑡 =

1
2
⟨𝐴𝑢𝑘𝑎(𝑇 ), 𝑢𝑘𝑎(𝑇 )⟩ −

1
2
⟨𝐴𝑢(0), 𝑢(0)⟩. (4.63)

By (4.57), we get 𝑢𝑘𝑎 ⇀ 𝑢 in 𝑊 1,2(𝐼 ;𝑉 ). Furthermore 𝑢𝑘𝑎 ⇀ 𝑢 in 𝐶(𝐼 ;𝑉 ) is valid, due to the continuous embedding 𝑊 1,2(𝐼 ;𝑉 ) ⊂
𝐶(𝐼 ;𝑉 ). Then, for all 𝑡 ∈ 𝐼 , we have 𝑢𝑘𝑎(𝑡) ⇀ 𝑢(𝑡) in 𝑉 . In particular, 𝑢𝑘𝑎(𝑇 ) ⇀ 𝑢(𝑇 ). Hence,

lim inf
𝑘→0

⟨𝐴𝑢𝑘𝑎(𝑇 ), 𝑢𝑘𝑎(𝑇 )⟩ ≥ ⟨𝐴𝑢(𝑇 ), 𝑢(𝑇 )⟩.

We take the lower limit of (4.63) to get

lim inf
𝑘→0

⟨A 𝑢̇𝑘𝑎 , 𝑢𝑘𝑎⟩∗× ≥ 1
2
⟨𝐴𝑢(𝑇 ), 𝑢(𝑇 )⟩ − 1

2
⟨𝐴𝑢(0), 𝑢(0)⟩ = ⟨A 𝑢̇, 𝑢⟩∗× . (4.64)

Together with (4.62) and (4.64), we have

lim sup
𝑘→0

⟨A 𝑢̇𝑘𝑎 , 𝑣 − 𝑢𝑘𝑐 ⟩∗× ≤ ⟨A 𝑢̇, 𝑣 − 𝑢⟩∗× . (4.65)

Similar to the derivation of (4.65), we get

lim sup
𝑘→0

⟨B𝑢𝑘𝑐 , 𝑣 − 𝑢𝑘𝑐 ⟩∗× ≤ lim sup
𝑘→0

⟨B𝑢𝑘𝑐 , 𝑣⟩∗× − lim inf
𝑘→0

⟨B𝑢𝑘𝑐 , 𝑢𝑘𝑐 ⟩∗× ≤ ⟨B𝑢, 𝑣 − 𝑢⟩∗× . (4.66)

To proceed further, we have

lim sup
𝑘→0

⟨R𝜂𝑘𝑐 , 𝑣 − 𝑢𝑘𝑐 ⟩∗× ≤ lim sup
𝑘→0

⟨R(𝜂𝑘𝑐 − ℎ0) − S 𝑢𝑘𝑐 , 𝑣 − 𝑢𝑘𝑐 ⟩∗× + lim sup
𝑘→0

⟨S 𝑢𝑘𝑐 , 𝑣⟩∗×

− lim inf
𝑘→0

⟨S 𝑢𝑘𝑐 , 𝑢𝑘𝑐 ⟩∗× + lim sup
𝑘→0

⟨Rℎ0, 𝑣 − 𝑢𝑘𝑐 ⟩∗× . (4.67)

For 𝑡 ∈ [𝑡 , 𝑡 ), we use (4.59) and 𝐻() to derive that
𝑛−1 𝑛
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‖𝜂𝑘𝑐 (𝑡) − ℎ0 − ∫

𝑡

0
𝑞(𝑡, 𝑠)𝑢𝑘𝑐 (𝑠)𝑑 𝑠‖ ≤ ‖

𝑛−1
∑

𝑖=0
∫

𝑡𝑖+1

𝑡𝑖
𝑞(𝑡𝑛, 𝑠)𝑢𝑘𝑖 𝑑 𝑠 − ∫

𝑡

0
𝑞(𝑡, 𝑠)𝑢𝑘𝑐 (𝑠)𝑑 𝑠‖

≤ ‖∫

𝑡𝑛

0
(𝑞(𝑡𝑛, 𝑠) − 𝑞(𝑡, 𝑠))𝑢𝑘𝑐𝑑 𝑠‖ + ‖∫

𝑡𝑛

𝑡
𝑞(𝑡, 𝑠)𝑢𝑘𝑐 (𝑠)𝑑 𝑠‖ ≤ 𝑐 𝑘 ‖𝑢𝑘𝑐 ‖𝐿∞(𝐼 ;𝑉 ).

Therefore, ‖R(𝜂𝑘𝑐 − ℎ0) − S 𝑢𝑘𝑐 ‖∗ ≤ 𝑐 𝑘 ‖𝑢𝑘𝑐 ‖𝐿∞(𝐼 ;𝑉 ). Thus, R(𝜂𝑘𝑐 − ℎ0) − S 𝑢𝑘𝑐 → 0 in ∗ as 𝑘 → 0. Note that S is weakly continuous
nd the functional 𝑣↦ ⟨S 𝑣, 𝑣⟩∗× is weakly l.s.c. on  . Applying these properties on (4.67), we obtain

lim sup
𝑘→0

⟨R𝜂𝑘𝑐 , 𝑣 − 𝑢𝑘𝑐 ⟩∗× ≤ ⟨S 𝑢, 𝑣 − 𝑢⟩∗× + ⟨Rℎ0, 𝑣 − 𝑢⟩∗× = ⟨𝑢, 𝑣 − 𝑢⟩∗× . (4.68)

Let us show that 𝛷̃ is weakly l.s.c. on  . Assume 𝑤𝑛 ⊂  and 𝑤𝑛 → 𝑤 in  . Utilizing [3, Theorem 2.39], passing to a subsequence
if necessary, we have 𝑤𝑛(𝑡) → 𝑤(𝑡) in 𝑉 for a.e. 𝑡 ∈ 𝐼 . In addition, we have that

𝛷(𝑤𝑛(𝑡)) ≥ 𝑐𝛷0
+ 𝑐𝛷1

‖𝑤𝑛(𝑡)‖ f or a.e. 𝑡 ∈ 𝐼 .
Using Fauto’s lemma (cf. [3, Theorem 1.64]) and the lower semicontinuity of 𝛷, we obtain

lim inf
𝑛→∞

𝛷̃(𝑤𝑛) ≥ ∫

𝑇

0
lim inf
𝑛→∞

𝛷(𝑤𝑛(𝑡))𝑑 𝑡 ≥ 𝛷̃(𝑤),

i.e., 𝛷̃ is l.s.c. on  . The convexity of 𝛷̃ is obvious. Applying [25, Corollary 1.50] again, we know that 𝛷̃ is weakly l.s.c. on  .
Therefore,

lim sup
𝑘→0

(𝛷̃(𝑣) − 𝛷̃(𝑢𝑘𝑐 )) = 𝛷̃(𝑣) − lim inf
𝑘→0

𝛷̃(𝑢𝑘𝑐 ) ≤ 𝛷̃(𝑣) − 𝛷̃(𝑢). (4.69)

The relation 𝑢𝑘𝑐 → 𝑢 in 𝑀2,2(𝐼 ;𝑉 , 𝑉 ∗) is valid, due to (4.50). Therefore, we use 𝐻(𝛾) (b) to get 𝛾̃ 𝑢𝑘𝑐 → 𝛾̃ 𝑢 in  . Together with 𝜉𝑘𝑐 ⇀ 𝜉
n ∗, we have

lim sup
𝑘→0

⟨𝜉𝑘𝑐 , ̃𝛾(𝑣 − 𝑢𝑘𝑐 )⟩∗× = ⟨𝜉 , ̃𝛾(𝑣 − 𝑢)⟩∗× . (4.70)

Observing 𝑓𝑘𝑐 → 𝑓 in ∗, we get

lim sup
𝑘→0

⟨𝑓𝑘𝑐 , 𝑣 − 𝑢𝑘𝑐 ⟩∗× = ⟨𝑓 , 𝑣 − 𝑢⟩∗× . (4.71)

Combining (4.61), (4.65), (4.66), (4.68)–(4.71), we obtain that for all 𝑣 ∈ 𝐿2(𝐼 ;𝐾),

⟨A 𝑢̇ + B𝑢 + 𝑢, 𝑣 − 𝑢⟩∗× + 𝛷̃(𝑣) − 𝛷̃(𝑢) + ⟨𝜉 , ̃𝛾(𝑣 − 𝑢)⟩∗× ≥ ⟨𝑓 , 𝑣 − 𝑢⟩∗× . (4.72)

Thirdly, we illustrate that 𝜉 satisfies (3.5). Note that 𝜉𝑘𝑐 (𝑡) ∈ 𝜕 𝛹 (𝛾 𝑢𝑘𝑐 (𝑡)) for a.e. 𝑡 ∈ 𝐼 , and 𝛾̃ 𝑢𝑘𝑐 → 𝛾̃ 𝑢 in  . By the converse
ebesgue’s dominated theorem [3, Theorem 2.39], by passing to a subsequence if necessary, 𝛾 𝑢𝑘𝑐 (𝑡) → 𝛾 𝑢(𝑡) in 𝑋 for a.e. 𝑡 ∈ 𝐼 . It

follows from [3, Theorem 3.13] that 𝜉(𝑡) ∈ 𝜕 𝛹 (𝛾 𝑢(𝑡)) for a.e. 𝑡 ∈ 𝐼 . Thus, we draw the conclusion that 𝑢 and 𝜉 satisfy Problem 3.1.
The uniqueness of 𝑢 can be proved through a standard procedure (cf. [14, Theorem 11]) and the argument is omitted here. ■

5. Main results

We summarize the lemmas proved in the previous section in the form of a theorem.

Theorem 5.1. Assume 𝐻(𝐴), 𝐻(𝐵), 𝐻(), 𝐻(𝛷), 𝐻(𝛹 ), 𝐻(𝛾), 𝐻(𝑓 ), and 𝐻(𝑃 ). Then, there exists a unique solution to Problem 3.1.
Moreover, an equivalent form for Problem 3.1 is illustrated as follows.

Problem 5.2. Find a function 𝑢 ∈  such that 𝑢̇ ∈  , for a.e. 𝑡 ∈ 𝐼 , 𝑢(𝑡) ∈ 𝐾,

⟨𝐴 ̇𝑢(𝑡) + 𝐵 𝑢(𝑡) + (𝑢)(𝑡), 𝑣 − 𝑢(𝑡)⟩ +𝛷(𝑣) −𝛷(𝑢(𝑡)) + 𝛹 0(𝛾 𝑢(𝑡); 𝛾 𝑣 − 𝛾 𝑢(𝑡)) ≥ ⟨𝑓 (𝑡), 𝑣 − 𝑢(𝑡)⟩ ∀ 𝑣 ∈ 𝐾 , (5.1)

and

𝑢(0) = 𝑢0. (5.2)

Theorem 5.3. Assume 𝐻(𝐴), 𝐻(𝐵), 𝐻(), 𝐻(𝛷), 𝐻(𝛹 ), 𝐻(𝛾), 𝐻(𝑓 ), and 𝐻(𝑃 ). Then, there exists a unique solution of Problem 5.2.

Proof. Let 𝑢 be the solution of Problem 3.1. For 𝜉(𝑡) ∈ 𝜕 𝛹 (𝛾 𝑢(𝑡)), we have

⟨𝜉(𝑡), 𝛾(𝑣 − 𝑢(𝑡))⟩𝑋∗×𝑋 ≤ 𝛹 0(𝛾 𝑢(𝑡); 𝛾 𝑣 − 𝛾 𝑢(𝑡)). (5.3)

Thus, we derive (5.1) from (3.4), i.e., 𝑢 is the solution of Problem 5.2. The argument of the uniqueness of 𝑢 is standard and is hence
omitted. ■
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Next, we provide the Lipschitz continuous dependence of the solution on the right-hand side.

Theorem 5.4. Assume 𝐻(𝐴), 𝐻(𝐵), 𝐻(), 𝐻(𝛷), 𝐻(𝛹 ), 𝐻(𝛾), 𝐻(𝑓 ), and 𝐻(𝑃 ). Then, the solution 𝑢 of Problem 3.1 depends Lipschitz
continuously on 𝑓 .

Proof. Let 𝑢1, 𝑢2 be the solutions of Problem 3.1 corresponding to 𝑓1, 𝑓2 respectively, where 𝑓1, 𝑓2 ∈ 𝐻1(𝐼 ;𝑉 ∗). Thus, we have

⟨𝐴 ̇𝑢1(𝑡) + 𝐵 𝑢1(𝑡) + (𝑢1)(𝑡), 𝑣 − 𝑢1(𝑡)⟩ +𝛷(𝑣) −𝛷(𝑢1(𝑡)) + ⟨𝜉1(𝑡), 𝛾(𝑣 − 𝑢1(𝑡))⟩𝑋∗×𝑋 ≥ ⟨𝑓1(𝑡), 𝑣 − 𝑢1(𝑡)⟩ ∀ 𝑣 ∈ 𝐾 , (5.4)

where 𝜉1 ∈ ∗, 𝜉1(𝑡) ∈ 𝜕 𝛹 (𝛾 𝑢1(𝑡)), and

⟨𝐴 ̇𝑢2(𝑡) + 𝐵 𝑢2(𝑡) + (𝑢2)(𝑡), 𝑣 − 𝑢2(𝑡)⟩ +𝛷(𝑣) −𝛷(𝑢2(𝑡)) + ⟨𝜉2(𝑡), 𝛾(𝑣 − 𝑢2(𝑡))⟩𝑋∗×𝑋 ≥ ⟨𝑓2(𝑡), 𝑣 − 𝑢2(𝑡)⟩ ∀ 𝑣 ∈ 𝐾 , (5.5)

where 𝜉2 ∈ ∗, 𝜉2(𝑡) ∈ 𝜕 𝛹 (𝛾 𝑢2(𝑡)). Taking 𝑣 = 𝑢2(𝑡) in (5.4) and 𝑣 = 𝑢1(𝑡) in (5.5), then we add the resulting inequalities to get

⟨𝐴(𝑢̇1(𝑡) − 𝑢̇2(𝑡)), 𝑢1(𝑡) − 𝑢2(𝑡)⟩ + ⟨𝐵(𝑢1(𝑡) − 𝑢2(𝑡)), 𝑢1(𝑡) − 𝑢2(𝑡)⟩
≤ ⟨(𝑢1)(𝑡) − (𝑢2)(𝑡), 𝑢2(𝑡) − 𝑢1(𝑡)⟩ + ⟨𝑓1(𝑡) − 𝑓2(𝑡), 𝑢1(𝑡) − 𝑢2(𝑡)⟩
+ 𝛹 0(𝛾 𝑢1(𝑡); 𝛾 𝑢2(𝑡) − 𝛾 𝑢1(𝑡)) + 𝛹 0(𝛾 𝑢2(𝑡); 𝛾 𝑢1(𝑡) − 𝛾 𝑢2(𝑡)). (5.6)

Applying 𝐻(𝐵) (b), 𝐻(), 𝐻(𝛹 ) (c) and Cauchy–Schwarz inequality on (5.6), we obtain
1
2
𝑑
𝑑 𝑡 ⟨𝐴(𝑢1(𝑡) − 𝑢2(𝑡)), 𝑢1(𝑡) − 𝑢2(𝑡)⟩ + (𝛼𝐵 − 𝛼𝛹‖𝛾‖2 − 𝜖)‖𝑢1(𝑡) − 𝑢2(𝑡)‖2

≤ ‖𝑅‖‖𝑞‖∫

𝑡

0
‖𝑢1(𝑠) − 𝑢2(𝑠)‖𝑑 𝑠‖𝑢1(𝑡) − 𝑢2(𝑡)‖ + 1

4𝜖
‖𝑓1(𝑡) − 𝑓2(𝑡)‖2𝑉 ∗ . (5.7)

Since 𝑢1(0) − 𝑢2(0) = 0, then we integrate (5.7) over [0, 𝑡] to get
1
2
⟨𝐴(𝑢1(𝑡) − 𝑢2(𝑡)), 𝑢1(𝑡) − 𝑢2(𝑡)⟩ ≤ ‖𝑅‖‖𝑞‖

(

∫

𝑡

0
‖𝑢1(𝑠) − 𝑢2(𝑠)‖𝑑 𝑠

)2
+ 1

4𝜖 ∫

𝑡

0
‖𝑓1(𝑠) − 𝑓2(𝑠)‖2𝑉 ∗𝑑 𝑠. (5.8)

By 𝐻(𝐴) (a), we derive
1
2
𝛼𝐴‖𝑢1(𝑡) − 𝑢2(𝑡)‖2 ≤ ‖𝑅‖‖𝑞‖

(

∫

𝑡

0
‖𝑢1(𝑠) − 𝑢2(𝑠)‖𝑑 𝑠

)2
+ 1

4𝜖 ∫

𝑇

0
‖𝑓1(𝑠) − 𝑓2(𝑠)‖2𝑉 ∗𝑑 𝑠. (5.9)

Thus, we get

‖𝑢1(𝑡) − 𝑢2(𝑡)‖ ≤

√

2‖𝑅‖‖𝑞‖
𝛼𝐴 ∫

𝑡

0
‖𝑢1(𝑠) − 𝑢2(𝑠)‖𝑑 𝑠 +

√

1
2𝜖 𝛼𝐴

‖𝑓1 − 𝑓2‖∗ . (5.10)

Now, we use Gronwall’s inequality (cf. [25, Lemma 7.24]) to obtain

‖𝑢1(𝑡) − 𝑢2(𝑡)‖ ≤ 𝑒

√

2‖𝑅‖‖𝑞‖
𝛼𝐴

𝑇
√

1
2𝜖 𝛼𝐴

‖𝑓1 − 𝑓2‖∗ . (5.11)

Finally, we utilize (5.11) to derive the inequality that

‖𝑢1 − 𝑢2‖ ≤ 𝑒

√

2‖𝑅‖‖𝑞‖
𝛼𝐴

𝑇
√

𝑇
2𝜖 𝛼𝐴

‖𝑓1 − 𝑓2‖∗ , (5.12)

which shows the Lipschitz continuity of 𝑢 respect to 𝑓 . ■

6. Application in contact mechanics

In this section, we study a frictional contact problem between a viscoelastic body and a rigid foundation. The viscoelastic body
ccupies a domain 𝛺 ⊂ R𝑑 with a Lipschitz boundary 𝛤 . The boundary is divided into three measurable parts 𝛤1, 𝛤2 and 𝛤3, and
𝑑 − 1)-dimensional measure |𝛤1| > 0. The body is fixed on 𝛤1, thus the displacement field vanishes there. A volume force of density
0 acts in 𝛺, and a surface contraction of density 𝒇 2 acts on 𝛤2. On 𝛤3, the body is in frictional contact with the foundation, which

s made of a rigid obstacle covered with a layer of elastic material. A unilateral constraint condition combined with Tresca friction
aw [25] is used to describe the frictional contact behavior.

We recall the canonical inner product and norm in R𝑑 that

𝒖 ⋅ 𝒗 = 𝑢𝑖𝑣𝑖, |𝒖| = (𝒖, 𝒖) 12 f or all 𝒖, 𝒗 ∈ R𝑑 .

Let S𝑑 be the space of 𝑑 × 𝑑 symmetric matrices. The corresponding inner product and norm are defined by

𝝈 ⋅ 𝝉 = 𝜎𝑖𝑗𝜏𝑖𝑗 , |𝝉| = (𝝉 , 𝝉) 12 f or all 𝝈, 𝝉 ∈ S𝑑 .

Since 𝛤 is Lipschitz, the outward unit normal 𝝂 exists a.e. on 𝛤 . The quantities 𝑣𝜈 ∶= 𝒗 ⋅ 𝝂 and 𝒗𝜏 ∶= 𝒗− 𝑣𝜈𝝂 are the normal and
angential components of 𝒗, respectively. For a stress tensor 𝝈, 𝜎 ∶= (𝝈 𝝂) ⋅𝝂 and 𝝈 ∶= 𝝈 𝝂−𝜎 𝝂 represent the normal and tangential
𝜈 𝜏 𝜈
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components of 𝝈, respectively. For a displacement field 𝒖, 𝜺(𝒖) ∶= (∇𝒖 + (∇𝒖)𝑇 )∕2 is the linearized strain tensor. Denote by 𝒖̇ the
time derivative of 𝒖. The classical formulation of the frictional contact problem is as follows.

Problem 6.1. Find a displacement 𝒖 ∶ 𝛺 × 𝐼 → R𝑑 and a stress field 𝝈 ∶ 𝛺 × 𝐼 → S𝑑 such that for a.e. 𝑡 ∈ 𝐼 ,

𝝈(𝑡) = 𝜺(𝒖̇(𝑡)) + 𝜺(𝒖(𝑡)) + ∫ 𝑡0 (𝑡 − 𝑠)𝜺(𝒖(𝑠))𝑑 𝑠 in 𝛺 , (6.1)

Div𝝈(𝑡) + 𝒇0(𝑡) = 𝟎 in 𝛺 , (6.2)

𝒖(𝑡) = 𝟎 on 𝛤1, (6.3)

𝝈(𝑡)𝝂 = 𝒇2(𝑡) on 𝛤2, (6.4)

𝑢𝜈 (𝑡) ≤ 𝑔 , 𝜎𝜈 (𝑡) + 𝜉𝜈 (𝑡) ≤ 0,
(𝜎𝜈 (𝑡) + 𝜉𝜈 (𝑡))(𝑢𝜈 (𝑡) − 𝑔) = 0,
𝜉𝜈 (𝑡) ∈ 𝜕 𝜓𝜈 (𝑢𝜈 (𝑡))

⎫

⎪

⎬

⎪

⎭

on 𝛤3, (6.5)

|𝝈𝜏 (𝑡)| ≤ 𝐹𝑏, −𝝈𝜏 (𝑡) = 𝐹𝑏𝒖𝜏 (𝑡)∕|𝒖𝜏 (𝑡)| if 𝒖𝜏 (𝑡) ≠ 𝟎 on 𝛤3, (6.6)

and

𝒖(0) = 𝒖0 in 𝛺 . (6.7)

We give a brief description on Problem 6.1. Eq. (6.1) is the constitutive law of the viscoelastic material, where ,  and 
describe the viscous, elastic and relaxation properties, respectively, and the integration term characterizes the long memory of the
material. Relation (6.2) is the equilibrium equation, where Div is the divergence operator defined by Div𝝈 = ( 𝜕 𝜎𝑖𝑗𝜕 𝑥𝑗 ), 𝒇 𝟎 is the volume
orce density acting on 𝛺. The body is clamped on 𝛤1. A surface traction of density 𝒇2 is applied on 𝛤2. The relation (6.5) is a

unilateral constraint condition on 𝛤3. The relation (6.6) is the Tresca law for friction. In (6.5), the function 𝑔 denotes the thickness
of the elastic layer, and 𝑢𝜈 ≤ 𝑔 sets a restriction on the normal displacement. If the normal penetration does not reach the bound
𝑔, i.e., 𝑢𝜈 < 𝑔, the relation −𝜎𝜈 = 𝜉𝜈 ∈ 𝜕 𝜓𝜈 (𝑢𝜈 ) holds, which is the usual normal compliance condition. In (6.6), 𝐹𝑏 represents the
riction bound. When |𝝈𝜏 | < 𝐹𝑏, the material point is in the stick zone; when |𝝈𝜏 | = 𝐹𝑏, i.e., the friction traction reaches the bound,

the material point is in the slip zone. Eq. (6.7) is the initial condition. For details of this kind of contact models, we refer the reader
o [11,27].

To introduce a weak formulation of Problem 6.1, we need an evolution triple of spaces. Define

𝑉 = {𝒗 = (𝑣𝑖) ∈ 𝐻1(𝛺;R𝑑 ) | 𝒗 = 𝟎 a.e. on 𝛤1}

which is a subspace of 𝐻1(𝛺;R𝑑 ). Let 𝑉 ∗ be the dual space of 𝑉 . Define

𝐻 = 𝐿2(𝛺;R𝑑 )

and

 = {𝝉 = (𝜏𝑖𝑗 ) ∈ 𝐿2(𝛺;S𝑑 ) | 𝜏𝑖𝑗 = 𝜏𝑗 𝑖, 1 ≤ 𝑖, 𝑗 ≤ 𝑑}.

Moreover, the space  is equipped with the inner product

(𝝉 ,𝝈) = ∫𝛺
𝜏𝑖𝑗 (𝒙)𝜎𝑖𝑗 (𝒙)𝑑 𝑥 f or all 𝝉 ,𝝈 ∈ .

On 𝑉 , an inner product is defined by

(𝒖, 𝒗)𝑉 =
(

𝜺(𝒖), 𝜺(𝒖)
)

 f or all 𝒖, 𝒗 ∈ 𝑉 .

Since |𝛤1| > 0, it follows from Korn’s inequality that 𝑉 is a Hilbert space. Then, 𝑉 ⊂ 𝐻 ⊂ 𝑉 ∗ forms an evolution triple. Besides, we
define

𝑈 = {𝒗 ∈ 𝑉 | 𝑣𝜈 ≤ 𝑔 a.e. on 𝛤3}

which is a nonempty, closed and convex subset of 𝑉 . Denote 𝑋 = 𝐿2(𝛤3). Furthermore, we define a space of fourth-order tensor
fields

∞ = {𝑸 = (𝑄𝑖𝑗 𝑘𝑙) | 𝑄𝑖𝑗 𝑘𝑙 = 𝑄𝑗 𝑖𝑘𝑙 = 𝑄𝑘𝑙 𝑖𝑗 ∈ 𝐿∞(𝛺), 1 ≤ 𝑖, 𝑗 , 𝑘, 𝑙 ≤ 𝑑}.

This is a Banach space with the norm defined by

‖𝑸‖∞
=

∑

1≤𝑖,𝑗 ,𝑘,𝑙≤𝑑
‖𝑄𝑖𝑗 𝑘𝑙‖𝐿∞(𝛺).

Define 𝛾𝜈 ∶ 𝑉 → 𝑋 by 𝛾𝜈𝒗 = 𝑣𝜈 and 𝛾𝜏 ∶ 𝑉 → 𝐿2(𝛤3;R𝑑 ) by 𝛾𝜏𝒗 = 𝒗𝜏 , i.e., 𝛾𝜈 and 𝛾𝜏 denote the trace operators for the normal
and tangential components on 𝛤 , respectively.
3
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Assumptions on the data of Problem 6.1 are listed as follows. On the viscosity tensor , assume
⎧

⎪

⎪

⎨

⎪

⎪

⎩

 ∶ 𝛺 → ∞ sat isf ies t hat
(a)  = (𝑎𝑖𝑗 𝑘𝑙) ∈ ∞;
(b) t her e exist s a const ant 𝛼1 > 0 such t hat

𝜺 ⋅ 𝜺 ≥ 𝛼1|𝜺|2 f or all 𝜺 ∈ S𝑑 , a.e. in 𝛺 .
(6.8)

On the elasticity tensor , assume
⎧

⎪

⎪

⎨

⎪

⎪

⎩

 ∶ 𝛺 → ∞ sat isf ies t hat
(a)  = (𝑏𝑖𝑗 𝑘𝑙) ∈ ∞;
(b) t her e exist s a const ant 𝛼2 > 0 such t hat

𝜺 ⋅ 𝜺 ≥ 𝛼2|𝜺|2 f or all 𝜺 ∈ S𝑑 , a.e. in 𝛺 .
(6.9)

For the relaxation tensor , assume

 ∶ 𝐼 → Q∞ is Lipschit z cont inuous wit h a const ant 𝐿 > 0. (6.10)

On the function 𝜓𝜈 , assume
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜓𝜈 ∶ 𝛤3 × R → R sat isf ies t hat
(a) 𝜓𝜈 (𝒙, ⋅) is locally Lipschit z on R f or a.e. 𝒙 ∈ 𝛤3;
(b) 𝜓𝜈 (⋅, 𝑟) is measur able on 𝛤3 f or any 𝑟 ∈ R, and t her e exist s 𝑒 ∈ 𝐿2(𝛤3)

such t hat 𝜓𝜈 (⋅, 𝑒(⋅)) ∈ 𝐿1(𝛤3);
(c) t her e exist 𝑐0, 𝑐1 > 0 such t hat |𝜕 𝜓𝜈 (𝑟)| ≤ 𝑐0 + 𝑐1|𝑟| ∀ 𝑟 ∈ R;
(d) t her e exist s 𝛼3 > 0 such t hat
𝜓0
𝜈 (𝑟1; 𝑟2 − 𝑟1) + 𝜓0

𝜈 (𝑟2; 𝑟1 − 𝑟2) ≤ 𝛼3|𝑟1 − 𝑟2|
2 ∀ 𝑟1, 𝑟2 ∈ R.

(6.11)

On the densities of volume force 𝒇0 and surface contraction 𝒇2, assume

𝒇0 ∈ 𝐻1(𝐼 ;𝐿2(𝛺;R𝑑 )), 𝒇2 ∈ 𝐻1(𝐼 ;𝐿2(𝛤2;R𝑑 )). (6.12)

For the functions 𝐹𝑏 and 𝑔, assume

𝐹𝑏 and 𝑔 ar e measur able on 𝛤3, 𝐹𝑏(𝒙) and 𝑔(𝒙) ar e nonnegat ive f or a.e. 𝒙 ∈ 𝛤3. (6.13)

On the parameters 𝛼2 and 𝛼3, assume

𝛼2 ≥ 𝛼3‖𝛾𝜈‖
2. (6.14)

On the initial displacement 𝒖0, assume

𝒖0 ∈ 𝑈 . (6.15)

By the Riesz representation theorem, we define a function 𝒇 ∶ 𝐼 → 𝑉 ∗ by

⟨𝒇 (𝑡), 𝒗⟩ = (𝒇0(𝑡), 𝒗)𝐿2(𝛺;R𝑑 ) + (𝒇2(𝑡), 𝒗)𝐿2(𝛤2;R𝑑 ) f or all 𝒗 ∈ 𝑉 , a.e. 𝑡 ∈ 𝐼 .

Following a standard approach (cf. [3,25]), we can derive the following weak formulation for Problem 6.1.

Problem 6.2. Find a displacement 𝐮 ∶ 𝛺 × 𝐼 → R𝑑 such that for a.e. 𝑡 ∈ 𝐼 ,
(

𝜺(𝒖̇(𝑡)) + 𝜺(𝒖(𝑡)) + ∫

𝑡

0
(𝑡 − 𝑠)𝜺(𝒖(𝑠))𝑑 𝑠, 𝜺(𝒗) − 𝜺(𝒖(𝑡))

)


+ ∫𝛤3

𝜓0
𝜈 (𝑢𝜈 (𝑡); 𝑣𝜈 − 𝑢𝜈 (𝑡))𝑑 𝛤

+ ∫𝛤3
𝐹𝑏(|𝒗𝜏 | − |𝒖𝜏 (𝑡)|)𝑑 𝛤 ≥ ⟨𝒇 (𝑡), 𝒗 − 𝒖(𝑡)⟩ ∀ 𝒗 ∈ 𝑈 , (6.16)

and

𝒖(0) = 𝒖0. (6.17)

Now we apply Theorem 5.3 to study Problem 6.2. Define an operator 𝐴 ∶ 𝑉 → 𝑉 ∗ by

⟨𝐴𝒗1, 𝒗2⟩ =
(

𝜺(𝒗1), 𝜺(𝒗2)
)

 ∀ 𝒗1, 𝒗2 ∈ 𝑉 . (6.18)

Define an operator 𝐵 ∶ 𝑉 → 𝑉 ∗ by

⟨𝐵𝒗1, 𝒗2⟩ =
(

𝜺(𝒗1), 𝜺(𝒗2)
)

 ∀ 𝒗1, 𝒗2 ∈ 𝑉 . (6.19)

For all 𝒘1,𝒘2 ∈  , a.e. 𝑡 ∈ 𝐼 , define  ∶  → ∗ by

⟨(𝒘 )(𝑡),𝒘 (𝑡)⟩ =
( 𝑡

(𝑡 − 𝑠)𝜺(𝒘 (𝑠))𝑑 𝑠, 𝜺(𝒘 (𝑡))
)

. (6.20)
1 2 ∫0 1 2 

13 



W. Xu et al.

v

s

𝐿

Journal of Computational and Applied Mathematics 459 (2025) 116366 
Define a functional 𝛹 ∶ 𝑋 → R by

𝛹 (𝑧) = ∫𝛤3
𝜓𝜈 (𝑧) 𝑑 𝛤 ∀ 𝑧 ∈ 𝑋 , (6.21)

and define 𝛷 ∶ 𝑉 → R by

𝛷(𝒗) = ∫𝛤3
𝐹𝑏|𝒗𝜏 | 𝑑 𝛤 ∀ 𝒗 ∈ 𝑉 . (6.22)

Then we obtain the following result.

Theorem 6.3. Assume (6.8)–(6.15). Then, there exists a unique solution 𝒖 to Problem 6.2. Moreover, the solution 𝒖 depends Lipschitz
continuously on 𝒇 .

Proof. Let us verify all the assumptions of Theorem 5.3 for Problem 6.2. By (6.8), 𝐻(𝐴) is valid with 𝛼𝐴 = 𝛼1. By (6.9), 𝐻(𝐵) is
alid with 𝛼𝐵 = 𝛼2. It follows from (6.10) that the operator  ∶  → ∗ is history-dependent with 𝐶𝑇 = ‖‖𝐶(𝐼 ;∞). It is easy to

see 𝐻(𝛷) is satisfied. According to (6.11), we know that 𝐻(𝛹 ) is satisfied with 𝑐0 = 𝑐0
√

|𝛤3|, 𝑐1 = 𝑐1 and 𝛼𝛹 = 𝛼3. Next, we check
𝛾𝜈 ∶ 𝑉 → 𝑋 satisfies the conditions in 𝐻(𝛾). Note that 𝛾𝜈 is linear and continuous by the Sobolev trace theorem (cf. [3,25]).
Moreover, for 𝜆 ∈ (0, 12 ), the embedding 𝑀2,2(𝐼 ;𝑉 , 𝑉 ∗) ⊂ 𝐿2(𝐼 ;𝐻

1
2+𝜆(𝛺)) is compact by Lemma 2.4. Let {𝒘𝑛} be a bounded

equence in 𝑀2,2(𝐼 ;𝑉 , 𝑉 ∗). Then, there exists a subsequence {𝒘𝑛𝑖} of {𝒘𝑛} and an element 𝒘 ∈ 𝐿2(𝐼 ;𝐻
1
2+𝜆(𝛺)), such that 𝒘𝑛𝑖

converges strongly to 𝒘 in 𝐿2(𝐼 ;𝐻
1
2+𝜆(𝛺)). Since the trace operator which maps 𝐿2(𝐼 ;𝐻

1
2+𝜆(𝛺)) to 𝐿2(𝐼 ;𝐻𝜆(𝛤3)) is continuous, and

2(𝐼 ;𝐻𝜆(𝛤3)) ⊂  , we obtain 𝛾̃𝜈𝒘𝑛𝑖 → 𝛾̃𝜈𝒘 in  (cf. [21]), where 𝛾̃𝜈 is the Nemytskii operator of 𝛾𝜈 . 𝐻(𝑓 ) and 𝐻(𝑃 ) are valid due to
(6.12) and (6.14), respectively. By Theorem 5.3, we obtain Problem 6.2 has a unique solution 𝒖. Finally, the Lipschitz continuous
dependence of 𝒖 on the right-hand side 𝒇 is derived from Theorem 5.4. ■
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