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 A B S T R A C T

This paper is devoted to studies of doubly-history dependent hemivariational inequalities in 
contact mechanics. Existence and uniqueness of a solution to the problem is proved by applying 
a basic well-posedness result combined with a Banach fixed-point argument. A fully discrete 
scheme is used to solve the problem, with temporal integrals approximated by rectangular rules 
and the spatial discretization done by the linear element method. Under suitable solution regu-
larity assumptions, an optimal order error bound is proved for the numerical solutions. Finally, 
simulation results on a numerical example are reported to illustrate numerical convergence 
orders.

1. Introduction

Hemivariational inequalities are a family of mathematical models for application problems with non-smooth non-convex features. 
They have attracted ever growing attention from the research communities. Comprehensive references on mathematical theory 
and applications of hemivariational inequalities include [1–3] from the early years, and [4–9] more recently. In the majority of 
publications on mathematical analysis of hemivariational inequalities, abstract surjectivity results on pseudomonotone operators 
are applied, together with fixed-point arguments. An alternative and more accessible approach for the mathematical theory of 
hemivariational inequalities has been developed without the need of the theory of pseudomonotone operators. This approach was 
developed in a series of papers [10–13], and is documented in the book [14]. Since no closed-form solution formulas are available 
for hemivariational inequalities arising in applications, numerical methods are needed to solve the problems. On the numerical 
solution of hemivariational inequalities, the reader is referred to the monograph [15] for early development, and to the two survey 
papers [16,17] for more recent development.

History-dependent hemivariational inequalities are a class of hemivariational inequalities including so-called history-dependent 
operators, which usually represent integrations of physical quantities with respect to the time variable, reflecting the fact that the 
current values of physical quantities depend on their values in the past. For mathematical theories of history-dependent problems, 
cf. [18–23], and for the numerical approximations of the problems, cf. [24–28].

Recently, doubly-history dependent variational inequalities have been studied in [29], which contain terms with repeated time 
integration. In this paper, we extend this framework to doubly-history dependent hemivariational inequalities, analyzing both 
solution well-posedness and numerical methods. Existence and uniqueness of a solution to the problem is shown by applying a 
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basic well-posedness result on hemivariational inequalities combined with a Banach fixed-point argument. A fully discrete scheme 
is introduced to solve the problem, and an optimal order error estimate is proved for the numerical solutions. We study the 
history-dependent hemivariational inequality in the context of a quasistatic contact problem for a viscoelastic material.

Descriptions and studies of hemivariational inequalities require the notions of the generalized directional derivatives and the 
generalized subdifferentials in the sense of Clarke. The reader is referred to [30,31] or [8] for detailed discussions of these notions 
and their properties.

The paper is organized as follows. In Section 2, a doubly-history dependent hemivariational inequality is introduced for a quasi-
static contact problem for viscoelastic material. In Section 3, a solution existence and uniqueness result is proved. In Section 4, a 
fully-discrete scheme is studied and an optimal order error estimate is derived for the linear finite element solutions. In Section 5, 
a numerical example is provided, showing the performance of the numerical scheme.

2. A doubly-history dependent hemivariational inequality in viscoelastic contact

We consider a quasi-static contact problem for a viscoelastic material. The physical setting of the problem is as follows. The 
configuration of the viscoelastic body is represented by a Lipschitz domain 𝛺 ⊂ R𝑑 , 𝑑 being the dimension of the spatial domain. 
The boundary 𝛤 = 𝜕𝛺 is split into three measurable parts 𝛤1, 𝛤2 and 𝛤3; the portion 𝛤3 is further split into two parts: 𝛤3,1 and 𝛤3,2
where different contact conditions will be specified. We assume meas (𝛤1) > 0 and meas (𝛤3,1) + meas (𝛤3,2) > 0. The body is subject 
to the action of volume forces of a total density 𝒇0 in 𝛺 and surface tractions of a total density 𝒇2 on 𝛤2, and it is fixed on 𝛤1. We 
assume a frictionless contact with unilateral constraint in the velocity variable on 𝛤3,1, and a general normal damped response and 
friction law expressed in a subdifferential form on 𝛤3,2. We are interested in the deformation of the body in a time interval [0, 𝑇 ].

Next we introduce some notations in mechanics. Let R𝑑 be a 𝑑-dimensional vector space. For 𝒗 ∈ R𝑑 , 𝑣𝑖 ∈ R for 1 ≤ 𝑖 ≤ 𝑑. The 
canonical inner product and norm on R𝑑 are defined by

𝒖 ⋅ 𝒗 = 𝑢𝑖𝑣𝑖, ‖𝒗‖R𝑑 = (𝒗 ⋅ 𝒗)1∕2 for 𝒖, 𝒗 ∈ R𝑑 ,

where summation convention on a repeated index is adopted. The symbol 𝝂 denotes the unit outward normal vector defined on 𝛤 , 
𝑣𝜈 = 𝒗 ⋅ 𝝂 and 𝒗𝜏 = 𝒗 − 𝑣𝜈𝝂 denotes the normal and tangential components of 𝒗, respectively.

Let S𝑑 be the space of symmetric matrices of order 𝑑. For 𝝉 = (𝜏𝑖𝑗 ) ∈ S𝑑 , 𝜏𝑖𝑗 = 𝜏𝑗𝑖 ∈ R for 1 ≤ 𝑖, 𝑗 ≤ 𝑑. The canonical inner product 
and norm on the space S𝑑 are defined by

𝝈 ⋅ 𝝉 = 𝜎𝑖𝑗𝜏𝑖𝑗 , ‖𝝉‖S𝑑 = (𝝉 ⋅ 𝝉)1∕2 for 𝝈, 𝝉 ∈ S𝑑 .

The notation 𝝈 stands for a stress tensor, 𝜎𝜈 = (𝝈𝝂) ⋅ 𝝂 and 𝝈𝜏 = 𝝈𝝂 − 𝜎𝜈𝝂 stands for the normal and tangential components of 𝝈, 
respectively.

The classical formulation of the contact problem is to find a displacement field 𝒖∶𝛺 × [0, 𝑇 ] and a stress field 𝝈 ∶𝛺 × [0, 𝑇 ] such 
that for 𝑡 ∈ [0, 𝑇 ],

𝝈(𝑡) = 𝜺(𝒖′(𝑡)) + 𝜺(𝒖(𝑡)) + ∫

𝑡

0
(𝑡 − 𝑠) 𝜺(𝒖(𝑠)) 𝑑𝑠 in 𝛺, (2.1)

Div𝝈(𝑡) + 𝒇0(𝑡) = 𝟎 in 𝛺, (2.2)

𝒖(𝑡) = 𝟎 on 𝛤1, (2.3)

𝝈(𝑡)𝝂 = 𝒇2(𝑡) on 𝛤2, (2.4)

𝑢′𝜈 (𝑡) ≤ 0, 𝜎𝜈 (𝑡) ≤ 0, 𝜎𝜈 (𝑡) 𝑢′𝜈(𝑡) = 0, 𝝈𝜏 (𝑡) = 0 on 𝛤3,1, (2.5)

− 𝜎𝜈 (𝑡) ∈ 𝜕𝜓𝜈 (𝑢′𝜈 (𝑡)), −𝝈𝜏 (𝑡) ∈ 𝜕𝜓𝜏 (𝒖′𝜏 (𝑡)) on 𝛤3,2, (2.6)

and 

𝒖(0) = 𝒖0 in 𝛺. (2.7)

A brief interpretation of the above equations and relations is as follows. Eq.  (2.1) is a general constitutive law for viscoelastic 
materials, in which, 𝜺 is a linear strain tensor,  is a viscosity tensor,  is an elasticity tensor,  is a relaxation tensor, and the 
integral term describes the long memory character of the materials (cf. [20]). Here, a prime on a variable denotes the time derivative 
of the variable. Formula (2.2) is the equilibrium equation, in which Div denotes the divergence operator, 𝒇0 is the density of volume 
forces acting on the deformable body. Eq.  (2.3) is the displacement boundary condition on 𝛤1, and Eq.  (2.4) is the traction boundary 
condition on 𝛤2. Relations (2.5) describe a frictionless unilateral constraint on 𝛤3,1 (cf. [32]). Relations (2.6) are the multi-valued 
contact conditions on 𝛤3,2, following [8, (6.42)] and [8, (6.47)]. The symbols 𝜕𝜓𝜈 and 𝜕𝜓𝜏 denote the Clarke subdifferential of the 
given functions 𝜓𝜈 and 𝜓𝜏 , respectively. Finally, formula (2.7) is an initial displacement field.

We will study the contact problem through its weak form. For this purpose, we first introduce some function spaces and sets. 
The function space for stress and strain fields at a fixed time is

𝑄 = 𝐿2(𝛺)𝑑×𝑑 ,
sym
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which is a Hilbert space with the canonical inner product

(𝝈, 𝝉)𝑄 = ∫𝛺
𝜎𝑖𝑗𝜏𝑖𝑗𝑑𝑥, 𝝈, 𝝉 ∈ 𝑄

and its induced norm. The function space for displacement and velocity fields at a fixed time is
𝑉 =

{

𝒗 ∈ 𝐻1(𝛺;R𝑑 ) ∣ 𝒗 = 𝟎 on 𝛤1
}

.

Since meas (𝛤1) > 0, by the Korn inequality ([33, page 79]), 𝑉  is a Hilbert space with the inner product (𝒖, 𝒗)𝑉 = (𝜺(𝒖), 𝜺(𝒗))𝑄. 
Moreover, the associated norm ‖𝒗‖𝑉 = ‖𝜺(𝒗)‖𝑄 is equivalent to the standard 𝐻1(𝛺;R𝑑 )-norm on 𝑉 . The set of admissible velocity 
fields is

𝐾 =
{

𝒗 ∈ 𝑉 ∣ 𝑣𝜈 ≤ 0 a.e. on 𝛤3,1
}

.

We further introduce the space of bounded, symmetric fourth-order tensor fields
𝑄∞ =

{

 = (𝑖𝑗𝑘𝑙)1≤𝑖,𝑗,𝑘,𝑙≤𝑑 ∣ 𝑖𝑗𝑘𝑙 = 𝑗𝑖𝑘𝑙 = 𝑘𝑙𝑖𝑗 ∈ 𝐿∞(𝛺), 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 𝑑
}

.

Regarding the problem data, we make the following assumptions.
𝐻() ∶𝛺 × S𝑑 → S𝑑 ,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(a) (⋅, 𝜺) is measurable on 𝛺 for all 𝜺 ∈ S𝑑 ;

(b) (𝒙, 𝟎) = 𝟎 for a.e. 𝒙 ∈ 𝛺;

(c) for a constant 𝐿 > 0,

‖(𝒙, 𝜺1) −(𝒙, 𝜺2)‖S𝑑 ≤ 𝐿‖𝜺1 − 𝜺2‖S𝑑 ∀ 𝜺1, 𝜺2 ∈ S𝑑 , a.e. 𝒙 ∈ 𝛺;

(d) for a constant 𝑚 > 0,
(

(𝒙, 𝜺1) −(𝒙, 𝜺2)
)

⋅ (𝜺1 − 𝜺2) ≥ 𝑚‖𝜺1 − 𝜺2‖2S𝑑 ∀ 𝜺1, 𝜺2 ∈ S𝑑 , a.e. 𝒙 ∈ 𝛺.

𝐻() ∶𝛺 × S𝑑 → S𝑑 is such that (⋅, 𝟎) ∈ 𝑄, (⋅, 𝜺) is measurable on 𝛺 for all 𝜺 ∈ S𝑑 , and
‖(𝒙, 𝜺1) − (𝒙, 𝜺2)‖S𝑑 ≤ 𝐿‖𝜺1 − 𝜺2‖S𝑑 ∀ 𝜺1, 𝜺2 ∈ S𝑑 , a.e. 𝒙 ∈ 𝛺 with 𝐿 > 0.

𝐻𝑎()  ∈ 𝐶([0, 𝑇 ];𝑄∞).
𝐻𝑎(𝒇 ) 𝒇0 ∈ 𝐶([0, 𝑇 ];𝐿2(𝛺;R𝑑 )), 𝒇2 ∈ 𝐶([0, 𝑇 ];𝐿2(𝛤2;R𝑑 )).
𝐻(𝜓𝜈 )  For 𝜓𝜈 ∶𝛤3,2 × R → R,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) 𝜓𝜈(⋅, 𝑟) is measurable on 𝛤3,2 for all 𝑟 ∈ R, 𝜓𝜈 (⋅, 0) ∈ 𝐿1(𝛤3,2);

(b) 𝜓𝜈 (𝒙, ⋅) is Lipschitz continuous on R with a Lipschitz constant 𝑐0𝜈 ≥ 0 for a.e. 𝒙 ∈ 𝛤3,2;

(c) 𝜓0
𝜈 (𝒙, 𝑟1; 𝑟2 − 𝑟1) + 𝜓

0
𝜈 (𝒙, 𝑟2; 𝑟1 − 𝑟2) ≤ 𝛼𝜓𝜈 |𝑟1 − 𝑟2|

2

for a.e. 𝒙 ∈ 𝛤3,2, all 𝑟1, 𝑟2 ∈ R with 𝛼𝜓𝜈 ≥ 0.

𝐻(𝜓𝜏 )  For 𝜓𝜏 ∶𝛤3,2 × R𝑑 → R,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a) 𝜓𝜏 (⋅, 𝝃) is measurable on 𝛤3,2 for all 𝝃 ∈ R𝑑 , 𝜓𝜏 (⋅, 𝟎) ∈ 𝐿1(𝛤3,2);

(b) 𝜓𝜏 (𝒙, ⋅) is Lipschitz continuous on R𝑑 with a Lipschitz constant 𝑐0𝜏 ≥ 0 for a.e. 𝒙 ∈ 𝛤3,2;

(c) 𝜓0
𝜏 (𝒙, 𝝃1; 𝝃2 − 𝝃1) + 𝜓0

𝜏 (𝒙, 𝝃2; 𝝃1 − 𝝃2) ≤ 𝛼𝜓𝜏 ‖𝝃1 − 𝝃2‖2R𝑑
for a.e. 𝒙 ∈ 𝛤3, all 𝝃1, 𝝃2 ∈ R𝑑 with 𝛼𝜓𝜏 ≥ 0.

𝐻(𝒖0) 𝒖0 ∈ 𝑉 .
By the Riesz representation theorem, at any 𝑡 ∈ [0, 𝑇 ], we can define 𝒇 (𝑡) ∈ 𝑉 ∗ through the relation

⟨𝒇 (𝑡), 𝒗⟩ = (𝒇0(𝑡), 𝒗)𝐿2(𝛺;R𝑑 ) + (𝒇2(𝑡), 𝒗)𝐿2(𝛤2;R𝑑 ) 𝒗 ∈ 𝑉 .

Due to 𝐻𝑎(𝒇 ), we have 𝒇 ∈ 𝐶([0, 𝑇 ];𝑉 ∗). By a standard procedure, one can obtain the following weak formulation of the contact 
problem (2.1)–(2.7).

Problem 2.1.  Find a displacement field 𝒖∶ [0, 𝑇 ] → 𝑉  such that for 𝑡 ∈ [0, 𝑇 ],

𝒖′(𝑡) ∈ 𝐾,
(

𝜺(𝒖′(𝑡)) + 𝜺(𝒖(𝑡)) + ∫

𝑡

0
(𝑡 − 𝑠) 𝜺(𝒖(𝑠)) 𝑑𝑠, 𝜺(𝒗 − 𝒖′(𝑡))

)

𝑄

+ ∫𝛤3,2

[

𝜓0
𝜈 (𝑢

′
𝜈 (𝑡); 𝑣𝜈 − 𝑢

′
𝜈 (𝑡)) + 𝜓

0
𝜏 (𝒖

′
𝜏 (𝑡); 𝒗𝜏 − 𝒖′𝜏 (𝑡))

]

𝑑𝑎 ≥ ⟨𝒇 (𝑡), 𝒗 − 𝒖′(𝑡)⟩ ∀ 𝒗 ∈ 𝐾,

and

𝒖(0) = 𝒖0 in 𝛺.
3 
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It will be convenient to reformulate the problem in terms of the velocity variable
𝒘(𝑡) = 𝒖′(𝑡).

Note that given 𝒘(𝑡) and the initial displacement 𝒖0, we can recover the displacement 𝒖(𝑡) by

𝒖(𝑡) = 𝐼𝒘(𝑡) ≡ 𝒖0 + ∫

𝑡

0
𝒘(𝑠) 𝑑𝑠.

Then Problem  2.1 can be reformulated in terms of 𝒘.

Problem 2.2.  Find a velocity field 𝒘∶ [0, 𝑇 ] → 𝑉  such that for 𝑡 ∈ [0, 𝑇 ],

𝒘(𝑡) ∈ 𝐾,
(

𝜺(𝒘(𝑡)) + 𝜺(𝐼𝒘(𝑡)) + ∫

𝑡

0
(𝑡 − 𝑠) 𝜺(𝐼𝒘(𝑠)) 𝑑𝑠, 𝜺(𝒗 −𝒘(𝑡))

)

𝑄

+ ∫𝛤3,2

[

𝜓0
𝜈 (𝑤𝜈 (𝑡); 𝑣𝜈 −𝑤𝜈 (𝑡)) + 𝜓

0
𝜏 (𝒘𝜏 (𝑡); 𝒗𝜏 −𝒘𝜏 (𝑡))

]

𝑑𝑎 ≥ ⟨𝒇 (𝑡), 𝒗 −𝒘(𝑡)⟩ ∀ 𝒗 ∈ 𝐾. (2.8)

Note that the hemivariational inequality (2.8) contains a doubly-history dependent term

∫

𝑡

0
(𝑡 − 𝑠) 𝜺(𝐼𝒘(𝑠)) 𝑑𝑠.

For this reason, (2.8) is called a doubly-history dependent hemivariational inequality.
When 𝛤3,2 = ∅, Problem  2.2 is reduced to a variational inequality of the first kind.

3. Existence and uniqueness result of the hemivariational inequality

In this section, we prove the solution existence and uniqueness of Problem  2.2 by a Banach fixed-point argument.
We rewrite (2.8) as

𝒘(𝑡) ∈ 𝐾,
(

𝜺(𝒘(𝑡)), 𝜺(𝒗 −𝒘(𝑡))
)

𝑄 + ∫𝛤3,2

[

𝜓0
𝜈 (𝑤𝜈 (𝑡); 𝑣𝜈 −𝑤𝜈 (𝑡)) + 𝜓

0
𝜏 (𝒘𝜏 (𝑡); 𝒗𝜏 −𝒘𝜏 (𝑡))

]

𝑑𝑎

≥ ⟨𝒇 (𝑡), 𝒗 −𝒘(𝑡)⟩ −
(

𝜺(𝐼𝒘(𝑡)) + ∫

𝑡

0
(𝑡 − 𝑠) 𝜺(𝐼𝒘(𝑠)) 𝑑𝑠, 𝜺(𝒗 −𝒘(𝑡))

)

𝑄 ∀ 𝒗 ∈ 𝐾,

and introduce an intermediate hemivariational inequality: with 𝒘̃(𝑡) ∈ 𝐾 given,

𝒘(𝑡) ∈ 𝐾,
(

𝜺(𝒘(𝑡)), 𝜺(𝒗 −𝒘(𝑡))
)

𝑄 + ∫𝛤3,2

[

𝜓0
𝜈 (𝑤𝜈 (𝑡); 𝑣𝜈 −𝑤𝜈 (𝑡)) + 𝜓

0
𝜏 (𝒘𝜏 (𝑡); 𝒗𝜏 −𝒘𝜏 (𝑡))

]

𝑑𝑎

≥ ⟨𝒇 (𝑡), 𝒗 −𝒘(𝑡)⟩ −
(

𝜺(𝐼𝒘̃(𝑡)) + ∫

𝑡

0
(𝑡 − 𝑠) 𝜺(𝐼𝒘̃(𝑠)) 𝑑𝑠, 𝜺(𝒗 −𝒘(𝑡))

)

𝑄 ∀ 𝒗 ∈ 𝐾. (3.1)

Also, we recall a result on stationary hemivariational inequalities (cf. [34, Theorem 3.1]).

Theorem 3.1.  Assume
(𝐴1) 𝑋 is a reflexive Banach space, and 𝐾 is a non-empty, closed and convex subset of 𝑋.
(𝐴2) For 𝑖 = 1, 2, 𝑋𝑖 is a Banach space, 𝛾𝑖 ∈ (𝑋,𝑋𝑖): for a constant 𝑐𝑖 > 0,

‖𝛾𝑖𝑣‖𝑋𝑖 ≤ 𝑐𝑖‖𝑣‖𝑋 ∀ 𝑣 ∈ 𝑋.

(𝐴3) 𝐴∶𝑋 → 𝑋∗ is bounded, continuous and strongly monotone: for a constant 𝑚𝐴 > 0,

⟨𝐴𝑣1 − 𝐴𝑣2, 𝑣1 − 𝑣2⟩ ≥ 𝑚𝐴‖𝑣1 − 𝑣2‖2𝑋 ∀ 𝑣1, 𝑣2 ∈ 𝑋.

(𝐴4) For 𝑖 = 1, 2, 𝐽𝑖 ∶𝑋𝑖 → R is locally Lipschitz continuous, and there exist constants 𝑐𝑖,0, 𝑐𝑖,1, 𝛼𝑖 ≥ 0 such that
‖𝜕𝐽𝑖(𝑧)‖𝑋∗

𝑖
≤ 𝑐𝑖,0 + 𝑐𝑖,1‖𝑧‖𝑋𝑖 ∀ 𝑧 ∈ 𝑋𝑖,

𝐽 0
𝑖 (𝑧1; 𝑧2 − 𝑧1) + 𝐽

0
𝑖 (𝑧2; 𝑧1 − 𝑧2) ≤ 𝛼𝑖‖𝑧1 − 𝑧2‖2𝑋𝑖 ∀ 𝑧1, 𝑧2 ∈ 𝑋𝑖.

(𝐴5)

𝛼1𝑐
2
1 + 𝛼2𝑐

2
2 < 𝑚𝐴.

(𝐴6)

𝑓 ∈ 𝑋∗.

Then there is a unique 𝑢 ∈ 𝐾 such that
⟨𝐴𝑢, 𝑣 − 𝑢⟩ + 𝐽 0

1 (𝛾1𝑢; 𝛾1𝑣 − 𝛾1𝑢) + 𝐽
0
2 (𝛾2𝑢; 𝛾2𝑣 − 𝛾2𝑢) ≥ ⟨𝑓, 𝑣 − 𝑢⟩ ∀ 𝑣 ∈ 𝐾.
4 
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In the study of Problem  2.2 as well as the auxiliary problem (3.1), we will make use of the following smallness condition
𝐻(𝑠) 𝛼𝜓𝜈𝜆

−1
𝜈 + 𝛼𝜓𝜏 𝜆

−1
𝜏 < 𝑚.

Here, 𝜆𝜈 > 0 is the smallest eigenvalue of the eigenvalue problem

∫𝛺
𝜺(𝒖) ⋅ 𝜺(𝒗) 𝑑𝑥 = 𝜆∫𝛤3,2

𝑢𝜈𝑣𝜈 𝑑𝑎 ∀ 𝒗 ∈ 𝑉 ,

whereas 𝜆𝜏 > 0 is the smallest eigenvalue of the eigenvalue problem

∫𝛺
𝜺(𝒖) ⋅ 𝜺(𝒗) 𝑑𝑥 = 𝜆∫𝛤3,2

𝒖𝜏 ⋅ 𝒗𝜏 𝑑𝑎 ∀ 𝒗 ∈ 𝑉 .

Lemma 3.2.  Assume 𝐻(), 𝐻(), 𝐻𝑎(), 𝐻𝑎(𝒇 ), 𝐻(𝜓𝜈), 𝐻(𝜓𝜏 ), 𝐻(𝒖0), and 𝐻(𝑠). Then for any 𝒘̃ ∈ 𝐶([0, 𝑇 ];𝐾), there exists a unique 
solution 𝒘 ∈ 𝐶([0, 𝑇 ];𝐾) to the hemivariational inequality (3.1).

Proof.  We use Theorem  3.1 with the following setting: 𝑋 = 𝑉 , 𝑋1 = 𝐿2(𝛤3,2), 𝑋2 = 𝐿2(𝛤3,2;R𝑑 ), 𝛾1𝒗 = 𝑣𝜈 and 𝛾2𝒗 = 𝒗𝜏 for 𝒗 ∈ 𝑉 , 
and

⟨𝐴𝒖, 𝒗⟩ =
(

𝜺(𝒖), 𝜺(𝒗)
)

𝑄 ∀ 𝒖, 𝒗 ∈ 𝑉 ,

𝐽1(𝑧) = ∫𝛤3,2
𝜓𝜈(𝑧) 𝑑𝑎 ∀ 𝑧 ∈ 𝑋1,

𝐽2(𝒛) = ∫𝛤3,2
𝜓𝜏 (𝒛) 𝑑𝑎 ∀ 𝒛 ∈ 𝑋2,

⟨𝑓, 𝒗⟩ = ⟨𝒇 (𝑡), 𝒗⟩ −
(

𝜺(𝐼𝒘̃(𝑡)) + ∫

𝑡

0
(𝑡 − 𝑠) 𝜺(𝐼𝒘̃(𝑠)) 𝑑𝑠, 𝜺(𝒗)

)

𝑄 ∀ 𝒗 ∈ 𝑉 , ∀ 𝑡 ∈ [0, 𝑇 ].

Then the assumptions (𝐴1)–(𝐴6) are satisfied with 𝑐1 = 𝜆−1∕2𝜈 , 𝑐2 = 𝜆−1∕2𝜏 , 𝑚𝐴 = 𝑚, 𝛼1 = 𝛼𝜓𝜈 , and 𝛼2 = 𝛼𝜓𝜏 . Moreover, (𝐴5) takes the 
form 𝐻(𝑠). Thus, by Theorem  3.1, for any 𝑡 ∈ [0, 𝑇 ], the problem

𝒘(𝑡) ∈ 𝐾,
(

𝜺(𝒘(𝑡)), 𝜺(𝒗 −𝒘(𝑡))
)

𝑄 + 𝐽 0
1 (𝑤𝜈 (𝑡); 𝑣𝜈 −𝑤𝜈 (𝑡)) + 𝐽

0
2 (𝒘𝜏 (𝑡); 𝒗𝜏 −𝒘(𝑡))

≥ ⟨𝒇 (𝑡), 𝒗 −𝒘(𝑡)⟩ −
(

𝜺(𝐼𝒘̃(𝑡)) + ∫

𝑡

0
(𝑡 − 𝑠) 𝜺(𝐼𝒘̃(𝑠)) 𝑑𝑠, 𝜺(𝒗 −𝒘(𝑡))

)

𝑄 ∀ 𝒗 ∈ 𝐾 (3.2)

has a unique solution. By a property of the generalized directional derivative of an integral functional (cf. [31, page 77], [8, Theorem 
3.47 (iv)]),

𝐽 0
1 (𝑤𝜈 (𝑡); 𝑣𝜈 −𝑤𝜈 (𝑡)) ≤ ∫𝛤3,2

𝜓0
𝜈 (𝑤𝜈 (𝑡); 𝑣𝜈 −𝑤𝜈 (𝑡)) 𝑑𝑎,

𝐽 0
2 (𝒘𝜏 (𝑡); 𝒗𝜏 −𝒘𝜏 (𝑡)) ≤ ∫𝛤3,2

𝜓0
𝜏 (𝒘𝜏 (𝑡); 𝒗𝜏 −𝒘𝜏 (𝑡)) 𝑑𝑎,

we see that the solution 𝒘(𝑡) ∈ 𝐾 of (3.2) is also a solution of (3.1). Uniqueness of the solution of (3.1) follows from the stated 
assumptions through a standard argument (cf. [16,35]).

To prove the continuity of 𝒘(𝑡) with respect to the variable 𝑡, let 𝑡1, 𝑡2 ∈ (0, 𝑇 ), 𝑡1 ≠ 𝑡2. Take 𝑡 = 𝑡1 and 𝒗 = 𝒘(𝑡2) in (3.1); then 
take 𝑡 = 𝑡2 and 𝒗 = 𝒘(𝑡1) in (3.1). Add the two resulting inequalities and derive an inequality of the form 

‖𝒘(𝑡1) −𝒘(𝑡2)‖𝑉 ≤ 𝑐3
(

𝑐4 ‖(𝑡1 − 𝑠) −(𝑡2 − 𝑠)‖𝑄∞
+ 𝑐5 |𝑡1 − 𝑡2| + ‖𝒇 (𝑡1) − 𝒇 (𝑡2)‖𝑉 ∗

)

, (3.3)

where 𝑐4 = 𝑇 ‖𝒖0‖𝑉 +𝑇 2
‖𝒘̃‖𝐶([0,𝑇 ];𝑉 ), 𝑐5 = ‖‖𝐶([0,𝑇 ];𝑄∞)(‖𝒖0‖𝑉 +𝑇 ‖𝒘̃‖𝐶([0,𝑇 ];𝑉 )+𝐿‖𝒘̃‖𝐶([0,𝑇 ];𝑉 )), and 𝑐3 = (𝑚−𝛼𝜓𝜈𝜆

−1
𝜈 −𝛼𝜓𝜏 𝜆

−1
𝜏 )−1. 

By 𝐻(𝑠), 𝐻𝑎() and 𝐻𝑎(𝒇 ), we have 𝒘 ∈ 𝐶([0, 𝑇 ];𝐾). ■

Based on Lemma  3.2, we prove an existence and uniqueness result on Problem  2.2.

Theorem 3.3.  Keep the assumptions stated in Lemma  3.2. Then, Problem  2.2 has a unique solution 𝒘 ∈ 𝐶([0, 𝑇 ];𝐾).

Proof.  For any 𝒘̃ ∈ 𝐶([0, 𝑇 ];𝐾), we define an operator 𝛷 by 𝛷𝒘̃ = 𝒘. Let us show that there exists a unique fixed point of 𝛷. For 
𝑖 = 1, 2, let 𝒘𝑖 ∈ 𝐶([0, 𝑇 ];𝐾) be the solution to (3.1) with fixed 𝒘̃𝑖 ∈ 𝐶([0, 𝑇 ];𝐾), i.e., for any 𝒗 ∈ 𝐾,

(

𝜺(𝒘1(𝑡)), 𝜺(𝒗 −𝒘1(𝑡))
)

𝑄 + ∫𝛤3,2

[

𝜓0
𝜈 (𝑤1,𝜈 (𝑡); 𝑣𝜈 −𝑤1,𝜈 (𝑡)) + 𝜓0

𝜏 (𝒘1,𝜏 (𝑡); 𝒗𝜏 −𝒘1,𝜏 (𝑡))
]

𝑑𝑎

≥ ⟨𝒇 (𝑡), 𝒗 −𝒘1(𝑡)⟩ −
(

𝜺(𝐼𝒘̃1(𝑡)) + ∫

𝑡

0
(𝑡 − 𝑠) 𝜺(𝐼𝒘̃1(𝑠)) 𝑑𝑠, 𝜺(𝒗 −𝒘1(𝑡))

)

𝑄, (3.4)

and
(

𝜺(𝒘2(𝑡)), 𝜺(𝒗 −𝒘2(𝑡))
)

𝑄 +
[

𝜓0
𝜈 (𝑤2,𝜈 (𝑡); 𝑣𝜈 −𝑤2,𝜈 (𝑡)) + 𝜓0

𝜏 (𝒘2,𝜏 (𝑡); 𝒗𝜏 −𝒘2,𝜏 (𝑡))
]

𝑑𝑎
∫𝛤3,2

5 
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≥ ⟨𝒇 (𝑡), 𝒗 −𝒘2(𝑡)⟩ −
(

𝜺(𝐼𝒘̃2(𝑡)) + ∫

𝑡

0
(𝑡 − 𝑠) 𝜺(𝐼𝒘̃2(𝑠)) 𝑑𝑠, 𝜺(𝒗 −𝒘2(𝑡))

)

𝑄. (3.5)

We take 𝒗 = 𝒘2(𝑡) in (3.4) and 𝒗 = 𝒘1(𝑡) in (3.5) respectively, and add the resulting inequalities to obtain 
(

𝜺(𝒘1(𝑡)) −𝜺(𝒘2(𝑡)), 𝜺(𝒘1(𝑡)) − 𝜺(𝒘2(𝑡))
)

𝑄 ≤
4
∑

𝑖=1
𝐺𝑖, (3.6)

where

𝐺1 = ∫𝛤3,2

[

𝜓0
𝜈 (𝑤1,𝜈 (𝑡);𝑤2,𝜈 (𝑡) −𝑤1,𝜈 (𝑡)) + 𝜓0

𝜈 (𝑤2,𝜈 (𝑡);𝑤1,𝜈 (𝑡) −𝑤2,𝜈 (𝑡))
]

𝑑𝑎,

𝐺2 = ∫𝛤3,2

[

𝜓0
𝜏 (𝒘1,𝜏 (𝑡);𝒘2,𝜏 (𝑡) −𝒘1,𝜏 (𝑡)) + 𝜓0

𝜏 (𝒘2,𝜏 (𝑡);𝒘1,𝜏 (𝑡) −𝒘2,𝜏 (𝑡))
]

𝑑𝑎,

𝐺3 =
(

𝜺(𝐼𝒘̃1(𝑡)) − 𝜺(𝐼𝒘̃2(𝑡)), 𝜺(𝒘2(𝑡) −𝒘1(𝑡))
)

𝑄,

𝐺4 =
(

∫

𝑡

0
(𝑡 − 𝑠) (𝜺(𝐼𝒘̃1(𝑠)) − 𝜺(𝐼𝒘̃2(𝑠))) 𝑑𝑠, 𝜺(𝒘2(𝑡) −𝒘1(𝑡))

)

𝑄.

From 𝐻()(d), we have 
𝑚‖𝒘1(𝑡) −𝒘2(𝑡)‖2𝑉 ≤

(

𝜺(𝒘1(𝑡)) −𝜺(𝒘2(𝑡)), 𝜺(𝒘1(𝑡)) − 𝜺(𝒘2(𝑡))
)

𝑄. (3.7)

𝐻(𝜓𝜈 )(c) is used on 𝐺1 to obtain 

𝐺1 ≤ ∫𝛤3,2
𝛼𝜓𝜈 |𝑤1,𝜈 (𝑡) −𝑤2,𝜈 (𝑡)|

2𝑑𝑎 ≤ 𝛼𝜓𝜈𝜆
−1
𝜈 ‖𝒘1(𝑡) −𝒘2(𝑡)‖2𝑉 . (3.8)

In addition, 𝐻(𝜓𝜏 )(c) is utilized on 𝐺2 to get 

𝐺2 ≤ ∫𝛤3,2
𝛼𝜓𝜏 ‖𝒘1,𝜏 (𝑡) −𝒘2,𝜏 (𝑡)‖2R𝑑 𝑑𝑎 ≤ 𝛼𝜓𝜏 𝜆

−1
𝜏 ‖𝒘1(𝑡) −𝒘2(𝑡)‖2𝑉 . (3.9)

On 𝐺3, the Cauchy–Schwarz inequality and the Lipschitz continuity of  are applied to derive 

𝐺3 ≤ 𝐿‖𝒘1(𝑡) −𝒘2(𝑡)‖𝑉 ∫

𝑡

0
‖𝒘̃1(𝑠) − 𝒘̃2(𝑠)‖𝑉 𝑑𝑠. (3.10)

Similarly, 𝐻𝑎() is used on 𝐺4 to get 

𝐺4 ≤ 𝑇 ‖‖𝐶([0,𝑇 ];𝑄∞)‖𝒘1(𝑡) −𝒘2(𝑡)‖𝑉 ∫

𝑡

0
‖𝒘̃1(𝑠) − 𝒘̃2(𝑠)‖𝑉 𝑑𝑠. (3.11)

Combining (3.6)–(3.11), we derive 

‖𝛷𝒘̃1(𝑡) −𝛷𝒘̃2(𝑡)‖𝑉 ≤ 𝑐3(𝐿 + 𝑇 ‖‖𝐶([0,𝑇 ];𝑄∞))∫

𝑡

0
‖𝒘̃1(𝑠) − 𝒘̃2(𝑠)‖𝑉 𝑑𝑠. (3.12)

Then, we use [18, Theorem 1] on (3.12) to conclude that there exists a unique 𝒘 satisfying 𝛷𝒘 = 𝒘. Thus, we finish the proof of 
Theorem  3.3. ■

On numerical analysis of Problem  2.2, a solution regularity 𝒘 ∈ 𝑊 1,1(0, 𝑇 ;𝐾) is required, which can be deduced by stronger 
assumptions on  and 𝑓 . Denote:

𝐻𝑏()  ∈ 𝑊 1,1(0, 𝑇 ;𝑄∞).
𝐻𝑏(𝒇 ) 𝒇0 ∈ 𝑊 1,1(0, 𝑇 ;𝐿2(𝛺;R𝑑 )), 𝒇2 ∈ 𝑊 1,1(0, 𝑇 ;𝐿2(𝛤2;R𝑑 )).

Lemma 3.4.  Assume 𝐻(), 𝐻(), 𝐻𝑏(), 𝐻𝑏(𝒇 ), 𝐻(𝜓𝜈 ), 𝐻(𝜓𝜏 ), 𝐻(𝒖0), and 𝐻(𝑠). Then, Problem  2.2 has a unique solution 
𝒘 ∈ 𝑊 1,1(0, 𝑇 ;𝐾).

The proof is similar to that of Theorem  3.3, and hence its details are omitted here. Using 𝐻𝑏() and 𝐻𝑏(𝒇 ) on (3.3), one can 
show that 𝒘 is absolutely continuous on [0, 𝑇 ]. Then the regularity 𝒘 ∈ 𝑊 1,1(0, 𝑇 ;𝐾) follows since 𝑉  is reflexive (cf. [36, Lemma 
2.31]).

4. Numerical analysis of the hemivariational inequality

We introduce and analyze a fully discrete scheme for Problem  2.2 in this section. For a positive integer 𝑁 , let 𝑘 = 𝑇 ∕𝑁 be 
the time step-size, and let 𝑡𝑛 = 𝑛𝑘, 0 ≤ 𝑛 ≤ 𝑁 , be the nodes. We will use the left endpoint rule for the numerical integration of a 
continuous function 𝑍:

∫

𝑡𝑛

0
𝑍(𝑠)𝑑𝑠 ≈ 𝑘

𝑛−1
∑

𝑗=0
𝑍(𝑡𝑗 ).
6 
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For simplicity, 𝛺 is assumed to be a polygon/polyhedron. The boundary 𝛤  is further divided as the following: 𝛤1 = ∪1≤𝑙≤𝑙1𝛤1,𝑙, 
𝛤2 = ∪1≤𝑙≤𝑙2𝛤2,𝑙, 𝛤3,1 = ∪1≤𝑙≤𝑙3,1𝛤3,1,𝑙 and 𝛤3,2 = ∪1≤𝑙≤𝑙3,2𝛤3,2,𝑙, where each subset is a line segment (if 𝑑 = 2) or a polygon (if 𝑑 = 3). 
Let { ℎ} be a regular family of partitions of 𝛺 into triangles/tetrahedrons such that if a side/face of an element has a non-trivial 
intersection with a boundary subset 𝛤1,𝑙, 𝛤2,𝑙, 𝛤3,1,𝑙 or 𝛤3,2,𝑙, then the side/face lies entirely on that boundary subset.

For each partition  ℎ, define
𝑉 ℎ = {𝒗ℎ ∈ 𝐶(𝛺)𝑑 | 𝒗ℎ|𝑇 ∈ P1(𝑇 ;R𝑑 ) for 𝑇 ∈  ℎ, 𝒗ℎ = 𝟎 on 𝛤1}

and

𝐾ℎ = {𝒗ℎ ∈ 𝑉 ℎ
| 𝑣ℎ𝜈 ≤ 𝟎 at node points on 𝛤3,1}.

Note that 𝑉 ℎ consists of continuous piecewise linear functions and 𝐾ℎ is a convex subset of 𝐾. The symbols 𝒘𝑛 = 𝒘(𝑡𝑛), 𝝈𝑛 = 𝝈(𝑡𝑛), 
𝒇𝑛 = 𝒇 (𝑡𝑛), 𝒇0𝑛 = 𝒇0(𝑡𝑛), and 𝒇2𝑛 = 𝒇2(𝑡𝑛) are used below. Let 𝒖ℎ0 ∈ 𝑉 ℎ be an approximation of 𝒖0.

The fully discrete scheme for Problem  2.2 is as follows.

Problem 4.1.  Find a discrete velocity field 𝒘𝑘ℎ ∶= {𝒘𝑘ℎ
𝑛 }𝑁𝑛=0 ⊂ 𝑉

ℎ such that for 0 ≤ 𝑛 ≤ 𝑁 , 𝒘𝑘ℎ
𝑛 ∈ 𝐾ℎ and

(

𝜺(𝒘𝑘ℎ
𝑛 ), 𝜺(𝒗ℎ −𝒘𝑘ℎ

𝑛 )
)

𝑄 + ∫𝛤3,2

[

𝜓0
𝜈 (𝑤

𝑘ℎ
𝑛,𝜈 ; 𝑣

ℎ
𝜈 −𝑤

𝑘ℎ
𝑛,𝜈 ) + 𝜓

0
𝜏 (𝒘

𝑘ℎ
𝑛,𝜏 ; 𝒗

ℎ
𝜏 −𝒘𝑘ℎ

𝑛,𝜏 )
]

𝑑𝑎

≥ ⟨𝒇𝑛, 𝒗ℎ −𝒘𝑘ℎ
𝑛 ⟩ −

(

𝜺(𝒖ℎ0 + 𝑘
𝑛−1
∑

𝑗=0
𝒘𝑘ℎ
𝑗 ), 𝜺(𝒗ℎ −𝒘𝑘ℎ

𝑛 )
)

𝑄

− 𝑘
𝑛−1
∑

𝑗=0

(

(𝑡𝑛 − 𝑡𝑗 ) 𝜺(𝒖ℎ0 + 𝑘
𝑗
∑

𝑚=1
𝒘𝑘ℎ
𝑚 ), 𝜺(𝒗ℎ −𝒘𝑘ℎ

𝑛 )
)

𝑄 ∀ 𝒗ℎ ∈ 𝐾ℎ. (4.1)

With respect to the doubly-history dependent term, the integral of strain tensor is approximated by the left endpoint rule, and 
the integral of the velocity field is approximated by the right endpoint rule. The well-posedness result for Problem  4.1 is as follows.

Theorem 4.2.  Keep the assumptions stated in Lemma  3.2. Then, Problem  4.1 has a unique solution 𝒘𝑘ℎ ⊂ 𝐾ℎ.

Proof.  The inequality (4.1) for 𝑛 = 0 is to find 𝒘𝑘ℎ
0 ∈ 𝐾ℎ such that

(

𝜺(𝒘𝑘ℎ
0 ), 𝜺(𝒗ℎ −𝒘𝑘ℎ

0 )
)

𝑄 + ∫𝛤3,2

[

𝜓0
𝜈 (𝑤

𝑘ℎ
0,𝜈 ; 𝑣

ℎ
𝜈 −𝑤

𝑘ℎ
0,𝜈 ) + 𝜓

0
𝜏 (𝒘

𝑘ℎ
0,𝜏 ; 𝒗

ℎ
𝜏 −𝒘𝑘ℎ

0,𝜏 )
]

𝑑𝑎

≥ ⟨𝒇0, 𝒗ℎ −𝒘𝑘ℎ
0 ⟩ −

(

𝜺(𝒖ℎ0 ), 𝜺(𝒗
ℎ −𝒘𝑘ℎ

0 )
)

𝑄 ∀ 𝒗ℎ ∈ 𝐾ℎ. (4.2)

Similar to the proof of Lemma  3.2, it can be shown that the inequality (4.2) admits a unique solution 𝒘𝑘ℎ
0 .

For 1 ≤ 𝑛 ≤ 𝑁 , assuming that {𝒘𝑘ℎ
𝑗 }𝑗≤𝑛−1 are known, it can be shown similarly that (4.1) has a unique solution 𝒘𝑘ℎ

𝑛 . Thus, 
through an induction argument, we prove that Problem  4.1 has a unique solution 𝒘𝑘ℎ ⊂ 𝐾ℎ. ■

An optimal order error estimate for the numerical solutions of Problem  4.1 is presented in the next result.

Theorem 4.3.  Keep the assumptions stated in Lemma  3.4. Assume the solution regularity 𝒘 ∈ 𝐶([0, 𝑇 ];𝐻2(𝛺;R𝑑 )), 𝒘 ∈ 𝐶([0, 𝑇 ];
𝐻2(𝛤3,1,𝑙;R𝑑 )) for 1 ≤ 𝑙 ≤ 𝑙3,1, 𝒘 ∈ 𝐶([0, 𝑇 ];𝐻2(𝛤3,2,𝑙;R𝑑 )) for 1 ≤ 𝑙 ≤ 𝑙3,2, and 𝝈 ∈ 𝐶([0, 𝑇 ];𝐻1(𝛺;S𝑑 )). Moreover, assume 
𝒖0 ∈ 𝐻2(𝛺;R𝑑 ), and let 𝒖ℎ0 be the finite element interpolation or the 𝐿2(𝛺)-projection of 𝒖0. Then, the following error bound holds for 
the numerical solution of Problem  4.1: 

max
0≤𝑛≤𝑁

‖𝒘𝑛 −𝒘𝑘ℎ
𝑛 ‖𝑉 ≤ 𝑐 (𝑘 + ℎ). (4.3)

Proof.  We begin with
𝑚‖𝒘𝑛 −𝒘𝑘ℎ

𝑛 ‖

2
𝑉 ≤

(

𝜺(𝒘𝑛) −𝜺(𝒘𝑘ℎ
𝑛 ), 𝜺(𝒘𝑛) − 𝜺(𝒘𝑘ℎ

𝑛 )
)

𝑄

=
(

𝜺(𝒘𝑛), 𝜺(𝒘𝑛 −𝒘𝑘ℎ
𝑛 )

)

𝑄 +
(

𝜺(𝒘𝑘ℎ
𝑛 ), 𝜺(𝒘𝑘ℎ

𝑛 − 𝒗ℎ)
)

𝑄

+
(

𝜺(𝒘𝑘ℎ
𝑛 ), 𝜺(𝒗ℎ −𝒘𝑛)

)

𝑄. (4.4)

In (2.8), let 𝑡 = 𝑡𝑛 and 𝒗ℎ = 𝒘𝑘ℎ
𝑛 ,

(

𝜺(𝒘𝑛), 𝜺(𝒘𝑛 −𝒘𝑘ℎ
𝑛 )

)

𝑄 ≤
(

𝜺(𝐼𝒘(𝑡𝑛)) + ∫

𝑡𝑛

0
(𝑡𝑛 − 𝑠) 𝜺(𝐼𝒘(𝑠)) 𝑑𝑠, 𝜺(𝒘𝑘ℎ

𝑛 −𝒘𝑛)
)

𝑄

+ ∫𝛤3,2

[

𝜓0
𝜈 (𝑤𝑛,𝜈 ;𝑤

𝑘ℎ
𝑛,𝜈 −𝑤𝑛,𝜈 ) + 𝜓

0
𝜏 (𝒘𝑛,𝜏 ;𝒘𝑘ℎ

𝑛,𝜏 −𝒘𝑛,𝜏 )
]

𝑑𝑎

− ⟨𝒇𝑛,𝒘𝑘ℎ
𝑛 −𝒘𝑛⟩. (4.5)
7 
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Rewrite (4.1) into the following:
(

𝜺(𝒘𝑘ℎ
𝑛 ), 𝜺(𝒘𝑘ℎ

𝑛 − 𝒗ℎ)
)

𝑄 ≤ −⟨𝒇𝑛, 𝒗ℎ −𝒘𝑘ℎ
𝑛 ⟩ +

(

𝜺(𝒖ℎ0 + 𝑘
𝑛−1
∑

𝑗=0
𝒘𝑘ℎ
𝑗 ), 𝜺(𝒗ℎ −𝒘𝑘ℎ

𝑛 )
)

𝑄

+
(

𝑘
𝑛−1
∑

𝑗=0
(𝑡𝑛 − 𝑡𝑗 ) 𝜺(𝒖ℎ0 + 𝑘

𝑗
∑

𝑚=1
𝒘𝑘ℎ
𝑚 ), 𝜺(𝒗ℎ −𝒘𝑘ℎ

𝑛 )
)

𝑄

+ ∫𝛤3,2

[

𝜓0
𝜈 (𝑤

𝑘ℎ
𝑛,𝜈 ; 𝑣

ℎ
𝜈 −𝑤

𝑘ℎ
𝑛,𝜈 ) + 𝜓

0
𝜏 (𝒘

𝑘ℎ
𝑛,𝜏 ; 𝒗

ℎ
𝜏 −𝒘𝑘ℎ

𝑛,𝜏 )
]

𝑑𝑎. (4.6)

Then, we substitute (4.5) and (4.6) into (4.4), and reform the resulting inequality to get 

𝑚‖𝒘𝑛 −𝒘𝑘ℎ
𝑛 ‖

2
𝑉 ≤

5
∑

𝑖=1
𝐼𝑖 + 𝑅(𝒗ℎ,𝒘𝑛), (4.7)

where

𝐼1 =
(

𝜺(𝒘𝑘ℎ
𝑛 ) −𝜺(𝒘𝑛), 𝜺(𝒗ℎ −𝒘𝑛)

)

𝑄,

𝐼2 =
(

𝜺(𝒖ℎ0 + 𝑘
𝑛−1
∑

𝑗=0
𝒘𝑘ℎ
𝑗 ) − 𝜺(𝐼𝒘(𝑡𝑛)), 𝜺(𝒗ℎ −𝒘𝑘ℎ

𝑛 )
)

𝑄,

𝐼3 =
(

𝑘
𝑛−1
∑

𝑗=0
(𝑡𝑛 − 𝑡𝑗 ) 𝜺(𝒖ℎ0 + 𝑘

𝑗
∑

𝑚=1
𝒘𝑘ℎ
𝑚 ) − ∫

𝑡𝑛

0
(𝑡𝑛 − 𝑠) 𝜺(𝐼𝒘(𝑠)) 𝑑𝑠, 𝜺(𝒗ℎ −𝒘𝑘ℎ

𝑛 )
)

𝑄,

𝐼4 = ∫𝛤3,2

[

𝜓0
𝜈 (𝑤𝑛,𝜈 ;𝑤

𝑘ℎ
𝑛,𝜈 − 𝑣

ℎ
𝜈 ) + 𝜓

0
𝜈 (𝑤

𝑘ℎ
𝑛,𝜈 ; 𝑣

ℎ
𝜈 −𝑤

𝑘ℎ
𝑛,𝜈 )

]

𝑑𝑎,

𝐼5 = ∫𝛤3,2

[

𝜓0
𝜏 (𝒘𝑛,𝜏 ;𝒘𝑘ℎ

𝑛,𝜏 − 𝒗ℎ𝜏 ) + 𝜓
0
𝜏 (𝒘

𝑘ℎ
𝑛,𝜏 ; 𝒗

ℎ
𝜏 −𝒘𝑘ℎ

𝑛,𝜏 )
]

𝑑𝑎,

and

𝑅(𝒗ℎ,𝒘𝑛) =
(

𝜺(𝒘𝑛) + 𝜺(𝐼𝒘(𝑡𝑛)) + ∫

𝑡𝑛

0
(𝑡𝑛 − 𝑠) 𝜺(𝐼𝒘(𝑠)) 𝑑𝑠, 𝜺(𝒗ℎ −𝒘𝑛)

)

𝑄

+ ∫𝛤3,2

[

𝜓0
𝜈 (𝑤𝑛,𝜈 ; 𝑣

ℎ
𝜈 −𝑤𝑛,𝜈 ) + 𝜓

0
𝜏 (𝒘𝑛,𝜏 ; 𝒗ℎ𝜏 −𝒘𝑛,𝜏 )

]

𝑑𝑎 − ⟨𝒇𝑛, 𝒗ℎ −𝒘𝑛⟩.

Here, 𝑅(𝒗ℎ,𝒘𝑛) denotes a residue term. By (2.8), it is nonnegative. Below, we will use 𝑐 for a generic constant in places, which 
depends on ‖‖𝐶([0,𝑇 ];𝑄∞), ‖′

‖𝐿1(0,𝑇 ;𝑄∞), ‖𝒖0‖𝑉 , ‖𝒘‖𝐶([0,𝑇 ];𝑉 ), ‖𝒘′
‖𝐿1(0,𝑇 ;𝑉 ), ‖𝝈𝑛𝝂‖𝐿2(𝛤3;R𝑑 ), 𝐿, 𝐿, 𝑇 , 𝑐0𝜈 , 𝑐0𝜏 , 𝛼𝜓𝜈 , 𝛼𝜓𝜏 , and an 

arbitrary small 𝜖 > 0.
Now we proceed to bound each. By the Cauchy–Schwarz inequality and the Lipschitz continuity of ,

𝐼1 ≤ 𝐿‖𝒘𝑘ℎ
𝑛 −𝒘𝑛‖𝑉 ‖𝒗ℎ −𝒘𝑛‖𝑉 .

Applying the modified Cauchy–Schwarz inequality

𝑎 𝑏 ≤ 𝜖 𝑎2 + 1
4 𝜖

𝑏2 ∀ 𝑎, 𝑏 ∈ R, ∀ 𝜖 > 0,

we derive that 

𝐼1 ≤ 𝜖 ‖𝒘𝑛 −𝒘𝑘ℎ
𝑛 ‖

2
𝑉 +

𝐿2


4 𝜖
‖𝒘𝑛 − 𝒗ℎ‖2𝑉 . (4.8)

On 𝐼2, the error bound

‖∫

𝑡𝑛

0
𝒘(𝑠) 𝑑𝑠 − 𝑘

𝑛−1
∑

𝑗=0
𝒘𝑗‖𝑉 ≤ 𝑘 ‖𝒘′

‖𝐿1(0,𝑇 ;𝑉 )

is satisfied, due to 𝒘 ∈ 𝑊 1,1(0, 𝑇 ;𝐾). Then, an analogous argument with 𝐼1 is utilized to get

𝐼2 ≤ 𝐿 ‖𝒖ℎ0 + 𝑘
𝑛−1
∑

𝑗=0
𝒘𝑘ℎ
𝑗 − (𝒖0 + ∫

𝑡𝑛

0
𝒘(𝑠) 𝑑𝑠)‖𝑉 ‖𝒗ℎ −𝒘𝑘ℎ

𝑛 ‖𝑉

≤ 𝐿
(

‖𝒖0 − 𝒖ℎ0‖𝑉 + 𝑘
𝑛−1
∑

𝑗=0
‖𝒘𝑗 −𝒘𝑘ℎ

𝑗 ‖𝑉 + ‖∫

𝑡𝑛

0
𝒘(𝑠) 𝑑𝑠 − 𝑘

𝑛−1
∑

𝑗=0
𝒘𝑗‖𝑉

)

‖𝒗ℎ −𝒘𝑘ℎ
𝑛 ‖𝑉

≤ 𝐿
(

𝑘 ‖𝒘′
‖𝐿1(0,𝑇 ;𝑉 ) + ‖𝒖0 − 𝒖ℎ0‖𝑉 + 𝑘

𝑛−1
∑

𝑗=0
‖𝒘𝑗 −𝒘𝑘ℎ

𝑗 ‖𝑉
)

‖𝒗ℎ −𝒘𝑘ℎ
𝑛 ‖𝑉 .
8 
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From the triangle inequality, the relation ‖𝒗ℎ−𝒘𝑘ℎ
𝑛 ‖𝑉 ≤ ‖𝒘𝑛−𝒘𝑘ℎ

𝑛 ‖𝑉 +‖𝒘𝑛−𝒗ℎ‖𝑉  holds. Then, we use the modified Cauchy–Schwarz 
inequality to derive that 

𝐼2 ≤ 𝜖 ‖𝒘𝑛 −𝒘𝑘ℎ
𝑛 ‖

2
𝑉 + ‖𝒘𝑛 − 𝒗ℎ‖2𝑉 + 𝑐

(

𝑘 + ‖𝒖0 − 𝒖ℎ0‖𝑉 + 𝑘
𝑛−1
∑

𝑗=0
‖𝒘𝑗 −𝒘𝑘ℎ

𝑗 ‖𝑉
)2. (4.9)

To analyze 𝐼3, we focus on the errors of the repeated numerical integrals. Observe that

‖𝑘
𝑛−1
∑

𝑗=0
(𝑡𝑛 − 𝑡𝑗 ) 𝜺(𝒖ℎ0 + 𝑘

𝑗
∑

𝑚=1
𝒘𝑘ℎ
𝑚 ) − 𝑘

𝑛−1
∑

𝑗=0
(𝑡𝑛 − 𝑡𝑗 ) 𝜺(𝒖0 + 𝑘

𝑗
∑

𝑚=1
𝒘𝑚)‖𝑄

≤ 𝑇 ‖‖𝐶([0,𝑇 ];𝑄∞)(‖𝒖0 − 𝒖ℎ0‖𝑉 + 𝑘
𝑛−1
∑

𝑗=0
‖𝒘𝑗 −𝒘𝑘ℎ

𝑗 ‖𝑉 ). (4.10)

Moreover, the following bound holds:

‖𝑘
𝑛−1
∑

𝑗=0
(𝑡𝑛 − 𝑡𝑗 ) 𝜺(𝒖0 + 𝑘

𝑗
∑

𝑚=1
𝒘𝑚) −

𝑛−1
∑

𝑗=0
∫

𝑡𝑗+1

𝑡𝑗
(𝑡𝑛 − 𝑡𝑗 ) 𝜺(𝐼𝒘(𝑠)) 𝑑𝑠‖𝑄

≤ ‖‖𝐶([0,𝑇 ];𝑄∞)

𝑛−1
∑

𝑗=0
∫

𝑡𝑗+1

𝑡𝑗
‖𝑘

𝑗
∑

𝑚=1
𝒘𝑚 − ∫

𝑠

0
𝒘(𝑧) 𝑑𝑧‖𝑉 𝑑𝑠

≤ 𝑘 𝑇 ‖‖𝐶([0,𝑇 ];𝑄∞)‖𝒘′
‖𝐿1(0,𝑇 ;𝑉 ). (4.11)

To proceed further, 𝐻𝑏() is used to get

‖

𝑛−1
∑

𝑗=0
∫

𝑡𝑗+1

𝑡𝑗
(𝑡𝑛 − 𝑡𝑗 ) 𝜺(𝐼𝒘(𝑠)) 𝑑𝑠 −

𝑛−1
∑

𝑗=0
∫

𝑡𝑗+1

𝑡𝑗
(𝑡𝑛 − 𝑠) 𝜺(𝐼𝒘(𝑠)) 𝑑𝑠‖𝑄

= ‖

𝑛−1
∑

𝑗=0
∫

𝑡𝑗+1

𝑡𝑗

(

∫

𝑡𝑛−𝑡𝑗

𝑡𝑛−𝑠
′(𝑧) 𝑑𝑧 𝜺(𝐼𝒘(𝑠))

)

𝑑𝑠‖𝑄

≤ 𝑘 ‖′
‖𝐿1(0,𝑇 ;𝑄∞)(‖𝒖0‖𝑉 + 𝑇 ‖𝒘‖𝐶([0,𝑇 ];𝑉 )). (4.12)

Together with (4.10)–(4.12), we obtain

𝐼3 ≤ 𝑐
(

𝑘 + ‖𝒖0 − 𝒖ℎ0‖𝑉 + 𝑘
𝑛−1
∑

𝑗=0
‖𝒘𝑗 −𝒘𝑘ℎ

𝑗 ‖𝑉
)

(‖𝒘𝑛 −𝒘𝑘ℎ
𝑛 ‖𝑉 + ‖𝒘𝑛 − 𝒗ℎ‖𝑉 )

≤ 𝜖 ‖𝒘𝑛 −𝒘𝑘ℎ
𝑛 ‖

2
𝑉 + ‖𝒘𝑛 − 𝒗ℎ‖2𝑉 + 𝑐

(

𝑘 + ‖𝒖0 − 𝒖ℎ0‖𝑉 + 𝑘
𝑛−1
∑

𝑗=0
‖𝒘𝑗 −𝒘𝑘ℎ

𝑗 ‖𝑉
)2. (4.13)

In the estimation of 𝐼4, the sub-additivity of Clarke directional derivative [8] is used to get

∫𝛤3,2
𝜓0
𝜈 (𝑤𝑛,𝜈 ;𝑤

𝑘ℎ
𝑛,𝜈 − 𝑣

ℎ
𝜈 ) 𝑑𝑎 ≤ ∫𝛤3,2

[

𝜓0
𝜈 (𝑤𝑛,𝜈 ;𝑤

𝑘ℎ
𝑛,𝜈 −𝑤𝑛,𝜈 ) + 𝜓

0
𝜈 (𝑤𝑛,𝜈 ;𝑤𝑛,𝜈 − 𝑣

ℎ
𝜈 )
]

𝑑𝑎,

and

∫𝛤3,2
𝜓0
𝜈 (𝑤

𝑘ℎ
𝑛,𝜈 ; 𝑣

ℎ
𝜈 −𝑤

𝑘ℎ
𝑛,𝜈 ) 𝑑𝑎 ≤ ∫𝛤3,2

[

𝜓0
𝜈 (𝑤

𝑘ℎ
𝑛,𝜈 ; 𝑣

ℎ
𝜈 −𝑤𝑛,𝜈 ) + 𝜓

0
𝜈 (𝑤

𝑘ℎ
𝑛,𝜈 ;𝑤𝑛,𝜈 −𝑤

𝑘ℎ
𝑛,𝜈 )

]

𝑑𝑎.

Add the inequalities and use 𝐻(𝜓𝜈 ) (b), (c) to derive

𝐼4 ≤ ∫𝛤3,2
(𝛼𝜓𝜈 |𝑤𝑛,𝜈 −𝑤

𝑘ℎ
𝑛,𝜈 |

2 + 2𝑐0𝜈 |𝑤𝑛,𝜈 − 𝑣ℎ𝜈 |) 𝑑𝑎.

Then, we apply Hölder’s inequality to obtain 
𝐼4 ≤ 𝛼𝜓𝜈𝜆

−1
𝜈 ‖𝒘𝑛 −𝒘𝑘ℎ

𝑛 ‖

2
𝑉 + 𝑐 ‖𝑤𝑛,𝜈 − 𝑣ℎ𝜈‖𝐿2(𝛤3,2). (4.14)

By using an analogous approach of (4.14), 
𝐼5 ≤ 𝛼𝜓𝜏 𝜆

−1
𝜏 ‖𝒘𝑛 −𝒘𝑘ℎ

𝑛 ‖

2
𝑉 + 𝑐 ‖𝒘𝑛,𝜏 − 𝒗ℎ𝜏 ‖𝐿2(𝛤3,2;R𝑑 ). (4.15)

To bound the residual term 𝑅(𝒗ℎ,𝒘𝑛), we deduce point-wise equations by (2.8). A function space 𝑈 is defined by
𝑈 = {𝒗 ∈ 𝐶∞(𝛺;R𝑑 ) | 𝒗 = 𝟎 on 𝛤1 ∪ 𝛤3}.

Let

𝝈(𝑡) = 𝜺(𝒘(𝑡)) + 𝜺(𝐼𝒘(𝑡)) +
𝑡
(𝑡 − 𝑠) 𝜺(𝐼𝒘(𝑠)) 𝑑𝑠 in 𝛺.
∫0
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Taking 𝒗 = 𝒘(𝑡) ± 𝒗 in (2.8), where 𝒗 ∈ 𝑈 ,

(

𝝈(𝑡), 𝜺(±𝒗)
)

𝑄 + ∫𝛤3,2

[

𝜓0
𝜈 (𝑤𝜈 (𝑡); ±𝑣𝜈 ) + 𝜓

0
𝜏 (𝒘𝜏 (𝑡); ±𝒗𝜏 )

]

𝑑𝑎 ≥ ⟨𝒇 (𝑡),±𝒗⟩.

Thus, (𝝈(𝑡), 𝜺(𝒗))𝑄 = ⟨𝒇 (𝑡), 𝒗⟩ is derived, due to 𝒗 = 𝟎 on 𝛤3,2. From Green’s formula

(

𝝈(𝑡), 𝜺(𝒗)
)

𝑄 + ⟨Div𝝈(𝑡), 𝒗⟩ = ∫𝛤
𝝈(𝑡)𝝂 ⋅ 𝒗 𝑑𝑎,

we have

⟨Div𝝈(𝑡), 𝒗⟩ +
(

𝒇0(𝑡), 𝒗
)

𝐿2(𝛺;R𝑑 ) = ∫𝛤2
𝝈(𝑡)𝝂 ⋅ 𝒗 𝑑𝑎 − ∫𝛤2

𝒇2(𝑡) ⋅ 𝒗 𝑑𝑎.

Since 𝒗 is arbitrary, we utilize the technique in [36, Section 8.1] to get 

Div𝝈(𝑡) + 𝒇0(𝑡) = 𝟎 a.e. in 𝛺, (4.16)

𝝈(𝑡)𝝂 = 𝒇2(𝑡) a.e. on 𝛤2. (4.17)

By taking the inner product of (4.16) and 𝒗ℎ −𝒘𝑛, integrating over the domain 𝛺, and setting 𝑡 = 𝑡𝑛, we obtain

∫𝛺
Div𝝈𝑛 ⋅ (𝒗ℎ −𝒘𝑛) 𝑑𝑥 = −∫𝛺

𝒇0𝑛 ⋅ (𝒗
ℎ −𝒘𝑛) 𝑑𝑥.

Then, Green’s formula and (4.17) are applied to derive

∫𝛺
𝝈𝑛 ⋅ 𝜺(𝒗ℎ −𝒘𝑛) 𝑑𝑥 − ∫𝛺

𝒇0𝑛 ⋅ (𝒗
ℎ −𝒘𝑛) 𝑑𝑥 − ∫𝛤2

𝒇2𝑛 ⋅ (𝒗
ℎ −𝒘𝑛) 𝑑𝑎

= ∫𝛤3
𝝈𝑛𝝂 ⋅ (𝒗ℎ −𝒘𝑛) 𝑑𝑎.

Hence, the residual term is simplified to that

𝑅(𝒗ℎ,𝒘𝑛) = ∫𝛤3
𝝈𝑛𝝂 ⋅ (𝒗ℎ −𝒘𝑛) 𝑑𝑎 + ∫𝛤3,2

[

𝜓0
𝜈 (𝑤𝑛,𝜈 ; 𝑣

ℎ
𝜈 −𝑤𝑛,𝜈 ) + 𝜓

0
𝜏 (𝒘𝑛,𝜏 ; 𝒗ℎ𝜏 −𝒘𝑛,𝜏 )

]

𝑑𝑎.

Based on the solution regularity 𝝈 ∈ 𝐶([0, 𝑇 ];𝐻1(𝛺;S𝑑 )), 𝐻(𝜓𝜈 ) (b) and 𝐻(𝜓𝜏 ) (b), we use Hölder’s inequality to get 

𝑅(𝒗ℎ,𝒘𝑛) ≤ 𝑐 ‖𝒘𝑛 − 𝒗ℎ‖𝐿2(𝛤3;R𝑑 ). (4.18)

Use the bounds (4.8), (4.9), (4.13), (4.14), (4.15) and (4.18) in (4.7) to get

𝑚‖𝒘𝑛 −𝒘𝑘ℎ
𝑛 ‖

2
𝑉 ≤ (𝛼𝜓𝜈𝜆

−1
𝜈 + 𝛼𝜓𝜏 𝜆

−1
𝜏 + 3𝜖) ‖𝒘𝑛 −𝒘𝑘ℎ

𝑛 ‖

2
𝑉 + (2 +

𝐿2

4𝜖

) ‖𝒘𝑛 − 𝒗ℎ‖2𝑉

+ 𝑐 ‖𝒘𝑛 − 𝒗ℎ‖𝐿2(𝛤3;R𝑑 ) + 𝑐
(

𝑘 + ‖𝒖0 − 𝒖ℎ0‖𝑉 + 𝑘
𝑛−1
∑

𝑗=0
‖𝒘𝑗 −𝒘𝑘ℎ

𝑗 ‖𝑉
)2. (4.19)

By 𝐻(𝑠), 𝑚 − (𝛼𝜓𝜈𝜆
−1
𝜈 + 𝛼𝜓𝜏 𝜆

−1
𝜏 ) − 3𝜖 > 0 is satisfied for sufficiently small 𝜖 > 0. Rearrange the terms of (4.19) and take the square 

root of its both sides to derive

‖𝒘𝑛 −𝒘𝑘ℎ
𝑛 ‖𝑉 ≤ 𝑐

(

‖𝒘𝑛 − 𝒗ℎ‖𝑉 + ‖𝒘𝑛 − 𝒗ℎ‖
1
2
𝐿2(𝛤3;R𝑑 )

+ ‖𝒖0 − 𝒖ℎ0‖𝑉 + 𝑘
)

+ 𝑐 𝑘
𝑛−1
∑

𝑗=0
‖𝒘𝑗 −𝒘𝑘ℎ

𝑗 ‖𝑉 . (4.20)

Thus, we apply a discrete Gronwall’s inequality ([36, Lemma 7.25]) on (4.20) to get

max
0≤𝑛≤𝑁

‖𝒘𝑛 −𝒘𝑘ℎ
𝑛 ‖𝑉 ≤ 𝑐 max

0≤𝑛≤𝑁

{

inf
𝑣ℎ∈𝐾ℎ

(

‖𝒘𝑛 − 𝒗ℎ‖𝑉 + ‖𝒘𝑛 − 𝒗ℎ‖1∕2
𝐿2(𝛤3;R𝑑 )

)

}

+ 𝑐 (‖𝒖0 − 𝒖ℎ0‖𝑉 + 𝑘). (4.21)

Based on the standard finite element interpolation error estimates (cf. [37,38]), ‖𝒖0 − 𝒖ℎ0‖𝑉 ≤ 𝑐 ℎ, and with 𝒗ℎ the linear element 
interplant of 𝒘 ,
𝑛

10 
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Fig. 1. The contact model (left) and the configuration of 𝛺 (right).

‖𝒘𝑛 − 𝒗ℎ‖𝑉 + ‖𝒘𝑛 − 𝒗ℎ‖1∕2
𝐿2(𝛤3;R𝑑 )

≤ 𝑐 ℎ

under the stated solution regularity assumptions. Then, we derive (4.3) from (4.21). ■

5. A numerical example

In this section, we present a numerical experiment for the viscoelastic contact problem. As depicted in Fig.  1 (left), 𝛺 denotes 
the cross section of the deformable body, a rigid foundation is located horizontally, and a layer of elastic asperities is laid vertically. 
Let 𝛺 = (0, 𝐿1) × (0, 𝐿2), and the whole boundary 𝛤  is divided as follows:

𝛤1 = {0} ×
(

0, 𝐿2
)

, 𝛤2 =
[

0, 𝐿1
]

× {𝐿2}, 𝛤3,1 =
[

0, 𝐿1
]

× {0}, 𝛤3,2 = {𝐿1} ×
(

0, 𝐿2
)

.

The body is fixed on 𝛤1, and surface traction of a total density 𝒇2 acts on 𝛤2. In the constitutive law, the viscosity tensor  and the 
elasticity tensor  are defined by

(𝜏)𝑖𝑗 = 2𝜃𝜏𝑖𝑗 + 𝜁 (𝜏11 + 𝜏22)𝛿𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2,

(𝜏)𝑖𝑗 =
𝐸

1 + 𝜅
𝜏𝑖𝑗 +

𝐸𝜅
1 − 𝜅2

(𝜏11 + 𝜏22)𝛿𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2,

respectively, where 𝜃 > 0 and 𝜁 ≥ 0 are the viscosity coefficients, 𝛿𝑖𝑗 denotes the Kronecker symbol, 𝐸 means the Young modulus, 
and 𝜅 represents the Poisson ratio of the material. The relaxation tensor (𝑠) = 𝑒−𝑠I, where I is an identity matrix. On 𝛤3,2, the 
normal damped response condition is expressed as

−𝜎𝜈(𝑢′𝜈 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑢′𝜈 ≤ 0,

0.01𝑢′𝜈 , 0 < 𝑢′𝜈 ≤ 0.02,

0.0002 − 0.01(𝑢′𝜈 − 0.02), 0.02 < 𝑢′𝜈 ≤ 0.03,

0.0001 − 0.01(𝑢′𝜈 − 0.03), 𝑢′𝜈 > 0.03,

and the friction law is described as

|𝝈𝜏 | ≤ 0.04𝐹𝑏 if 𝒖′𝜏 = 𝟎, −𝝈𝜏 = 0.02(𝑒−|𝒖
′
𝜏 | + 1)𝐹𝑏

𝒖′𝜏
|𝒖′𝜏 |

if 𝒖′𝜏 ≠ 𝟎.

where 𝐹𝑏 denotes the friction bound.
The domain 𝛺 is divided uniformly, triangular finite element partitions are applied, and continuous linear finite element spaces 

are used for computation. The following parameters are used in the experiment:

𝐿1 = 𝐿2 = 1 m, 𝜃 = 0.5, 𝜁 = 0.5, 𝐸 = 10 GN∕m2, 𝜅 = 0.3, 𝐹𝑏 = 1, 𝑇 = 1 s,

𝒇2 =
(

0,−0.6(𝑒𝑡 − 1)𝑥
)

GN∕m on 𝛤2, 𝒇0 = 𝟎 𝑖𝑛 𝛺, 𝒖0 = 𝟎 in 𝛺.

The graphic of the deformable body 𝛺 at 𝑡 = 1 with 𝑘 = 1∕512 and ℎ = 1∕32 is presented in Fig.  1 (right). The relative errors are 
calculated by ‖𝒘𝑘ℎ

𝑁 −𝒘𝑁‖𝑉 ∕‖𝒘𝑁‖𝑉 , where 𝒘𝑁  is the reference solution with 𝑘 = 1∕512 and ℎ = 1∕256. Finally, convergence orders 
of the numerical solutions for fixed spatial mesh-size and fixed temporal step-size are reported in Tables  1 and 2, respectively. The 
data shows an optimal first order of the numerical solutions, which is predicted by the theoretical analysis. 
11 
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Table 1
Convergence orders with fixed spatial mesh-size.
 ℎ 𝑘 Error Order  
 1/256 1/8 0.054171 –  
 1/256 1/16 0.026299 1.0425 
 1/256 1/32 0.012671 1.0535 
 1/256 1/64 0.005905 1.1014 
 1/256 1/128 0.002532 1.2220 

Table 2
Convergence orders with fixed temporal step-size.
 𝑘 ℎ Error Order  
 1/512 1/4 0.263533 –  
 1/512 1/8 0.146693 0.8452 
 1/512 1/16 0.078339 0.9050 
 1/512 1/32 0.040600 0.9483 
 1/512 1/64 0.020115 1.0132 

Data availability

Data will be made available on request.
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