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ARTICLE INFO ABSTRACT

Keywords: This paper is devoted to studies of doubly-history dependent hemivariational inequalities in
Hemivariational inequality contact mechanics. Existence and uniqueness of a solution to the problem is proved by applying
Existence a basic well-posedness result combined with a Banach fixed-point argument. A fully discrete
Uniqueness

scheme is used to solve the problem, with temporal integrals approximated by rectangular rules
and the spatial discretization done by the linear element method. Under suitable solution regu-
larity assumptions, an optimal order error bound is proved for the numerical solutions. Finally,
simulation results on a numerical example are reported to illustrate numerical convergence
orders.

Finite element method
Error estimate
Optimal order

1. Introduction

Hemivariational inequalities are a family of mathematical models for application problems with non-smooth non-convex features.
They have attracted ever growing attention from the research communities. Comprehensive references on mathematical theory
and applications of hemivariational inequalities include [1-3] from the early years, and [4-9] more recently. In the majority of
publications on mathematical analysis of hemivariational inequalities, abstract surjectivity results on pseudomonotone operators
are applied, together with fixed-point arguments. An alternative and more accessible approach for the mathematical theory of
hemivariational inequalities has been developed without the need of the theory of pseudomonotone operators. This approach was
developed in a series of papers [10-13], and is documented in the book [14]. Since no closed-form solution formulas are available
for hemivariational inequalities arising in applications, numerical methods are needed to solve the problems. On the numerical
solution of hemivariational inequalities, the reader is referred to the monograph [15] for early development, and to the two survey
papers [16,17] for more recent development.

History-dependent hemivariational inequalities are a class of hemivariational inequalities including so-called history-dependent
operators, which usually represent integrations of physical quantities with respect to the time variable, reflecting the fact that the
current values of physical quantities depend on their values in the past. For mathematical theories of history-dependent problems,
cf. [18-23], and for the numerical approximations of the problems, cf. [24-28].

Recently, doubly-history dependent variational inequalities have been studied in [29], which contain terms with repeated time
integration. In this paper, we extend this framework to doubly-history dependent hemivariational inequalities, analyzing both
solution well-posedness and numerical methods. Existence and uniqueness of a solution to the problem is shown by applying a
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basic well-posedness result on hemivariational inequalities combined with a Banach fixed-point argument. A fully discrete scheme
is introduced to solve the problem, and an optimal order error estimate is proved for the numerical solutions. We study the
history-dependent hemivariational inequality in the context of a quasistatic contact problem for a viscoelastic material.

Descriptions and studies of hemivariational inequalities require the notions of the generalized directional derivatives and the
generalized subdifferentials in the sense of Clarke. The reader is referred to [30,31] or [8] for detailed discussions of these notions
and their properties.

The paper is organized as follows. In Section 2, a doubly-history dependent hemivariational inequality is introduced for a quasi-
static contact problem for viscoelastic material. In Section 3, a solution existence and uniqueness result is proved. In Section 4, a
fully-discrete scheme is studied and an optimal order error estimate is derived for the linear finite element solutions. In Section 5,
a numerical example is provided, showing the performance of the numerical scheme.

2. A doubly-history dependent hemivariational inequality in viscoelastic contact

We consider a quasi-static contact problem for a viscoelastic material. The physical setting of the problem is as follows. The
configuration of the viscoelastic body is represented by a Lipschitz domain 2 c R?, d being the dimension of the spatial domain.
The boundary I" = 042 is split into three measurable parts I}, I, and I's; the portion I’ is further split into two parts: I'; ; and I,
where different contact conditions will be specified. We assume meas (I'}) > 0 and meas (I'5 ;) + meas (I'3,) > 0. The body is subject
to the action of volume forces of a total density f,, in £ and surface tractions of a total density f, on I, and it is fixed on I';. We
assume a frictionless contact with unilateral constraint in the velocity variable on I |, and a general normal damped response and
friction law expressed in a subdifferential form on I'5,. We are interested in the deformation of the body in a time interval [0, T'].

Next we introduce some notations in mechanics. Let R? be a d-dimensional vector space. For v € RY, v; € R for | <i < d. The
canonical inner product and norm on R¢ are defined by

1/2

u-v=uyv;, |[v|ge =@-0) for u,v e RY,

where summation convention on a repeated index is adopted. The symbol v denotes the unit outward normal vector defined on I',
v, =v-vand v, =v - v,v denotes the normal and tangential components of v, respectively.

Let S¢ be the space of symmetric matrices of order d. For 7 = (z; ;)€ s4, 7, ;=1 €Rfor 1 <i,j <d. The canonical inner product
and norm on the space S¢ are defined by

6-1=0;7;, lItllsga =(7- 2 for 6,7 €.

The notation o stands for a stress tensor, o, = (6v) - v and ¢, = ov — o, v stands for the normal and tangential components of o,
respectively.

The classical formulation of the contact problem is to find a displacement field u : 2 x [0, T] and a stress field o : 2 %[0, T] such
that for ¢ € [0,T],

o(r) = A (1)) + Be(u(1) + /0 t R(t — 5) e(u(s)) ds in @, 2.1
Dive(t) + fo(t) = 0 in Q, (2.2)
u(®)=0 on I, (2.3)
(v = fr(®) on Iy, 2.9
W@ <0, 0,(t) <0, 6,Ou,()=0, 6,()=0 on Iy, (2.5)
- 0,(1) € oy, (U, (1), —0,(1) € Oy, (u.(1)) on Iy,, (2.6)
and
u0) =u, in Q. @2.7)

A brief interpretation of the above equations and relations is as follows. Eq. (2.1) is a general constitutive law for viscoelastic
materials, in which, ¢ is a linear strain tensor, .4 is a viscosity tensor, B is an elasticity tensor, R is a relaxation tensor, and the
integral term describes the long memory character of the materials (cf. [20]). Here, a prime on a variable denotes the time derivative
of the variable. Formula (2.2) is the equilibrium equation, in which Div denotes the divergence operator, f, is the density of volume
forces acting on the deformable body. Eq. (2.3) is the displacement boundary condition on I}, and Eq. (2.4) is the traction boundary
condition on I. Relations (2.5) describe a frictionless unilateral constraint on I'5; (cf. [32]). Relations (2.6) are the multi-valued
contact conditions on I ,, following [8, (6.42)] and [8, (6.47)]. The symbols dy, and dy, denote the Clarke subdifferential of the
given functions y, and v, respectively. Finally, formula (2.7) is an initial displacement field.

We will study the contact problem through its weak form. For this purpose, we first introduce some function spaces and sets.
The function space for stress and strain fields at a fixed time is

0 = 12(Q)™d

sym
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which is a Hilbert space with the canonical inner product
(o, r)Q = / cr,-jrijdx, o, T€Q
Q
and its induced norm. The function space for displacement and velocity fields at a fixed time is
V={ve H' (@R |v=00nTI,}.

Since meas (I7) > 0, by the Korn inequality ([33, page 79]), V is a Hilbert space with the inner product (u,v), = (¢(),e®))g.
Moreover, the associated norm [|v||;, = |le(v)l|o is equivalent to the standard H 1(Q;R¢)-norm on V. The set of admissible velocity
fields is

K={veV|UV§Oa.e.onF3'1}.
We further introduce the space of bounded, symmetric fourth-order tensor fields
O, = {5 = Eji<ijrizd | Eijia = Ejire = Eiy € LT, 1 <4, j, k1 < d}-
Regarding the problem data, we make the following assumptions.
HA) A:Q2xS% > s,
(a) A(-, €) is measurable on  for all € € S%;
(b) A(x,0) =0 for ae. x € £;
(c) for a constant L, > 0,
[|AGx, £1) — A(x,€))llsa < L 4lle) — &l Ve, 87 € S, ae x € Q;

(d) for a constant m 4 > 0,

(A(x,el) - A(x, 82)) (€] — &) >2mylle — 62||§d Ve e, €89 ae xe€ Q.
HB) B:2xSY - S is such that B(-,0) € Q, B(:,¢) is measurable on 2 for all € € S¢, and
[|B(x,€1) = B(x,&)llse < Lglle; —&5llse Ve, € € §?, ae. x € Q with Lg>0.

H,(R) ReC(0,T];Q)-
H,(f) fo € CUO,T; L2(2;R?), f, € C([0,T1; L*(I; RY)).
H(Wv) For 7 F3,2 XR — ]R)
(a) w,(,r) is measurable on I3, for all r € R, ,(-,0) € L1(I3,);
(b) w,(x,-) is Lipschitz continuous on R with a Lipschitz constant ¢, > 0 for a.e. x € I'; »;
(c) we(x,rl;rz —-ry)+ w?(x, rosry —rp) < "’wv|"1 - r2|2
for a.e. x € I's, all ry, r, € R with ,, > 0.
H(y,) Fory,:I;,x% RY > R,
(a) w, (-, &) is measurable on I, for all £ € R?, y,(-,0) € L'(I3,);
(b) w,(x, ) is Lipschitz continuous on R with a Lipschitz constant ¢y, > 0 for a.e. x € I’ 325
© wo(x,&:8 — &) +yl(x, £y 8 - &) < a, 1€ - 52”%,,
for a.e. x € I3, all &, &, € RY with ¢, > 0.

H(uy) uy e v.
By the Riesz representation theorem, at any ¢ € [0, 7], we can define f(f) € V* through the relation

(f®,v) = Fo®, V)2 oray + (O, V) 2rypey VEV.

Due to H,(f), we have f € C([0,T];V*). By a standard procedure, one can obtain the following weak formulation of the contact
problem (2.1)—(2.7).

Problem 2.1. Find a displacement field u: [0,7] — V such that for € [0,T7],
t
() eK, (As@ 1)+ Be(u())+ / R(t — s)e(u(s)) ds, e(v — u’(t)))Q
0
+ / [wl@ @0, — @) + v @) v, —ul ()] da > (fF(),v—u' (1)) VveK,
I3

and

u(0) =wu, in Q.
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It will be convenient to reformulate the problem in terms of the velocity variable
w(t) = u'(1).

Note that given w(r) and the initial displacement u,, we can recover the displacement u(t) by

'
u(t) = Tw(t) = uy + / w(s)ds.
0

Then Problem 2.1 can be reformulated in terms of w.
Problem 2.2. Find a velocity field w: [0,T] — V such that for ¢t € [0,T],
wit) €K, (Ae()+ Be(Iw())+ /0 r R(t = 5) e(Tw(s)) ds, e(v —w(®)
+ /r [wlGo,®); v, —w, @) + 2w, () v, —w. ()] da = (f(),v - w®) Vv € K. (2.8)
32
Note that the hemivariational inequality (2.8) contains a doubly-history dependent term

t
/ R(t —s)e({w(s))ds.
0

For this reason, (2.8) is called a doubly-history dependent hemivariational inequality.
When I, =@, Problem 2.2 is reduced to a variational inequality of the first kind.

3. Existence and uniqueness result of the hemivariational inequality

In this section, we prove the solution existence and uniqueness of Problem 2.2 by a Banach fixed-point argument.
We rewrite (2.8) as

w(n) € K, (Ae@®). e - w(1))) , + / [wlw, )0, — w, ) + w2 (w, () v, — w,(1)] da

I3,
t
> (f@),v—w®) - (Be(Tw(®)) + / R(t — s)e(Iw(s) ds,e(v —w()) , VvEK,
0
and introduce an intermediate hemivariational inequality: with @(r) € K given,

w(n) € K, (Ae(®). e — w(1))) , + / [wlw, s 0, — w, ) + w2 w, () v, - w,(1)] da

I3,
t
> (f(1),v — w(®)) — (Be(Iw(1) +/ R(t = s)e(lib(s)) ds, e(v — w(1))), Vv €EK. 3.1
0
Also, we recall a result on stationary hemivariational inequalities (cf. [34, Theorem 3.1]).
Theorem 3.1. Assume

(A;) X is a reflexive Banach space, and K is a non-empty, closed and convex subset of X.
(A,) For i = 1,2, X, is a Banach space, y; € L(X, X;): for a constant ¢; > 0,

lyolly, <clolly YoeX.

(A3) A: X - X* is bounded, continuous and strongly monotone: for a constant m, > 0,
(Av) = Avy, 01 = vy) Zmylloy = vyl Vo0, € X.

(Ay) For i =1,2, J;: X; = R is locally Lipschitz continuous, and there exist constants c;,c; 1, ; > 0 such that
l0Ji(Dlx < cio+eipllzlly, VzeE X,
J?(z,;zz -z + JI.O(zz;zl -2zp) < allzy — ZZ”%{, Vz1,z, € X;.

(4s)
alcf + azcg <my.

(Ag)
fex.

Then there is a unique u € K such that

(Au, v —u) + T (ryus 110 = y0) + I3 (a1 1,0 = 1o0) 2 (f,0—u) YveK.
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In the study of Problem 2.2 as well as the auxiliary problem (3.1), we will make use of the following smallness condition
H(s) awvﬂv‘l + a%/l;l <my.
Here, A, > 0 is the smallest eigenvalue of the eigenvalue problem

/E(u)-e(v)dx:/l/ u,v,da VvevV,
Q

I3,

whereas A, > 0 is the smallest eigenvalue of the eigenvalue problem

/E(u)-e(v)dxzﬂ/ u,-v,da Vvev.
Q

I3,

Lemma 3.2. Assume H(A), H(B), H(R), H,(f), H(y,), H(y,), H(uy), and H(s). Then for any w € C([0,T]; K), there exists a unique
solution w € C([0,T1]; K) to the hemivariational inequality (3.1).

Proof. We use Theorem 3.1 with the following setting: X =V, X| = L*(I';,), X, = L>(I3;RY), yjv =v, and pp = v, forv eV,
and

(Au,v) = (Ae(u),e(v))Q Yu,vev,

J](z):/ v, (z)da Vze X,

I3,

Jz(z)=/ v (z)da VzeEX,,
I3,

t
(f.v) = (f(0),v) — (Be(Tiw(0)) + / R(t = s)e(lib(s)) ds,e()),, Vv eV, Vi€[0,T].
0

Then the assumptions (A4;)—(4¢) are satisfied with ¢, = 1;1/2, ¢ = );1/2’ my=my, ay =q

form H(s). Thus, by Theorem 3.1, for any ¢ € [0, T], the problem

v, and a, = a,, . Moreover, (4s) takes the

wn €K, (Ae@®).e(v - w®)), + T, (0:0, — w, () + ) (w,(1): v, — w(t)
t
> (f), v —w(®) — (Be(Tb() + / R(t = s) e(Iib(s) ds.e(v —w(1)) , Vv eEK (3.2)
0

has a unique solution. By a property of the generalized directional derivative of an integral functional (cf. [31, page 771, [8, Theorem
3.47 (iv)D,

1w, 1);0, - 0,0) < / WO, (0: v, - w, 1) da,
I3,

Bw. (v, —w,(1) < / v w ();v, —w. (1)) da,

I3,
we see that the solution w(r) € K of (3.2) is also a solution of (3.1). Uniqueness of the solution of (3.1) follows from the stated
assumptions through a standard argument (cf. [16,35]).
To prove the continuity of w(t) with respect to the variable ¢, let ¢,,¢, € (0,T), t; # t,. Take t = ¢; and v = w(t,) in (3.1); then
take t =7, and v = w(z)) in (3.1). Add the two resulting inequalities and derive an inequality of the form

[lw(t) —wi)lly < ey (C4 IR(#; —5) = R(t, — S)”Qw +oes |ty =+ fE) - f(fz)”w)a (3.3)

where ¢y = Tlugll, +T2||w”C([O,T];V): ¢s = IRlleqorro.) uolly + TN@ll co,ryv) + L@l cqoryvy), and e = (my —ay, /1;1 —ay, /1:1)_1-
By H(s), H,(R) and H,(f), we have w € C([0,T]; K). [ |

Based on Lemma 3.2, we prove an existence and uniqueness result on Problem 2.2.
Theorem 3.3. Keep the assumptions stated in Lemma 3.2. Then, Problem 2.2 has a unique solution w € C([0,T]; K).

Proof. For any w € C([0,T]; K), we define an operator @ by @w = w. Let us show that there exists a unique fixed point of @. For
i=1,2,let w; € C([0,T]; K) be the solution to (3.1) with fixed @; € C([0,T1; K), i.e., for any v € K,

(Ae, (), e —w (1)), + / vy (w1, ()0, = wi (O) + ¥, (00, = wy ()] da

I3,
> (f).v—w ) — (Be(T (1)) +/ Rt —s)e(Iw(s)) ds,e(w — wl(t)))Q, 3.4
0
and

(Aer (), e = wy (1)) , + / [wlw,, 1) v, — wy, ) + ¥ 2w, ();v, — w, ()] da

I3
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t
> (f(O), v —wy(t)) — (Be(I, (1)) + / Rt — 5) e(11iy(s)) ds, eV — w (1)) o (3.5)
0
We take v = w, (1) in (3.4) and v = w,(?) in (3.5) respectively, and add the resulting inequalities to obtain
4
(Ae(w, (1) = Ae, (1)), ew, (1) — ew,(1)) , < Z e (3.6)
i=1
where

G = / [WS(WLV(I); wy (1) —w; (1) + W‘?(wz,v(fﬁ wy (1) — wz,v(t))] da,
I3,

G, = /F [wlw) (0w (1) = wy () + wlw (1) w) (1) — wy ,(1))] da,
G; = (B3:(Ilizl(t)) — Be(Iw (1)), w; (1) — wy (1)),
Gy=( /0 Rt 9) (I W) (s)) = e(TWy(s)) ds, Wy (1) = wy (1)) -
From H(A)(d), we have
m llwy (1) = wy O}, < (A, (1) ~ Ae(w, (1)), e, (1)) — e, (1)) - (3.7)
H(w,)(c) is used on G, to obtain
G, < /F |10y, (0 = w5, (O da < a,, A w0 — wy O 3.8)
)
In addition, H (y,)(c) is utilized on G, to get
G, < /F 0= O < 5 ey 0= w0 3.9)

On Gj;, the Cauchy-Schwarz inequality and the Lipschitz continuity of B are applied to derive

G; < Lgllw (1) - wz(t)“V,/o [l (s) — Wr ()l ds. (3.10)

Similarly, H,(R) is used on G, to get
1
Gy <TIIRlcqo 10 lw1 () —wOlly / [l (s) — @y ()l ds. (3.11)
0
Combining (3.6)-(3.11), we derive

'
[|@w, (1) — P, ()|l < c3(Lg + T”RHC([QT];QOG))/ [l (s) — Wy ()l ds. (3.12)
0

Then, we use [18, Theorem 1] on (3.12) to conclude that there exists a unique w satisfying ®w = w. Thus, we finish the proof of
Theorem 3.3. W

On numerical analysis of Problem 2.2, a solution regularity w € W1(0,T;K) is required, which can be deduced by stronger
assumptions on R and f. Denote:

H,(R) ReWh(0,T;0,).

Hy(f) fo € WH(O,T; L2(2;RY)), f, € WH(0,T; L*(I; RY)).

Lemma 3.4. Assume H(A), H(B), H,(R), H,(f), H(y,), H(y,), H(uy), and H(s). Then, Problem 2.2 has a unique solution
we Wh0,T; K).

The proof is similar to that of Theorem 3.3, and hence its details are omitted here. Using H,(R) and H,(f) on (3.3), one can
show that w is absolutely continuous on [0, T]. Then the regularity w € W1(0,T; K) follows since V is reflexive (cf. [36, Lemma
2.31D).

4. Numerical analysis of the hemivariational inequality
We introduce and analyze a fully discrete scheme for Problem 2.2 in this section. For a positive integer N, let k = T/N be

the time step-size, and let ¢, = nk, 0 < n < N, be the nodes. We will use the left endpoint rule for the numerical integration of a
continuous function Z:

1 n—1
/ Z(s)ds m kY, Z(t)).
0 =)
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For simplicity, 2 is assumed to be a polygon/polyhedron. The boundary I is further divided as the following: T} = Uigi<r, L1
T, = Vi<, Do I"31 =Uiqq,, 13,1, and I"32 = U1<,<,32F32,, where each subset is a line segment (if 4 = 2) or a polygon (if d = 3).
Let {7"} be a regular family of partitions of 2 into triangles/tetrahedrons such that if a side/face of an element has a non-trivial
intersection with a boundary subset I'y ;, I;;, I3, or I, ,, then the side/face lies entirely on that boundary subset.
For each partition 7", define
h=(wh e c@? | v'|; e Py(T:R?) for T € T", 0" =0 on I}
and

K" = {vh evh | vi’ < 0 at node points on I3 }.

Note that V" consists of continuous piecewise linear functions and K" is a convex subset of K. The symbols w, = w(t,), 6, = 6(t,),
Fu=F)s fon = folty), and fr, = f>(1,) are used below. Let u)} € V" be an approximation of u.
The fully discrete scheme for Problem 2.2 is as follows.

Problem 4.1. Find a discrete velocity field w*" := {wk"}N 'c V" such that for 0 <n < N, wk" € K" and

(Ae(wfh), e(vh k") / [v/o(wn Vs v - wf’i) + wo(wm, vh - wfﬁ)] da

> (fp 0" —wkhy — (Be(uf + k Z wj?h), " - w';h))Q
Jj=0
n—1
—k Y (R, —t)eug +k Z whih, e@" —wih), Vo' e k" 4.1)

j=0 m=
With respect to the doubly-history dependent term, the integral of strain tensor is approximated by the left endpoint rule, and
the integral of the velocity field is approximated by the right endpoint rule. The well-posedness result for Problem 4.1 is as follows.
Theorem 4.2. Keep the assumptions stated in Lemma 3.2. Then, Problem 4.1 has a unique solution w*" c K".

Proof. The inequality (4.1) for n =0 is to find wg" € K" such that

(At e@” - whh) , + /F [0kt o = k) +y 2wl ot — wil] da

32
> (fo-v" —wp") - (Be(ug). e@" —wi™), Vo' e K" 4.2)

Similar to the proof of Lemma 3.2, it can be shown that the inequality (4.2) admits a unique solution w*”.

For 1 < n < N, assuming that {w h} j<n—1 are known, it can be shown similarly that (4.1) has a unique solution w"” Thus,
through an induction argument, we prove that Problem 4.1 has a unique solution w** c K. W

An optimal order error estimate for the numerical solutions of Problem 4.1 is presented in the next result.

Theorem 4.3. Keep the assumptions stated in Lemma 3.4. Assume the solution regularity w € C([0,T]; H>(2;R%)), w € C([0,T1;
HXI53, 3RY) for 1 <1 < I3y, w € CI0,T; HX(I3,5RY) for 1 < 1 < I35, and 6 € C([0,T]; H'(2;S)). Moreover, assume

u, € H*(2;RY), and let ug be the finite element interpolation or the L?()-projection of u,. Then, the following error bound holds for
the numerical solution of Problem 4.1:

max_|lw, —w*"||, <c(k+h). (4.3)
0<n<N

Proof. We begin with
myllw, — wkhll2 (A.E(wn) — Ae(wkh) e(w,) — e(wﬁh))Q
= (Ae(w,), e(w, - wkh)) (Ae(wﬁh), e(wﬁh - vh))Q
+ (Ae@). e@" —w,)) . (4.4)

In (2.8), let t =1, and v" = wkh,
Zn
(Ae,). ew, —wih) , < (Be(lw(1,)) + / R(t, — 5) e(w(s)) ds, ew)" —w,))
0
+/ [We(ww; Wil —w, )+l w, whh — w,,’r)] da
I3

S —w,). (4.5)
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Rewrite (4.1) into the following:

n—1

(A&(wf,h), e(wﬁh - vh))Q < —(f,.v" - w’;h) + (Be(u(')' +k Z w;fh), e — wf,h))Q

j=0
n—1
+ (kY R(t, — 1)) e(ul +k2wk") @' —wh),
Jj=0
+ / [0t = ) 4 0kl o — ] da. (4.6)
I3,

Then, we substitute (4.5) and (4.6) into (4.4), and reform the resulting inequality to get

myllw, — w2 < 25: I, + RO w,), 4.7)
i=1
where
= (Ae@*") - Aew,), e(v" —w,)) 0
I, = (Be(ug +k E‘i wi") — Be(w(t,)), e@" —wi™)
Jj=0

n—1

In
L= kZR(t —t,) e(ul +k2wk")—/0 R(t, = s)e(Tw(s)) ds, e@" — wih) .
Iy = / [wS(wn,v:w"f' —u”>+w°(wnv,u"—wﬁﬁ)] da,
I3,
/ [w“(wn,,wk —v")+u/(wm,v"—W’;f’,)] da,
I3,

and

tn
RV w,) = (Ae(w,) + Be(w(t,)) + / R(t, — 5) e(w(s)) ds, e@" — w,)) 0
0
+/ [ww,,: " —w, ) +yw, v —w, )| da—(f,. 0" —w,).
I3,

Here, R(w", w,) denotes a residue term. By (2.8), it is nonnegative. Below, we will use ¢ for a generic constant in places, which

depends on [Rllcqoryo,) IR lior:0,) Iollvs 1@llcqorivy 1w lpiorays lowvll2irymay Las Lp, Ts s Cors @, @, , and an
arbitrary small e > 0.
Now we proceed to bound each. By the Cauchy-Schwarz inequality and the Lipschitz continuity of A,

I < Lyllw)? —w,lly 0" —w,lly.
Applying the modified Cauchy-Schwarz inequality
absea2+4ib2 VYa,beR, Ye>0,
€

we derive that
2

L
A
I < ellw, —wI + 22w, =", (4.8)
On I,, the error bound
1 n—1
I /0 w(syds —k 3 w,lly <klw'll 1z,
=0

is satisfied, due to w € W!(0,T; K). Then, an analogous argument with 7, is utilized to get

n—1

tﬂ
L <Lg ||ug+k2w§"-(uo+/ w(s)ds)|ly 0" - wkh|),
=0 0
n—1 n—1
h h h
< Ly (llup — ||V+k2||w - w ||V+||/ w(s)ds —k Y willy ) 1" - wih,
J=0

h kh h kh
<Lg (k”w,”Ll(o,T;V)"'||u0_u0”V+k2”wj_wj ”V)”V -—w, ”V
Jj=0
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From the triangle inequality, the relation v —wl,fh Iy < llw, —w’;h Il +llw,—v"|l,, holds. Then, we use the modified Cauchy-Schwarz

inequality to derive that
n—1 )
kh 2 h 2 h kh
I <ellw, — w2 +|lw, —v ||V+c(k+||u0—u0||V+kZ||w/-—wj )~
Jj=0

To analyze I5, we focus on the errors of the repeated numerical integrals. Observe that

n—1 n—1
||kZR(t —1)) e(ul +k2wkh)—kZR(t -1, )e(u0+kzw Mo
j=0 m=1 Jj=0 m=1
n—1
ST IRllcqorron (o — uplly +k Y llw; —wh|y).
j=0

Moreover, the following bound holds:

n—1 J n—1 141
kY R, — 1)) ey +k Y w,)— Y / R(t, —t)) e(w(s)) dsllp
j=0 m=1 j=071;
n—1 Lit1 J s
<IIRllcqorron X, / e Y, w, - / w(z)dzlly ds
j=071j m=1 0

<kT ”R”C([O,T];Qw) llw'|| LI0T;V)"

To proceed further, H,(R) is used to get

n— I+
I Z/' ]R(t t)e(Iw(s))ds—Z/ R(t, - s) e(Tw(s)) dsllg
J=01j !

n=le =t
= Z / (/ R/ (z)dze(Iw(s))) dsllo
j=0 tj t,—s

<k ||R,||Ll(0,T;Qm)(||u0||V + Tllwllcqo.ryv))-

Together with (4.10)-(4.12), we obtain

n—1
I <c(k+lup—ullly +k Y lw; —wk ) lw, - wl, + lw, - o"1l,)
J=0
n—1 )
kh 2 2 h kh
<ellw, — w15, + lw, — V"I, + ¢ (k+ lug —uflly +k Y llw; —wh],)".
Jj=0

In the estimation of I, the sub-additivity of Clarke directional derivative [8] is used to get
[ vt - hdas [ [l iuth = w0+ 000,50, - o) da
I3, I3,
and
/ u/‘?(w’;ﬁ; UC’ - wﬁﬁ)da < / [q/ (wnv, UC’ —wy,,)+y, (wnv, Wy — wﬁ"\'/)] da
I3, I3,
Add the inequalities and use H(y,) (b), (c) to derive
I, < |w,,v—w | + 280, (W, — vfl)da.
Fzz
Then, we apply Holder’s inequality to obtain
I, < awvl |w, — wkh“2 +cllw,, - U'Vl”LZ(rlz)-
By using an analogous approach of (4.14),
kh||2

h
I5 < awTA |lw, —w +cllw,, — VT”LZ(FH;]R")'

To bound the residual term R(v",w,), we deduce point-wise equations by (2.8). A function space U is defined by

U={(veC®@R) |v=00nTI,UT;}.
Let

t
o(t) = Ae(w(t)) + Be(Iw(1)) + / Rt —s)e({w(s))ds in Q.
0

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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Taking v = w(r) + U in (2.8), where v € U,

(o). exD)) , + / [w)(w, (0); £8,) + y 2w, (1); £8,)| da > (£ (1), £D).

I3n

Thus, (6(1), &(D)) 0 = (), v) is derived, due to ' = 0 on I';,. From Green’s formula

(G(l), e(fl))Q + (Dive(), D) = /rcr(t)v -Uda,
we have

(Divo (1), D) + (fo(1), D) LR = /r 7 o()v-vda— /r 2 fr() - Pda.
Since v is arbitrary, we utilize the technique in [36, Section 8.1] to get

Dive(t) + fo(t) =0 ae. in 2, (4.16)

oct)v = f,(t) ae.on I;. (4.17)
By taking the inner product of (4.16) and v" — w,, integrating over the domain £, and setting ¢ = 1,, we obtain
/ Dive, - @" —w,)dx = —/ fo, @' —w,)dx.
Q Q
Then, Green’s formula and (4.17) are applied to derive
/ 6, eW" —w,)dx —/ fo, - @" —w,)dx —/ fo, - W' —w,)da
Q Q I
= / o,v- (" —w,)da.
I

Hence, the residual term is simplified to that
RV w,) = /r o,v- (" —w,)da+ /r [w?(wn,v; UCI —Wy,,) + ‘I’S(wn,ré V}; - w,,’f)] da.
3 32
Based on the solution regularity ¢ € C([0,T]; H L@;8%), H (w,) (b) and H(y,) (b), we use Holder’s inequality to get
RV w,) <c|w, - V"Ml 2y may- (4.18)

Use the bounds (4.8), (4.9), (4.13), (4.14), (4.15) and (4.18) in (4.7) to get

LZ
kh 2 -1 -1 kh 2 A hp 2
mallw, —w, "y < (o, 4,7 +a, A7+ 3e) lw, —w, "l + @+ 22 llw, — vl
n—1
h h khy \2
+ellw, = V"Il 2y + € (k+ llug —ullly + kY llw; —wy,)". (4.19)
=

By H(s), my —(ay, /1;1 +a,, /1;1) —3e > 0 is satisfied for sufficiently small ¢ > 0. Rearrange the terms of (4.19) and take the square
root of its both sides to derive

1

kh h h 2 h
llw, —willy < e (llw, =" lly +llw, = o"I7, o+ g = ugly +k)
n—1
kh
+ckZ||wj—wj Iy (4.20)
=0

Thus, we apply a discrete Gronwall’s inequality ([36, Lemma 7.25]) on (4.20) to get

kh . h my
max ||w, —w <c¢ max inf (w—v + ||lw, — v )
OSnSNII =W,y < OS”SN{UhGKh llw, Iy +llw, IILZ(F};R[,)

+c(llug —uflly + k). (4.21)

Based on the standard finite element interpolation error estimates (cf. [37,38]), |luy — uglly < ¢ h, and with v” the linear element
interplant of w,,

10
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Rigid foundation Rigid foundation

Fig. 1. The contact model (left) and the configuration of £ (right).

1/2 <ch

_pyh _ph
ey = &1l + llw, =018 <

under the stated solution regularity assumptions. Then, we derive (4.3) from (4.21). W

5. A numerical example

In this section, we present a numerical experiment for the viscoelastic contact problem. As depicted in Fig. 1 (left), 2 denotes
the cross section of the deformable body, a rigid foundation is located horizontally, and a layer of elastic asperities is laid vertically.
Let 2 =(0,L;)x (0, L,), and the whole boundary I" is divided as follows:

I ={0}x(0,L,), T, = [0,L,] X {Ly}, T3y =[0,L;] x {0}, T35 ={L;}x(0,L,).

The body is fixed on I}, and surface traction of a total density f, acts on I,. In the constitutive law, the viscosity tensor .4 and the
elasticity tensor B are defined by

(A7) =207;; + {(7y + 12205, 1 <4,/ <2,

j

E Ex .
(BT)ij=l+—KTij+_(T“+T22)5 1 §1,j§2,

1-—x2 v
respectively, where 6 > 0 and ¢ > 0 are the viscosity coefficients, §;; denotes the Kronecker symbol, E means the Young modulus,
and « represents the Poisson ratio of the material. The relaxation tensor R(s) = ¢~*I, where I is an identity matrix. On I3, the
normal damped response condition is expressed as
0, ul <0,

0.0, 0<u <0.02,
0.0002 — 0.01(x, —0.02),  0.02 < u/ <0.03,
0.0001 — 0.01(«, —0.03), u] > 0.03,

/
—o,(u,) =

and the friction law is described as

!/
ur
u

A

o] <0.04F, if u. =0, —o, =002+ 1)F,— if u #0.

where F, denotes the friction bound.
The domain € is divided uniformly, triangular finite element partitions are applied, and continuous linear finite element spaces
are used for computation. The following parameters are used in the experiment:

Li=L,=1m, =05 ¢=05 E=10GN/m?>, ¥=03, F,=1, T=1s,
f2=1(0,-06(" - Dx) GN/mon I;, fo=0inQ, uy=0inQ.
The graphic of the deformable body 2 at t+ = 1 with k = 1/512 and h = 1/32 is presented in Fig. 1 (right). The relative errors are
calculated by ||w’1‘\f’ —wylly/llwylly, where wy is the reference solution with k = 1/512 and A = 1/256. Finally, convergence orders

of the numerical solutions for fixed spatial mesh-size and fixed temporal step-size are reported in Tables 1 and 2, respectively. The
data shows an optimal first order of the numerical solutions, which is predicted by the theoretical analysis.

11
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Table 1

Convergence orders with fixed spatial mesh-size.
h k Error Order
1/256 1/8 0.054171 -
1/256 1/16 0.026299 1.0425
1/256 1/32 0.012671 1.0535
1/256 1/64 0.005905 1.1014
1/256 1/128 0.002532 1.2220

Table 2

Convergence orders with fixed temporal step-size.
k h Error Order
1/512 1/4 0.263533 -
1/512 1/8 0.146693 0.8452
1/512 1/16 0.078339 0.9050
1/512 1/32 0.040600 0.9483
1/512 1/64 0.020115 1.0132

Data availability

Data will be made available on request.
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