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Abstract
We propose three modified contact boundary conditions incorporating both the ve-
locity and the displacement with a parameter δ for the viscoelastic problem. As 
δ approaches 0, these conditions formally reduce to the conventional Signorini, 
Tresca-friction, and Clarke-subdifferential type boundary conditions, respectively. 
Consequently, the modified conditions, as a generalization of the conventional ones, 
can be viewed as contact conditions in the displacement with a dynamic setting. 
We derive weak formulations for the viscoelastic contact model under three modi-
fied contact conditions and explore their well-posedness. Additionally, we provide 
bounds on the weak solutions with respect to the parameter δ.

Keywords  Viscoelastic contact problem · Signorini condition · Tresca-friction · 
Clarke-subdifferential · (hemi-)variational inequality

Mathematics Subject Classification  49J40 · 70E18 · 74M15 · 74D99

1  Introduction

Various contact boundary conditions, such as the Signorini-type, friction-type, and 
Clarke-subdifferential-type conditions, have been proposed for the elastic and visco-
elastic contact problems, which have a wide range of applications in mathematical 
modeling in the materials science and engineering simulation and have drawn con-
siderable attention from numerous scholars in mathematical and numerical analysis 
[1–5]. Such boundary conditions describe various contact mechanics and are crucial 
for mathematical modeling of the complex dynamics of (visco)elastic body and fluid 
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flow interacting with the boundary [6–12]. In a typical contact problem (Fig. 1), we 
are interested in the deformation and/or stress distribution in a deformable body sub-
ject to the action of body forces and surface tractions on a part of the boundary ΓN , a 
displacement constraint on another part of the boundary ΓD, and contact conditions 
on the remaining part of the boundary ΓC , called the contact boundary. Numerous 
studies exist on the well-posedness and numerical methods for contact problems with 
different contact boundary conditions.

For convenience, we use “SC”, “TC” and “CS” to refer to contact boundary con-
ditions of the Signorini-type, friction-type, and Clarke-subdifferential-type. More-
over, we use the labels (SCD), (TCD), (CSD) for contact conditions expressed on the 
displacement u in studies of stationary/quasi-static/nonstationary contact problems, 
and use the labels (SCV), (TCV), (CSV) for contact conditions expressed on the 
velocity u′ in studies of quasi-static/nonstationary contact problems. We label the 
contact conditions in our models by (SDVδ), (TDVδ), (CDVδ) for contact conditions 
expressed on u + δu′ in studies of quasi-static/nonstationary contact problems. For-
mally, we recover (SCD), (TCD), (CSD) from (SDVδ), (TDVδ), (CDVδ) as δ → 0, 
and recover (SCV), (TCV), (CSV) from (SDVδ), (TDVδ), (CDVδ) as δ → ∞.

The Signorini condition is commonly used to describe the non-penetration phe-
nomenon in contact mechanics [8, 13]. For the unilateral condition, the normal com-
ponents of the traction vector σn and the displacement u are required to satisfy the 
following condition (called the Signorini condition in displacement):

	 σn · n ≤ 0, u · n ≤ 0, (σn · n)(u · n) = 0,� (SCD)

where n is the unit normal outward vector, and u · n ≤ 0 means no penetration 
occurs. The unilateral condition (SCD) is usually used in static contact problems. 
For dynamic contact problems or quasi-static contact problems, a different version of 
the Signorini condition (called the Signorini condition on the velocity) has also been 
proposed:

	 σn · n ≤ 0, u′ · n ≤ 0, (σn · n)(u′ · n) = 0,� (SCV)

where u′ is the velocity.

Fig. 1  contact model 
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For some physicists and engineers, (SCD) appears both natural and accurate, as it 
effectively encapsulates the non-penetration constraint. However, from a mathemati-
cal perspective, the unique solvability of dynamic or quasi-static elastic and visco-
elastic contact problems that incorporate the condition (SCD) remains inadequately 
examined. The well-posedness of the static elastic problem with the (SCD) condition 
has been established [8]. Additionally, the well-posedness of the wave equation under 
the (SCD) condition in a half-space has been demonstrated [14]. In more general 
domains, while existence has been confirmed [15], the aspect of uniqueness is still 
unresolved. Extending these results to dynamic and quasi-static elasticity equations 
is an ongoing challenge. Regarding the viscoelastic problem associated with (SCD), 
the existence of a weak solution has been validated in [16] using a penalty approach. 
Moreover, well-posedness of dynamic elastic and viscoelastic contact problems with 
the (SCV) condition has been established in [7, 17].

In [18], a modified Signorini condition was proposed for the elastic problem, 
which involves both displacement and velocity with a parameter δ > 0:

	σn · n ≤ 0, (u + δu′) · n ≤ 0, (σn · n)((u + δu′) · n) = 0. (SDVδ)

The inclusion of both displacement and velocity in the sum (i.e., u + δu′) may 
appear somewhat peculiar. However, one can think of the parameter δ > 0 as a physi-
cal quantity measuring the time effect on the displacement. Notably, a similar issue 
regarding physical units arises in the variational form for the quasi-static or dynamic 
elastic contact problems under the Tresca/Coulomb-friction condition (see [7, Page 
205] for clarification). The existence of a strong solution for the elastic problem under 
(SDVδ) has been confirmed in [18] using regularization/penalty methods alongside 
Galerkin’s approach. As δ approaches 0, (SDVδ) formally reduces to (SCD), while 
(SCV) can be formally derived from (SDVδ) by considering the limit as δ → ∞, or 
by substituting u + δu′ with δu + u′ and allowing δ → 0. It is important to note 
that a rigorous mathematical justification for the limit as δ → 0 has not yet been 
established.

We now shift our focus to the interaction involving friction. The Tresca-friction 
condition, which functions as a simplified form of the Coulomb-friction law, is fre-
quently utilized to model contact mechanics on rough surfaces. For static contact 
problems, the Tresca friction condition in displacement is given by

	 |στ | ≤ g, στ · uτ + g|uτ | = 0,� (TCD)

where στ  and uτ  represent the tangential component of the traction and the displace-
ment, respectively, and g > 0 is the maximum static friction. For dynamic or the 
quasi-static elastic/viscoelastic contact problem, it seems more popular to impose the 
Tresca-friction condition in terms of the tangential velocity [6, 7],

	 |στ | ≤ g, στ · u′
τ + g|u′

τ | = 0,� (TCV)

where u′
τ  is the tangential component of the velocity. Well-posedness of the static 

elastic contact problems defined by (TCD) has been established [8]. In the case of a 
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linearized elastodynamic body under the (TCV) condition, the proof of well-posed-
ness is provided in [6, 19]. Nonetheless, the existence of a solution for the dynamic 
problems with (TCD) remains an open problem, even in the viscoelastic case [7]. 
Moreover, to the authors’ knowledge, (TCD) is seldomly considered in the context 
of quasi-static contact problems. For further exploration of the mathematical and 
numerical analysis pertaining to (visco)elastic and fluid problems involving various 
Tresca-friction conditions, consult [7, 12, 20, 21] and the references cited therein.

We shall now focus on the contact condition of the Clarke-subdifferential type in 
the normal direction. This condition has been proposed to model a more general and 
complex penetration phenomenon in contact mechanics [5, 22, 23]. For instance, the 
condition describes a deformable foundation and assigns a reactive normal pressure 
depending on the interpenetration of the asperities on the body surface and the foun-
dation (the Clarke normal compliance):

	 −σn · n ∈ ∂jn(u · n),� (CSD)

where jn is a nonsmooth and nonconvex function and ∂jn denotes the Clarke subdif-
ferential of jn. When modeling contact with a lubricated foundation (such as oil), 
the reactive normal pressure depends on the normal velocity on the contact surface, 
leading to the following condition (the Clarke normal damped response):

	 −σn · n ∈ ∂jn(u′ · n).� (CSV)

For elastic and viscoelastic contact problems with (CSD), well-posedness theories 
have been explored in [23, 24]. The unique solvability for the viscoelastic contact 
problem characterized by (CSV) has been investigated in [25].

As previously indicated, various types of contact boundary conditions have been 
designed to model different contact mechanisms in the literature. In certain cases, 
even for the same contact mechanism involving elastic or viscoelastic bodies, the 
contact boundary conditions for static, quasi-static, and dynamic scenarios may be 
formulated in different expressions, depending on whether they pertain to the dis-
placement or the velocity. Is there a single condition that can be regarded as a general-
ization of the contact conditions on the displacement and the velocity? The modified 
Signorini condition (SDVδ) introduced in [18] represents a first attempt to generalize 
the Signorini condition concerning displacement and velocity for elastic problems. 
Drawing inspiration from the aforementioned research, the motivation of this paper 
is to examine viscoelastic contact problems with the modified Signorini boundary 
condition (SDVδ), as well as the modified Tresca-friction condition (TDVδ) and the 
Clarke-subdifferential-type condition (CDVδ):

	
|στ | ≤ g, στ · (uτ + δu′

τ ) + g|uτ + δu′
τ | = 0, (TDVδ)

−σn · n ∈ ∂jn((u + δu′) · n). (CDVδ)

These modified conditions appear to serve as intermediaries between the corre-
sponding conventional conditions on either the displacement or the velocity. As δ 
approaches 0, the modified contact conditions formally reduce to the conventional 
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ones in terms of the displacement, i.e., (SCD), (TCD), and (CSD). In contrast, as 
δ approaches ∞ (or equivalently, by replacing u + δu′ with δu + u′ and allow-
ing δ → 0), they reduce to the corresponding conventional conditions in terms of 
the velocity, i.e., (SCV), (TCV), and (CSV). Thus, these modified conditions can be 
interpreted as a perturbation of the conventional contact conditions. It is believed 
that investigating these modified contact conditions will contribute to the model-
ing and mathematical theories of contact mechanisms while also facilitating a bet-
ter understanding of the relationships and distinctions between conventional contact 
conditions concerning displacement and velocity. As an initial endeavor, the present 
work aims to develop the well-posedness theory for the linear viscoelastic problem 
incorporating three modified contact conditions.

The main results of this paper are summarized as follows. We introduce the 
transform (3.3) (or, equivalently u(t) + δu′(t) = w(t)) and z(t) = w(t)e− t

δ  to 
reformulate the original second-order temporal system of u into a parabolic history-
dependent variational problem of z. Then, we apply the operator theory to study the 
well-posedness of the problem instead of using Galerkin’s method. We establish the 
unique existence of the viscoelastic contact problem under the modified Signorini, 
Tresca-friction, and Clarke-subdifferential type boundary conditions, respectively. 
Additionally, we bound the solution with respect to the parameter δ.

The rest of this paper is structured as follows. In Section 2, we state the viscoelas-
tic problem with the three modified contact conditions. In Section 3, we present the 
transformation technique and show the well-posedness of the viscoelastic problem 
with the modified Signorini contact condition. Section 4 and 5 are devoted to the 
unique existence of solutions of the viscoelastic contact problems under the modified 
Tresca-friction and Clarke-subdifferential-type boundary conditions, respectively.

2  Viscoelastic contact problems with three modified contact 
conditions

We introduce the model problem and assumptions in this section. Let Ω be an open, 
bounded domain in Rd (d = 2, 3) with a Lipschitz boundary ∂Ω = Γ. The boundary Γ 
is partitioned into three disjoint measurable parts ΓC , ΓD and ΓN  with meas(ΓD) > 0 
and meas(ΓC) > 0. Let I = [0, T ] be a time interval with 0 < T < ∞. Here and 
below, we use boldface letters for vectors and tensors. We denote by n the unit normal 
outward vector to the boundary. The normal and tangential components of a vector w 
on the boundary are denoted by wn = w · n and wτ = w − wnn, respectively. For 
a stress tensor σ, we set σn = (σn) · n and στ = σn − σnn. For simplicity, we use 
|·| to represent the Euclidean norm of R, Rd and Sd. We use the notation

	
D(u) = 1

2
(∇u + (∇u)⊤), ∇ · σ = (σij,j), i, j = 1, · · · , d,

to define the linearized strain tensor and the divergence operator, respectively. Note 
that the summation convention over a repeated index is adopted.
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The viscoelastic contact model is stated as follows.

Problem P  Find a displacement field u : Ω × I → Rd such that for a.e. t ∈ I , 

	 σ(t) = A D(u(t)) + BD(u′(t)) in Ω, � (2.1a)

	 u′′(t) − ∇ · σ(t) = f0(t) in Ω, � (2.1b)

	 u(t) = 0 on ΓD, � (2.1c)

	 σ(t)n = f1(t) on ΓN , � (2.1d)

	 u(0) = 0, u′(0) = 0 in Ω, � (2.1e)

 and on ΓC , one of the three types of contact conditions:

	● The modified Signorini condition (SDVδ): 

	 −στ (t) = 0, σn(t) ≤ 0, un(t) + δu′
n(t) ≤ 0, σn(t)(un(t) + δu′

n(t)) = 0.�(2.2)

	● The modified Tresca-friction condition (TDVδ): 

	 un(t) = 0, −στ (t) ∈ g∂ |uτ (t) + δu′
τ (t)| .� (2.3)

	● The modified contact condition of Clarke-subdifferential-type (CDVδ): 

	 στ (t) = 0, −σn(t) ∈ ∂jn(un(t) + δu′
n(t)),� (2.4)

 where jn : ΓC × R → R.
In the description of Problem P, (2.1a) represents the constitutive law of the visco-

elastic body; (2.1b) is the equation of motion, f0 being the density of the body force; 
(2.1c) specifies the displacement boundary condition on ΓD where for simplicity, the 
zero boundary value is used without loss of generality; (2.1d) describes the surface 
traction condition on ΓN , f1 being the density of the surface traction; (2.1e) reflects 
the initial values of the displacement and the velocity, both initial values are taken to 
be zero without loss of generality. In the contact conditions (2.2)–(2.4), the parameter 
δ ∈ (0, ∞).

Remark 2.1  The parameter δ can be interpreted as indicative of a short time period, 
ensuring that the physical unit of u + δu′ remains meaningful. The modified contact 
conditions can thus be seen as conventional conditions on the displacement that pos-
sess a degree of dynamism. As δ approaches 0, the three modified conditions for-
mally reduce to the contact conditions associated with the displacement. By allowing 
δ → ∞, or by substituting u + δu′ with u′ + δu and subsequently letting δ → 0 , we 
formally derive the contact conditions on the velocity. Therefore, the three modified 
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contact conditions that encompass both displacement and velocity can be regarded 
as a generalization of the traditional contact conditions that address either the dis-
placement or the velocity.

To study Problem P, we need to introduce function spaces, bilinear forms and the 
assumptions. We set

	 H = L2(Ω;Rd), V = {v ∈ H1(Ω;Rd) | v = 0 a.e. on ΓD}.

The inner product and norm of V are defined by

	
(v, u)V =

ˆ

Ω
D(v) : D(u)dx = (D(v),D(u)), ∥v∥2

V = (v, v)V ∀ v, u ∈ V.

Since meas(ΓD) > 0, it follows from Korn’s inequality that ∥ · ∥H1  and ∥ · ∥V  are 
equivalent norms of V. Note that the embedding V ⊂ H  is compact, and (V, H, V ∗) 
constitutes an evolution triple. For brevity, we set V = L2(I; V ), V∗ = L2(I; V ∗) 
and W = {v ∈ V | v′ ∈ V∗}. Note that W  is a separable and reflexive Banach space 
and its norm is defined through the equality ∥v∥2

W = ∥v∥2
V + ∥v′∥2

V∗ . The distribu-
tional derivative operator L : D(L) ⊂ V → V∗ is defined by

	
⟨Lu, v⟩ =

ˆ T

0
⟨u′(t), v(t)⟩dt ∀ v ∈ V,

where the domain D(L) = {v ∈ W | v(0) = 0}. The operator L is linear, densely 
defined, and maximal monotone.

Next, we state hypotheses on the data of Problem P.
H(A ): The function A = (Aijkl) : Ω × Sd → Sd is such that

(i) Aijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d;
(ii) A (x, ·) is symmetric, for a.e. x ∈ Ω, i.e., Aijkl = Ajikl = Aklij , 

1 ≤ i, j, k, l ≤ d;
(iii) there exists mA > 0 such that for all ϵ ∈ Sd, a.e. x ∈ Ω,

	 (A (x)ϵ) : ϵ ≥ mA |ϵ|2 .

H(B): The function B = (Bijkl) : Ω × Sd → Sd is such that
(i) Bijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d;
(ii) there exists mB > 0 such that, for all ϵ ∈ Sd, a.e. x ∈ Ω,

	 (B(x)ϵ) : ϵ ≥ mB |ϵ|2 .

H(f): f0 ∈ C(I; L2(Ω;Rd)), f1 ∈ C(I; L2(ΓN ;Rd)).
We define f ∈ C(I; V ∗) by
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⟨f(t), v⟩ =

ˆ

Ω
f0(t) · vdx +

ˆ

ΓN

f1(t) · v dΓ ∀ v ∈ V.� (2.5)

Further, define operators A : V → V ∗ and B : V → V ∗: for all u ∈ V ,

	
⟨Au, v⟩ =

ˆ

Ω
(A D(u)) : D(v) dx ∀ v ∈ V ; � (2.6)

	
⟨Bu, v⟩ =

ˆ

Ω
(BD(u)) : D(v) dx ∀ v ∈ V. � (2.7)

3  The modified Signorini condition

In this section, we consider Problem P with the modified Signorini contact condition 
(2.2). To state the weak formulation, we set

	 K = {v ∈ V | vn ≤ 0 a.e. on ΓC},

which is a nonempty, closed, convex subset of V.

3.1  Weak formulation of the problem (2.1) and (2.2)

We derive the weak formulation of Problem P with the modified Signorini contact 
condition (2.2). Assume that the problem has a sufficiently smooth solution u. For 
any v ∈ K, testing (2.1b) by v − (u(t) + δu′(t)) and using the integration by parts, 
we have

	

ˆ

Ω
u′′(t) · (v − (u(t) + δu′(t)))dx +

ˆ

Ω
σ(t) : D(v − (u(t) + δu′(t)))dx

−
ˆ

Γ
(σn)(t) · (v − (u(t) + δu′(t)))dΓ =

ˆ

Ω
f0(t) · (v − (u(t) + δu′(t)))dx.

Utilizing (2.1c), (2.1d) and (2.2), we see that

	

ˆ

Γ
(σn)(t) · (v − (u(t) + δu′(t)))dΓ ≥

ˆ

ΓN

f1(t) · (v − (u(t) + δu′(t)))dΓ.

Hence, we get

	

ˆ

Ω
u′′(t) · (v − (u(t) + δu′(t)))dx +

ˆ

Ω
σ(t) : D(v − (u(t) + δu′(t)))dx

≥
ˆ

ΓN

f1(t) · (v − (u(t) + δu′(t)))dΓ +
ˆ

Ω
f0(t) · (v − (u(t) + δu′(t)))dx.
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Together with (2.1a), the weak formulation of the problem (2.1) and (2.2) is stated 
as follows.

Problem 3.1  Find u : I → V  with u′′ : I → V ∗, and u + δu′ : I → K, such that 
u(0) = 0, u′(0) = 0, and for all v ∈ K, a.e. t ∈ I ,

	

⟨u′′(t),v − (u(t) + δu′(t))⟩ + ⟨Au(t), v − (u(t) + δu′(t))⟩
+ ⟨Bu′(t), v − (u(t) + δu′(t))⟩ ≥ ⟨f(t), v − (u(t) + δu′(t))⟩.

� (3.1)

3.2  Transformations of Problem 3.1

In this part, we perform some transformations (see Fig. 2) on Problem 3.1 to 
make it easier to establish the well-posedness. By taking u(t) + δu′(t) = w(t), 
z(t) = w(t)e− t

δ  and defining the history-dependent S, Problem 3.1 is transformed 
into Problem 3.2. Then, Problem 3.2 can be transformed into Problem 3.3 by fixing 
the history-dependent S. Next, by introducing the regularization term (i.e., the pen-
alty term), we transform Problem 3.3 into Problem 3.4.

First, we set

	 u(t) + δu′(t) = w(t).� (3.2)

It follows from u(0) = 0 and u′(0) = 0 that w(0) = 0. We see that

	
u(t) = 1

δ
e− 1

δ t

ˆ t

0
w(s)e 1

δ sds.� (3.3)

Note that (3.3) implies u(0) = 0. In addition, we get 

	
u′(t) = 1

δ
w(t) − 1

δ
Rw(t), � (3.4a)

	 w(t) = δ(Rw)′(t) + Rw(t), � (3.4b)

Fig. 2  transformation process
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u′′(t) = 1

δ
w′(t) − 1

δ2 w(t) + 1
δ2 Rw(t), � (3.4c)

 where the operator R : V → V  is defined by

	
Rv(t) = 1

δ
e− 1

δ t

ˆ t

0
v(s)e 1

δ sds ∀ v ∈ V, t ∈ I.� (3.5)

The operator R is linear and continuous, satisfying

	
∥Rv(t)∥V ≤ δ−1e− 1

δ t

ˆ t

0
e

1
δ s∥v(s)∥V ds ≤ δ−1

ˆ t

0
∥v(s)∥V ds ∀ v ∈ V.

� (3.6)

Based on (3.3)–(3.4c), Problem 3.1 is equivalently reformulated as a problem for w:
Find w : I → K with w′ : I → V ∗ such that w(0) = 0 and for all v ∈ K, a.e. 

t ∈ I ,

	

⟨w′(t) − 1
δ

w(t), v − w(t)⟩ + ⟨(1
δ

I − B)Rw(t), v − w(t)⟩

+ δ⟨ARw(t), v − w(t)⟩ + ⟨Bw(t), v − w(t)⟩ ≥ δ⟨f(t), v − w(t)⟩.
� (3.7)

In view of

	
w′(t) − 1

δ
w(t) = e

t
δ (w′(t)e− t

δ − 1
δ

w(t)e− t
δ ) = e

t
δ (w(t)e− t

δ )′,

we introduce the transformation

	 z(t) = w(t)e− t
δ � (3.8)

and refomulate (3.7) as a problem for z:
Find z : I → K with z′ : I → V ∗, such that z(0) = 0 and for all v ∈ K, a.e. 

t ∈ I ,

	

⟨z′(t), v − z(t)⟩ + ⟨Bz(t), v − z(t)⟩ + e− t
δ ⟨(1

δ
I − B)R(e t

δ z(t)), v − z(t)⟩

+ δe− t
δ ⟨AR(e t

δ z(t)), v − z(t)⟩ ≥ δe− t
δ ⟨f(t), v − z(t)⟩,� (3.9)

where we have applied

	
w′(t) − 1

δ
w(t) = e

t
δ z′(t).� (3.10)

We define the operator S : V → V∗ by
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Sv(t) = e− t

δ (1
δ

I − B)R(e t
δ v(t)) + δe− t

δ AR(e t
δ v(t)) ∀ v ∈ V, t ∈ I.�(3.11)

It is easy to see that the operator S is a history-dependent operator with the Lipschitz 
constant LS = 1

δ ( 1
δ + ∥B∥) + ∥A∥. In fact, using the linearity and continuity of B 

and A, for any v1, v2 ∈ V ,

	

∥Sv1(t) − Sv2(t)∥V ∗ ≤ e− t
δ ∥(1

δ
I − B)R(e t

δ v1(t)) − (1
δ

I − B)R(e t
δ v2(t))∥V ∗

+ δ∥e− t
δ AR(e t

δ v1(t)) − e− t
δ AR(e t

δ v2(t))∥V ∗

≤ (1
δ

+ ∥B∥ + δ∥A∥)∥Rv1(t) − Rv2(t)∥V

≤ LS

ˆ t

0
∥v1(s) − v2(s)∥V ds ∀ t ∈ I (by (3.6)).

� (3.12)

Now we can rewrite (3.9) into the following problem.

Problem 3.2  Find z : I → K with z′ : I → V ∗ such that z(0) = 0 and for all 
v ∈ K, a.e. t ∈ I ,

	 ⟨z′(t), v − z(t)⟩ + ⟨Sz(t), v − z(t)⟩ + ⟨Bz(t), v − z(t)⟩ ≥ ⟨g(t), v − z(t)⟩,

where g(t) = δe− t
δ f(t).

3.3  The well-posedness of Problem 3.1

The unique existence of a solution to Problem 3.1 (or equivalently, Problem 3.2) 
is obtained in two steps (see Fig. 3). First, we introduce an auxiliary problem (see 
Problem 3.3) and the associated penalty problem with the parameter λ (see Problem 
3.4). We demonstrate the well-posedness of the penalty problem using the operator 
theory and show that the solution of the penalty problem is bounded independent 
of the parameter λ. Taking a convergent subsequence of the solutions of the pen-
alty problem, and passing to the limit λ → 0, we demonstrate the well-posedness of 
the auxiliary problem. Then, by the fixed-point theory, we show the well-posedness 
(WP) of Problem 3.1.

Fig. 3  solution process
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3.3.1  The well-posedness of the auxiliary problem

Given η ∈ V∗, we introduce the following auxiliary problem.

Problem 3.3  Find zη : I → K with z′
η(t) ∈ V ∗ and zη(0) = 0 such that for all 

v ∈ K, a.e. t ∈ I ,

	 ⟨z′
η(t), v − zη(t)⟩ + ⟨Bzη(t), v − zη(t)⟩ ≥ ⟨g(t) − η(t), v − zη(t)⟩.� (3.13)

According to [26, Lemma 16], we have the following equivalent form of Problem 
3.3:

Find zη ∈ D(L) ∩ K such that for all v ∈ K,

	

ˆ T

0
⟨z′

η(t) + Bzη(t), v(t) − zη(t)⟩dt ≥
ˆ T

0
⟨g(t) − η(t), v(t) − zη(t)⟩dt,

where K = {v ∈ V | v(t) ∈ K a.e. t ∈ I}. We introduce the penalty opra-
tor P = J(I − PK) ([27, Definition 23]) where J : V → V ∗ is the duality map, 
I : V → V  is the identity map on V and PK : V → K is the projection operator. 
We also introduce the Nemytski operators B : V → V∗ and P : V → V∗ of B and P 
respectively, i.e.,

	 (Bv)(t) = Bv(t), (Pv)(t) = Pv(t) ∀ v ∈ V.� (3.14)

Lemma 3.1  ([28, Lemma 3.1]) Assume that H (B) holds and P satisfies ∥Pu∥V ∗  
≤ a + b∥u∥V  with a ≥ 0  and b ≥ 0 , for all u ∈ V . Then we have:

(i) B is linear, continuous and strongly monotone with mB;
(ii) P  is bounded, demicontinuous, monotone and v ∈ K if and only if Pv = 0.

For any λ > 0, we consider the following penalty problem.

Problem 3.4  Find zλ : I → V  with z′
λ(t) ∈ V ∗ for all v ∈ V , a.e. t ∈ I  and 

zλ(0) = 0, such that

	 ⟨z′
λ(t), v − zλ(t)⟩ + ⟨Bzλ(t), v − zλ(t)⟩ + 1

λ
⟨Pzλ(t), v − zλ(t)⟩ ≥ ⟨g(t) − η(t), v − zλ(t)⟩.

� (3.15)

Equivalently, the problem is to find zλ ∈ D(L) such that for all v ∈ V ,

	
⟨Lzλ, v − zλ⟩ + ⟨Bzλ, v − zλ⟩ + 1

λ
⟨Pzλ, v − zλ⟩ ≥ ⟨g − η, v − zλ⟩,�(3.16)

where the operator L is defined in Section 2.
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Theorem 3.1  Under the assumptions of Lemma 3.1, together with hypotheses H (A ) 
and H (f), we have: 

(i)	 for each λ > 0, there exists a unique solution zλ ∈ W  of Problem 3.4 satisfying 

	 ∥zλ∥W ≤
(
m−1

B + 2(∥B∥m−1
B + 1)

)
∥g − η∥V∗ .� (3.17)

(ii)	 Problem 3.3 has a unique solution zη ∈ W , and the bound (3.17) holds with zλ 
replaced by zη.

Proof  We start with the proof of (i). It follows from Lemma 3.1 that the operators 
B and P  are pseudomonotone which implies that B + P  is pseudomonotone. More-
over, by taking advantage of the strong monotonicity of B and the monotonicity of P , 
we establish that B + P  is 0-coercive. Additionally, since B is linear continuous and 
P  is bounded, B + P  is bounded. Since L is a maximal monotone operator, we can 
apply [27, Theorem 74] to know that the operator L + B + 1

λ P  is surjective. Thus, 
for each λ > 0, Problem 3.4 has a solution. Also we have the uniqueness of solution 
to Problem 3.4 by using a standard argument.

Next we show that ∥zλ∥W  is bounded independent of λ. Testing (3.15) by 
v = 0 ∈ K, we have

	
⟨z′

λ(t), zλ(t)⟩ + ⟨Bzλ(t), zλ(t)⟩ + 1
λ

⟨Pzλ(t), zλ(t)⟩ ≤ ⟨g(t) − η(t), zλ(t)⟩.

By the monotonicity of P and the strong monotonicity of B, we derive from the above 
inequality that

	 ∥zλ∥V ≤ m−1
B ∥g − η∥V∗ .� (3.18)

Note that the inequality (3.16) is equivalent to

	
⟨Lzλ, v⟩ + ⟨Bzλ, v⟩ + 1

λ
⟨Pzλ, v⟩ = ⟨g − η, v⟩ ∀ v ∈ V,� (3.19)

from which we deduce that

	

∥Lzλ∥V∗ ≤ ∥Bzλ∥V∗ + ∥g − η∥V∗ + 1
λ

∥Pzλ∥V∗

≤ (∥B∥m−1
B + 1)∥g − η∥V∗ + 1

λ
∥Pzλ∥V∗ .

� (3.20)

According to the embedding theorem, we have zλ ∈ W ⊂ C(I; H). To pass to the 
limit λ → 0, we need to show that Lzλ is bounded independent of λ−1. In view of 
(3.18) and (3.20), our task next is to bound 1

λ ∥Pzλ∥V∗ .

Since
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	⟨Pzλ(t), (I − PK)zλ(t)⟩ = ⟨J(I − PK)zλ(t), (I − PK)zλ(t)⟩ = ∥(I − PK)zλ(t)∥2
V ,

we set ṽ(t) = (I − PK)zλ(t) for all t ∈ I  and substitute v = ṽ ∈ V  into (3.19) to 
obtain

	

1
λ

ˆ T

0
⟨Pzλ(t), (I − PK)zλ(t)⟩ = 1

λ

ˆ T

0
∥(I − PK)zλ(t)∥2

V dt

=
ˆ T

0
⟨g(t) − η(t) − Bzλ(t) − z′

λ(t), (I − PK)zλ(t)⟩dt

≤ (∥g − η∥V∗ + ∥Bzλ∥V∗)(
ˆ T

0
∥(I − PK)zλ(t)∥2

V dt) 1
2 −
ˆ T

0
⟨z′

λ(t), (I − PK)zλ(t)⟩dt.

It remains to bound R1 :=
´ T

0 ⟨z′
λ(t), (I − PK)zλ(t)⟩dt. There exists a sequence 

of step functions zn
λ :=

∑n
i=1 zλ(ti)I[ti−1,ti) such that zn

λ → zλ in V  as n → ∞, 
where 0 = t0 < t1 < · · · < tn = T  and I[ti−1,ti) represents the characteristic func-
tion of [ti−1, ti). Write

	
R1 =

ˆ T

0
⟨z′

λ(t), (I − PK)(zλ(t) − zn
λ(t))⟩dt +

ˆ T

0
⟨z′

λ(t), (I − PK)zn
λ(t)⟩dt =: R11 + R12.

Since the projection operator PK  is nonexpansive, we have

	 R11 → 0 as n → ∞.

For R12, we calculate as follows:

	

R12 =
ˆ T

0
⟨z′

λ(t), (I − PK)
n∑

i=1
zλ(ti)I[ti−1,ti)(t)⟩dt =

n∑
i=1

(zλ(ti) − zλ(ti−1), (I − PK)zλ(ti))H

=
n∑

i=1

(
(I − PK)zλ(ti) − (I − PK)zλ(ti−1), (I − PK)zλ(ti)

)
H

−
n∑

i=1

(
PKzλ(ti−1) − PKzλ(ti), (I − PK)zλ(ti)

)
H

≥ 1
2

(
∥(I − PK)zλ(tn)∥2

H +
n∑

i=1
∥(I − PK)(zλ(ti) − zλ(ti−1))∥2

H

)
,

where we have used the facts that zλ(0) = 0 and

	 (v − PKw, w − PKw)H ≤ 0 ∀ v ∈ K, w ∈ V.

We conclude that R1 ≥ 0 and consequently,

	
1
λ

( ˆ T

0
∥(I − PK)zλ(t)∥2

V dt
) 1

2 ≤ ∥g − η∥V∗ + ∥Bzλ∥V∗ .� (3.21)

Since ∥J∥ ≤ 1,
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∥Pzλ∥V∗ ≤ (

ˆ T

0
∥(I − PK)zλ(t)∥2

V dt) 1
2 .

Hence, from (3.20) and (3.21), we deduce that

	 ∥Lzλ∥V∗ ≤ 2(∥g − η∥V∗ + ∥Bzλ∥V∗) ≤ 2(∥B∥m−1
B + 1)∥g − η∥V∗ .� (3.22)

Then, (3.17) follows from (3.18) and (3.22), i.e., {zλ}λ is uniformly bounded in W .
Now we turn to prove (ii). Since {∥zλ∥W}λ is bounded and W  is reflexive, there 

exists a subsequence, also denoted by {zλ}λ, such that

	 zλ ⇀ z in W.

Let us show that z ∈ K is a solution to Problem 3.3. It follows from Lemma 3.1 and 
(3.16) that, for all v ∈ V ,

	

1
λ

⟨Pzλ, zλ − v⟩ ≤ ⟨Lzλ, v − zλ⟩ + ⟨Bzλ, v − zλ⟩ + ⟨g − η, zλ − v⟩

≤ C∥g − η∥V∗∥v − zλ∥V (by (3.17)).

Taking v = z in the above inequality, we get

	 lim sup⟨Pzλ, zλ − z⟩ ≤ 0.� (3.23)

By the pseudomonotonicity of P , we have

	 ⟨Pz, z − v⟩ ≤ lim inf⟨Pzλ, zλ − v⟩ ∀ v ∈ V,

which, together with (3.23), implies that ⟨Pz, z − v⟩ ≤ 0 for all v ∈ V . Therefore, 
we conclude Pz = 0, which means that z ∈ K by Lemma 3.1(ii).

Moreover, taking v ∈ K in (3.16) and using the monotonicity of P , we have

	 ⟨Lzλ, v − zλ⟩ + ⟨Bzλ, v − zλ⟩ ≥ ⟨g − η, v − zλ⟩.� (3.24)

By the maximal monotonicity of L,

	

lim⟨Lzλ, v − zλ⟩ = lim(⟨Lzλ, v − z⟩ + ⟨Lzλ − Lz, z − zλ⟩ + ⟨Lz, z − zλ⟩)
≤ ⟨Lz, v − z⟩.� (3.25)

Similarly, since B is linear, continuous and strongly monotone, we derive

	

lim⟨Bzλ, v − zλ⟩ = lim(⟨Bzλ, v − z⟩ + ⟨Bzλ − Bz, z − zλ⟩ + ⟨Bz, z − zλ⟩)
≤ ⟨Bz, v − z⟩.� (3.26)
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Passing to the limit λ → 0 in (3.24), together with (3.25) and (3.26), we obtain

	 ⟨Lz, v − z⟩ + ⟨Bz, v − z⟩ ≥ ⟨g − η, v − z⟩ ∀ v ∈ K.

Hence, z is a solution of Problem 3.3. Since z is obtained by taking the weak conver-
gence of a subsequence {zλ}, the same estimate (3.17) also holds for z.

It remains to show the uniqueness of Problem 3.3. Let zi (i = 1, 2) be two solu-
tions of Problem 3.3. It follows from (3.13) that

	 ⟨z′
1(t) − z′

2(t), z1(t) − z2(t)⟩ + ⟨Bz1(t) − Bz2(t), z1(t) − z2(t)⟩ ≤ 0.

By the strong monotonicity of B, we have

	
∥z1(t) − z2(t)∥2

H + mB

ˆ t

0
∥z1(s) − z2(s)∥2

V ds ≤ 0,

which implies that

	 z1 = z2 in V.

Thus, the solution of Problem 3.3 is unique. � □

3.3.2  Well-posedness of Problem 3.1

For the existence of a unique solution to Problem 3.1 and Problem 3.2, we have the 
following result.

Theorem 3.2  Assume H (A ), H (B) and H (f). Then, we have: 

(i)	 Problem 3.2 admits a unique solution z ∈ W;
(ii)	 Problem 3.1 admits a unique solution u ∈ C(I; V ) satisfying u′ ∈ W .

Proof  We first provide the proof of (i). By Theorem 3.1(ii), Problem 3.3 has a unique 
solution zη, which allows us to introduce a mapping Λ : L2(I; V ∗) → L2(I; V ∗) 
defined by

	 Λη = Szη.

We need to show that Λ has a unique fixed point. For i = 1, 2, let zi be the unique 
solution to Problem 3.3 associated with ηi ∈ V∗. It follows from (3.13) that

	⟨z′
1(t) − z′

2(t), z1(t) − z2(t)⟩ + ⟨Bz1(t) − Bz2(t), z1(t) − z2(t)⟩ ≤ ⟨η1(t) − η2(t), z1(t) − z2(t)⟩.

Utilizing the strong monotonicity of B, we deduce that
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ˆ t

0
∥z1(s) − z2(s)∥2

V ds ≤ 1
m2

B

ˆ t

0
∥η1(s) − η2(s)∥2

V ∗ds.� (3.27)

By (3.12), we have

	
∥Λη1(t) − Λη2(t)∥2

V ∗ = ∥Sz1(t) − Sz2(t)∥2
V ∗ ≤ L2

St

ˆ t

0
∥z1(s) − z2(s)∥2

V ds,

where LS = 1
δ ( 1

δ + ∥B∥) + ∥A∥. We obtain from (3.27) that

	
∥Λη1(t) − Λη2(t)∥2

V ∗ ≤ L2
St

m2
B

ˆ t

0
∥η1(s) − η2(s)∥2

V ∗ds.

Applying [28, Theorem 2.3], we conclude that Λ has a unique fixed point, which 
implies that Problem 3.2 has a unique solution.

Now we prove (ii). In view of (3.8) and (3.4), it is easy to check that u defined by 
(3.3) indeed solves Problem 3.1. We need to verify that the solution of Problem 3.1 
(or equivalently, (3.7)) is unique. To this end, we divide the interval I into N = T/k 
subintervals [ti, ti+1] (i = 0, 1, · · · , N − 1), where the time-step size k satisfying 
k < mBδ/∥B∥. If we prove that the solution of (3.7) is unique in each subinterval, 
then we establish the global uniqueness.

Assume that (3.7) admits two solution w1 and w2. We set e = w1 − w2. Test-
ing the inequality of w2(t) by v = w1(t), and testing the inequality of w1(t) by 
v = w2(t), and adding the two resulting inequalities, we get

	

⟨e′(t), e(t)⟩ + 1
δ

(Re(t), e(t)) + δ⟨ARe(t), e(t)⟩

+ ⟨Be(t), e(t)⟩ ≤ 1
δ

(e(t), e(t)) + ⟨BRe(t), e(t)⟩.
� (3.28)

We show that e = 0 in [0, t1]. It follows from (3.4b) and Rwi(0) = 0, i = 1, 2, that

	

ˆ t

0
(Re(s), e(s))ds =

ˆ t

0
(Re(s), Re(s))ds + δ

ˆ t

0
(Re(s), (Re)′(s))ds

= ∥Re∥2
L2(0,t;H) + δ

2
∥Re(t)∥2

H ,

ˆ t

0
⟨ARe(s), e(s)⟩ds =

ˆ t

0
⟨ARe(s), Re(s)⟩ds + δ

ˆ t

0
⟨ARe(s), (Re)′(s)⟩ds

≥ mA ∥Rw1 − Rw2∥2
L2(0,t;V ∗) + mA

2
δ∥Rw1(t) − Rw2(t)∥2

V .

It follows from (3.28) that
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∥e(t)∥2
H + 2mB

ˆ t

0
∥e(s)∥2

V ds ≤ 2
δ

ˆ t

0
∥e(s)∥2

Hds + 2∥B∥
ˆ t

0
∥Re(s)∥V ∥e(s)∥V ds

≤ 2
δ

ˆ t

0
∥e(s)∥2

Hds + 2∥B∥t

δ

ˆ t

0
∥e(s)∥2

V ds (by (3.6)).

Since |t − t0| < mBδ/∥B∥ for all t ∈ [t0, t1], we have mB − ∥B∥t/δ > 0 and

	
∥e(t)∥2

H ≤ 2
δ

ˆ t

0
∥e(s)∥2

Hds.

Apply the Gronwall inequality to conclude

	 e(t) = 0 i.e. w1(t) = w2(t) ∀ t ∈ [t0, t1] .� (3.29)

We proceed to show that (3.7) admits a unique solution in (t1, t2], i.e., e(t) = 0 in 
(t1, t2]. Keeping in mind that e = 0 in [t0, t1], from (3.5) and (3.6), we have, for any 
t ∈ (t1, t2],

	
∥Re(s)∥V ≤ δ−1e− 1

δ t

ˆ t

0
e

1
δ s∥e(s)∥V ds ≤ δ−1

ˆ t

t1

∥e(s)∥V ds.

Integrating (3.28) on [0, t] for any t ∈ (t1, t2] and noting that e = 0 in [0, t1], we get

	
∥e(t)∥2

H + 2
(

mB − ∥B∥|t − t1|
δ

) ˆ t

t1

∥e(s)∥2
V ds ≤ 2

δ

ˆ t

t1

∥e(s)∥2
Hds.

Since |t − t1| < mBδ
∥B∥  for all t ∈ [t1, t2], we conclude

	
∥e(t)∥2

H ≤ 2
δ

ˆ t

t1

∥e(s)∥2
Hds,

together with e(t1) = 0, which implies that e = 0 in (t1, t2]. Applying the induction 
argument, we assert that (3.7) has a unique solution. � □

For the dependence of the solution on δ, we present the following theorem that 
demonstrates the boundedness of the solution to Problem 3.1.

Theorem 3.3  Under the assumptions stated in Theorem 3.2, we have the following 
bound on the solution u:

	 ∥u∥2
L∞(I;H) + δ∥u′∥2

L2(I;H) + δmA ∥u∥2
V + δmBT∥u′∥2

V ≤ C1(δ, T )∥f∥2
V∗ ,

� (3.30)

where C1 (δ, T ) = αδ(e2Tα−1
δ − 1 )((2mA )−1 + δm−1

B ) and 
αδ = min{δ, ∥B∥−2 (δ2  mA mB)}.
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Moreover, if B is symmetric, then

	 ∥u∥2
L∞(I;H) + δ∥u′∥2

L2(I;H) + (δmA + mB)∥u∥2
V + δmBT∥u′∥2

V ≤ C2(δ, T )∥f∥2
V∗ ,

� (3.31)

where C2 (δ, T ) = δ(e2Tδ−1 − 1 )((2mA )−1 + δ(2mB)−1 ).

Proof  It follows from Theorem 3.2 that Problem 3.1 has a unique solution. Taking 
v = 0V  in (3.1), we get

	 ⟨u′′(t) + Au(t) + Bu′(t), u(t) + δu′(t)⟩ ≤ ⟨f(t), u(t) + δu′(t)⟩.� (3.32)

Using integration by parts, we have 

	

ˆ t

0
⟨u′′(s), u(s)⟩ds = −

ˆ t

0
∥u′(s)∥2

Hds + 1
2

d

dt
∥u(t)∥2

H , � (3.33a)

	

ˆ t

0
⟨u′′(s), δu′(s)⟩ds = δ

2
(∥u′(t)∥2

H − ∥u′(0)∥2
H). � (3.33b)

 It follows from H(A ) and u(0) = 0 that 

	

ˆ t

0
⟨Au(s), u(s)⟩ds ≥ mA

ˆ t

0
∥u(s)∥2ds, � (3.34a)

	

ˆ t

0
⟨Au(s), δu′(s)⟩ds ≥ δmA

2
∥u(t)∥2

V . � (3.34b)

 By virtue of hypothesis H(B), we see that 

	

ˆ t

0
⟨Bu′(s), δu′(s)⟩ds ≥ δmB

ˆ t

0
∥u′(s)∥2

V ds, � (3.35a)

	

ˆ t

0
⟨Bu′(s), u(s)⟩ds ≤ ∥B∥

ˆ t

0
∥u′(s)∥V ∥u(s)∥V ds. � (3.35b)

 Integrating (3.32) on (0,  t) with t ∈ (0, T ], together with (3.33a)-(3.35b) and 
u′(0) = u(0) = 0, we obtain
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1
2

d

dt
∥u(t)∥2

H −
ˆ t

0
∥u′(s)∥2

Hds + δ

2
∥u′(t)∥2

H

+ mA

ˆ t

0
∥u(s)∥2

V ds + δmA

2
∥u(t)∥2

V + δmB

ˆ t

0
∥u′(s)∥2

V ds

≤
( 1

2mA
+ δ

mB

) ˆ t

0
∥f(s)∥2

V ∗ds + δmB

2

ˆ t

0
∥u′(s)∥2

V ds

+
(mA

2
+ ∥B∥2

δmB

) ˆ t

0
∥u(s)∥2

V ds.

� (3.36)

Setting αδ = min{δ, ∥B∥−2(δ2mA mB)} and

	

a(t) := ∥u(t)∥2
H + δ

ˆ t

0
∥u′(s)∥2

Hds + δmA

ˆ t

0
∥u(s)∥2

V ds

+ 2 mA

ˆ t

0

ˆ s

0
∥u(r)∥2

V dr ds + 2 δmB

ˆ t

0

ˆ s

0
∥u′(r)∥2

V dr ds,

c(t) :=
( 1

2mA
+ δ

mB

) ˆ t

0
∥f(s)∥2

V ∗ds,

we obtain from (3.36) that

	
1
2

d

dt
a(t) ≤ α−1

δ a(t) + c(t),

By the Gronwall inequality and a(0) = 0, we obtain

	 a(t) ≤ αδ(e2α−1
δ

t − 1)c(t).

Hence, we have the bound (3.30).
If B is symmetric, then, instead of (3.35b), we use (by HB(iii) and u(0) = 0)

	

ˆ t

0
⟨Bu′(s), u(s)⟩ds ≥ mB

2
∥u(t)∥2

V

to derive the following inequality

	

1
2

d

dt

(
∥u(t)∥2

H + δ

ˆ t

0
∥u′(s)∥2

Hds + δmB

ˆ t

0

ˆ s

0
∥u′(r)∥V drds

+ mA

ˆ t

0

ˆ s

0
∥u(r)∥2

V drds + (δmA + mB)
ˆ t

0
∥u(s)∥2

V ds
)

≤
( 1

2mA
+ δ

2mB

) ˆ t

0
∥f(s)∥2

V ∗ds +
ˆ t

0
∥u′(s)∥2

Hds.

� (3.37)

Now, we set
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ã(t) := a(t) + mB

ˆ t

0
∥u(s)∥2

V ds,

c̃(t) :=
( 1

2mA
+ δ

2mB

) ˆ t

0
∥f(s)∥2

V ∗ds.

It follows from (3.37) that

	
1
2

d

dt
ã(t) ≤ δ−1ã(t) + c̃(t).

By the Gronwall inequality and ã(0) = 0, we conclude (3.31). � □

4  The modified Tresca-friction contact condition

In this section, we consider Problem P with the modified Tresca-friction contact con-
dition (2.3). We set

	 V1 = {v ∈ V | vn = 0 a.e. on ΓC},

and introduce a convex functional j defined by

	
j(v) =

ˆ

ΓC

g |vτ | dx ∀ v ∈ V.� (4.1)

4.1  Weak formulation of the problem (2.1) and (2.3)

Suppose the problem (2.1) and (2.3) has a sufficiently smooth solution u. For any 
v ∈ V1, multiplying (2.1b) by v − (u(t) + δu′(t)) and integrating on Ω, applying 
Green’s formula, we get

	

ˆ

Ω
u′′(t) · (v − (u(t) + δu′(t)))dx +

ˆ

Ω
σ(t) : D(v − (u(t) + δu′(t)))dx

−
ˆ

ΓC

σn(t) · (v − (u(t) + δu′(t)))dΓ =
ˆ

Ω
f0(t) · (v − (u(t) + δu′(t)))dx.

It follows from the boundary conditions (2.1c), (2.1d), and (2.3) that

	

ˆ

Γ
(σn)(t) · (v − (u(t) + δu′(t)))dΓ ≥

ˆ

ΓN

f1(t) · (v − (u(t) + δu′(t)))dΓ

+
ˆ

ΓC

g(− |vτ | + |uτ (t) + δu′
τ (t)|)dΓ.

Together with (2.1a), we get the following weak formulation of the contact problem.
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Problem 4.1  Find u : I → V1 with u′ : I → V1 and u′′ : I → V ∗
1 , such that 

u(0) = 0, u′(0) = 0, and for all v ∈ V1, a.e. t ∈ I ,

	

⟨u′′(t) + Au(t) + Bu′(t), v − (u(t) + δu′(t))⟩ + j(v)
− j(u(t) + δu′(t)) ≥ ⟨f(t), v − (u(t) + δu′(t))⟩.

� (4.2)

4.2  Transformations of Problem 4.1

Similar to the transformations of Problem 3.1, let u(t) + δu′(t) = w(t). Based on 
(3.3)–(3.4c), Problem 4.1 is equivalently transformed into the following problem.

Problem 4.2  Find w : I → V1 with w′ : I → V ∗
1  such that w(0) = 0, and for all 

v ∈ V1, a.e. t ∈ I ,

	

⟨w′(t) − 1
δ

w(t), v − w(t)⟩ + ⟨(1
δ

I − B)Rw(t), v − w(t)⟩

+ δ⟨ARw(t), v − w(t)⟩ + ⟨Bw(t), v − w(t)⟩ + δj(v) − δj(w(t)) ≥ δ⟨f(t), v − w(t)⟩,

where the operator R is defined by (3.5).

Furthermore, by taking z(t) = e− t
δ w(t), Problem 4.2 is transformed into the follow-

ing problem.

Problem 4.3  Find z : I → V1 with z′ : I → V ∗
1  such that z(0) = 0 and for all 

v ∈ V1, a.e. t ∈ I ,

	⟨z′(t), v − z(t)⟩ + ⟨Sz(t)), v − z(t)⟩ + ⟨Bz(t), v − z(t)⟩ + j̃(t, v) − j̃(t, z(t)) ≥ ⟨g(t), v − z(t)⟩,

where ̃j(t, v) = δe− t
δ j(v), g(t) = δe− t

δ f(t), and the operator S is defined by (3.11).

4.3  Well-posedness of Problem 4.1

Here, we provide the solvability theorem which delivers the existence and unique-
ness of a solution to Problem 4.3.

Theorem 4.1  Assume H (A )(i)(ii), H (B) and H (f). Then, Problem 4.3 has a unique 
solution.

Proof  Note that B is linear, continuous and strongly monotone, ̃j is convex, l.s.c., and

	 ∥∂cj̃(t, v)∥V ∗ ≤ δg · meas(ΓC) ∀ v ∈ V1, t ∈ I,

and S is Lipschitz continuous (see (3.12)). Applying [27, Theorem 98], we know that 
Problem 4.3 has a unique solution. � □
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Theorem 4.2  Assume H (A ), H (B) and H (f). Then, Problem 4.1 has a unique 
solution u ∈ C (I ; V ) satisfying u′ ∈ W .

Proof  It is easy to check that every solution of Problem 4.3 solves Problem 4.1. Thus, 
Problem 4.1 has a solution by Theorem 4.1. The proof of uniqueness is similar to that 
of Theorem 3.2. � □

The following result provides bounds on norms of the solution with respect to the 
parameter δ.

Theorem 4.3  Under the same assumptions of Theorem 4.2, the following inequality 
holds:

	

∥u∥2
L∞(I;H) + δ∥u′∥2

L2(I;H) + δmA ∥u∥2
V + δmBT∥u′∥2

V

+ 2g∥uτ + δu′
τ ∥L1(I;L1(ΓC ;R)) ≤ C1(δ, T )∥f∥2

V∗ ,
� (4.3)

where C1 (δ, T ) is defined in Theorem 3.3. Moreover, if the operator B is symmet-
ric, then we have the bound

	

∥u∥2
L∞(I;H) + δ∥u′∥2

L2(I;H) + (δmA + mB)∥u∥2
V

+ δmBT∥u′∥2
V + 2g∥uτ + δu′

τ ∥L1(I;L1(ΓC ;R)) ≤ C2(δ, T )∥f∥2
V∗ ,

� (4.4)

where C2 (δ, T ) is defined in Theorem 3.3.

Proof  It follows from Theorem 4.2 that Problem 4.1 admits a unique solution. Taking 
v = 0V  and v = 2(u(t) + δu′(t)) in (4.2), respectively, we get

	⟨u
′′(t) + Au(t) + Bu′(t), u(t) + δu′(t)⟩ + j(u(t) + δu′(t)) = ⟨f(t), u(t) + δu′(t)⟩.

By the definition of j,

	
j(u(t) + δu′(t)) = g

ˆ

ΓC

|u(t) + δu′(t)| dx = g∥u(t) + δu′(t)∥L1(ΓC ;R).�(4.5)

Similar to the proof of Theorem 3.3 and based on (4.5), we obtain

	

1
2

d

dt
∥u(t)∥2

H −
ˆ t

0
∥u′(s)∥2

Hds + δ

2
∥u′(t)∥2

H + mA

ˆ t

0
∥u(s)∥2

V ds

+ δ

2
mA ∥u(t)∥2

V + δmB

ˆ t

0
∥u′(s)∥2

V ds + g∥u(t) + δu′(t)∥L1(ΓC ;R)ds

≤ δmB

2

ˆ t

0
∥u′(s)∥2

V ds + (mA

2
+ ∥B∥2

δmB
)
ˆ t

0
∥u(s)∥2

V ds + ( 1
2mA

+ δ

mB
)
ˆ t

0
∥f(s)∥2

V ∗ds.

Then we get
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1
2

d

dt
(∥u(t)∥2

H + δ

ˆ t

0
∥u′(s)∥2

Hds + 2g

ˆ t

0
∥u(s) + δu′(s)∥L1(ΓC ;R)ds)

+ mA

ˆ t

0

ˆ s

0
∥u(r)∥2

V drds + δmA

ˆ t

0
∥u(s)∥2

V ds + δmB

ˆ t

0

ˆ s

0
∥u′(r)∥2

V drds

≤ ( 1
2mA

+ δ

mB
)
ˆ t

0
∥f(s)∥2

V ∗ds + ∥B∥2

δmB

ˆ t

0
∥u(s)∥2

V ds +
ˆ t

0
∥u′(s)∥2

Hds.

Therefore, we deduce (4.3) through the derivation process of Theorem 3.3.
If the operator B is symmetric, we have

	

1
2

d

dt
(∥u(t)∥2

H + 2g

ˆ t

0
∥u(s) + δu′(s)∥L1(ΓC ;R)ds + mA

ˆ t

0

ˆ s

0
∥u(r)∥2

V dr ds

+ (δmA + mB)
ˆ t

0
∥u(s)∥2

V ds + δmB

ˆ t

0

ˆ s

0
∥u′(r)∥2

V dr ds) + δ

ˆ t

0
∥u′(s)∥2

H

≤ ( 1
2mA

+ δ

2mB
)
ˆ t

0
∥f(s)∥2

V ∗ds +
ˆ t

0
∥u′(s)∥2

Hds.

Then, we deduce (4.4). � □

5  The modified contact condition of Clarke-subdifferential-type

In this section, we consider Problem P with the modified contact condition (2.4). 
First, we make the assumptions on the non-smooth and non-convex function 
jn : ΓC × R → R.

H(jn): The following properties hold for jn:
(i) jn(·, r) is measurable on ΓC  for all r ∈ R and there exists an e ∈ L2(ΓC) such 

that jn(·, e(·)) ∈ L1(ΓC);
(ii) jn(x, ·) is locally Lipschitz on R for a.e. x ∈ ΓC ;
(iii) there exists mjn ≥ 0 such that for all r1, r2 ∈ R, a.e. x ∈ ΓC ,

	 j◦
n(x, r1; r2 − r1) + j◦

n(x, r2; r1 − r2) ≤ mjn
|r1 − r2|2 ;

(iv) there exist d1, d2 ≥ 0 such that for all r ∈ R, a.e. x ∈ ΓC ,

	 |∂jn(x, r)| ≤ d1 + d2 |r| ;

(v) either jn(x, ·) or −jn(x, ·) is regular for a.e. x ∈ ΓC .
Let γ : V → L2(ΓC ,Rd) be the trace operator. Then, γ is linear, continuous and 

compact, the norm of which is denoted by ∥γ∥. The functional J : Z = γ(V ) → R 
is defined by

	
J(v) =

ˆ

ΓC

jn(vn)dΓ ∀ v ∈ Z.� (5.1)
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It follows from [23, Theorem 3.47] that J satisfies:
(i) J is locally Lipschitz continuous;
(ii) for all v1, v2 ∈ Z, we have

	 J◦(v1; v2 − v1) + J◦(v2; v1 − v2) ≤ mjn∥v1 − v2∥2
Z ;� (5.2)

(iii) for all v ∈ Z, we have

	 ∥∂J(v)∥Z∗ ≤ c1 + c2∥v∥Z � (5.3)

with c1 =
√

2meas(ΓC)d1 and c2 =
√

2d2.

5.1  Weak formulation of the problem (2.1) and (2.4)

We derive the weak formulation of Problem P with the modified contact condition 
(2.4). Assume the solution u of the contact problem is sufficiently smooth. Testing 
(2.1b) by v and using the integration by parts, we get

	

ˆ

Ω
u′′(t) · v dx +

ˆ

Ω
σ(t) : D(v) dx −

ˆ

Γ
(σn)(t) · vdΓ =

ˆ

Ω
f0(t) · v dx.

Apply the boundary conditions (2.1c), (2.1d), and (2.4) to obtain

	

ˆ

Γ
(σn)(t) · vdΓ ≥

ˆ

ΓN

f1(t) · vdΓ −
ˆ

ΓC

j◦
n(un(t) + δu′

n(t); vn)dΓ.

Together with (2.1a), we get the following weak formulation.

Problem 5.1  Find u : I → V  with u′ : I → V  and u′′ : I → V ∗, such that u(0) = 0, 
u′(0) = 0, and for all v ∈ V , a.e. t ∈ I ,

	 ⟨u′′(t) + Bu′(t) + Au(t) − f(t), v⟩ + J◦(γ(u(t) + δu′(t)); γv) ≥ 0. � (5.4)

5.2  Transformations of Problem 5.1

Similar to the transformations of Problem 3.1, let u(t) + δu′(t) = w(t). Based on 
(3.3)–(3.4c), we transform Problem 5.1 into the following problem.

Problem 5.2  Find w : I → V  with w′ : I → V ∗ such that w(0) = 0 and for all 
v ∈ V , a.e. t ∈ I ,

	

⟨w′(t) − 1
δ

w(t), v⟩ + ⟨(1
δ

I − B)Rw(t), v⟩ + δ⟨ARw(t), v⟩

+ ⟨Bw(t), v⟩ + δJ◦(γw(t); γv) ≥ δ⟨f(t), v⟩,
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where the operator R is defined by (3.5).
Define z(t) = w(t)e− t

δ . We can express Problem 5.2 in terms of z.

Problem 5.3  Find z : I → V  with z′ : I → V ∗ such that z(0) = 0 and for all v ∈ V , 
a.e. t ∈ I ,

	 ⟨z′(t), v⟩ + ⟨Sz(t), v⟩ + ⟨Bz(t), v⟩ + δe− t
δ J◦(γe

t
δ z(t); γv) ≥ ⟨g(t), v⟩,

where g(t) = δe− t
δ f(t), and the operator S is defined by (3.11).

5.3  Well-posedness of Problem 5.1

The existence of a unique solution of Problem 5.1 is shown in two steps. First, we 
introduce an auxiliary problem (see Problem 5.4) and show its well-posedness. Then, 
by the fixed-point theory, we demonstrate the well-posedness of Problem 5.1.

5.3.1  The auxiliary problem of Problem 5.3

Let us consider the existence and uniqueness of a solution to the following auxiliary 
problem.

Problem 5.4  Find z ∈ W  such that z(0) = 0 and for a.e. t ∈ I ,

	 g(t) ∈ z′(t) + Bz(t) + δe− t
δ γ∗∂J(γe

t
δ z(t)).

Theorem 5.1  Under the hypotheses H (B), H (f), H (jn) and the following small-
ness condition

	 mB − δmjn∥γ∥2 > 0,� (5.5)

Problem 5.4 admits a unique solution z ∈ W .

Proof  First, we prove the existence of solution. Recall the Nemytski opera-
tor B : V → V∗ defined by (3.14). Here we introduce a new Nemytski operator 
N : V → 2V∗

 defined by

	 N v = {ξ ∈ V∗ | ξ(t) ∈ δe− t
δ γ∗∂J(γe

t
δ v(t))} ∀ v ∈ V.

Using the operators B, N  and the derivative operator L which is defined in Section 2, 
Problem 5.4 is reformulated as an inclusion problem:

	 Find z ∈ D(L) such that Lz + T z ∋ g,� (5.6)

where T z = Bz + N z.

1 3

    4   Page 26 of 34



Applied Mathematics & Optimization            (2026) 93:4 

Claim 1. T  is a bounded operator. Taking v ∈ V  and 
v∗ ∈ T v, we have v∗ ∈ Bv + N v. Note that B is linear and bounded. For any 
ξ ∈ N v, we have ξ(t) ∈ δe

−t
δ γ∗∂J(γe

t
δ v(t)) for a.e. t ∈ I . It follows from 

[29, Lemma 13] that ∥ξ∥V∗ ≤ c̄0 + c̄1∥v∥V  with c̄0, c̄1 ≥ 0. Thus, we obtain 
∥v∗∥V∗ ≤ c̄0 + (c̄1 + ∥B∥)∥v∥V , i.e., T  is bounded.

Claim 2. T  is coercive. Let v ∈ V  and v∗ ∈ T v, i.e., v∗ = Bv + ξ with ξ ∈ N v. 
From Lemma 3.1(i), we have

	 ⟨Bv, v⟩ ≥ mB∥v∥2
V .� (5.7)

Since ξ ∈ N v, we have ξ(t) = γ∗z(t) with z(t) ∈ δe
−t
δ ∂J(γe

t
δ v(t)). It follows 

from (5.2) and (5.3) that

	

⟨ξ, v⟩ =
ˆ T

0
⟨z(t), γv(t)⟩dt =

ˆ T

0
[⟨z(t) − θ(t), γv(t)⟩ + ⟨θ(t), γv(t)⟩] dt

≥ −δmjn
∥γ∥2∥v∥2

V − c1
√

Tδ∥γ∥∥v∥V ,� (5.8)

where θ(t) ∈ δe
−t
δ ∂J(0V(t)). Consequently,

	 ⟨T v, v⟩ ≥ (mB − δmjn
∥γ∥2)∥v∥2

V − c1
√

Tδ∥γ∥∥v∥V ∀ v ∈ V,

which implies that the operator T  is coercive thanks to the smallness condition (5.5).
Claim 3. T  is L-pseudomonotone ([23, Definition 3.62]). Firstly, we show that 

N v is nonempty, bounded, convex and closed for any v ∈ V . According to [30, Prop-
osition 2.1.2], ∂J(·) is a nonempty, convex and weakly compact subset of Z∗. Claim 
1 implies that N v is bounded. Hence, N v is nonempty, bounded and convex. Let us 
show that the set N v is closed. Let {ξn} be any sequence of N v such that ξn → ξ. 
It follows from [23, Theorem 2.39] that ξn(t) → ξ(t) in V ∗ for a.e. t ∈ I , passing to 
a subsequence if necessary. Since ξn(t) ∈ δe− t

δ γ∗∂J(γe
t
δ v(t)) for any n ∈ N, a.e. 

t ∈ I  and the latter is a closed subset of V ∗, we get that ξ(t) ∈ δe− t
δ γ∗∂J(γe

t
δ v(t)) 

for a.e. t ∈ I . Therefore, ξ ∈ N v and N v is closed.

Secondly, we verify that N  is upper semicontinuous from V  to 2V∗
, where V∗ is 

endowed with the weak topology. According to [31, Proposition 4.14], it suffices to prove 
that if a set D is weakly closed in V∗, then the set N −(D) = {v ∈ V | N v ∩ D ̸= ∅} 
is closed in V . Let {vn} be any sequence of N −(D) such that vn → v. By using [23, 
Theorem 2.39], passing to a subsequence if necessary, we have vn(t) → v(t) in V for 
a.e. t ∈ I . Let ξn ∈ N vn ∩ D for n ∈ N. Since {vn} is bounded and N  is a bounded 
mapping, the sequence {ξn} is bounded in V∗. Thus, there exist a subsequence, still 
denoted by {ξn}, such that

	 ξn ⇀ ξ in V∗,� (5.9)
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which implies e ·
δ ξn ⇀ e

·
δ ξ in V∗ and ξ ∈ D by the weak closedness of D in V∗. 

Also there exists zn ∈ L2(I; Z∗) for n ∈ N such that

	 e
t
δ ξn(t) = γ∗zn(t), zn(t) ∈ δ∂J(γe

t
δ vn(t)) for a.e. t ∈ I.� (5.10)

Using (5.3), we deduce that

	 ∥zn∥L2(I;Z∗) ≤
√

2Tδc1 +
√

2δe
T
δ ∥γ∥∥vn∥V ,

which implies {zn} is bounded. Then passing to a subsequence if necessary, we have

	 zn ⇀ z in L2(I; Z∗).� (5.11)

Since δ∂J(·) is upper semicontinuous from X to the closed convex subsets of Z∗ 
endowed with the weak topology and γe

βt
1−β vn(t) → γe

βt
1−β v(t) in Z for a.e. t ∈ I , 

we see that (by using the convergence theorem [32, Theorem 1])

	 z(t) ∈ δ∂J(γe
t
δ v(t)) for a.e. t ∈ I.

Combining (5.9), (5.10) and (5.11), we get e t
δ ξ(t) = γ∗z(t) for a.e. t ∈ I  which 

means ξ ∈ N v. Therefore, we have ξ ∈ N v ∩ D, i.e., v ∈ N −(D). This shows that 
N −(D) is closed in V , which means that N  is upper semicontinuous.

Thirdly, we verify the last condition of the definition of L-pseudomonotonicity 
([23, Definition 3.62]). Let {vn} be any sequence of D(L) such that vn ⇀ v in W , 
ξn ∈ N vn with ξn ⇀ ξ in V∗, and lim sup⟨ξn, vn − v⟩ ≤ 0. We see that

	 e
t
δ ξn(t) ∈ γ∗zn(t), zn(t) ∈ δ∂J(γe

t
δ vn(t)) for a.e. t ∈ I.

Since vn ⇀ v in W , we get {e
·
δ vn} is bounded in W , which implies that 

e
·
δ vn ⇀ e

·
δ v in W . It follows from [33, Theorem 2.18] that the Nemytski operator 

γ̃ : W → L2(I; Z) of the trace operator γ is linear continuous and compact. Thus we 
have γ̃e

·
δ vn → γ̃e

·
δ v in L2(I; Z). And we can find a subsequence, still denoted by 

{e
·
δ vn}, such that

	 γe
t
δ vn(t) → γe

t
δ v(t) in X for a.e. t ∈ I.� (5.12)

Note that {zn} is bounded in L2(I; Z∗) (by (5.3)). Passing to a subsequence if neces-
sary, we have

	 zn ⇀ z in L2(I; Z∗).� (5.13)

We have shown that e t
δ ξ(t) = γ∗z(t) for a.e. t ∈ I  (see the proof of the upper semi-

continunity of N ). It follows from (5.12), (5.13), and the convergence theorem that

	 z(t) ∈ δ∂J(γe
t
δ v(t)) for a.e. t ∈ I,
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which means that ξ ∈ N v. By (5.13),

	

⟨ξn, vn⟩ =
ˆ T

0
e− t

δ ⟨e t
δ ξn(t), vn(t)⟩dt =

ˆ T

0
⟨γ∗zn(t), e− t

δ vn(t)⟩dt

= ⟨zn, γ̃e− ·
δ vn⟩ → ⟨z, γ̃e− ·

δ v⟩ =
ˆ T

0
⟨z(t), γe− t

δ v(t)⟩dt = ⟨ξ, v⟩.

Therefore, the mapping N  is L-pseudomonotone.
It is clear that the operator B is L-pseudomonotone since B is linear, continu-

ous and strongly monotone. Therefore, T = B + N  is L-pseudomonotone (by [34, 
Proposition 2]).

According to [23, Theorem 3.63], Claims 1-3 indicate that the problem (5.6) 
(equivalently, Problem 5.4) has a solution.

It remains to show the uniqueness. Suppose that Problem 5.4 admits two solutions 
z1 and z2. Then there exist ξ1 and ξ2 such that for a.e. t ∈ I  and i = 1, 2,

	 gi(t) = z′
i(t) + Bzi(t) + ξi(t),� (5.14)

where ξi(t) ∈ δe
−t
δ γ∗∂J(γe

t
δ zi(t)) and zi(0) = 0. Testing (5.14) by z1(t) − z2(t), 

one can derive that, by the strong monotonicity of B and (5.2):

	
(mB − δmjn∥γ∥2)

ˆ T

0
∥z1(t) − z2(t)∥2

V dt ≤ 0.

Hence, the solution of Problem 5.4 is unique due to the smallness condition (5.5). �□

5.3.2  Well-posedness of Problem 5.1

Theorem 5.2  Under the assumptions H (A ), H (B), H (f), H (jn) and the smallness 
condition (5.5), we have: 
(i)	 Problem 5.3 has a unique solution z ∈ W;
(ii)	 Problem 5.1 has a unique solution u ∈ C(I; V ) satisfying u′ ∈ W .

Proof  We start by proving (i). Given η ∈ V∗, we consider the following auxiliary 
problem.

Problem 5.5  Find zη : I → V  with z′
η : I → V ∗ such that z(0) = 0 and for all 

v ∈ V , a.e. t ∈ I ,

	 ⟨z′
η(t) + Bzη(t), v⟩ + δe− t

δ J◦(γe
t
δ zη(t); γv) ≥ ⟨g(t) − η(t), v⟩.� (5.15)

Problem 5.5 is equivalent to the following evolutionary inclusion problem:
Find zη : I → V  with z′

η : I → V ∗ such that, zη(0) = 0 and
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	 g(t) − η(t) ∈ z′
η(t) + Bzη(t) + δe− t

δ γ∗∂J(γe
t
δ zη(t)) for a.e. t ∈ (0, T ).

� (5.16)

It follows from Theorem 5.1 that (5.16) (also Problem 5.5) has a unique solution. To 
show the unique solvability of Problem 5.3, we define a mapping Λ̄ : V∗ → V∗ by

	 Λ̄η = Szη for all η ∈ V∗,

where zη is the unique solution to Problem 5.5 associated with η. We need show 
that the operator Λ̄ has a unique fixed point. To this end, let zi = zηi  be the solution 
of Problem 5.5 associated with ηi ∈ V∗ (i = 1, 2). Setting e = z1 − z2, it follows 
from (5.15) that

	

⟨e′(t), e(t)⟩ + ⟨Be(t), e(t)⟩

≤ δe
−2t

δ J◦(γe
t
δ z1(t); γe

t
δ (e(t))) + δe

−2t
δ J◦(γe

t
δ z2(t); γe

t
δ (e(t))) + ⟨η1(t) − η2(t), e(t)⟩.

Integrating the above inequality on (0, t), and by using the strong monotonicity of B, 
(5.2) and (5.5), we have

	

ˆ t

0
∥e(s)∥2

V ds ≤ 1
(mB − δmjn∥γ∥2)2

ˆ t

0
∥η1(s) − η2(s)∥2

V ds,

which, together with (3.12), implies

	
∥Λ̄η1(t) − Λ̄η2(t)∥2

V ∗ ≤ L2
St

(mB − δmjn∥γ∥2)2

ˆ t

0
∥η1(s) − η2(s)∥2

V ds,

where LS = 1
δ ( 1

δ + ∥B∥) + ∥A∥. Hence, Λ̄ has a unique fixed point (by [28, Theo-
rem 2.3]), which says that Problem 5.3 has a unique solution.

Next, we proceed to prove (ii). It is easy to check that the solution to Problem 5.3 
also solves Problems 5.2 and 5.1. Similar to the proof of Theorem 3.2, we can obtain 
the uniqueness of solution of Problem 5.1. � □

The following result bounds the solution u in relation to the parameter δ.

Theorem 5.3  Under the same assumptions of Theorem 5.2, the solution u of Problem 
5.1 satisfies

	

∥u∥2
L∞(I;H) + δ∥u′∥2

L2(I;H) + δmA ∥u∥2
V

+ (2δ)−1(mB − δmjn∥γ∥2)T∥u + δu′∥2
V ≤ C(δ, T, f),

� (5.17)

where C (δ, T , f) := βδ(e2β−1
δ

T − 1 ) 4δc2
1 T∥γ∥2 +4δ∥f∥2

V∗
mB−δmjn ∥γ∥2  and 

βδ := max{δ, 4∥B∥−2 (δ2 mA (mB − δmjn ∥γ∥2 ))}.

Proof  Taking v = −u(t) − δu′(t) in (5.4), we get
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⟨u′′(t) + Au(t) + Bu′(t), u(t) + δu′(t)⟩ ≤ J◦(γ(u(t) + δu′(t)); −γ(u(t) + δu′(t)))

+ ⟨f(t), u(t) + δu′(t)⟩.� (5.18)

By using hypothesis H(B),

	

⟨Bu′(t), u(t) + δu′(t)⟩ = 1
δ

⟨B(u(t) + δu′(t)), u(t) + δu′(t)⟩ − 1
δ

⟨Bu(t), u(t) + δu′(t)⟩

≥ mB

δ
∥u(t) + δu′(t)∥2

V − 1
δ

⟨Bu(t), u(t) + δu′(t)⟩.

In view of (5.2) and (5.3), we have

	

J◦(γ(u(t) + δu′(t)); −γ(u(t) + δu′(t)))
= J◦(γ(u(t) + δu′(t)); −γ(u(t) + δu′(t)))

+ J◦(0X ; γ(u(t) + δu′(t))) − J◦(0X ; γ(u(t) + δu′(t)))
≤ mjn∥γ∥2∥u(t) + δu′(t)∥2

V + c1∥γ∥∥u(t) + δu′(t)∥V .

Integrating (5.18) on (0, t) with t ∈ (0, T ] and applying the above two inequalities, 
together with (3.33a)-(3.34b), we find

	

1
2

d

dt
∥u(t)∥2

H −
ˆ t

0
∥u′(s)∥2

Hds + δ

2
∥u′(t)∥2

H + mA

ˆ t

0
∥u(s)∥2

V ds

+ δ

2
mA ∥u(t)∥2

V + mB − δmjn
∥γ∥2

4δ

ˆ t

0
∥u(s) + δu′(s)∥2

V ds

≤
ˆ t

0

4δc2
1∥γ∥2 + 4δ∥f(s)∥2

V ∗

mB − δmjn
∥γ∥2 ds + 4∥B∥2

δ(mB − δmjn
∥γ∥2)

ˆ t

0
∥u(s)∥2

V ds.

Set

	

ā(t) := ∥u(t)∥2
H + δ

ˆ t

0
∥u′(s)∥2

Hds + 2mA

ˆ t

0

ˆ s

0
∥u(r)∥2

V dr ds

+ δmA

ˆ t

0
∥u(s)∥2

V ds + mB − δmjn
∥γ∥2

2δ

ˆ t

0

ˆ s

0
∥u(r) + δu′(r)∥2

V dr ds,

c̄(t) :=
ˆ t

0

4δc2
1∥γ∥2 + 4δ∥f(s)∥2

V ∗

mB − δmjn
∥γ∥2 ds.

From the previous inequality, we get

	
1
2

d

dt
ā(t) ≤ β−1

δ ā(t) + c̄(t), ā(0) = 0,
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where βδ := min{δ, 4∥B∥−2(δ2mA (mB − δmjn
∥γ∥2))}. Applying the Gronwall 

inequality, we conclude (5.17). � □

Remark 5.1  The proof provided above does not take into account the case where B 
is symmetric. In contrast to Theorems 3.3 and 4.3, the smallness condition (5.5) is 
essential for the bounds on u.

6  Conclusion

In this paper, we establish the well-posedness of the viscoelastic contact problems 
under the modified Signorini, Tresca-friction, and Clarke-subdifferential type bound-
ary conditions, respectively. Our analysis not only advances the mathematical theory 
of contact mechanics but also facilitates the connections and differences between 
conventional contact conditions concerning the displacement and the velocity. Future 
research will focus on developing numerical methods for solving the viscoelastic 
model under these modified boundary conditions.
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