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Abstract

We propose three modified contact boundary conditions incorporating both the ve-
locity and the displacement with a parameter § for the viscoelastic problem. As
0 approaches 0, these conditions formally reduce to the conventional Signorini,
Tresca-friction, and Clarke-subdifferential type boundary conditions, respectively.
Consequently, the modified conditions, as a generalization of the conventional ones,
can be viewed as contact conditions in the displacement with a dynamic setting.
We derive weak formulations for the viscoelastic contact model under three modi-
fied contact conditions and explore their well-posedness. Additionally, we provide
bounds on the weak solutions with respect to the parameter .
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1 Introduction

Various contact boundary conditions, such as the Signorini-type, friction-type, and
Clarke-subdifferential-type conditions, have been proposed for the elastic and visco-
elastic contact problems, which have a wide range of applications in mathematical
modeling in the materials science and engineering simulation and have drawn con-
siderable attention from numerous scholars in mathematical and numerical analysis
[1-5]. Such boundary conditions describe various contact mechanics and are crucial
for mathematical modeling of the complex dynamics of (visco)elastic body and fluid
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flow interacting with the boundary [6—12]. In a typical contact problem (Fig. 1), we
are interested in the deformation and/or stress distribution in a deformable body sub-
ject to the action of body forces and surface tractions on a part of the boundary I' v, a
displacement constraint on another part of the boundary I'p, and contact conditions
on the remaining part of the boundary I'c, called the contact boundary. Numerous
studies exist on the well-posedness and numerical methods for contact problems with
different contact boundary conditions.

For convenience, we use “SC”, “TC” and “CS” to refer to contact boundary con-
ditions of the Signorini-type, friction-type, and Clarke-subdifferential-type. More-
over, we use the labels (SCD), (TCD), (CSD) for contact conditions expressed on the
displacement w in studies of stationary/quasi-static/nonstationary contact problems,
and use the labels (SCV), (TCV), (CSV) for contact conditions expressed on the
velocity u’ in studies of quasi-static/nonstationary contact problems. We label the
contact conditions in our models by (SDV5), (TDVy), (CDVy) for contact conditions
expressed on u + du’ in studies of quasi-static/nonstationary contact problems. For-
mally, we recover (SCD), (TCD), (CSD) from (SDVy), (TDVs), (CDVs)as § — 0,
and recover (SCV), (TCV), (CSV) from (SDV5), (TDVy), (CDVy) as § — oc.

The Signorini condition is commonly used to describe the non-penetration phe-
nomenon in contact mechanics [8, 13]. For the unilateral condition, the normal com-
ponents of the traction vector on and the displacement u are required to satisfy the
following condition (called the Signorini condition in displacement):

on-n<0, u-n<0, (on-n)(u-n)=0, (SCD)

where n is the unit normal outward vector, and v - n < 0 means no penetration
occurs. The unilateral condition (SCD) is usually used in static contact problems.
For dynamic contact problems or quasi-static contact problems, a different version of
the Signorini condition (called the Signorini condition on the velocity) has also been
proposed:

on-n<0, v -n<0, (on-n)(u - -n)=0, (SCV)
where u’ is the velocity.

Fig. 1 contact model
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For some physicists and engineers, (SCD) appears both natural and accurate, as it
effectively encapsulates the non-penetration constraint. However, from a mathemati-
cal perspective, the unique solvability of dynamic or quasi-static elastic and visco-
elastic contact problems that incorporate the condition (SCD) remains inadequately
examined. The well-posedness of the static elastic problem with the (SCD) condition
has been established [8]. Additionally, the well-posedness of the wave equation under
the (SCD) condition in a half-space has been demonstrated [14]. In more general
domains, while existence has been confirmed [15], the aspect of uniqueness is still
unresolved. Extending these results to dynamic and quasi-static elasticity equations
is an ongoing challenge. Regarding the viscoelastic problem associated with (SCD),
the existence of a weak solution has been validated in [16] using a penalty approach.
Moreover, well-posedness of dynamic elastic and viscoelastic contact problems with
the (SCV) condition has been established in [7, 17].

In [18], a modified Signorini condition was proposed for the elastic problem,
which involves both displacement and velocity with a parameter 6 > 0:

on-n<0, (u+déu) n<0, (on-n)((u+du) -n)=0. (SDVy)

The inclusion of both displacement and velocity in the sum (i.e., u + du’) may
appear somewhat peculiar. However, one can think of the parameter § > 0 as a physi-
cal quantity measuring the time effect on the displacement. Notably, a similar issue
regarding physical units arises in the variational form for the quasi-static or dynamic
elastic contact problems under the Tresca/Coulomb-friction condition (see [7, Page
205] for clarification). The existence of a strong solution for the elastic problem under
(SDV5) has been confirmed in [18] using regularization/penalty methods alongside
Galerkin’s approach. As § approaches 0, (SDVy) formally reduces to (SCD), while
(SCV) can be formally derived from (SDVj) by considering the limit as § — oo, or
by substituting w + du’ with du + ' and allowing § — 0. It is important to note
that a rigorous mathematical justification for the limit as § — O has not yet been
established.

We now shift our focus to the interaction involving friction. The Tresca-friction
condition, which functions as a simplified form of the Coulomb-friction law, is fre-
quently utilized to model contact mechanics on rough surfaces. For static contact
problems, the Tresca friction condition in displacement is given by

lo-| <g, o7 ur+glu|=0, (TCD)

where o, and u, represent the tangential component of the traction and the displace-
ment, respectively, and g > 0 is the maximum static friction. For dynamic or the
quasi-static elastic/viscoelastic contact problem, it seems more popular to impose the
Tresca-friction condition in terms of the tangential velocity [6, 7],

lo-| <g, or-ur+glur|=0, (TCV)

where u!. is the tangential component of the velocity. Well-posedness of the static
elastic contact problems defined by (TCD) has been established [8]. In the case of a
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linearized elastodynamic body under the (TCV) condition, the proof of well-posed-
ness is provided in [6, 19]. Nonetheless, the existence of a solution for the dynamic
problems with (TCD) remains an open problem, even in the viscoelastic case [7].
Moreover, to the authors’ knowledge, (TCD) is seldomly considered in the context
of quasi-static contact problems. For further exploration of the mathematical and
numerical analysis pertaining to (visco)elastic and fluid problems involving various
Tresca-friction conditions, consult [7, 12, 20, 21] and the references cited therein.

We shall now focus on the contact condition of the Clarke-subdifferential type in
the normal direction. This condition has been proposed to model a more general and
complex penetration phenomenon in contact mechanics [5, 22, 23]. For instance, the
condition describes a deformable foundation and assigns a reactive normal pressure
depending on the interpenetration of the asperities on the body surface and the foun-
dation (the Clarke normal compliance):

—on-n € dj,(u-n), (CSD)

where j,, is a nonsmooth and nonconvex function and 97,, denotes the Clarke subdif-
ferential of j,,. When modeling contact with a lubricated foundation (such as oil),
the reactive normal pressure depends on the normal velocity on the contact surface,
leading to the following condition (the Clarke normal damped response):

—on-n € dj,(u -n). (CSV)

For elastic and viscoelastic contact problems with (CSD), well-posedness theories
have been explored in [23, 24]. The unique solvability for the viscoelastic contact
problem characterized by (CSV) has been investigated in [25].

As previously indicated, various types of contact boundary conditions have been
designed to model different contact mechanisms in the literature. In certain cases,
even for the same contact mechanism involving elastic or viscoelastic bodies, the
contact boundary conditions for static, quasi-static, and dynamic scenarios may be
formulated in different expressions, depending on whether they pertain to the dis-
placement or the velocity. Is there a single condition that can be regarded as a general-
ization of the contact conditions on the displacement and the velocity? The modified
Signorini condition (SDV ) introduced in [ 18] represents a first attempt to generalize
the Signorini condition concerning displacement and velocity for elastic problems.
Drawing inspiration from the aforementioned research, the motivation of this paper
is to examine viscoelastic contact problems with the modified Signorini boundary
condition (SDVy5), as well as the modified Tresca-friction condition (TDV5) and the
Clarke-subdifferential-type condition (CDV5):

lo:| <g, o (ur+0ul)+ glu, + dul | =0, (TDVy)
—on-n € 0j,((u+ ou’) - n). (CDVy)

These modified conditions appear to serve as intermediaries between the corre-
sponding conventional conditions on either the displacement or the velocity. As ¢
approaches 0, the modified contact conditions formally reduce to the conventional
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ones in terms of the displacement, i.e., (SCD), (TCD), and (CSD). In contrast, as
0 approaches oo (or equivalently, by replacing w + du’ with du + u’ and allow-
ing § — 0), they reduce to the corresponding conventional conditions in terms of
the velocity, i.e., (SCV), (TCV), and (CSV). Thus, these modified conditions can be
interpreted as a perturbation of the conventional contact conditions. It is believed
that investigating these modified contact conditions will contribute to the model-
ing and mathematical theories of contact mechanisms while also facilitating a bet-
ter understanding of the relationships and distinctions between conventional contact
conditions concerning displacement and velocity. As an initial endeavor, the present
work aims to develop the well-posedness theory for the linear viscoelastic problem
incorporating three modified contact conditions.

The main results of this paper are summarized as follows. We introduce the
transform (3.3) (or, equivalently w(t) + du/(t) = w(t)) and z(t) = w(t)e 5 to
reformulate the original second-order temporal system of u into a parabolic history-
dependent variational problem of z. Then, we apply the operator theory to study the
well-posedness of the problem instead of using Galerkin’s method. We establish the
unique existence of the viscoelastic contact problem under the modified Signorini,
Tresca-friction, and Clarke-subdifferential type boundary conditions, respectively.
Additionally, we bound the solution with respect to the parameter .

The rest of this paper is structured as follows. In Section 2, we state the viscoelas-
tic problem with the three modified contact conditions. In Section 3, we present the
transformation technique and show the well-posedness of the viscoelastic problem
with the modified Signorini contact condition. Section 4 and 5 are devoted to the
unique existence of solutions of the viscoelastic contact problems under the modified
Tresca-friction and Clarke-subdifferential-type boundary conditions, respectively.

2 Viscoelastic contact problems with three modified contact
conditions

We introduce the model problem and assumptions in this section. Let €2 be an open,
bounded domain in R? (d = 2, 3) with a Lipschitz boundary 92 = I'. The boundary T’
is partitioned into three disjoint measurable parts ', I'p and T’y with meas(I'p) > 0
and meas(I'¢) > 0. Let I = [0,7] be a time interval with 0 < T' < oo. Here and
below, we use boldface letters for vectors and tensors. We denote by n the unit normal
outward vector to the boundary. The normal and tangential components of a vector w
on the boundary are denoted by w,, = w - n and w, = w — w,n, respectively. For
a stress tensor o, we set 0, = (on) - nand o, = on — o,n. For simplicity, we use
|-| to represent the Euclidean norm of R, R? and S?. We use the notation

1
D(u) = 5 (Vu + (Vu)T), V-o=I(0i,), ij=1,---.d,

to define the linearized strain tensor and the divergence operator, respectively. Note
that the summation convention over a repeated index is adopted.
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The viscoelastic contact model is stated as follows.

Problem P Find a displacement field u : Q x I — R? such that fora.e. t € I,

o(t) = #D(u(t)) + ZD(W/(t)) in Q, 2.1a)
u’'(t) =V -o(t) = folt) in Q, (2.1b)
u(t)=0 on Tp, (2.1¢)
ot)n=fi(t) on Ty, (2.1d)

u(0) =0, «/(0)=0 in (2.1e)

and on I'¢, one of the three types of contact conditions:

e The modified Signorini condition (SDVy):

—0.(t) =0,0,(t) <0, uy(t) + oul,(t) <0, on(t)(un(t) + dul (t)) = 0.(2.2)

e The modified Tresca-friction condition (TDV5):

un(t) =0, —o-(t) € g0 |ur(t) + duz(t)]. (2.3)
o The modified contact condition of Clarke-subdifferential-type (CDVy):

o.(t) =0, —0,(t) € jn(un(t) + oul,(t)), 2.4

where j, : I'c x R — R.

In the description of Problem P, (2.1a) represents the constitutive law of the visco-
elastic body; (2.1b) is the equation of motion, f( being the density of the body force;
(2.1¢) specifies the displacement boundary condition on I" p where for simplicity, the
zero boundary value is used without loss of generality; (2.1d) describes the surface
traction condition on I'y, f1 being the density of the surface traction; (2.1¢) reflects
the initial values of the displacement and the velocity, both initial values are taken to
be zero without loss of generality. In the contact conditions (2.2)—(2.4), the parameter
0 € (0,00).

Remark 2.1 The parameter § can be interpreted as indicative of a short time period,
ensuring that the physical unit of u + du’ remains meaningful. The modified contact
conditions can thus be seen as conventional conditions on the displacement that pos-
sess a degree of dynamism. As § approaches 0, the three modified conditions for-
mally reduce to the contact conditions associated with the displacement. By allowing
0 — 0o, or by substituting u + du’ with u' + du and subsequently letting 5 — 0, we
formally derive the contact conditions on the velocity. Therefore, the three modified
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contact conditions that encompass both displacement and velocity can be regarded
as a generalization of the traditional contact conditions that address either the dis-
placement or the velocity.

To study Problem P, we need to introduce function spaces, bilinear forms and the
assumptions. We set

H=L*YRY, V={ve H(QRY) |v=0ae onTp}.

The inner product and norm of V are defined by

(v,u)y = /QD(U) :D(u)dz = (D(v),D(w)), |v|3 = (v,v)y VYv,ucV.

Since meas(I'p) > 0, it follows from Korn’s inequality that || - | g and || - ||y are
equivalent norms of V. Note that the embedding V' C H is compact, and (V, H,V*)
constitutes an evolution triple. For brevity, we set V = L2(I; V), V* = L*(I;V*)
and W = {v € V | v/ € V*}. Note that W is a separable and reflexive Banach space
and its norm is defined through the equality ||v||3, = ||v||3, + ||v'||3... The distribu-
tional derivative operator L : D(L) C V — V* is defined by

T
<Lu,v>:/0 W/ (), 0(t)dt Vv eV,

where the domain D(L) = {v € W | v(0) = 0}. The operator L is linear, densely
defined, and maximal monotone.

Next, we state hypotheses on the data of Problem P.

H(</): The function & = (k) : 2 x S — S? is such that

(i) Q{ijk’l S LOO(Q), 1<4,5,k,1<d,

(i) o/(x,-) is symmetric, for ae. x€Q, ie, Hjp = Ljiri = D,
1<4,5,k,1<d,

(iii) there exists m,, > 0 such that for all € € S¢, a.e. € Q,

(o (z)€) 1 € > myy €.

H(%): The function & = (Byji1) : 2 x ST — S% is such that
() Biji € L=(Q), 1 <i,4,k, 1 < d;
(ii) there exists m > 0 such that, for all e € S, a.e. « € Q,

(B(x)e) : € > my el

H(f): fo € C(I; L2(RY)), f1 € C(I; L2(Ty; RY)).

We define f € C(I;V*) by
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(f@),v) = [ fo(t) vdx+ f1(t) - vdl Yv eV (2.5)
Q 'n

Further, define operators A : V — V*and B: V — V*: forallu € V,

(Au,v) :/Q(MID)(U)) :D(v)dx VveV; (2.6)

(Bu,v) = /Q (#D(w) : D(v)dz Vv e V. @.7)

3 The modified Signorini condition

In this section, we consider Problem P with the modified Signorini contact condition
(2.2). To state the weak formulation, we set

K={veV]v,<0ae onlc},
which is a nonempty, closed, convex subset of V.
3.1 Weak formulation of the problem (2.1) and (2.2)
We derive the weak formulation of Problem P with the modified Signorini contact
condition (2.2). Assume that the problem has a sufficiently smooth solution u. For

any v € K, testing (2.1b) by v — (u(t) + du/(¢t)) and using the integration by parts,
we have

/ u”’(t) - (v — (u(t) + 6u'(t)))dz +/ o(t) : D(v — (u(t) + du'(t)))dx
Q Q
~ [tom)0)-to — () + w @) = [ Folt)- (0 (ule) + o0/ @)
r Q
Utilizing (2.1c), (2.1d) and (2.2), we see that

/F(Gn)(t) (v = (ut) +ou'())dl = | f1(t) - (v — (u(t) + 6u/(t)))dl.

I'n

Hence, we get

/ u’(t) - (v — (u(t) + o0u'(t)))dz + / o(t) : D(v — (u(t) + du'(t)))d
Q Q
> [ F1t) - (v — (ult) + o (1))dr + / Folt) - (v — (u(t) + o0/ (1)))da.

'n
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Together with (2.1a), the weak formulation of the problem (2.1) and (2.2) is stated
as follows.

Problem 3.1 Find w: I — V with «” : I — V*, and u + éu’ : I — K, such that
u(0) = 0,4’(0) =0, and forallv € K,ae. t €I,

(u"(t)0 — (w(t) + 0u' (1)) + (Au(t), v — (u(t) + 6u'(1)))

(B ()0 — (ult) + 6w (1)) > (F(B),0 — (ult) + su()). O

3.2 Transformations of Problem 3.1

In this part, we perform some transformations (see Fig. 2) on Problem 3.1 to
make it easier to establish the well-posedness. By taking w(t) + du’(t) = w(t),
z(t) = w(t)e~# and defining the history-dependent S, Problem 3.1 is transformed
into Problem 3.2. Then, Problem 3.2 can be transformed into Problem 3.3 by fixing
the history-dependent S. Next, by introducing the regularization term (i.e., the pen-
alty term), we transform Problem 3.3 into Problem 3.4.

First, we set
u(t) + ou'(t) = w(t). (3.2)
It follows from w(0) = 0 and «/(0) = 0 that w(0) = 0. We see that

t
u(t) = %e*%t/o w(s)es ds. (3.3)

Note that (3.3) implies «(0) = 0. In addition, we get

W) = %w(t) - %Rw(t), (3.42)
w(t) = §(Rw) (t) + Rw(t), (3.4b)
weak u+ ou’ =w
Problem P formulation . B zZ=we o R
+(SDVy) »| Problem 3.1 |« 5 vy » Problem 3.2
dependent
operator Sz-1
z- 1z,
regularization ~
Problem 3.4 Problem 3.3
Z” —Z

Fig. 2 transformation process

@ Springer



4 Page 10 of 34 Applied Mathematics & Optimization (2026) 93:4

u’(t) = }w'(t) - 6—12w(t) + %Rw(t), (3.4¢)

where the operator R : V — V is defined by
1 ¢ 1
Ro(t) = fefﬁt/ v(s)es®ds YveV, tel. (3.9)
0
The operator R is linear and continuous, satisfying

t t
|Ro(t)]lv < 5*167%/ e llv(s)|lv ds < 5*1/ lo(s)llv ds Yo e V.
0 0 (3.6)

Based on (3.3)—(3.4c), Problem 3.1 is equivalently reformulated as a problem for w:
Find w : I — K with w’ : I — V* such that w(0) = 0 and for all v € K, a.e.
tel,

(w'(£) %w(t),v —w(t) + <(%1 — B)Rw(t), v — w(t) .
+ d{ARw(t),v — w(t)) + (Bw(t),v —w(t)) > 6(f(t),v — w(t)).
In view of
w'(t) — %w(t) — s (w'(t)e F — %w(t)e_%) — e (w(t)e 5,
we introduce the transformation
2(t) = w(t)e™ 5 (3.8)

and refomulate (3.7) as a problem for z:
Find z : I — K with 2’ : T — V*, such that 2(0) = 0 and for all v € K, a.e.
tel,

(' (t),v — 2(t)) + (Bz(t),v — (1)) + e*ﬂ(%f — B)R(e7 2(t)),v — (1))
+0e7 5 (AR(e5 2(t)), v — 2(t)) > de™ 5 (F(t), v — 2(t)), (3.9)

where we have applied

w'(t) — Zw(t) = es 2'(b). (3.10)

We define the operator S : V — V* by
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1 Step 1 I Step 2 :
1 1 1
|  fixed-poin |
1 WP of z; >z WP of I theorem WP of WP of |
1 Problem 3.4 Problem 3.3 | I Problem 3.2 Problem 3.1 I
1 Theorem 3.1(i) Theorem 3.1(ii)1, Theorem 3.2(i) Theorem 3.2(ii) |
|

Fig. 3 solution process

t 1 t t t
Sv(t) = e_f(gl — B)R(e3v(t)) + de” s AR(e3v(t)) VwveV,tel.(3.11)
It is easy to see that the operator S is a history-dependent operator with the Lipschitz
constant Ls = %(3 + || B||) + || A]|. In fact, using the linearity and continuity of B
and 4, for any vy, v € V,

S01(8) ~ Swa(t) v+ < e (T = BIR(eS01(6)) — (5~ BYR(e5w2(6)) -

+0lleF AR(eF v (1) — 75 AR(eF v (1)) -

< (5 + IBI+ 1A Ror(6) — Roa(o)lv (3.12)

< LS/O/ lv1(s) —va(s)|lvds Vtel (by (3.6)).

Now we can rewrite (3.9) into the following problem.

Problem 3.2 Find z: [ — K with 2z’ : I — V* such that 2(0) = 0 and for all
ve K,ae tel,

(2(t),v — (1)) + (Sz(t), v — 2()) + (Bz(t),v — (1)) = (g(t),v — 2(1)),

t

where g(t) = de~ 5 f(t).
3.3 The well-posedness of Problem 3.1

The unique existence of a solution to Problem 3.1 (or equivalently, Problem 3.2)
is obtained in two steps (see Fig. 3). First, we introduce an auxiliary problem (see
Problem 3.3) and the associated penalty problem with the parameter A (see Problem
3.4). We demonstrate the well-posedness of the penalty problem using the operator
theory and show that the solution of the penalty problem is bounded independent
of the parameter A. Taking a convergent subsequence of the solutions of the pen-
alty problem, and passing to the limit A — 0, we demonstrate the well-posedness of
the auxiliary problem. Then, by the fixed-point theory, we show the well-posedness
(WP) of Problem 3.1.
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3.3.1 The well-posedness of the auxiliary problem
Given 7 € V*, we introduce the following auxiliary problem.

Problem 3.3 Find 2, : [ — K with 2;(t) € V* and 2,(0) = 0 such that for all
ve K,ae tel,

(20 (1), v = 2y (1)) + (Bzy (1), v = 24 (1)) Z (g(t) = n(t),v — 2y(1)). (3.13)

According to [26, Lemma 16], we have the following equivalent form of Problem
3.3:
Find z,, € D(L) N K such that forall v € K,

T

T
/O (25 () + Bzy(t), v(t) — 2y (1))dt 2/ (g(t) = n(t),v(t) — zy(1))dt,

0

where K={veV|v(t)e K a.e.t € I}. We introduce the penalty opra-
tor P = J(I — Pk) ([27, Definition 23]) where J : V — V* is the duality map,
I:V — V is the identity map on V and Pg : V — K is the projection operator.
We also introduce the Nemytski operators B:V — V*and P : V — V* of B and P
respectively, i.e.,

(Bv)(t) = Bo(t), (Pv)(t) = Po(t) YveV. (3.14)

Lemma 3.1 (/28, Lemma 3.1]) Assume that H(9B) holds and P satisfies || Pul|| v+
< a+bllully witha > 0 and b > 0, for all u € V. Then we have:

(i) B is linear, continuous and strongly monotone with mg;

(ii) P is bounded, demicontinuous, monotone and v € K if and only if Pv = 0.

For any A > 0, we consider the following penalty problem.

Problem 3.4 Find z):I — V with 2,(¢) € V* for all v €V, ae. t€l and
z(0) = 0, such that

(Z5(1), v — 2(1)) + (Bza(t), v — 2a(1)) + §<Pz)\(t)7v —za(t) = {g(t) —n(t),v — 2A(1)).
(3.15)

Equivalently, the problem is to find z) € D(L) such that forall v € V,

1
(Lzy,v — z)\) + (Bz),v — z)) + X(Pz,\,v —zy) > (g —n,v—z)),(3.16)

where the operator L is defined in Section 2.
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Theorem 3.1 Under the assumptions of Lemma 3.1, together with hypotheses H (<)
and H(f), we have:

(i) foreach X > 0, there exists a unique solution zx € VW of Problem 3.4 satisfying

lzxllw < (mz" +2(Blmz +1))llg - n|

Ve (3.17)

(ii) Problem 3.3 has a unique solution z,, € W, and the bound (3.17) holds with z
replaced by z,,.

Proof We start with the proof of (i). It follows from Lemma 3.1 that the operators
B and P are pseudomonotone which implies that B + P is pseudomonotone. More-
over, by taking advantage of the strong monotonicity of 5 and the monotonicity of P,
we establish that B + P is 0-coercive. Additionally, since B is linear continuous and
P is bounded, B + P is bounded. Since L is a maximal monotone operator, we can
apply [27, Theorem 74] to know that the operator L + B + %P is surjective. Thus,
for each A > 0, Problem 3.4 has a solution. Also we have the uniqueness of solution
to Problem 3.4 by using a standard argument.

Next we show that ||z,|/yy is bounded independent of A. Testing (3.15) by
v =0 € K, we have

(23(1), 2A (1)) + (Bza(1), 2a(1)) + §<sz(t),zx(t)> < (g(t) —n(t), 2x(1))-

By the monotonicity of P and the strong monotonicity of B, we derive from the above
inequality that

lzxlly < mz'llg — nlly-. (3.18)

Note that the inequality (3.16) is equivalent to

1
(Lzx,v) + (Bzy,v) + X(Pz,\,t,v} =(g—nv) Yve, (3.19)
from which we deduce that
1
ILzallv- < 1Bzallv- +llg = nllv- + S P2x]lv-
1 (3.20)
< (IBllmz" + 1)llg = nllv- + $IPzally--

According to the embedding theorem, we have z) € W C C(I; H). To pass to the
limit A — 0, we need to show that Lz, is bounded independent of A~!. In view of
(3.18) and (3.20), our task next is to bound 1||Pz||y-.

Since
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(Pza(t), (I = Pr)2a(t)) = (J(I = Px)za(t), (I = Pr)za(t)) = (I = Px)za(t)II},

we set ¥(t) = (I — Pg)zy(t) for all t € T and substitute v = © € V into (3.19) to
obtain

1

T
3 [ o0, s = 5 [ 10 PR

- / (@(t) — n(t) — Bza(t) — 2510, (I — Pr)za(t))dt
< (lg = nllv- + 1Bzl / I — Pr)za(@)l|2de) — /0 (A (), (T — Prc)za(t))dt

It remains to bound R; := fOT (2(t), (I — Pg)zx(t))dt. There exists a sequence
of step functions z% := Z” 1 Z2a(ti),_, +,) such that 2} — 2z in V as n — oo,

where 0 = tg <ty <---<t, =T and [};,_, ;,) represents the characteristic func-
tion of [t;_1,t;). Write

T T
R, = / (Z5(1), (I — Pr)(zA(t) — 2%(1)))dt +/ (Z\(t), (I — Pg)z%(t))dt =: Ry1 + Ria.
0 0
Since the projection operator Pk is nonexpansive, we have

R11—>O as n — OQ.

For R1», we calculate as follows:

R”:/o (), (I = Pr) Zz,\ M (Ot = S (2a(t) — 2a(tia), (I = Prc)za(ti))a

i=1

—Z ((I = Pr)za(t:) — (I — Px)za(tio1), (I — Px)za(t))

_Z(PKZA(ti—l — Preza(ti), (I = Pr)za(t:))
> (I = Pzl + 3210 = Pr)(eate) - sa (-l ),

where we have used the facts that z)(0) = 0 and

(v— Pxw,w— Prw)y <0 YveK, weV.

We conclude that R; > 0 and consequently,

1

1 T 3
S([ 0= Pozm @) <lg-ulv- + 1By 62D
0

Since ||J]| <1,

@ Springer



Applied Mathematics & Optimization (2026) 93:4 Page 15 of 34 4

IE2Y

T
b < (/0 I = Prc)yza(®)]|3do)?.

Hence, from (3.20) and (3.21), we deduce that

L2 v-) < 2([|Bllmz" +1)llg —nl

ve < 2(|lg = nllv- + [Bzx v (3.22)

Then, (3.17) follows from (3.18) and (3.22), i.e., {zx } » is uniformly bounded in W.
Now we turn to prove (ii). Since {||zx|/yv } is bounded and W is reflexive, there
exists a subsequence, also denoted by {z },, such that

zy—z in W.

Let us show that z € K is a solution to Problem 3.3. It follows from Lemma 3.1 and
(3.16) that, for all v € V,

1
X<7’zA,zx —v) < (Lzy,v—z)) + (Bzx,v —2)) + (g — 1,25 —v)

< Cllg = nllv-llv = zxllv  (by (3.17)).

V*
Taking v = z in the above inequality, we get

limsup(Pzy,z)y —2) <0 (3.23)

By the pseudomonotonicity of P, we have

(Pz,z —v) <liminf(Pzy,z)y —v) Yv e,

which, together with (3.23), implies that (Pz, z — v) < 0 for all v € V. Therefore,
we conclude Pz = 0, which means that z € K by Lemma 3.1(i1).
Moreover, taking v € X in (3.16) and using the monotonicity of P, we have

(Lzx,v — z)\) + (Bzx,v — 2x) > (g — 1,V — 2). (3.24)

By the maximal monotonicity of L,
lim(Lzy,v — z)) = lim((Lzy,v — z) + (Lzy — Lz,z — z)) + (Lz,z — z)))

<{(Lz,v — z). (3.25)

Similarly, since B is linear, continuous and strongly monotone, we derive
lim(Bzy,v — z)) = lim((Bzy,v — z) + (Bzy — Bz,z — z)) + (Bz,z — z)))

< (Bz,v — z). (3.26)
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Passing to the limit A — 0 in (3.24), together with (3.25) and (3.26), we obtain

(Lz,v—2)+ (Bz,v—2)>(g—n,v—2) Yvek.

Hence, z is a solution of Problem 3.3. Since z is obtained by taking the weak conver-
gence of a subsequence {z, }, the same estimate (3.17) also holds for z.
It remains to show the uniqueness of Problem 3.3. Let z; (i = 1, 2) be two solu-
tions of Problem 3.3. It follows from (3.13) that
(21(t) = 25(t), 21(t) — z2(t)) + (Bz1(t) — Bza(t), z1(t) — 22(1)) < 0.

By the strong monotonicity of B, we have
t

lz1(t) = z2(t) |17 + m@/ Iz1(s) = 2z2(s) [} ds < 0,
0

which implies that

Z1 = Z2 in V.
Thus, the solution of Problem 3.3 is unique. O
3.3.2 Well-posedness of Problem 3.1

For the existence of a unique solution to Problem 3.1 and Problem 3.2, we have the
following result.

Theorem 3.2 Assume H(</), H(AB) and H(f). Then, we have:

(i) Problem 3.2 admits a unique solution z € W;
(ii) Problem 3.1 admits a unique solution w € C(I; V) satisfying u’ € W.

Proof We first provide the proof of (i). By Theorem 3.1(ii), Problem 3.3 has a unique
solution z,,, which allows us to introduce a mapping A : L*(I;V*) — L*(I; V*)
defined by

An = Sz,.

We need to show that A has a unique fixed point. For ¢ = 1,2, let z; be the unique
solution to Problem 3.3 associated with n; € V*. It follows from (3.13) that

(21(8) = 25(1), z1(t) = 22(t)) + (Bz1(t) — Bza(t), z1(t) — z2(t)) < (m(t) = 1m2(t), 21 (t) — z2(t)).

Utilizing the strong monotonicity of B, we deduce that
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/||z1 )= ()1

By (3.12), we have

Ol

.ds. (3.27)

[Am () = A ()7 = [1S21(t) — Sza(t

V*<L /Hz1 — z9(s )||Vd3

where Lg = %(3 + [|2|)) + || Al|. We obtain from (3.27) that

L2t
Lst / i (s) — ma(s)[%

Applying [28, Theorem 2.3], we conclude that A has a unique fixed point, which
implies that Problem 3.2 has a unique solution.

Now we prove (ii). In view of (3.8) and (3.4), it is easy to check that u defined by
(3.3) indeed solves Problem 3.1. We need to verify that the solution of Problem 3.1
(or equivalently, (3.7)) is unique. To this end, we divide the interval 7 into N = T'/k
subintervals [t;,t;41] (¢ =0,1,--- , N — 1), where the time-step size k satisfying
k < mgd/||2A|. If we prove that the solution of (3.7) is unique in each subinterval,
then we establish the global uniqueness.

Assume that (3.7) admits two solution w; and ws. We set e = w; — ws. Test-
ing the inequality of w(t) by v = w;(t), and testing the inequality of w; (¢) by
v = ws(t), and adding the two resulting inequalities, we get

[ Ay (8) — Ana(t) ~ds.

(€'(t),e(t)) +

+

(Re(t), (1)) + 6{ARe(t), (1)
Be(t),e(t)) < 1 (e(t), e(t)) + (BRe(t), e(t)).

oﬂ»—‘

(3.28)

—~

We show that e = 0 in [0, ¢1]. It follows from (3.4b) and Rw;(0) = 0, i = 1, 2, that
t t t
/ (Re(s),e(s))ds = / (Re(s),Re(s))ds +6 | (Re(s),(Re)'(s))ds
0 0 0

0
= | Relliz(0,.0m) + 511 Re®)lZ

/0 (ARe(s),e(s))ds = /0 (ARe(s), Re(s))ds + ¢ (ARe(s), (Re) (s))ds

> My || Rw — szlle(owﬁr 20| Ruwi () — Rwa ()]}

It follows from (3.28) that
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! 2 [t t
He(t)l\?wzm@/o le(s)||Zds < 5/0 \|e(s)\|§,d5+2”gg||/o 1Re(s)[lv [e(s)[[vds
2 t 2 (% t t
Sg/o He(s)\l%dH%/o le(s)[%ds  (by (3.6)).

Since |t — to| < mgd/||B|| forall t € [tg, t1], we have mg — ||BB||t/d > 0 and

2 2 ‘ 2
<= [ le(s)lids.
0

Apply the Gronwall inequality to conclude
e(t) =01i.e. 'wl(t) = ’wg(t) Vite [to,tl] . (329)
We proceed to show that (3.7) admits a unique solution in (¢1,¢2], i.e., e(t) =0 in

(t1,t2]. Keeping in mind that e = 0 in [tg, t1], from (3.5) and (3.6), we have, for any
t e (tl, tg],

t t
|Re(s)lly < 6~ e / A le(s)lly ds < 51 / le(s)lv ds.
0 tq1

Integrating (3.28) on [0, ¢] for any ¢ € (¢1, t2] and noting that e = 0 in [0, ¢1], we get

t—t ¢ 2 [t
el +2(me — U= [elpas < 2 [ fets) Buas.
6 t1 5 ty

Since [t — t1| < ’l"‘gglf forall ¢ € [t1, 2], we conclude

le(t)3, < /He )12,ds,

together with e(t1) = 0, which implies that e = 0 in (¢1, t2]. Applying the induction
argument, we assert that (3.7) has a unique solution. O

For the dependence of the solution on §, we present the following theorem that
demonstrates the boundedness of the solution to Problem 3.1.

Theorem 3.3 Under the assumptions stated in Theorem 3.2, we have the following
bound on the solution u:

V*
(3.30)

el iy + 011w 212ty + O [l + dma T’ |3 < C1(8, T)IIFIR

where C;(6,T) = a(;(egTagl — 1)((2my)~1 +dmy") and
as = min{d, || B|| =2 (6% mymz)}.
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Moreover, if B is symmetric, then

[l + dmaT w3 < C2(8,T) | £}
(3.31)

HUH%OO(I;H) + 5||ul||2Lz(I;H) + (Mo +mz)

where Cy (6, T) = 6(e2T0" — 1)((2mu) =1 + 6(2mz)~1).

Proof 1t follows from Theorem 3.2 that Problem 3.1 has a unique solution. Taking
v = 0y in (3.1), we get

(u"(t) + Au(t) + Bu'(t), w(t) + du'(t)) < (f(t),u(t) + ou'(t)). (3.32)

Using integration by parts, we have

t
[ utonas = [ w3 Sl 63
t
1)
| (s). 0 )y s = G O — o O] (3.33b)
It follows from H (%) and ©(0) = O that

t t
[ ) uhds = mer [ futs) s, (3.342)

0 0

/t<Au(s),6u’(s)>ds > (SmT‘Q{Hu(t)H%,. (3.34b)
0

By virtue of hypothesis H (%), we see that
t t
/ (Bu'(s), 0w/ (5))ds > dmas / ' (5)|[ds, (3.350)
0 0
t t
| B u@)ds < 18] [ WElvlu@)vas. G35)
0 0

Integrating (3.32) on (0, ¢) with ¢t € (0,T], together with (3.33a)-(3.35b) and
u/(0) = u(0) = 0, we obtain
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O~ [ s + 301

om
o [T+ T2 a1+ oma [ )1

5mgg
< |— R . _Z
(5t ) [ 15+ 222 [ peotas

+(n ”B” 5y [ty as

Setting ais = min{d, || B||~2(6%*myms)} and

(3.36)

a(t) = I\U(t)II?{+5/O HU’(S)II?{derémw/O [u(s)II5-ds

+ 2Myy /t /S |w(r)||2 drds + 2 6me /Ot /OS |lw' (7)||3 dr ds,
)= (o + ) [ 1509

we obtain from (3.36) that

V*

% %a@) < agta(t) +c(t),

By the Gronwall inequality and a(0) = 0, we obtain
a(t) < a(;(eQO‘;lt — 1)e(t).

Hence, we have the bound (3.30).
If % is symmetric, then, instead of (3.35b), we use (by Hg(iii) and u(0) = 0)

Z |lu(t)]|?

/ (B (5), u(s)

to derive the following inequality

1d
o (113 +0 [ ol ) 5ds +omin [ [t o)t

+mﬂ//0 /0 ||U(T)||%/drds+(5mg{+M@)/o ||u(s)||2vds) (3.37)

(gt 5) | 16

Now, we set

t
)12 ds + / () 12, ds.
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a(t) == a(t) + ma / lus) 12 ds,

o) = (5o + 5 [ 1505)

It follows from (3.37) that

2
7-ds.

——a(t) <5 ta(t) + é(t).

By the Gronwall inequality and a(0) = 0, we conclude (3.31). O

4 The modified Tresca-friction contact condition

In this section, we consider Problem P with the modified Tresca-friction contact con-
dition (2.3). We set

Vi={veV|v,=0 ae on I'c},

and introduce a convex functional j defined by

j(v):/ glvs|de VYveV. @.1)
e

4.1 Weak formulation of the problem (2.1) and (2.3)
Suppose the problem (2.1) and (2.3) has a sufficiently smooth solution u. For any

v € Vi, multiplying (2.1b) by v — (w(¢) + du’(¢)) and integrating on €2, applying
Green’s formula, we get

/ u”’(t) - (v — (u(t) + 0u'(t)))dz +/ o(t) : D(v — (u(t) + du'(t)))dz
Q Q
- / on(t) - (v — (u(t) + 6w/ (1)))dT = / Folt) - (v — (ult) + 50/ (1)) da.
r'c Q
It follows from the boundary conditions (2.1¢), (2.1d), and (2.3) that

/F (rm)(6) (0 (ut) + 6 (D) = [ f1(6)- (0 = (ult) + ()T

+ / 9(— [vr] + ur (£) + et (8)])d.

Together with (2.1a), we get the following weak formulation of the contact problem.
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Problem 4.1 Find w: I —V; with v/ : I —V; and u”: 1 — V}*, such that
u(0) = 0,4’(0) =0, and forall v € Vy,ae. t € I,

(u"(t) + Au(t) + Bu'(t),v — (u(t) + 0u'(1))) + j(v)

() + 6 () > (F(1), 0 — (ult) + ().

4.2 Transformations of Problem 4.1

Similar to the transformations of Problem 3.1, let w(¢) + du’(t) = w(t). Based on
(3.3)(3.4c¢), Problem 4.1 is equivalently transformed into the following problem.

Problem 4.2 Find w : I — V; with w’ : I — V;* such that w(0) = 0, and for all
velV,aetel,

(' () — %w(t),v —w(t) + <(%1 — B)Rw(t), v — w(t)

+ 0(ARw(t),v — w(t)) + (Bw(t),v — w(t)) + 6j(v) — 5j(w(t)) = 6(f(t), v —w(t)),

where the operator R is defined by (3.5).

Furthermore, by taking z(t) = e~ 5 w(t), Problem 4.2 is transformed into the follow-
ing problem.

Problem 4.3 Find z: I — V; with 2’ : I — V{* such that z(0) = 0 and for all
velV,aetel,

(2'(t),v — 2(8)) + (Sz(1),v — 2(1)) + (Bz(t),v — () +j(t,v) — j(t, 2(1)) = (g(t),v — (1)),
where j(t,v) = de~ % j(v), g(t) = de~ 5 f(t), and the operator S is defined by (3.11).
4.3 Well-posedness of Problem 4.1

Here, we provide the solvability theorem which delivers the existence and unique-
ness of a solution to Problem 4.3.

Theorem 4.1 Assume H (<7 )(i)(ii), H(#) and H(f). Then, Problem 4.3 has a unique
solution.

Proof Note that B is linear, continuous and strongly monotone, j is convex, L.s.c., and
0.5 (t,v)||v- < 8g-meas(T¢) YveVy, tel,

and S is Lipschitz continuous (see (3.12)). Applying [27, Theorem 98], we know that
Problem 4.3 has a unique solution. O
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Theorem 4.2 Assume H(</), H(AB) and H(f). Then, Problem 4.1 has a unique
solution w € C(I; V) satisfying u' € W.

Proof 1t is easy to check that every solution of Problem 4.3 solves Problem 4.1. Thus,
Problem 4.1 has a solution by Theorem 4.1. The proof of uniqueness is similar to that

of Theorem 3.2. (]

The following result provides bounds on norms of the solution with respect to the
parameter 4.

Theorem 4.3 Under the same assumptions of Theorem 4.2, the following inequality
holds:

e 121y + Ol 2,11y + 1m0t [l + SmaT |3,

4.3)
+ 29w + 6ul|| L1 (rnr rom)) < CL(8, T I3,

where C; (6, T) is defined in Theorem 3.3. Moreover, if the operator & is symmet-
ric, then we have the bound

”u”QLOO(I;H) + 5Hu/||2L2(I;H) + (6 +ma)||ul}

(4.4)
+oma Tl + 2gllw- + 0ur |l romy) < Co2(8, DI,

where C2(0, T) is defined in Theorem 3.3.

Proof 1t follows from Theorem 4.2 that Problem 4.1 admits a unique solution. Taking
v = 0y and v = 2(u(t) + du'(t)) in (4.2), respectively, we get

(u”(t) + Au(t) + Bu/(t), w(t) + 5u’' (1)) + j(u(t) + 5u'(t)) = (F(t), w(t) + ou'(1)).

By the definition of j,
u(®) + 5w (®) =g | fult) + 5u'(6)] do = glu(®) + 50/ (0) 13 e (45)
I'c

Similar to the proof of Theorem 3.3 and based on (4.5), we obtain

1d
S0l — [ s + Sl O+ mar [ (o)
1
+ 5anHu(t)\ﬁ/ + {5,,71,@/ ' (s)[I3-ds + gllw(t) + 6 ()] 1 (r o) ds
s L :
ds + (— d wds.
[ iwas+ (2 0 [ sy + o+ 2 [rlR-as
Then we get
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1d t t
3 (Ol +5 [ () s + 29 [ ) + 60 () sz

t s t t s
—l—mﬂ/ / Hu(r)H%/drds—l—(;my{/ ||u(s)|\%/ds+5m@/ / ||u'(7")||%/drds
o Jo

1 B ‘ B
< (g ) [ 5@+ T I” /u |\Vds+/ ' (3)] 3.

2mey Mgy

Therefore, we deduce (4.3) through the derivation process of Theorem 3.3.
If the operator B is symmetric, we have

@ )13 +29 IIU +5u()HL1(FcR)d5+m£¢ Hu )ydr ds
2dt

+ ey +mp) / ()2 ds + Smp / / ||u’<r>|\%/drds>+6 / ()%
0 0 0 0
<ot o) [ 1+ [ T las
- ngg ngg 0 v 0 H '

Then, we deduce (4.4). O

5 The modified contact condition of Clarke-subdifferential-type

In this section, we consider Problem P with the modified contact condition (2.4).
First, we make the assumptions on the non-smooth and non-convex function
Jn T xR —R.

H (j,,): The following properties hold for j,:

(i) jn (-, 7) is measurable on I'c for all » € R and there exists an e € L?(T'¢) such
that jn('a 6()) € Ll(FC)a

(ii) jn (e, -) is locally Lipschitz on R for a.e. ¢ € T'¢;

(iii) there exists m;, > 0 such that forall ry, 7, € R,a.e. ¢ € I'¢,

(@, 11572 — 1)+ jo(@, rayry — 12) < my, |r1 — 712l
(iv) there exist d1,d2 > 0 such that forall r € R, a.e. x € T'¢,
|0jn (@, 7)| < di + da |7 ;
(v) either j, (x, ) or —j,(x,-) is regular for a.e. € T'¢c.
Let v : V — L?(I'c, R%) be the trace operator. Then,  is linear, continuous and

compact, the norm of which is denoted by ||v||. The functional J : Z = ~(V) - R
is defined by

J(v) :/F Jn(vp)dl' Vv € Z. (5.1
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It follows from [23, Theorem 3.47] that J satisfies:
(1) J is locally Lipschitz continuous;
(ii) for all v1,v2 € Z, we have

I (01505 —v1) + J°(va; 01 — v3) < my, [lvr — va|%; (52)

(iii) for all v € Z, we have

187 (v)]

z+ < e+ ealvlz (5.3)
with ¢; = \/2meas(T¢)d; and ¢ = v/2ds.

5.1 Weak formulation of the problem (2.1) and (2.4)

We derive the weak formulation of Problem P with the modified contact condition

(2.4). Assume the solution u of the contact problem is sufficiently smooth. Testing
(2.1b) by v and using the integration by parts, we get

/ u’(t) - vdz +/ o(t): D(v)dx — /(a’n)(t) ~vdl = / fo(t) - vdu.
Q Q r Q
Apply the boundary conditions (2.1¢), (2.1d), and (2.4) to obtain

/F(a'n)(t) ~odl > f1(t) - vdl — / Jo(un (t) + Sul,(t); v, )dT.

I'n I'c
Together with (2.1a), we get the following weak formulation.

Problem5.1 Findw : [ — V withw' : I — Vandu” : I — V*,suchthatu(0) = 0,
u/(0) =0, and forallv € V,ae. t €I,

(u"(t) + Bu/(t) + Au(t) — f(t),v) + J°(y(u(t) + du'(t));yv) > 0. (5.4)

5.2 Transformations of Problem 5.1

Similar to the transformations of Problem 3.1, let w(¢) + du’(t) = w(t). Based on
(3.3)(3.4c¢), we transform Problem 5.1 into the following problem.

Problem 5.2 Find w: I — V with w’: I — V* such that w(0) = 0 and for all
veV,ae. tel,

(' () — %w(t), v) + <(§1 _ B)Rw(t), v) + §{ARw(1),v)

+ (Bw(t),v) + 6.J° (yw(t); yv) = 6(f(t), v),
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where the operator R is defined by (3.5).
Define z(t) = w(t)e™ 5. We can express Problem 5.2 in terms of z.

Problem5.3 Findz : I — V with 2’ : I — V* suchthat 2(0) = Oand forallv € V,
aetel,

(/(1),0) + (S2(t), v) + (Ba(t),v) + 5¢~1°(red 2(t):70) 2 (g(0),0),
where g(t) = de~% £(t), and the operator S is defined by (3.11).
5.3 Well-posedness of Problem 5.1
The existence of a unique solution of Problem 5.1 is shown in two steps. First, we
introduce an auxiliary problem (see Problem 5.4) and show its well-posedness. Then,
by the fixed-point theory, we demonstrate the well-posedness of Problem 5.1.

5.3.1 The auxiliary problem of Problem 5.3

Let us consider the existence and uniqueness of a solution to the following auxiliary
problem.

Problem 5.4 Find z € W such that 2(0) = 0 and fora.e. ¢t € I,
g(t) € 2'(t) + Bz(t) + de 5y 0.J (ves z(t)).
Theorem 5.1 Under the hypotheses H(%), H(f), H(j,) and the following small-
ness condition
mag — 5my, [|v]1* > 0, (5.5)

Problem 5.4 admits a unique solution z € W.

Proof First, we prove the existence of solution. Recall the Nemytski opera-
tor B:V — V* defined by (3.14). Here we introduce a new Nemytski operator
NV — 2V defined by

Nv={€eV*|&t) €de 570 (vesv(t)} VYve.

Using the operators 3, N and the derivative operator L which is defined in Section 2,
Problem 5.4 is reformulated as an inclusion problem:

Find z € D(L) such that Lz + Tz > g, (5.6)

where 7Tz = Bz + N z.
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Claim 1. 7 is a Dbounded operator. Taking wv€) and
v* € Tv, we have v* € Bv + Nv. Note that B is linear and bounded. For any
€ € Nv, we have £(t) € de s v*8J(yesv(t)) for ae. te 1. It follows from
[29, Lemma 13] that ||&|ly« < ¢+ ci|lv|ly with ¢g,¢é1 > 0. Thus, we obtain
[v*][v+ < &+ (e +||8])||lv]|lv, i-e., T is bounded.

Claim 2. 7 is coercive. Letv € Vand v* € Tv, i.e.,v* = Bv + £ with€ € Nv.
From Lemma 3.1(i), we have

(Bv,v) > m%HvH%. (5.7)

Since £ € N'v, we have £(t) = y*2(t) with z(t) € se5 d.J(vesv(t)). It follows
from (5.2) and (5.3) that

T T
(&) = / (2(t),yo(t))dt = / [(=2(t) — B(t), o () + (B(1), o(1))] dt

> —omy, [VIv]1 — e vVTé |l vllv, (5-8)

where 6(t) € Se s 0J(0y(t)). Consequently,

(Tw,v) 2 (mg — smy, IV*)[0l} — et VTdl|yllvlly Vo eV,

which implies that the operator 7 is coercive thanks to the smallness condition (5.5).

Claim 3. 7 is L-pseudomonotone ([23, Definition 3.62]). Firstly, we show that
Nw is nonempty, bounded, convex and closed for any v € V. According to [30, Prop-
osition 2.1.2], dJ(-) is a nonempty, convex and weakly compact subset of Z*. Claim
1 implies that AVv is bounded. Hence, N v is nonempty, bounded and convex. Let us
show that the set N is closed. Let {&,,} be any sequence of A/v such that &,, — &.
It follows from [23, Theorem 2.39] that £,,(¢t) — £(¢) in V* for a.e. t € I, passing to
a subsequence if necessary. Since &, (t) € de~54*0.J (vesv(t)) for any n € N, a.e.

t € I and the latter is a closed subset of V*, we get that £(t) € e~ 57*d.J (vesv(t))
for a.e. t € I. Therefore, £ € Nv and N is closed.

Secondly, we verify that A is upper semicontinuous from V to 2V", where V* is
endowed withthe weak topology. Accordingto[3 1, Proposition4.14], itsufficesto prove
that if a set D is weakly closed in V*, thenthe set N~ (D) = {v € V | NvN D # 0}
is closed in V. Let {v,, } be any sequence of '~ (D) such that v,, — v. By using [23,
Theorem 2.39], passing to a subsequence if necessary, we have v,,(¢t) — v(t) in V for
ae.t€l.Let, € Nv, N D forn € N. Since {v,, } is bounded and NV is a bounded
mapping, the sequence {£,,} is bounded in V*. Thus, there exist a subsequence, still
denoted by {&,,}, such that

€, — ¢ in VY, (5.9)
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which implies e5&,, — €3£ in V* and € € D by the weak closedness of D in V*.
Also there exists z,, € L2(I; Z*) for n € N such that

€5, (t) =7 2n(t), zn(t) € 60J(ve5 v, (L)) for ace. t € 1. (5.10)
Using (5.3), we deduce that
I2allz22) < V2Tde1 +V25e5 ||| [[onllv,
which implies {z,, } is bounded. Then passing to a subsequence if necessary, we have
z, =z in L*(I;Z%). (5.11)

Since 00J(-) is upper semicontinuous from X to the closed convex subsets of Z*

endowed with the weak topology and 76% v, (t) — ’yel%'u(t) inZforae.tel,
we see that (by using the convergence theorem [32, Theorem 1])

2(t) € 60 (vesv(t)) for ae. te .

Combining (5.9), (5.10) and (5.11), we get e5&(t) = v*2(t) for a.e. t € I which
means & € Nv. Therefore, we have £ € NvN D, i.e.,v € N~ (D). This shows that
N~(D) is closed in V, which means that NV is upper semicontinuous.

Thirdly, we verify the last condition of the definition of L-pseudomonotonicity
([23, Definition 3.62]). Let {v,, } be any sequence of D(L) such that v,, — v in W,
&, € Nv, with &, — £ in V*, and lim sup(§,,, v, — v) < 0. We see that

e5En(t) € V' 2n(t), zn(t) € 80J(vesvy(t)) for ae. te .
Since v, — v in W, we get {e5v,} is bounded in W, which implies that
eswv, — esv in W. It follows from [33, Theorem 2.18] that the Nemytski operator
4 : W — L2(I; Z) of the trace operator 7 is linear continuous and compact. Thus we
have yesv,, — Jesv in L?(I; Z). And we can find a subsequence, still denoted by
{e3wv,}, such that
ves v, (t) = vesv(t) in X for ae. t € I. (5.12)

Note that {z,,} is bounded in L?(I; Z*) (by (5.3)). Passing to a subsequence if neces-
sary, we have

z, — z in L*(I;Z%). (5.13)

We have shown that e5 £(¢) = v*z(t) for a.e. ¢ € I (see the proof of the upper semi-
continunity of V). It follows from (5.12), (5.13), and the convergence theorem that

z(t) € 58J(We%v(t)) forae. t €1,

@ Springer



Applied Mathematics & Optimization (2026) 93:4 Page 29 of 34 4

which means that £ € Nv. By (5.13),

T T
(€0 0n) = /O e~ (e n(t), vo (D)) dt = /O (v 2 (1), e S v (1))t

t

= (2, Je Tvn) = (2,7¢ 7 v) =/0 (2(t),ve 7o (t))dt = (€, v).

Therefore, the mapping A is L-pseudomonotone.

It is clear that the operator B is L-pseudomonotone since B is linear, continu-
ous and strongly monotone. Therefore, 7 = B + N is L-pseudomonotone (by [34,
Proposition 2]).

According to [23, Theorem 3.63], Claims 1-3 indicate that the problem (5.6)
(equivalently, Problem 5.4) has a solution.

It remains to show the uniqueness. Suppose that Problem 5.4 admits two solutions
z1 and z4. Then there exist £; and &5 such that fora.e.t € T andi = 1,2,

gi(t) = z;(t) + Bz(t) + &(t), (5.14)
where &;(t) € de 5 v*.J (ves z;(t)) and z;(0) = 0. Testing (5.14) by 21 (t) — z2(t),
one can derive that, by the strong monotonicity of B and (5.2):

T
(meg — om;, ||7|\2)/0 l21(t) = z2(®)[[Tdt < 0.

Hence, the solution of Problem 5.4 is unique due to the smallness condition (5.5). O
5.3.2 Well-posedness of Problem 5.1

Theorem 5.2 Under the assumptions H(</), H(%B), H(f), H(j,) and the smallness
condition (5.5), we have:

(1) Problem 5.3 has a unique solution z € W,

(ii) Problem 5.1 has a unique solution u € C(I; V) satisfying u' € W.

Proof We start by proving (i). Given n € V*, we consider the following auxiliary
problem.

Problem 5.5 Find 2z, : [ — V with 2} : I — V* such that z(0) = 0 and for all
veV,aetel,

(21,(6) + Bzy (1), v) + 875 J°(yed z, (1) y0) = (g(t) = m(t),0).  (5.15)

Problem 5.5 is equivalent to the following evolutionary inclusion problem:
Find 2, : I — V with 2] : I — V™ such that, z,,(0) = 0 and
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g(t) —n(t) € 24(t) + Bzy(t) + 6™ 570J (ved 2, (t)) for ae. t € (0,7).
(5.16)

It follows from Theorem 5.1 that (5.16) (also Problem 5.5) has a unique solution. To
show the unique solvability of Problem 5.3, we define a mapping A : V* — V* by

An = Sz, forall n eV,

where z,, is the unique solution to Problem 5.5 associated with 1. We need show
that the operator /A has a unique fixed point. To this end, let z; = zy, be the solution
of Problem 5.5 associated with n; € V* (i = 1,2). Setting e = z; — 2o, it follows
from (5.15) that

(€ (1), e(t)) + (Be(t), e(t))
< e J°(ve 2 (1) et (e(1))) + de I (vek za(t); ve (e(t))) + (m (1) — mat), e(t).

Integrating the above inequality on (0, £), and by using the strong monotonicity of B,
(5.2) and (5.5), we have

e ds < / ds,
[ ets < i [ )~ el

which, together with (3.12), implies

[ Any(t) — Ana(t)][3 -

< ds,
= (- 6mjn||w| / () = ma (o) v

where Ls = 1(3 + [|4]|) + || Al|. Hence, A has a unique fixed point (by [28, Theo-
rem 2.3]), which says that Problem 5.3 has a unique solution.

Next, we proceed to prove (ii). It is easy to check that the solution to Problem 5.3
also solves Problems 5.2 and 5.1. Similar to the proof of Theorem 3.2, we can obtain
the uniqueness of solution of Problem 5.1. O

The following result bounds the solution w in relation to the parameter 4.

Theorem 5.3 Under the same assumptions of Theorem 5.2, the solution u of Problem
5.1 satisfies

el e (1) + Ol 122 111y + Ocr el

= 9 - (5.17)
+(20)" (mg — omy,, [IV7)T[lw + 6u’[ly, < C(5, T, f),

—1 02 2 2*
where C(6, T, f) := Bs(e?Ps T — 1)46 P ol [P SR

mag—om, [|v[|”

Bs = max{d, 4||B||7* (6% ma (meg — dmy, [7]%)) }-
Proof Taking v = —u(t) — du/(t) in (5.4), we get
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(u”(t) + Au(t) + B/ (t), u(t) + 0u'(t)) < J°(y(u(t) + 0w (t)); —y(u(t) + ou'(1)))
+ (1), ult) + 0w’ (1), (5.18)

By using hypothesis H (%),

(Bu'(t),u(t) + du'(t)) = %(B(u(t) +ou/'(t)), w(t) + du'(t)) — %(Bu(t),u(t) + 0u/ (1))
> " Jut) + 6u ()} — 5 (Bue) u(t) + 60 (1),

In view of (5.2) and (5.3), we have

T (y(w(t) + ow'()); —y(u(t) + 0u'(t)))
= J°(y(u(t) + ou'(t)); —y(u(t) + ou'(t)))
+J°(0x; y(u(t) + 6u'(1))) — J°(0x; y(u(t) + 6u'(1)))
< my, VP lu(t) + 5w’ O + exllvlllu(t) + 6w’ (#)llv-

Integrating (5.18) on (0, £) with ¢ € (0, T] and applying the above two inequalities,
together with (3.33a)-(3.34b), we find

1d ¢ ) ¢
**Ilu(t)H%r—/O HU’(S)II?{d8+§|IU’(t)II?{+md/O [u(s)[[3ds

2 dt
1) mag — 0m; 2 ot
o) + T2 =0 [ uts) + 60 ()] s
2 45 o
L4l + 451 £ ()12 42| t
< V2 ds + / lu(s)|3 ds.
/o meg — 6my, 1] Sm — omy, A1) Jo 1MV
Set

t t s
a(t) := ||'u(t)|lfq+5/O IIu’(S)II%dSHmM/O/O [ (r)|I¥ dr ds

t _ . 2 t s
+5mﬁ,/ ||u(s)||%/ds+%/ / lu(r) + 6w (r)|[3-dr ds,
0 0 Jo

t 2 2 2
ot = [ BADE SISO
0

mag —om;, [[|*

From the previous inequality, we get

1d._

570 < B5ta®) +e(t), a(0) =0,
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where 5 := min{d, 4| 28| ~2(6*m. (ma — dm;, ||7||*))}. Applying the Gronwall
inequality, we conclude (5.17). O

Remark 5.1 The proof provided above does not take into account the case where B
is symmetric. In contrast to Theorems 3.3 and 4.3, the smallness condition (5.5) is
essential for the bounds on u.

6 Conclusion

In this paper, we establish the well-posedness of the viscoelastic contact problems
under the modified Signorini, Tresca-friction, and Clarke-subdifferential type bound-
ary conditions, respectively. Our analysis not only advances the mathematical theory
of contact mechanics but also facilitates the connections and differences between
conventional contact conditions concerning the displacement and the velocity. Future
research will focus on developing numerical methods for solving the viscoelastic
model under these modified boundary conditions.
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