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ARTICLE INFO ABSTRACT

Msc: This paper is dedicated to the numerical solution of a mathematical model that describes frictional
65N30 quasistatic contact between an elastic body and a moving foundation, with the wear effect on
49J40

the contact interface of the moving foundation due to friction. The mathematical problem is
a system consisting of a time-dependent quasi-variational inequality and an integral equation.

Ke.yuf ords: The numerical method is based on the use of the virtual element method (VEM) for the spatial
Frictional contact . . . . . . . . .

Wear discretization of the variational inequality and a variable step-size left rectangle integration
Quasi-variational inequality formula for the integral equation. The existence and uniqueness of a numerical solution are shown,
Virtual element method and optimal order error estimates are derived for both the displacement and the wear function
Error estimates for the lowest order VEM. Numerical results are presented to demonstrate the efficiency of the

method and to illustrate the numerical convergence orders.

1. Introduction

The process of frictional contact between deformable bodies or between a deformable body and a rigid foundation is common in
a wide variety of applications. Contact problems are usually studied in the framework of variational or hemivariational inequalities,
which have garnered significant attention from numerous researchers. In this paper, we consider the numerical solution of a contact
problem involving wear and unilateral constraint. The weak formulation of the problem is a system consisting of a time-dependent
quasi-variational inequality and an integral equation. Numerical methods are needed to solve such a problem. The finite element
method has been employed to solve quasi-variational inequalities, and a priori error estimates have been derived in a number of
papers, such as [20,21,26]. In [38], several discontinuous Galerkin methods with linear elements are introduced for solving a frictional
contact problem with normal compliance, and a priori error estimates are established in [33].

In recent years, as an extension of the classical finite element method, the virtual element method (VEM) has gained popularity
since it was first introduced in 2013 ([3]). The VEM has advantages in handling general (including non-convex) polygonal elements,
making it easier to solve problems with complex geometries. By introducing the projection operator from a virtual element space
to a polynomial space, the stiffness matrix can be formed without actually computing the non-polynomial functions. The VEM has
been applied to solve a variety of scientific and engineering problems (e.g., [1,2,6,17,27,39]). In particular, it has been utilized to
solve variational and hemivariational inequalities. The virtual element method is applied to solve a two-body contact problem in [31]
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without an error estimate. Remarkably, even when the initial meshes for the two subdomains do not align, the inherent capability of
VEM allows for seamless insertion of new nodes along the contact interface. Consequently, the initially non-matching meshes undergo
transformation into compatible meshes, thereby highlighting a distinctive advantage of VEM over FEM. For the numerical analysis
of the VEM for two-body contact problems, optimal error estimates are derived in [32] for both frictionless and frictional contact
cases. In [34,35], a priori error estimates of VEM are established for solving the obstacle problem and simplified friction problem,
respectively. The VEM is studied for a frictional contact problem in [13]. In [14,36], the VEM is developed and analyzed for solving
elliptic hemivariational inequalities with applications to contact mechanics. In [37], the virtual element method was employed to
solve a frictional contact problem with normal compliance and Coulomb’s law of dry friction.

Since the contact process may cause material wear or even damage, wear effects have been taken into account in studies of various
contact problems, cf. [8,16,21,25,30]. In [29], a mathematical model is proposed and studied for contact with wear described by
Archard’s law of surface wear. In this model, the friction between a deformable body and a foundation leads to wear on the contact
surface of the foundation. Well-posedness of the problem is also provided in [29]. A numerical approximation of this model is studied
in [24], where error bounds are derived for a fully discrete scheme. A more general fully discrete scheme with the finite element
method is given in [19], which allows for an arbitrary partition of the time interval, and optimal order error estimates are derived.
In this paper, we investigate the virtual element method for solving the contact problem incorporating the wear effect, which can be
represented by a time-dependent quasi-variational inequality accompanied by an integral equation. The existence and uniqueness of
the numerical solution are obtained for the fully discrete scheme. Furthermore, we derive optimal-order error estimates for numerical
solutions of both the displacement and the wear function with the lowest order VEM.

The rest of this paper is structured as follows. In Section 2, we introduce the contact problem with wear and its weak formulation.
In Section 3, we develop a numerical method using the virtual element method (VEM) for the spatial discretization and a variable
step-size left rectangle integration formula for the integral equation. In Section 4, we derive optimal-order error estimates for both
the displacement and the wear function. In Section 5, computer simulation results are reported to provide numerical evidence of the
theoretically predicted convergence orders.

2. Contact problem with wear and its weak formulation

Let Q c R? (d = 2,3) denote the configuration of a deformable elastic body under the action of a volume force of density f.
Denote by “-” and “|| - ||” the scalar product and Euclidean norm in R?. We assume € is an open bounded connected domain with
a Lipschitz boundary I', which is partitioned into three disjoint measurable components: I'p,, I'yy and I', where meas(I'p) > 0.
The body is clamped on I'p, so the displacement is equal to 0 on I',. A surface traction of density f, is exerted on the boundary
Ty.

The displacement u : Q@ c R? — R is a vector-valued function. The linearized strain tensor is defined as £(u) = % (Vu+ (Vw)T).
The symbol S¢ denotes the space of 2nd-order symmetric tensors on R¢ with the inner product given by ¢ : 7 =o; ;7ij- Throughout
this paper, we adopt the summation convention over repeated indices, e.g., 6;;7;; stands for Zfi =107~ Let v be the unit outward
normal to the boundary surface I". For a vector field v defined on the boundary, its normal component and tangential component
v, =v-vand v, =v —v,V, respectively. Similarly, for a tensor-valued function o defined on the boundary, its normal component
is o, = (ov) - v, while its tangential component is 6, = ov — ¢, v. For a tensor-valued function o, define its divergence by dive =
(0;6;})1<i<q- For any smooth symmetric tensor field o and any smooth vector field v, we have the following integration by parts
formula:

/diva-vdxz/av—vds—/a:e(v)dx. 2.1)

Q r Q

Following [29], we assume that the acceleration of the body is negligible and so the problem is quasi-static. In this model, the
framework of the small strain theory is employed. We assume that the elastic body is in contact on I'- with a moving foundation
made of a hard perfectly rigid material that is covered by a layer of soft material. The soft layer is deformable, so the elastic body
may penetrate it. We consider the displacement of the body and the wear of the soft layer in a time interval [0,T], T > 0.

Let

(@) =-v'O/Iv*Ol, a@®=«xlv Ol 2.2)

where v*() # 0 denotes the velocity of the foundation and « represents the wear coefficient. Here, for simplicity, we do not indicate
explicitly the dependence of various functions on the spatial variable x. This convention is commonly adopted in the literature in the
area of contact mechanics and it will be systematically used throughout the remainder of this paper.

The classical formulation of the considered model is as follows.

Problem 2.1. Find a stress field 6 : Q x [0,T] — S9, a displacement field u : Q x [0,T] — R? and a wear function w : I'c x[0,T] =
R, = [0, o) such that for all t € [0, T,

o(t) = Ce(u(t)) in Q, 2.3)
—dive(t) = f (@) in Q, (2.49)
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u® =0 onTp, (2.5)
o(t)v = fo(0) onTy, (2.6)

< - <
O S
—0.(t) = p p(u, (t) — w(t)) n*(1) onTg, (2.8)
w' (1) = a(?) plu, (1) — w(®)) onlc, 2.9
w(0)=0 onTc. (2.10)

Here, the constitutive law with an elasticity operator C is represented by (2.3), while (2.4) denotes the equilibrium equation. The
Dirichlet boundary condition (2.5) means that the elasticity body is clamped on I'j), while (2.6) reflects the surface traction condition
on I'y. The relations in (2.7) describe the damping response of the foundation. Here, g > 0 represents the thickness of a soft layer
covering ', and g € L*(I'¢). p > 0 denotes a normal compliance function that characterizes the reaction of the soft layer based
on the current penetration value. Coulomb’s law of dry friction is modeled by (2.8). Here, u represents the friction coefficient, n* is
defined in (2.2), where we assume that the magnitude of v* is significantly greater than that of the tangential velocity u/, making u/.
negligible, so we approximate the relative slip rate by v*. Evolution of the wear function is described by (2.9)-(2.10), « is given by
(2.2). A detailed derivation of this model can be found in [29].

The contact problem will be studied through its weak formulation. To introduce the weak formulation, we first recall that the
inner products on the Hilbert spaces L2(Q)? and L3(I')? are given by

(U, v) 2y =/u-vdx, W, v) 120y =/u-vds.
Q r

For a normed space X, let C([0,T; X]) be the space of continuous functions from [0,7] to X. We introduce the following Hilbert
spaces:
0=L*:S%, V={(veH'Q*:v=00nTp)}

endowed with the inner scalar products

(6,7)p = / 075 dx, (u,v)y =(Ce(u), e(v)o
Q

with the corresponding norms || - || and || -||,,, where the operator C satisfies the conditions listed in H (C) below. Since meas(I'p) > 0,
by Korn’s inequality ([11]), we know that the space (V, || - ||}/) is complete and

ol g1y <cllvlly (2.11)
Here and after, we denote by ¢ > 0 a generic constant, whose value may differ in different places. Further, in combination with the
Sobolev trace theorem, there exists a constant ¢, > 0 depending only on Q,I', and I, such that

||v||L2(1"C)d SC()”U”V YvevV. (2.12)

Denote by (-, )y« the dual pairing between V" and V*. The set of permissible displacements is

U={veV:v,<gonl}.

The space for the wear function w is

W =LY Tc).

Next, we introduce the hypotheses on the data needed in the study of Problem 2.1.
H(C): C: QxS? - S? is such that

(a) C(-,¢) is measurableonI'c Ve € s, ¢(-,0) e 0;
(b) for a constant L~ >0, ||C(x,&;) — C(x,&)|| < Lclle; — &,

Vel,szeSd, a.e. x EQ; (2.13)
(c) for a constant me >0, (C(x,&;) — C(x,&,)) - (€] — &) = m|le; — £2||2,

Ve, €S89, ae. xeQ.

H(p): p:T'c xR — R, is such that
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(a) p(-,r) is measurable on I'c Vr € R;

(0) 3L, >0, s.t. |p(x,r) = plx,r)| S L,|ry —ry| Vr,r €R, ae. x El¢;

(2.14)
(c) (p(x,ry) = p(x,r))(ry —ry)) 20Vr;,rn €R, a.e. xel'c;
d) p(x,r)=0Vr<0, ae. xel..
H(f):
f1ECUOTLELXQT),  f,€C0, T LATy)"). (2.15)
Ho:
(@ueLl®Ie), ux)y>0ae. xelc;
(b)) k€ L®(Tp), k(x)>0ae x€lc; (2.16)
(¢) v* € C([0, T]; RY), [lv*®)|| = vy >0Vte[0,T].
Hg:
o Lyllpll ooy < me. (2.17)

From the hypotheses H(), we know that

n* € C([0,T];RY), a e C(0,T]; L*(T ), (2.18)

where n* and a are defined in (2.2). In the literature (e.g., [23]), a condition such as (2.17) is commonly referred to as a smallness
condition. For the contact problem under consideration in this paper, we have the following bound on the magnitude of the friction
force on the contact surface I'c:

1601 < L lll ooy, (1) = w(O)].

Therefore, the condition (2.17) sets an upper bound on the linear growth rate L, ||u|| LoTe) of the magnitude of the friction force
with respect to the penetration, as compared to the ellipticity constant m¢ of the elasticity operator.
Now we define

a(u, v)=(C(£(u)),£(v))Q Yu,veVvV, (2.19)
(f(r),v)v*xy=/f1(1)‘vdx+/f2(1)-vds VeeV, 1elo,T], (2.20)
Q I'y
(p(t,w,u,v)z/p(uv—w)(uv+/4n*(t).v1)ds YuveV, we L*(c), te[0,T). (2.21)
I'c

The next result is shown in [24, Theorem 4, (27)].

Lemma 2.2. Assume H(p) and H,. Then for any t € [0,T], any u,,u,,v;,v, €V and any w,,w, € W,

@1, wy,up,Uy) + @, wy, Uy, U)) — @, wy, uy,0)) — @, Wy, Uy, Uy)
< L, (Il = wall 2y + N0y = wall ) (Wil sy 191 = 22l 2o + ) = ol ).

Moreover, by the trace inequality (2.12),

@t wy,up,0y) + @, Wy, Uy, v1) — (1, wy, Uy, V1) — @1, Wy, Uy, Uy)

<L, (c0||u1 —wlly + llw, — w2||W) (Co||l4||L°°(rC)||V1 =vlly +llw; = wz”w) . (2.22)
The weak formulation of Problem 2.1 is the following ([29, Problem PYD.

Problem 2.3. Findu : [0,T] -» U and w : [0,T] — W such that for t € [0,T7],

a(u(t)> v— u(t)) + (/7(17 w(t), u(t)a v) - (ﬂ(t, I,U([), u(t)a u(t))
2(f@O),v—u®)yxy VVEU, (2.23)

t

w(t) = / a(s) pu,(s) —w(s))ds. (2.24)

0
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Let us recall an existence and uniqueness result for Problem 2.3 from [29, Theorem 4.1].

Theorem 2.4. Assume H(C), H(p), H(f), Hy and H,. Then Problem 2.3 has a unique solution (c,u, w) with

6 €C(0,T];0), ueC(0,TL;V), weC\(0,T;;W).

Moreover, w(t)>0 forallt € [0,T], a.e. onT¢.

Since w(t) >0 a.e. on I'; for all r € [0,T], due to H(p)(d), we have

et,w),0,v)=0 YveV. (2.25)
3. A fully discrete scheme

In this section, we introduce a fully discrete scheme to solve Problem 2.3. We apply the virtual element method to discretize the
variational inequality (2.23). For simplicity, we only consider the case where Q is a two-dimensional polygonal domain.

We start by considering a family of decompositions {7}, of Q into polygonal elements. Denote hy = diam(K) for a generic
element K € 7 and h = max{hg : K € T;,}. All the subdivisions are compatible with the boundary splitting in the sense that if an
edge of an element has a non-trivial intersection with one of the three boundary subsets, I'j, or T'y or ['¢, then the edge lies entirely
on that subset. Furthermore, we assume that I’ is split as [ = U 1<i<ilc,i» €ach I' ; being a closed line segment. Let 82 denote the

set of all the edges of 7;, excluding the edges on T'p, and let 732 denote the set of all the vertices of 7;, excluding the vertices at T'p.

Following [5], we make the following assumption on the decompositions {7}, }:

Al. There exist positive constants y; and y, such that for each / and for every K € 7},
« K is star-shaped with respect to a disk of radius p >y, hg;
« the distance between any two vertices of K is no less than y,hg.

3.1. Construction of V,

Given a decomposition 7},, we construct a finite-dimensional subspace V, of V. Similar to the virtual element method employed
for the elasticity problem in [4,31], we define, for every element K € 7, and integer k > 1, the local space

VK ={weH' (K : divew) € [P,_,(K)I*, v|yx € C°00K), vl, € [P(e)]* Ve CIK},

where P, (K) represents the space of polynomials on K of degree no more than k. By convention, P_;(K) = {0}. Any v, € VhK can
be determined by the following degrees of freedom:

« values of v, at the vertices of K;
* moments /e q-v,dsforqe [[|3>k_2(e)]2 on each edge e C 0K for k >2;
» moments |, q - v, dx for g € [P;_,(K)]? for k > 2.

Then, the global virtual element space is

Vyi={vev :vlgxeVKkVKeT,} 3.1

and the corresponding global degrees of freedom for v, € V), are

+ valuesof v,(a) Vvertexae 732;
* moments /e q-v,dsforqe [[|3>k_2(ez)]2 Vee 82 for k > 2;
- moments [, q- v, dx for g€ [P, ,(K)? VKET, fork>2.

For k = 1,2, the local degrees of freedom for VhK are shown in Fig. 1. For the virtual element space, we have the inclusion
[P (K N VhK , which guarantees the precision of approximation. According to the Scott-Dupont theory ([7,11]), we can derive the
following approximation results.

Proposition 3.1. Let Assumption A1 be satisfied. For any v € [H'(Q)]%, 2 <1 <k + 1, there exist v, € V}, and v, € [P (K)]* such that

”v_vlllV SChI_llvl[Hl(Q)]Z, (32)
||V_V;;||V,KSC/’l1K_1|V|[HI(K)]2, (3.3)

where ||v||%,’K = [ &)t e()dx.
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-/

Fig. 1. Local degrees of freedom of VhK for k=1 (left) and k =2 (right).

In the analysis of the virtual element method, we employ a broken norm || - ||y, , defined by
ol = > ol -
KEeT;,

Then we establish the discrete admissible set of virtual elements

U,={v, eV, :Uc‘sgatallnodesonl“c}. (3.4)

We assume that g is a concave function, thereby implying that U, is a subset of U.

Remark 3.2. It is possible to extend the analysis of the numerical method without assuming g to be concave, cf. e.g., [15]. To avoid
the additional technicality, in this paper we only consider the case where g is concave.

3.2. Construction of ay,

The bilinear form a(-,-) can be decomposed into its constituent parts by
aw.v)= Y a*wwv) Vuvev, (3.5)
KeTy,
where

a¥(u,v) =/Ce(u) D e(v)dx.

K
Accordingly, we formulate appropriate local bilinear forms ahK (u,v) and combine them collectively
ay(uy,vy,) = Z a,’f(uh,vh).
KeT,

According to the general framework of the virtual element method ([3]), the local bilinear form a,’f (u, v) should adhere to the following
two properties:
« Polynomial consistency:

ag Wy, q)=a* vy, q) Vv, eV, vgel[P (K. (3.6)
« Stability: there exist two positive constants «, and a*, independent of 4 and K, s.t.
a,a® Wy, vy) <af v <a*a®w,,v,) Vv, evk (3.7)

Since the basis functions are unavailable for VhK , direct computation of the value of aX (u,v) for u,v € V}, is not feasible. In order
to ensure the computability, we have devised a projection operator ITf : VX — [P, (K)]* by

a*(If v, — v, ) =0 Vge[P(K)P, (3.8)
L LY
— 2 v, = — ) v(x)), (3.9)
n . n
v i=1 v i=1
1 i 1 i
— 2 X XTIy (x) = — ) x; X wy(x)), (3.10)
nV i=1 nV i=1
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where {x;} are the coordinates of the vertices of the element K and n{f denotes the number of the vertices ([37]). Note that (3.8)

alone determines Hf v, only up to a rigid motion, and we add the conditions (3.9)-(3.10) by adopting an idea in [31].
Then, we proceed to define the local bilinear form

af (up,vp) = a* M u, . M v)) + S8 W), - 1Tfuy, v, - vy Vu,,v, €VE, (3.11)

where the stabilization term S¥ (u,,v},) is chosen to satisfy

cya®wy.vp) < S8 Wy vp) < esa®wy.vy) Vo, € VK with T v, =0 (3.12)

with two positive constants ¢, and cs. It is not difficult to verify that (3.8)—(3.12) ensures the properties (3.6) and (3.7). In this paper,
we have opted for

dof
NK

SK@p o)=Y 1) @),
i=1

where y;(uj) denotes the i-th degree of freedom for u;, and N 1‘1°f is the number of local degrees of freedom.
Define

K
ay(uy,vy) = Z a, (uy,vy) Vuy,v, €V
KeTy,

As a consequence of the symmetry of a, stability (3.7) and (3.12), there exist two positive constants C; and C, such that
4y 0) 2 Cillwylly, Vv, €V, (3.13)

ap(up,vp) < Glluplly llvplly VYuy,v, €V, G194
3.3. Construction of f;

Since the term fg f1 - vdx is not computable for v € V;,, we introduce its approximation. Let PkK be the L%(K) projection from
VhK to [P (K )]2. The node average of the function ¢ on the cell K is defined as follows:

~ 1 &
=— s (3.15)
b= qu(v)

where ny is the number of vertices of the element K, and v;, 1 <i < ng, are the vertices of K.
For k =1, we define

Fiwvw) =Y, /PoKfl'l/’;dx Vv, €V).
KeT, ¥
For k > 2, we define
(finvn) = Z /PkK_zfl'Vth Vv, €V
KeT, g

To approximate the right-hand side term (f,v},)y -+, we choose

(fhvvh>=<flh’vh>+/fZ'Uhds Vv, €V
I'n

It is not difficult to verify that (f,,v,) can be computed with the given degrees of freedom. We have the following approximation
property ([4])

(f15vp) = {f1n>Un)

lf1 = Finllyr = sup —SChk|f1|k_1~ (3.16)
hvev, lvplly
Also,
(Foondvey ={Fnvn) <IF1 = Fullylloally Vo, €V (3.17)

Furthermore, by the property of the L? projection operator PkK, we have

(fh,vh>SC||Uh”V VthVh, (3.18)

where the constant ¢ depends on f, f,, and the measurement of the domain Q.
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3.4. The fully discrete scheme

Problem 2.3 is time-dependent. We use the VEM to discretize the variational inequality (2.23) for the spatial variable, and use
the left rectangle numerical integration formula to approximate the integral equation (2.24).

Let W), C W be a finite-dimensional space. Consider a partition of the time interval [0,T] given by 0 =1, <t; < - <ty =T.
Denote k, =t,,1 —t,, 0<n< N -1, and k = max,.,<y_1 k, for the time step-size. For a function z continuous in ¢, we use the
notation z" = z(t,). In addition, we make the following smoothness assumption:

H : The solution u of Problem 2.3 and the velocity of the foundation v* satisfy

ue H'O,T;V), v ewh®(0,T;R>). (3.19)

Note that assumptions H(b) and H, imply that

a€ W (0,T; L¥(T)). (3.20)

Consider the following fully discrete scheme for Problem 2.3.

Problem 3.3. Find "2 elU,,0<n<N and w;'! €W, 1 <n< N, such that

ap(uy, vy —up) + @(t,, wp, up,vy) — @, W, uy, u;)

2(fpvy—up) Yv,€U,, (3.21)
n—1

w! = Z kol p(u{lvv -w)), (3.22)
j=0

w) =0. (3.23)

h

Theorem 3.4. Keep the assumptions stated in Theorem 2.4. Moreover, assume a smallness condition C; > chpllyll Loy where C; is
the constant in the inequality (3.13), ¢, is the constant in the trace inequality (2.12), L » is the Lipschitz constant of the normal compliance
function p, u is the friction coefficient. Then Problem 3.3 has a unique solution.

Proof. The result is proved by an induction. Note that w(;l is given by (3.23). For 0 <n < N, with wj), defined by (3.22), let us prove

that (3.21) uniquely determines an element uj, € U,,. For this purpose, we apply a standard result, see, e.g., [28, Theorem 2.19].

Consider the operator A, : V, — V| defined by

(Apup,vy) i=ay(uy,vy) Yu, v, €V (3.24)

By the continuity of g, in (3.14), we see that A, is Lipschitz continuous on V,,

||Ahuh—AhUh||V SCzlluh—Vh”V Vuh, vy th. (3.25)

In addition, by the coerciveness of g;, in (3.13), we have

(Apup — Apvp,up —vy) = ap(uy, — v up —vp)
chlluh_vh”%/ Vu,, v, €Vj. (3.26)

By (3.25)—(3.26), A, is a strongly monotone Lipschitz continuous operator on V.
Second, note that for all u, € V},, the functional ¢(t,, w},uy,-) is convex. Let us show that ¢(t,, w},uy, ) is Lipschitz continuous.
Based on the definition, it is required that w” > 0 and ”Z , <8 By the assumption H (p)(b), H(p)(d), assumption H| and trace

inequality (2.12), given uy, for all v,;,v,, €V},
@t W U V1) — @y W, U, Vg

=| / (P(u;'z’v = w;) = 0) ((Uhl,v —Uppy) t un*(t) - Wp1 — th,r)) ds|
I'e

< Lp/ |UZV - WZ| [(On1y = Vnay) + un*(1) - Wh1r—Vpplds
I'c

< Lp||g||L°°(rC)/ [(Vp1y = Upoy) + ™€) - (U o = Upp Dlds
I'c
<ol ooy Ly + lull o ) Vn = vp2lly- (3.27)

Therefore, ¢(,, wZ, uy,-) is convex and lower semi-continuous. In addition, by Lemma 2.2, we get
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oy, W;’,, Upi,Upp) + @(1,, WZ»U;,Q, Upp) — @(ty, WZ, Up1,Upp) — @(1, WZ, UposUpp)
2
ScyLyllpllpopyllun —upllylvn —vplly  Yup, . Vg, U5 €V, (3.28)
Finally, thanks to the smallness condition C; > cg Lpllpll L) We apply an argument similar to that in the proof of [28, Theorem

2.19] to deduce that there exists a unique element u; € Uj, such that (3.21) holds. W

4. Error estimates

In the numerical analysis, we will make use of the following discrete Gronwall inequality ([22, Lemma 7.25]).

Lemma 4.1. Assume {g, }nN:1 and {e,} ”,V: | are two sequences of non-negative numbers satisfying

n—1
e, chn+c2kjej, n=1,---,N.
Jj=1

Then,

n—1
e, §c<gn+ ijgj>, n=1,-,N.
j=1
Therefore,

max e, <c¢ max g,.
1<n<N " 1<n<N "

First, we provide a uniform boundedness result on the numerical solution uy,.

Lemma 4.2. Under the assumptions stated in Theorem 3.4, for 0 < n < N, the numerical solution uy € U), is uniformly bounded independent
of h.

Proof. Letv,=0€V), in (3.21),

ap(uy, —up) + @, wy, uy,,0) — @, wy,up, up) > fp,—up).
So

QW ) S f ) + Pt 0 0) = 1, 0, 0 ). @1

By (2.25) and Lemma 2.2,
@(t,, wh,up,0) — @, wy,up, uy) = @(t,, wh,u,,0) — @, wy, uy, uy)
+ o(t,, w, 0,u}) — (1, w;,0,0)

< Lyllull gy g 115 (4.2)

Apply (3.13), (3.18) and (4.2) in (4.1) to obtain

(O CSL,,”M”LOO(FC))HMZHZ Zclluglly-
By the smallness condition C| > cg Lp|| #ll Lo, )

Cc

5 ,
Cr—cyLyliull Loy

Nl lly <
which completes the proof. W

Denote the numerical solution errors

n

b "=w"—-w", 0<n<N, (4.3)

e"=u"—-u [

where (4", w") is the solution of Problem 2.3, and (”Z’ wZ) is the solution of Problem 3.3.
By adapting the proof of Theorem 4 in [24] to the case of non-uniform partition of the time interval, we have the following
result.
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Lemma 4.3. Under the assumptions stated in Theorem 3.4 and H,, we have

n—1
107113, < ck®+c Y ky (lle™l12 +116"13,), 1<n<N. (4.4)

m=0
To derive an error estimate for the displacement, we add the following solution regularity assumption:

Assumption 4.4. The contact boundary I'- can be expressed as the union of some line segments I'¢. = U‘.I=1FC’,-, andI'c;NT¢ ;=0
for 1 <i<j<I.Assume

ueC([0,T; H*(Q)?), ulr., €C(0,T; H*T¢)), oveC (0,T]L*T¢)). (4.5)
Now we give the error estimates for the displacement.

Lemma 4.5. Under the assumptions stated in Theorem 3.4 and Assumption 4.4, we have

2
2
el < (1" = wllly p + 1" =l + 1 = Falyy )
2
+c||0n||W +C||un_u7||L2(rC)7 0<n<N, (4.6)

where u'} is the interpolation of u", and w’, is a piecewise polynomial approximation of u".

Proof. For ne {0,1,---, N}, we split e" into two parts:

e"="—u))+ W) —uy) = +e}, 4.7)
where u}} € V), is the interpolation of u".
By the coerciveness of a,, setting v, = ), =u’; —uj €V}, in (3.13), we get
Cillelll? < ay(el el) = a,u,el) — ay(u, ). (4.8)

By the polynomial consistency of a;, in (3.6), we have

K K
apye) = Y (af W) —ul,ep)+ap wlh,ep)

KeTy,

= Y (af @) —ul,e})+a*ul,e}))
KeT,

= ) (af @) —ul,ef)+a* Wl —u",e)))+a¥ W, e})). (4.9)
KeTy,

Let v, =u} €V}, in (3.21) to obtain
—ap(uy,e;) = —ap,(uy,u} —up)
S—(fpou} —up) + @, wy, up . uh) — @(t,, w,,uj,up). (4.10)
Combining (4.8)—(4.10), we have
Cille,lly < Ry + Ry + Rs, 4.11)

where

Ry= ) (af @) —ul.ep)+af@l —u"e}),
KeTy,

_ n _ n
R2—<f’eh>v*><v (fr-ep)s
Ry =a(",e}) - (f, eZ)V*XV + @(t,, wh,up, up) — o, Wi, up, uy).

Let us bound each term on the right-hand side of (4.11). From the continuity of each aX and the Cauchy-Schwarz inequality,

Ry<c|( Y Iy —ullly )2+ " =iy )"/ |lleplly - (4.12)
KeT), KeT,

From (3.17),
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(4.13)

By following the arguments presented in [22, Section 8.1], it can be shown that under Assumption 4.4, the solution of Problem 2.3

satisfies, for t € [0,T7],

—dive()=f,(t) a.e. inQ,
o(t)yv=fr(t) a.e. inI'y,

where

o(1) = Ce(u(t)).

(4.14)
(4.15)

(4.16)

Multiply both sides of the equation (4.14) att =t¢,, n€ {0,:--, N}, by (u'I’ - "2) and integrate over Q. By Green’s formula (2.1) and

combining the boundary condition (4.15), we deduce that

a@",e}) = (f.€}) =/a(z,,)v-(u'; —u))ds

I'c
= / o,(t,)uy, —up Yds+ / o, (t,) W), —up )ds
T'c I'c

< —/p(uf —whuy, —up Yds

I'c

- / upluy —whn* - (] —ujp )ds.
I'c
By the definition of ¢ in (2.21), we get
a".e}) - (f. 971>V*><V <=t w" u"u) + o, w",u" uy).
Use (4.18) to find
Ry < o(t,, wh,uy uy) — @ty whup, up) — o, w", u",up) + @1, w',u", uy)

= (@@, w" u" u}) — @, w" u" . u") + @(t,,, W) . uj, u") — (1, wh,u) u}))

+ (@, w" u" u") = @(t,, W' u" u})) + (@, wh,u) ,u}) — o, wh,uj ,u").

By (2.22) in Lemma 2.2, we get

Pty w" ' up) — @, w'u",u") + @, wy, uy, u") — @1, wy, uy, up)

<L, (ol = lly + 1" = whlly ) (<ollull s e 0" = lly + 10" = 0}l )
By (2.25), ¢(t,w,0,v) =0 Vv € V. By Lemma 2.2, we get

@t w" u" u") — t,, w" u",up) = et,, w",u",u") — o, w", u", uh)

+ @(t,, w",0,u") — o(t,, w",0,u})
< Lp||ﬂ||L°°(rC)”un”LZ(rC)”un - u"[”LZ(FC)'

Similarly, we have

o, w;,uzsu?) - o, w;’l,u;,u") < Lp||ﬂ||L°°(FC)”uZ”LZ(rc)”u" - u? ||L2(rc)~

Substitute (4.20)-(4.22) in (4.19) and use the boundedness results in Lemma 4.2 to obtain

2 2
Ry <y Lpllpll ooy llu” — uplly, + cllu” —wy lly llw" — willy
2
+ellw" —willy, +ecllu” —ufll 2,

Using the Young inequality and triangle inequality

llu" —uplly < llu" —uflly + llu} —ully.

we get
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2 2 2 2 2
o Lyllull ooy 1™ = up iy, = g Lyllull oo gy (lef Il + 21eblly llu" —uflly + llu” —u}ll;,)
2 2 2
=¢ L,;||M||L°°(FC)||€Z||V + 200 L,;||Il||L°°(rC)||eZ||V||un - u?"v

2 2
+egLyllull oy llu” —uilly

47201 112
coLollull
2 2 5 0 pliFliLe(re) 2
< Lllullpoplleplly +erlleqlly, + ——————Ilu" —ujlly;
2 2
ey Lpllull Loy llw” — uflly,
2 2 2
< (Lpllulli Loy +eDllerlly +cllu” —uflly, (4.25)

and

cllu’ —uplly lw* —wylly < clieglly lw® — wylly +cllu” —uflly |lw" - willy

2
2, ¢ 2 , ¢ 2, ¢ 2
<elleglly + g llw" —wplly, + 5 " —uplly + S llw" = w i,
€) 2 2
2 2 2
<elle,lly +cllu’ —uflly, +cllw” — willy, - (4.26)

Due to the smallness condition C; > cg Lp”M”Loo(I“C), A:=C, - cg Lp”M”Loo(rC) is positive. We set €; = ¢, = A/4 and use (4.25)-(4.26)
in (4.23) to obtain

Ry < (g Lyllullpoorey + €1 + lleplly, +cllu” —wflly, +cll6” 5, + cllu” —u}ll 2. (4.27)
Using (4.12), (4.13) and (4.27) in (4.11), combine the triangle inequality
A
Sheql, <e (nu" =l llyp+ " =y + 1 f - fhnvh/) lleplly
+cllu” =I5, +cllo” Iy, +cllu” =)l 2 (4.28)

Applying the elementary result
a,b,x>0, x> <ax+b = x> <a®+2b,
we obtain
2
leply <e (" =ullly o+ " =willy +1f = Fallyy ) +ll6I, + clla” = ull 2, (4.29)
By the triangle inequality (4.24) and (4.7), we derive the result (4.6). W

Combining the error estimate results of displacement and wear function, we have the following Cea type inequality.

Theorem 4.6. Under the assumptions stated in Theorem 3.4 and Assumption 4.4, we have the following error estimate:

ni2 n2 2 012 n n
max (|le + 1|6 <ck“+ck|le +c max ||u" —u
max (lle"I +110" ) < eI+ max " =l 2,
2
n n n n
 max e (17 =l o+ " =l + 15 = Sy ) - (4:30)

Proof. From (4.4) and (4.6),

2
2
e} < e (" =wlly o+ " =l +1F = Fallyy )+ el =l 2y

n—1
+ek+e Yk (lle™ I +110™13,) . (4.31)

m=0

Since 69 = w? — w(})Z =0, add (4.4) and (4.31) together to get

2
2 2
eI, + 10", < (I = wllly o+ 1" = wflly + 1 = Fallyy )+ ella” = ull e,
n—1

+ck? + ekl +c Y k,, (lle™I12 +116™113,) - (4.32)

m=1

Applying Lemma 4.1, we derive the inequality (4.30) from (4.32). W

We proceed to derive an optimal order error estimate for the fully discrete scheme.
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Theorem 4.7. Under the assumptions stated in Theorem 3.4 and Assumption 4.4, for the lowest order VEM with k = 1, we have the optimal
order error estimate

" 0" <c(k+h). 4.33
12}.a5)§v(”e lly + 16"y ) <c(k+h) (4.33)

Proof. First, we bound the error ||e” ly-. By Lemma 4.5 and ||00||W =0, we get

2
012 0 0 0 0 0 0
et < (I = ullly o+ 1" =y + 1 = Fallyy )+ ella® = ull e (4.34)

For the lowest order VEM, by the approximation result in Proposition 3.1, for n € {0,::-, N}, we have

lu" —ullly p, <chlu"|q, (4.35)

lu" —uflly <chlu’|,q, (4.36)
1

" = w2y < R QY 1", )V (4.37)
i=1

i=

In addition, using the approximation results in (3.16), we get

Ify = Finllyy < chllfillo- (4.38)

By using Theorem 4.6 and putting (4.34)-(4.38) into (4.30), we obtain
2 2 2 2 2 2
max ("l + 116”113, ) < ck* + ckh® + ch® < c(k + h)*.

Then we have the optimal-order error estimate (4.33). W

Remark 4.8. It is known that for the numerical solution of a variational inequality, high-order finite elements do not lead to optimal
order error estimates even if the solution is assumed to be smooth ([12]). Moreover, it is also known that the smoothness of the
solution of a variational inequality is quite limited ([11]). For these reasons, it makes sense only to consider numerical methods with
the lowest-order element (k = 1).

Remark 4.9. The term max; ¢, <y [[u" —u}l 12 Ty In (4.30) represents an error occurring along the contact boundary. One strategy to
reduce this error is to increase the degree of freedom along the contact boundary. As articulated in [36], we can do it by employing
a locally refined mesh along the contact boundary. This approach is facilitated by the virtual element framework, wherein the
incorporation of hanging nodes is permitted—a distinct advantage of VEM in tackling contact problems.

5. Numerical results

In this section, we report computer simulation results on some numerical experiments. Let d =2 and consider a rectangular shaped
set Q =(0,2) x (0, 1) shown in Fig. 2 with the following partition of the boundary

I'p={0}x[0,1], I'y=(0,2]x{1}Hu({2}x[0,1]), TI'c=1[0,2]x{0}.

The linear elasticity operator C is defined by

Cr)=2nt+Aitr(n)I, 7 €S>,

where 7 denotes the identity matrix, tr denotes the trace of the matrix, A > 0 and n > 0 are the Lamé coefficients. In our simulations,
we select A=5=4, T =1 and take the following dimensionless data:

u(x)=(0,0), xeQ,

0.4r, rel0,00),
pir) = { 0, re(-,0),
[1(x,1)=(0,-0.06), xe€Q,te[0,T],
fo(x,1)=(0,0), xel'y,t€[0,T],
g=0.1.

Remark 5.1. As 4 tends towards infinity, many numerical methods for solving the linear elasticity system exhibit a locking phe-
nomenon. In the literature, some locking-free virtual element methods have been developed. In [40], a nonconforming virtual element
method for solving the linear elasticity problem is shown to uniformly converge with respect to the Lamé constant. A mixed virtual
element method is introduced in [10] for solving near-incompressible linear elastic equations. A stress-hybrid virtual element method
on quadrilateral meshes is proposed in [9] for compressible and nearly-incompressible linear elasticity.

41



B. Wu, F. Wang and W. Han Applied Numerical Mathematics 206 (2024) 29-47

> Ty
fi
> e
thin layer of soft material t g
,U*
—_— moving rigid foundation

Fig. 2. Initial setting.
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Fig. 3. Wear and penetration for y =0.2, k =2, v* =(1,0) in Example 5.2.

We use the linear virtual element space V,, defined in (3.1) and its subset U, defined in (3.4). To solve Problem 3.3, we use the
Uzawa iteration described in [18] by introducing two Lagrange multipliers.
We first illustrate the impact of certain input data on the deformation of the body.

Example 5.2. In this example, we choose the following three data sets:
1. u=02,xk=2,v*=(1,0);
2. p=02,k=10,v*=(1,0);
3. u=0.6,x=10,v* =(1,0).

The numerical solutions correspond to the time step size k = 1/64, where the boundary I'- of the body is divided into 32 equal parts.

In all cases, we show the wear w and penetration u, — w of the soft layer of material covering I'- at r =0.25, 0.5, 0.75, 1. Figs. 3-5
show corresponding graphs at these four moments. We observe a gradual increase of wear over time, which is consistent with our
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Fig. 4. Wear and penetration for y =0.2, k = 10, v* =(1,0) in Example 5.2.
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Fig. 5. Wear and penetration for y = 0.6, k = 10, v* = (1,0) in Example 5.2.
daily life experience. Fig. 3 and Fig. 4 show that when we increase the wear coefficient ¥ from 2 to 10, the wear on the soft layer
increases. Fig. 4 and Fig. 5 show that when we increase the friction coefficient y from 0.2 to 0.6, the wear on the soft layer decreases,
as a consequence of increased friction between the soft layer of material covering I'- and the rigid foundation.

Example 5.3. We report numerical results for four different time-step subdivisions, which are as follows:

1. Uniform partition with a time step of k = 1/64;
2. Non-uniform partition with k,;,_; =1/128 and k,; =3/128 for I = 1,2, ...;
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Fig. 6. Wear at =1 in Example 5.3.

3. Uniform partition with a time step of k = 1/32;
4. Uniform partition with a time step of k =1/16.

In all cases, we study the wear on the soft layer for 7 = 1. In the simulation, we used a mesh size of h =1/16, and the coefficients
u=02,k=2,v"=(1,0).

Fig. 6 shows the numerical solutions of the wear for the different time-interval partitions. It shows that for this example, the
numerical solution for the non-uniform partition is similar to that for uniform partitions.
In order to verify the effectiveness of VEM on general polygonal meshes, we consider the following example:

Example 5.4. In space, we use the following two groups of grids:

1. Uniform mesh, the mesh size is 2 = 1/32, a total of 2048 squares;
2. General polygon mesh division, a total of 2048 polygons.

We compute the numerical solution of displacement u; and the wear on the soft layer. In the simulation, time step-size k = 1/64,
and the coefficients y = 0.2, k =2, v* =(1,0).

Fig. 7 and Fig. 8 show the numerical solutions of the displacement u;, = (u,|,u;,) for the two meshes, respectively. We observe
that the displacement u;, and u;,; on these meshes are almost the same, which shows that the virtual element method works well on
meshes. In addition, as shown in Fig. 9, we give the scatter plot of normal displacement on the contact boundary and the wear of
the soft layer. It can be observed that the wear and normal displacement almost coincide at the same boundary position. At different
locations, the two sets of scatter plots are almost smoothly connected and highly consistent, which further illustrates the effectiveness
of VEM on general polygonal meshes.

Example 5.5. We use a uniform discretization of the problem domain and time interval according to the spatial discretization pa-
rameter /1 and time step k, respectively. The boundary I'- of Q is divided into 2/h parts. We start with 4 =1/4 and k = 1/4, which
are successively halved. We give the relative error and error order of displacement and wear.

Since we do not know the true solution of the variational inequality, we use the numerical solution computed on a finer grid as
the reference solution. In this example, we choose the numerical solution with /2 = k = 1/256 as the reference solution u,,, and w,, /.
Because the virtual element solution u,, is not computable directly, we compute the relative error

L

where the restriction of the projection IT; on K is defined by (3.8). In Table 1, we report the H! displacement error of the numerical
solutions and the corresponding convergence orders. We observe that the numerical convergence orders are close to one, which
matches well the theoretical prediction. For the wear function, we compute [|w), —w,, /|l ;2 o) [Mwee sl L2(re)- In Table 2, the numerical
convergence orders for the numerical solutions of the wear function are also close to 1, which is consistent with theoretical analysis.

H!’
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Fig. 7. Approximate solution for square mesh of 4 =27 in Example 5.4. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)
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Fig. 8. Approximate solution for general polygon mesh of 2 =273 in Example 5.4.

Table 1
Numerical error for displacement in Example 5.5.
h=k 272 273 24 273 276
Error 7.0581e-2  3.9059%-2  2.1698e-2  1.2084e-2  6.5023e-3
Order - 0.85365 0.84807 0.84448 0.89407
Table 2

Numerical error for wear in Example 5.5.

h=k 272 273 24 273 276

Error 1.1153e-1 5.4917e-2 2.5228e-2 1.1795e-2 5.4869e-3
Order - 1.0221 1.1223 1.0968 1.1041
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Fig. 9. Wear w and the normal displacement u, in Example 5.4.
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