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This paper is dedicated to the numerical solution of a mathematical model that describes frictional 
quasistatic contact between an elastic body and a moving foundation, with the wear effect on 
the contact interface of the moving foundation due to friction. The mathematical problem is 
a system consisting of a time-dependent quasi-variational inequality and an integral equation. 
The numerical method is based on the use of the virtual element method (VEM) for the spatial 
discretization of the variational inequality and a variable step-size left rectangle integration 
formula for the integral equation. The existence and uniqueness of a numerical solution are shown, 
and optimal order error estimates are derived for both the displacement and the wear function 
for the lowest order VEM. Numerical results are presented to demonstrate the efficiency of the 
method and to illustrate the numerical convergence orders.

1. Introduction

The process of frictional contact between deformable bodies or between a deformable body and a rigid foundation is common in 
a wide variety of applications. Contact problems are usually studied in the framework of variational or hemivariational inequalities, 
which have garnered significant attention from numerous researchers. In this paper, we consider the numerical solution of a contact 
problem involving wear and unilateral constraint. The weak formulation of the problem is a system consisting of a time-dependent 
quasi-variational inequality and an integral equation. Numerical methods are needed to solve such a problem. The finite element 
method has been employed to solve quasi-variational inequalities, and a priori error estimates have been derived in a number of 
papers, such as [20,21,26]. In [38], several discontinuous Galerkin methods with linear elements are introduced for solving a frictional 
contact problem with normal compliance, and a priori error estimates are established in [33].

In recent years, as an extension of the classical finite element method, the virtual element method (VEM) has gained popularity 
since it was first introduced in 2013 ([3]). The VEM has advantages in handling general (including non-convex) polygonal elements, 
making it easier to solve problems with complex geometries. By introducing the projection operator from a virtual element space 
to a polynomial space, the stiffness matrix can be formed without actually computing the non-polynomial functions. The VEM has 
been applied to solve a variety of scientific and engineering problems (e.g., [1,2,6,17,27,39]). In particular, it has been utilized to 
solve variational and hemivariational inequalities. The virtual element method is applied to solve a two-body contact problem in [31]
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without an error estimate. Remarkably, even when the initial meshes for the two subdomains do not align, the inherent capability of 
VEM allows for seamless insertion of new nodes along the contact interface. Consequently, the initially non-matching meshes undergo 
transformation into compatible meshes, thereby highlighting a distinctive advantage of VEM over FEM. For the numerical analysis 
of the VEM for two-body contact problems, optimal error estimates are derived in [32] for both frictionless and frictional contact 
cases. In [34,35], a priori error estimates of VEM are established for solving the obstacle problem and simplified friction problem, 
respectively. The VEM is studied for a frictional contact problem in [13]. In [14,36], the VEM is developed and analyzed for solving 
elliptic hemivariational inequalities with applications to contact mechanics. In [37], the virtual element method was employed to 
solve a frictional contact problem with normal compliance and Coulomb’s law of dry friction.

Since the contact process may cause material wear or even damage, wear effects have been taken into account in studies of various 
contact problems, cf. [8,16,21,25,30]. In [29], a mathematical model is proposed and studied for contact with wear described by 
Archard’s law of surface wear. In this model, the friction between a deformable body and a foundation leads to wear on the contact 
surface of the foundation. Well-posedness of the problem is also provided in [29]. A numerical approximation of this model is studied 
in [24], where error bounds are derived for a fully discrete scheme. A more general fully discrete scheme with the finite element 
method is given in [19], which allows for an arbitrary partition of the time interval, and optimal order error estimates are derived. 
In this paper, we investigate the virtual element method for solving the contact problem incorporating the wear effect, which can be 
represented by a time-dependent quasi-variational inequality accompanied by an integral equation. The existence and uniqueness of 
the numerical solution are obtained for the fully discrete scheme. Furthermore, we derive optimal-order error estimates for numerical 
solutions of both the displacement and the wear function with the lowest order VEM.

The rest of this paper is structured as follows. In Section 2, we introduce the contact problem with wear and its weak formulation. 
In Section 3, we develop a numerical method using the virtual element method (VEM) for the spatial discretization and a variable 
step-size left rectangle integration formula for the integral equation. In Section 4, we derive optimal-order error estimates for both 
the displacement and the wear function. In Section 5, computer simulation results are reported to provide numerical evidence of the 
theoretically predicted convergence orders.

2. Contact problem with wear and its weak formulation

Let Ω ⊂ ℝ𝑑 (𝑑 = 2, 3) denote the configuration of a deformable elastic body under the action of a volume force of density 𝒇 1. 
Denote by “⋅” and “‖ ⋅ ‖” the scalar product and Euclidean norm in ℝ𝑑 . We assume Ω is an open bounded connected domain with 
a Lipschitz boundary Γ, which is partitioned into three disjoint measurable components: Γ𝐷 , Γ𝑁 and Γ𝐶 , where meas (Γ𝐷) > 0. 
The body is clamped on Γ𝐷 , so the displacement is equal to 𝟎 on Γ𝐷 . A surface traction of density 𝒇 2 is exerted on the boundary 
Γ𝑁 .

The displacement 𝒖 ∶ Ω ⊂ℝ𝑑 →ℝ𝑑 is a vector-valued function. The linearized strain tensor is defined as 𝜺(𝒖) = 1
2 (∇𝒖 + (∇𝒖)𝑇 ). 

The symbol 𝕊𝑑 denotes the space of 2nd-order symmetric tensors on ℝ𝑑 with the inner product given by 𝝈 ∶ 𝝉 = 𝜎𝑖𝑗𝜏𝑖𝑗 . Throughout 
this paper, we adopt the summation convention over repeated indices, e.g., 𝜎𝑖𝑗𝜏𝑖𝑗 stands for 

∑𝑑
𝑖,𝑗=1 𝜎𝑖𝑗𝜏𝑖𝑗 . Let 𝝂 be the unit outward 

normal to the boundary surface Γ. For a vector field 𝒗 defined on the boundary, its normal component and tangential component 
𝑣𝜈 = 𝒗 ⋅ 𝝂 and 𝒗𝜏 = 𝒗 − 𝑣𝜈𝝂, respectively. Similarly, for a tensor-valued function 𝝈 defined on the boundary, its normal component 
is 𝜎𝜈 = (𝝈𝝂) ⋅ 𝝂, while its tangential component is 𝝈𝜏 = 𝝈𝝂 − 𝜎𝜈𝝂. For a tensor-valued function 𝝈, define its divergence by div𝝈 =
(𝜕𝑗𝜎𝑖𝑗 )1≤𝑖≤𝑑 . For any smooth symmetric tensor field 𝝈 and any smooth vector field 𝒗, we have the following integration by parts 
formula:

∫
Ω

div𝝈 ⋅ 𝒗𝑑𝑥 = ∫
Γ

𝝈𝝂 ⋅ 𝒗𝑑𝑠− ∫
Ω

𝝈 ∶ 𝜺(𝒗)𝑑𝑥. (2.1)

Following [29], we assume that the acceleration of the body is negligible and so the problem is quasi-static. In this model, the 
framework of the small strain theory is employed. We assume that the elastic body is in contact on Γ𝐶 with a moving foundation 
made of a hard perfectly rigid material that is covered by a layer of soft material. The soft layer is deformable, so the elastic body 
may penetrate it. We consider the displacement of the body and the wear of the soft layer in a time interval [0, 𝑇 ], 𝑇 > 0.

Let

𝒏∗(𝑡) = −𝒗∗(𝑡)∕‖𝒗∗(𝑡)‖, 𝛼(𝑡) = 𝜅‖𝒗∗(𝑡)‖, (2.2)

where 𝒗∗(𝑡) ≠ 𝟎 denotes the velocity of the foundation and 𝜅 represents the wear coefficient. Here, for simplicity, we do not indicate 
explicitly the dependence of various functions on the spatial variable 𝒙. This convention is commonly adopted in the literature in the 
area of contact mechanics and it will be systematically used throughout the remainder of this paper.

The classical formulation of the considered model is as follows.

Problem 2.1. Find a stress field 𝝈 ∶ Ω × [0, 𝑇 ]→ 𝕊𝑑 , a displacement field 𝒖 ∶ Ω × [0, 𝑇 ]→ ℝ𝑑 and a wear function 𝑤 ∶ Γ𝐶 × [0, 𝑇 ]→
ℝ+ = [0,∞) such that for all 𝑡 ∈ [0, 𝑇 ],

𝝈(𝑡) = 𝜺(𝒖(𝑡)) in Ω, (2.3)
30

−div𝝈(𝑡) = 𝒇 1(𝑡) in Ω, (2.4)
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𝒖(𝑡) = 𝟎 on Γ𝐷, (2.5)

𝝈(𝑡)𝝂 = 𝒇 2(𝑡) on Γ𝑁, (2.6)

𝑢𝜈(𝑡) ≤ 𝑔, 𝜎𝜈(𝑡) + 𝑝(𝑢𝜈(𝑡) −𝑤(𝑡)) ≤ 0,
(𝑢𝜈(𝑡) − 𝑔)

(
𝜎𝜈(𝑡) + 𝑝(𝑢𝜈(𝑡) −𝑤(𝑡))

)
= 0

}
on Γ𝐶 , (2.7)

−𝝈𝜏 (𝑡) = 𝜇 𝑝(𝑢𝜈(𝑡) −𝑤(𝑡))𝒏∗(𝑡) on Γ𝐶 , (2.8)

𝑤′(𝑡) = 𝛼(𝑡)𝑝(𝑢𝜈(𝑡) −𝑤(𝑡)) on Γ𝐶 , (2.9)

𝑤(0) = 0 on Γ𝐶 . (2.10)

Here, the constitutive law with an elasticity operator  is represented by (2.3), while (2.4) denotes the equilibrium equation. The 
Dirichlet boundary condition (2.5) means that the elasticity body is clamped on Γ𝐷 , while (2.6) reflects the surface traction condition 
on Γ𝑁 . The relations in (2.7) describe the damping response of the foundation. Here, 𝑔 > 0 represents the thickness of a soft layer 
covering Γ𝐶 , and 𝑔 ∈ 𝐿∞(Γ𝐶 ). 𝑝 ≥ 0 denotes a normal compliance function that characterizes the reaction of the soft layer based 
on the current penetration value. Coulomb’s law of dry friction is modeled by (2.8). Here, 𝜇 represents the friction coefficient, 𝒏∗ is 
defined in (2.2), where we assume that the magnitude of 𝒗∗ is significantly greater than that of the tangential velocity 𝒖′

𝝉
, making 𝒖′

𝝉

negligible, so we approximate the relative slip rate by 𝒗∗. Evolution of the wear function is described by (2.9)–(2.10), 𝛼 is given by 
(2.2). A detailed derivation of this model can be found in [29].

The contact problem will be studied through its weak formulation. To introduce the weak formulation, we first recall that the 
inner products on the Hilbert spaces 𝐿2(Ω)𝑑 and 𝐿2(Γ)𝑑 are given by

(𝒖,𝒗)𝐿2(Ω)𝑑 = ∫
Ω

𝒖 ⋅ 𝒗𝑑𝑥, (𝒖,𝒗)𝐿2(Γ)𝑑 = ∫
Γ

𝒖 ⋅ 𝒗𝑑𝑠.

For a normed space 𝑋, let 𝐶([0, 𝑇 ; 𝑋]) be the space of continuous functions from [0, 𝑇 ] to 𝑋. We introduce the following Hilbert 
spaces:

𝑄 =𝐿2(Ω;𝕊𝑑 ), 𝑉 = {𝒗 ∈𝐻1(Ω)𝑑 ∶ 𝒗 = 𝟎 on Γ𝐷}

endowed with the inner scalar products

(𝝈,𝝉)𝑄 = ∫
Ω

𝜎𝑖𝑗𝜏𝑖𝑗 𝑑𝑥, (𝒖,𝒗)𝑉 = (𝜺(𝒖),𝜺(𝒗))𝑄
with the corresponding norms ‖ ⋅‖𝑄 and ‖ ⋅‖𝑉 , where the operator  satisfies the conditions listed in 𝐻() below. Since meas(Γ𝐷) > 0, 
by Korn’s inequality ([11]), we know that the space (𝑉 , ‖ ⋅ ‖𝑉 ) is complete and

‖𝒗‖(𝐻 1(Ω))𝑑 ≤ 𝑐‖𝒗‖𝑉 . (2.11)

Here and after, we denote by 𝑐 > 0 a generic constant, whose value may differ in different places. Further, in combination with the 
Sobolev trace theorem, there exists a constant 𝑐0 > 0 depending only on Ω, Γ𝐷 and Γ𝐶 , such that

‖𝒗‖𝐿2(Γ𝐶 )𝑑 ≤ 𝑐0‖𝒗‖𝑉 ∀𝒗 ∈ 𝑉 . (2.12)

Denote by ⟨⋅, ⋅⟩𝑉 ×𝑉 ∗ the dual pairing between 𝑉 and 𝑉 ∗. The set of permissible displacements is

𝑈 = {𝒗 ∈ 𝑉 ∶ 𝑣𝜈 ≤ 𝑔 on Γ𝐶}.

The space for the wear function 𝑤 is

𝑊 =𝐿2(Γ𝐶 ).

Next, we introduce the hypotheses on the data needed in the study of Problem 2.1.
𝐻():  ∶ Ω × 𝕊𝑑 → 𝕊𝑑 is such that

(𝑎) (⋅,𝜺) is measurable on Γ𝐶 ∀𝜺 ∈ 𝕊𝑑 , (⋅,𝟎) ∈𝑄;
(𝑏) for a constant 𝐿𝐶 > 0, ‖(𝒙,𝜺1) − (𝒙,𝜺2)‖ ≤𝐿𝐶‖𝜺1 − 𝜺2‖,

∀𝜺1,𝜺2 ∈ 𝕊𝑑 , a.e. 𝒙 ∈Ω;
(𝑐) for a constant 𝑚𝐶 > 0, ((𝒙,𝜺1) − (𝒙,𝜺2)) ⋅ (𝜺1 − 𝜺2) ≥𝑚𝐶‖𝜺1 − 𝜺2‖2,

∀𝜺1,𝜺2 ∈ 𝕊𝑑 , a.e. 𝒙 ∈Ω.

(2.13)
31

𝐻(𝑝): 𝑝 ∶ Γ𝐶 ×ℝ →ℝ+ is such that
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(𝑎) 𝑝(⋅, 𝑟) is measurable on Γ𝐶 ∀ 𝑟 ∈ℝ;

(𝑏) ∃𝐿𝑝 > 0, s.t. |𝑝(𝒙, 𝑟1) − 𝑝(𝒙, 𝑟2)| ≤𝐿𝑝|𝑟1 − 𝑟2| ∀ 𝑟1, 𝑟2 ∈ℝ, a.e. 𝒙 ∈ Γ𝐶 ;

(𝑐) (𝑝(𝒙, 𝑟1) − 𝑝(𝒙, 𝑟2))(𝑟1 − 𝑟2) ≥ 0 ∀ 𝑟1, 𝑟2 ∈ℝ, a.e. 𝒙 ∈ Γ𝐶 ;

(𝑑) 𝑝(𝒙, 𝑟) = 0 ∀ 𝑟 ≤ 0, a.e. 𝒙 ∈ Γ𝐶 .

(2.14)

𝐻(𝑓 ):

𝒇 1 ∈ 𝐶([0, 𝑇 ];𝐿2(Ω)𝑑 ), 𝒇 2 ∈ 𝐶([0, 𝑇 ];𝐿2(Γ𝑁 )𝑑 ). (2.15)

𝐻0:

(𝑎) 𝜇 ∈𝐿∞(Γ𝐶 ), 𝜇(𝒙) ≥ 0 a.e. 𝒙 ∈ Γ𝐶 ;
(𝑏) 𝜅 ∈𝐿∞(Γ𝐶 ), 𝜅(𝒙) ≥ 0 a.e. 𝒙 ∈ Γ𝐶 ;
(𝑐) 𝒗∗ ∈ 𝐶([0, 𝑇 ];ℝ𝑑 ), ‖𝒗∗(𝑡)‖ ≥ 𝑣0 > 0 ∀ 𝑡 ∈ [0, 𝑇 ].

(2.16)

𝐻𝑠:

𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 ) < 𝑚 . (2.17)

From the hypotheses 𝐻0, we know that

𝒏∗ ∈ 𝐶([0, 𝑇 ];ℝ𝑑 ), 𝛼 ∈ 𝐶([0, 𝑇 ];𝐿∞(Γ𝐶 )), (2.18)

where 𝒏∗ and 𝛼 are defined in (2.2). In the literature (e.g., [23]), a condition such as (2.17) is commonly referred to as a smallness 
condition. For the contact problem under consideration in this paper, we have the following bound on the magnitude of the friction 
force on the contact surface Γ𝐶 :

|𝝈𝜏 (𝑡)| ≤𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )|𝑢𝜈(𝑡) −𝑤(𝑡)|.
Therefore, the condition (2.17) sets an upper bound on the linear growth rate 𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 ) of the magnitude of the friction force 
with respect to the penetration, as compared to the ellipticity constant 𝑚𝐶 of the elasticity operator.

Now we define

𝑎(𝒖,𝒗) = ((𝜺(𝒖)),𝜺(𝒗))𝑄 ∀𝒖,𝒗 ∈ 𝑉 , (2.19)

⟨𝒇 (𝑡),𝒗⟩𝑉 ∗×𝑉 = ∫
Ω

𝒇 1(𝑡) ⋅ 𝒗𝑑𝑥+ ∫
Γ𝑁

𝒇 2(𝑡) ⋅ 𝒗𝑑𝑠 ∀𝒗 ∈ 𝑉 , 𝑡 ∈ [0, 𝑇 ], (2.20)

𝜑(𝑡,𝑤,𝒖,𝒗) = ∫
Γ𝐶

𝑝(𝑢𝜈 −𝑤)
(
𝑣𝜈 + 𝜇𝒏∗(𝑡) ⋅ 𝒗𝜏

)
𝑑𝑠 ∀𝒖,𝒗 ∈ 𝑉 , 𝑤 ∈𝐿2(Γ𝐶 ), 𝑡 ∈ [0, 𝑇 ]. (2.21)

The next result is shown in [24, Theorem 4, (27)].

Lemma 2.2. Assume 𝐻(𝑝) and 𝐻0. Then for any 𝑡 ∈ [0, 𝑇 ], any 𝒖1, 𝒖2, 𝒗1, 𝒗2 ∈ 𝑉 and any 𝑤1, 𝑤2 ∈𝑊 ,

𝜑(𝑡,𝑤1,𝒖1,𝒗2) +𝜑(𝑡,𝑤2,𝒖2,𝒗1) −𝜑(𝑡,𝑤1,𝒖1,𝒗1) −𝜑(𝑡,𝑤2,𝒖2,𝒗2)

≤𝐿𝑝
(‖𝒖1 − 𝒖2‖𝐿2(Γ𝐶 )𝑑 + ‖𝑤1 −𝑤2‖𝑊 )(‖𝜇‖𝐿∞(Γ𝐶 )‖𝒗1 − 𝒗2‖𝐿2(Γ𝐶 )𝑑 + ‖𝑤1 −𝑤2‖𝑊 )

.

Moreover, by the trace inequality (2.12),

𝜑(𝑡,𝑤1,𝒖1,𝒗2) +𝜑(𝑡,𝑤2,𝒖2,𝒗1) −𝜑(𝑡,𝑤1,𝒖1,𝒗1) −𝜑(𝑡,𝑤2,𝒖2,𝒗2)

≤𝐿𝑝 (𝑐0‖𝒖1 − 𝒖2‖𝑉 + ‖𝑤1 −𝑤2‖𝑊 )(
𝑐0‖𝜇‖𝐿∞(Γ𝐶 )‖𝒗1 − 𝒗2‖𝑉 + ‖𝑤1 −𝑤2‖𝑊 )

. (2.22)

The weak formulation of Problem 2.1 is the following ([29, Problem 𝑉 ]).

Problem 2.3. Find 𝒖 ∶ [0, 𝑇 ]→𝑈 and 𝑤 ∶ [0, 𝑇 ]→𝑊 such that for 𝑡 ∈ [0, 𝑇 ],

𝑎(𝒖(𝑡),𝒗− 𝒖(𝑡)) +𝜑(𝑡,𝑤(𝑡),𝒖(𝑡),𝒗) −𝜑(𝑡,𝑤(𝑡),𝒖(𝑡),𝒖(𝑡))

≥ ⟨𝒇 (𝑡),𝒗− 𝒖(𝑡)⟩𝑉 ∗×𝑉 ∀𝒗 ∈𝑈, (2.23)

𝑤(𝑡) =

𝑡

𝛼(𝑠)𝑝(𝑢𝜈(𝑠) −𝑤(𝑠))𝑑𝑠. (2.24)
32

∫
0
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Let us recall an existence and uniqueness result for Problem 2.3 from [29, Theorem 4.1].

Theorem 2.4. Assume 𝐻(), 𝐻(𝑝), 𝐻(𝑓 ), 𝐻0 and 𝐻𝑠. Then Problem 2.3 has a unique solution (𝝈, 𝒖, 𝑤) with

𝝈 ∈ 𝐶([0, 𝑇 ];𝑄), 𝒖 ∈ 𝐶([0, 𝑇 ];𝑉 ), 𝑤 ∈ 𝐶1([0, 𝑇 ];𝑊 ).

Moreover, 𝑤(𝑡) ≥ 0 for all 𝑡 ∈ [0, 𝑇 ], a.e. on Γ𝐶 .

Since 𝑤(𝑡) ≥ 0 a.e. on Γ𝐶 for all 𝑡 ∈ [0, 𝑇 ], due to 𝐻(𝑝)(𝑑), we have

𝜑(𝑡,𝑤(𝑡),𝟎,𝒗) = 0 ∀𝒗 ∈ 𝑉 . (2.25)

3. A fully discrete scheme

In this section, we introduce a fully discrete scheme to solve Problem 2.3. We apply the virtual element method to discretize the 
variational inequality (2.23). For simplicity, we only consider the case where Ω is a two-dimensional polygonal domain.

We start by considering a family of decompositions {ℎ}ℎ of Ω into polygonal elements. Denote ℎ𝐾 = diam(𝐾) for a generic 
element 𝐾 ∈  and ℎ = max{ℎ𝐾 ∶ 𝐾 ∈ ℎ}. All the subdivisions are compatible with the boundary splitting in the sense that if an 
edge of an element has a non-trivial intersection with one of the three boundary subsets, Γ𝐷 or Γ𝑁 or Γ𝐶 , then the edge lies entirely 
on that subset. Furthermore, we assume that Γ𝐶 is split as Γ𝐶 = ∪1≤𝑖≤𝐼Γ𝐶,𝑖, each Γ𝐶,𝑖 being a closed line segment. Let 0

ℎ
denote the 

set of all the edges of ℎ excluding the edges on Γ𝐷 , and let 0
ℎ

denote the set of all the vertices of ℎ excluding the vertices at Γ𝐷 . 
Following [5], we make the following assumption on the decompositions {ℎ}ℎ:
A1. There exist positive constants 𝛾1 and 𝛾2 such that for each ℎ and for every 𝐾 ∈ ℎ,

∙ 𝐾 is star-shaped with respect to a disk of radius 𝜌 ≥ 𝛾1ℎ𝐾 ;
∙ the distance between any two vertices of 𝐾 is no less than 𝛾2ℎ𝐾 .

3.1. Construction of 𝑉ℎ

Given a decomposition ℎ, we construct a finite-dimensional subspace 𝑉ℎ of 𝑉 . Similar to the virtual element method employed 
for the elasticity problem in [4,31], we define, for every element 𝐾 ∈ ℎ and integer 𝑘 ≥ 1, the local space

𝑉 𝐾ℎ ∶= {𝒗 ∈ [𝐻1(𝐾)]2 ∶ div𝝈(𝒗) ∈ [ℙ𝑘−2(𝐾)]2, 𝒗|𝜕𝐾 ∈ 𝐶0(𝜕𝐾), 𝒗|𝑒 ∈ [ℙ𝑘(𝑒)]2 ∀ 𝑒 ⊂ 𝜕𝐾},

where ℙ𝑘(𝐾) represents the space of polynomials on 𝐾 of degree no more than 𝑘. By convention, ℙ−1(𝐾) = {0}. Any 𝒗ℎ ∈ 𝑉 𝐾ℎ can 
be determined by the following degrees of freedom:

• values of 𝒗ℎ at the vertices of 𝐾 ;
• moments ∫𝑒 𝒒 ⋅ 𝒗ℎ 𝑑𝑠 for 𝒒 ∈ [ℙ𝑘−2(𝑒)]2 on each edge 𝑒 ⊂ 𝜕𝐾 for 𝑘 ≥ 2;
• moments ∫𝐾 𝒒 ⋅ 𝒗ℎ 𝑑𝑥 for 𝒒 ∈ [ℙ𝑘−2(𝐾)]2 for 𝑘 ≥ 2.

Then, the global virtual element space is

𝑉ℎ ∶= {𝒗 ∈ 𝑉 ∶ 𝒗|𝐾 ∈ 𝑉 𝐾ℎ ∀𝐾 ∈ ℎ}, (3.1)

and the corresponding global degrees of freedom for 𝒗ℎ ∈ 𝑉ℎ are

• values of 𝒗ℎ(𝒂) ∀ vertex 𝒂 ∈ 0
ℎ
;

• moments ∫𝑒 𝒒 ⋅ 𝒗ℎ 𝑑𝑠 for 𝒒 ∈ [ℙ𝑘−2(𝑒)]2 ∀ 𝑒 ∈ 0
ℎ

for 𝑘 ≥ 2;

• moments ∫𝐾 𝒒 ⋅ 𝒗ℎ 𝑑𝑥 for 𝒒 ∈ [ℙ𝑘−2(𝐾)]2 ∀ 𝐾 ∈ ℎ for 𝑘 ≥ 2.

For 𝑘 = 1, 2, the local degrees of freedom for 𝑉 𝐾
ℎ

are shown in Fig. 1. For the virtual element space, we have the inclusion 
[ℙ𝑘(𝐾)]2 ⊂ 𝑉 𝐾ℎ , which guarantees the precision of approximation. According to the Scott-Dupont theory ([7,11]), we can derive the 
following approximation results.

Proposition 3.1. Let Assumption A1 be satisfied. For any 𝒗∈ [𝐻𝑙(Ω)]2, 2 ≤ 𝑙 ≤ 𝑘 + 1, there exist 𝒗𝐼 ∈ 𝑉ℎ and 𝒗𝜋 ∈ [ℙ𝑘(𝐾)]2 such that

‖𝒗− 𝒗𝐼‖𝑉 ≤ 𝑐 ℎ𝑙−1|𝒗|[𝐻𝑙(Ω)]2 , (3.2)

‖𝒗− 𝒗𝜋‖𝑉 ,𝐾 ≤ 𝑐 ℎ𝑙−1
𝐾

|𝒗|[𝐻𝑙(𝐾)]2 , (3.3)
33

where ‖𝒗‖2
𝑉 ,𝐾

∶= ∫𝐾 𝜺(𝒗) ∶ 𝜺(𝒗) 𝑑𝑥.
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Fig. 1. Local degrees of freedom of 𝑉 𝐾
ℎ

for 𝑘 = 1 (left) and 𝑘 = 2 (right).

In the analysis of the virtual element method, we employ a broken norm ‖ ⋅ ‖𝑉 ,ℎ defined by

‖𝒗‖2𝑉 ,ℎ = ∑
𝐾∈ℎ

‖𝒗‖2𝑉 ,𝐾 .
Then we establish the discrete admissible set of virtual elements

𝑈ℎ = {𝒗ℎ ∈ 𝑉ℎ ∶ 𝑣ℎ𝜈 ≤ 𝑔 at all nodes on Γ𝐶}. (3.4)

We assume that 𝑔 is a concave function, thereby implying that 𝑈ℎ is a subset of 𝑈 .

Remark 3.2. It is possible to extend the analysis of the numerical method without assuming 𝑔 to be concave, cf. e.g., [15]. To avoid 
the additional technicality, in this paper we only consider the case where 𝑔 is concave.

3.2. Construction of 𝑎ℎ

The bilinear form 𝑎(⋅, ⋅) can be decomposed into its constituent parts by

𝑎(𝒖,𝒗) =
∑
𝐾∈ℎ

𝑎𝐾 (𝒖,𝒗) ∀𝒖,𝒗 ∈ 𝑉 , (3.5)

where

𝑎𝐾 (𝒖,𝒗) = ∫
𝐾

𝜺(𝒖) ∶ 𝜺(𝒗)𝑑𝑥.

Accordingly, we formulate appropriate local bilinear forms 𝑎𝐾
ℎ
(𝒖, 𝒗) and combine them collectively

𝑎ℎ(𝒖ℎ,𝒗ℎ) =
∑
𝐾∈ℎ

𝑎𝐾ℎ (𝒖ℎ,𝒗ℎ).

According to the general framework of the virtual element method ([3]), the local bilinear form 𝑎𝐾
ℎ
(𝒖, 𝒗) should adhere to the following 

two properties:
∙ Polynomial consistency:

𝑎𝐾ℎ (𝒗ℎ,𝒒) = 𝑎
𝐾 (𝒗ℎ,𝒒) ∀𝒗ℎ ∈ 𝑉 𝐾ℎ , ∀𝒒 ∈ [ℙ𝑘(𝐾)]2. (3.6)

∙ Stability: there exist two positive constants 𝛼∗ and 𝛼∗, independent of ℎ and 𝐾 , s.t.

𝛼∗𝑎
𝐾 (𝒗ℎ,𝒗ℎ) ≤ 𝑎𝐾ℎ (𝒗ℎ,𝒗ℎ) ≤ 𝛼∗𝑎𝐾 (𝒗ℎ,𝒗ℎ) ∀𝒗ℎ ∈ 𝑉 𝐾ℎ . (3.7)

Since the basis functions are unavailable for 𝑉 𝐾
ℎ

, direct computation of the value of 𝑎𝐾 (𝒖, 𝒗) for 𝒖, 𝒗 ∈ 𝑉ℎ is not feasible. In order 
to ensure the computability, we have devised a projection operator Π𝐾

𝑘
∶ 𝑉 𝐾
ℎ

→ [ℙ𝑘(𝐾)]2 by

𝑎𝐾 (Π𝐾𝑘 𝒗ℎ − 𝒗ℎ,𝒒) = 0 ∀𝒒 ∈ [ℙ𝑘(𝐾)]2, (3.8)

1
𝑛𝐾
𝑉

𝑛𝐾
𝑉∑
𝑖=1

Π𝐾𝑘 𝒗ℎ(𝒙𝑖) =
1
𝑛𝐾
𝑉

𝑛𝐾
𝑉∑
𝑖=1

𝒗ℎ(𝒙𝑖), (3.9)

1
𝐾

𝑛𝐾
𝑉∑
𝒙𝑖 ×Π𝐾𝑘 𝒗ℎ(𝒙𝑖) =

1
𝐾

𝑛𝐾
𝑉∑
𝒙𝑖 × 𝒗ℎ(𝒙𝑖), (3.10)
34

𝑛
𝑉 𝑖=1 𝑛

𝑉 𝑖=1
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where {𝒙𝑖} are the coordinates of the vertices of the element 𝐾 and 𝑛𝐾
𝑉

denotes the number of the vertices ([37]). Note that (3.8)

alone determines Π𝐾
𝑘
𝒗ℎ only up to a rigid motion, and we add the conditions (3.9)–(3.10) by adopting an idea in [31].

Then, we proceed to define the local bilinear form

𝑎𝐾ℎ (𝒖ℎ,𝒗ℎ) = 𝑎
𝐾 (Π𝐾𝑘 𝒖ℎ,Π

𝐾
𝑘 𝒗ℎ) +𝑆

𝐾 (𝒖ℎ −Π𝐾𝑘 𝒖ℎ,𝒗ℎ −Π𝐾𝑘 𝒗ℎ) ∀𝒖ℎ,𝒗ℎ ∈ 𝑉 𝐾ℎ , (3.11)

where the stabilization term 𝑆𝐾 (𝒖ℎ, 𝒗ℎ) is chosen to satisfy

𝑐4𝑎
𝐾 (𝒗ℎ,𝒗ℎ) ≤ 𝑆𝐾 (𝒗ℎ,𝒗ℎ) ≤ 𝑐5𝑎𝐾 (𝒗ℎ,𝒗ℎ) ∀𝒗ℎ ∈ 𝑉 𝐾ℎ with Π𝐾𝑘 𝒗ℎ = 𝟎 (3.12)

with two positive constants 𝑐4 and 𝑐5. It is not difficult to verify that (3.8)–(3.12) ensures the properties (3.6) and (3.7). In this paper, 
we have opted for

𝑆𝐾 (𝒖ℎ,𝒗ℎ) =
𝑁dof
𝐾∑
𝑖=1
𝜒𝑖(𝒖ℎ) 𝜒𝑖(𝒗ℎ),

where 𝜒𝑖(𝒖ℎ) denotes the 𝑖-th degree of freedom for 𝒖ℎ and 𝑁dof
𝐾

is the number of local degrees of freedom.
Define

𝑎ℎ(𝒖ℎ,𝒗ℎ) =
∑
𝐾∈ℎ

𝑎𝐾ℎ (𝒖ℎ,𝒗ℎ) ∀𝒖ℎ,𝒗ℎ ∈ 𝑉ℎ.

As a consequence of the symmetry of 𝑎ℎ, stability (3.7) and (3.12), there exist two positive constants 𝐶1 and 𝐶2 such that

𝑎ℎ(𝒗ℎ,𝒗ℎ) ≥ 𝐶1‖𝒗ℎ‖2𝑉 ∀𝒗ℎ ∈ 𝑉ℎ, (3.13)

𝑎ℎ(𝒖ℎ,𝒗ℎ) ≤ 𝐶2‖𝒖ℎ‖𝑉 ‖𝒗ℎ‖𝑉 ∀𝒖ℎ,𝒗ℎ ∈ 𝑉ℎ. (3.14)

3.3. Construction of 𝑓ℎ

Since the term ∫Ω 𝒇 1 ⋅ 𝒗𝑑𝑥 is not computable for 𝒗 ∈ 𝑉ℎ, we introduce its approximation. Let 𝑃𝐾
𝑘

be the 𝐿2(𝐾) projection from 
𝑉 𝐾
ℎ

to [ℙ𝑘(𝐾)]2. The node average of the function 𝜙 on the cell 𝐾 is defined as follows:

𝜙 ∶= 1
𝑛𝐾

𝑛𝐾∑
𝑖=1
𝜙(𝑣𝑖), (3.15)

where 𝑛𝐾 is the number of vertices of the element 𝐾 , and 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛𝐾 , are the vertices of 𝐾 .
For 𝑘 = 1, we define

⟨𝒇 1ℎ,𝒗ℎ⟩ = ∑
𝐾∈ℎ ∫𝐾

𝑃𝐾0 𝒇 1 ⋅ 𝒗ℎ 𝑑𝑥 ∀𝒗ℎ ∈ 𝑉ℎ.

For 𝑘 ≥ 2, we define

⟨𝒇 1ℎ,𝒗ℎ⟩ = ∑
𝐾∈ℎ ∫𝐾

𝑃𝐾
𝑘−2𝒇 1 ⋅ 𝒗ℎ 𝑑𝑥 ∀𝒗ℎ ∈ 𝑉ℎ.

To approximate the right-hand side term ⟨𝒇ℎ, 𝒗ℎ⟩𝑉 ∗×𝑉 , we choose

⟨𝒇ℎ,𝒗ℎ⟩ = ⟨𝒇 1ℎ,𝒗ℎ⟩+ ∫
Γ𝑁

𝒇 2 ⋅ 𝒗ℎ 𝑑𝑠 ∀𝒗ℎ ∈ 𝑉ℎ.

It is not difficult to verify that ⟨𝒇ℎ, 𝒗ℎ⟩ can be computed with the given degrees of freedom. We have the following approximation 
property ([4])

‖𝒇 1 − 𝒇 1ℎ‖𝑉 ′
ℎ
= sup

𝒗ℎ∈𝑉ℎ

(𝒇 1,𝒗ℎ) − ⟨𝒇 1ℎ,𝒗ℎ⟩‖𝒗ℎ‖𝑉 ≤ 𝑐 ℎ𝑘|𝒇 1|𝑘−1. (3.16)

Also,

⟨𝒇 ,𝒗ℎ⟩𝑉 ∗×𝑉 − ⟨𝒇ℎ,𝒗ℎ⟩ ≤ ‖𝒇 1 − 𝒇 1ℎ‖𝑉 ′
ℎ
‖𝒗ℎ‖𝑉 ∀𝒗ℎ ∈ 𝑉ℎ. (3.17)

Furthermore, by the property of the 𝐿2 projection operator 𝑃𝐾
𝑘

, we have

⟨𝒇ℎ,𝒗ℎ⟩ ≤ 𝑐 ‖𝒗ℎ‖𝑉 ∀𝒗ℎ ∈ 𝑉ℎ, (3.18)
35

where the constant 𝑐 depends on 𝒇 1, 𝒇 2, and the measurement of the domain Ω.
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3.4. The fully discrete scheme

Problem 2.3 is time-dependent. We use the VEM to discretize the variational inequality (2.23) for the spatial variable, and use 
the left rectangle numerical integration formula to approximate the integral equation (2.24).

Let 𝑊ℎ ⊂ 𝑊 be a finite-dimensional space. Consider a partition of the time interval [0, 𝑇 ] given by 0 = 𝑡0 < 𝑡1 <⋯ < 𝑡𝑁 = 𝑇 . 
Denote 𝑘𝑛 = 𝑡𝑛+1 − 𝑡𝑛, 0 ≤ 𝑛 ≤ 𝑁 − 1, and 𝑘 = max0≤𝑛≤𝑁−1 𝑘𝑛 for the time step-size. For a function 𝑧 continuous in 𝑡, we use the 
notation 𝑧𝑛 = 𝑧(𝑡𝑛). In addition, we make the following smoothness assumption:
𝐻𝑎: The solution 𝒖 of Problem 2.3 and the velocity of the foundation 𝒗∗ satisfy

𝒖 ∈𝐻1(0, 𝑇 ;𝑉 ), 𝒗∗ ∈𝑊 1,∞(0, 𝑇 ;ℝ2). (3.19)

Note that assumptions 𝐻0(𝑏) and 𝐻𝑎 imply that

𝛼 ∈𝑊 1,∞ (
0, 𝑇 ;𝐿∞(Γ𝐶 )

)
. (3.20)

Consider the following fully discrete scheme for Problem 2.3.

Problem 3.3. Find 𝒖𝑛
ℎ
∈𝑈ℎ, 0 ≤ 𝑛 ≤𝑁 and 𝑤𝑛

ℎ
∈𝑊ℎ, 1 ≤ 𝑛 ≤𝑁 , such that

𝑎ℎ(𝒖𝑛ℎ,𝒗ℎ − 𝒖𝑛
ℎ
) +𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒗ℎ) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛
ℎ
)

≥ ⟨𝒇ℎ,𝒗ℎ − 𝒖𝑛
ℎ
⟩ ∀𝒗ℎ ∈𝑈ℎ, (3.21)

𝑤𝑛
ℎ
=
𝑛−1∑
𝑗=0
𝑘𝑗𝛼

𝑗𝑝(𝑢𝑗
ℎ,𝜈

−𝑤𝑗
ℎ
), (3.22)

𝑤0
ℎ
= 0. (3.23)

Theorem 3.4. Keep the assumptions stated in Theorem 2.4. Moreover, assume a smallness condition 𝐶1 > 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 ), where 𝐶1 is 
the constant in the inequality (3.13), 𝑐0 is the constant in the trace inequality (2.12), 𝐿𝑝 is the Lipschitz constant of the normal compliance 
function 𝑝, 𝜇 is the friction coefficient. Then Problem 3.3 has a unique solution.

Proof. The result is proved by an induction. Note that 𝑤0
ℎ

is given by (3.23). For 0 ≤ 𝑛 ≤𝑁 , with 𝑤𝑛
ℎ

defined by (3.22), let us prove 
that (3.21) uniquely determines an element 𝒖𝑛

ℎ
∈𝑈ℎ. For this purpose, we apply a standard result, see, e.g., [28, Theorem 2.19].

Consider the operator 𝐴ℎ ∶ 𝑉ℎ→ 𝑉 ′
ℎ

defined by

⟨𝐴ℎ𝒖ℎ,𝒗ℎ⟩ ∶= 𝑎ℎ(𝒖ℎ,𝒗ℎ) ∀𝒖ℎ,𝒗ℎ ∈ 𝑉ℎ. (3.24)

By the continuity of 𝑎ℎ in (3.14), we see that 𝐴ℎ is Lipschitz continuous on 𝑉ℎ,

‖𝐴ℎ𝒖ℎ −𝐴ℎ𝒗ℎ‖𝑉 ≤ 𝐶2‖𝒖ℎ − 𝒗ℎ‖𝑉 ∀𝒖ℎ, 𝒗ℎ ∈ 𝑉ℎ. (3.25)

In addition, by the coerciveness of 𝑎ℎ in (3.13), we have

(𝐴ℎ𝒖ℎ −𝐴ℎ𝒗ℎ,𝒖ℎ − 𝒗ℎ) = 𝑎ℎ(𝒖ℎ − 𝒗ℎ,𝒖ℎ − 𝒗ℎ)

≥ 𝐶1‖𝒖ℎ − 𝒗ℎ‖2𝑉 ∀𝒖ℎ,𝒗ℎ ∈ 𝑉ℎ. (3.26)

By (3.25)–(3.26), 𝐴ℎ is a strongly monotone Lipschitz continuous operator on 𝑉ℎ.
Second, note that for all 𝒖ℎ ∈ 𝑉ℎ, the functional 𝜑(𝑡𝑛, 𝑤𝑛ℎ, 𝒖ℎ, ⋅) is convex. Let us show that 𝜑(𝑡𝑛, 𝑤𝑛ℎ, 𝒖ℎ, ⋅) is Lipschitz continuous. 

Based on the definition, it is required that 𝑤𝑛
ℎ
≥ 0 and 𝑢𝑛

ℎ,𝜈
≤ 𝑔. By the assumption 𝐻(𝑝)(𝑏), 𝐻(𝑝)(𝑑), assumption 𝐻0 and trace 

inequality (2.12), given 𝒖ℎ, for all 𝒗ℎ1, 𝒗ℎ2 ∈ 𝑉ℎ,

|𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖ℎ,𝒗ℎ1) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖ℎ,𝒗ℎ2)|
= |∫

Γ𝐶

(
𝑝(𝑢𝑛
ℎ,𝜈

−𝑤𝑛
ℎ
) − 0

)(
(𝑣ℎ1,𝜈 − 𝑣ℎ2,𝜈) + 𝜇𝒏∗(𝑡) ⋅ (𝒗ℎ1,𝜏 − 𝒗ℎ2,𝜏 )

)
𝑑𝑠|

≤𝐿𝑝 ∫
Γ𝐶

|𝑢𝑛
ℎ,𝜈

−𝑤𝑛
ℎ
| |(𝑣ℎ1,𝜈 − 𝑣ℎ2,𝜈) + 𝜇𝒏∗(𝑡) ⋅ (𝒗ℎ1,𝜏 − 𝒗ℎ2,𝜏 )|𝑑𝑠

≤𝐿𝑝‖𝑔‖𝐿∞(Γ𝐶 ) ∫
Γ𝐶

|(𝑣ℎ1,𝜈 − 𝑣ℎ2,𝜈) + 𝜇𝒏∗(𝑡) ⋅ (𝒗ℎ1,𝜏 − 𝒗ℎ2,𝜏 )|𝑑𝑠
≤ 𝑐0‖𝑔‖𝐿∞(Γ𝐶 )𝐿𝑝(1 + ‖𝜇‖𝐿∞(Γ𝐶 ))‖𝒗ℎ1 − 𝒗ℎ2‖𝑉 . (3.27)
36

Therefore, 𝜑(𝑡𝑛, 𝑤𝑛ℎ, 𝒖ℎ, ⋅) is convex and lower semi-continuous. In addition, by Lemma 2.2, we get
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𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖ℎ1,𝒗ℎ2) +𝜑(𝑡𝑛,𝑤
𝑛
ℎ
,𝒖ℎ2,𝒗ℎ1) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖ℎ1,𝒗ℎ1) −𝜑(𝑡𝑛,𝑤

𝑛
ℎ
,𝒖ℎ2,𝒗ℎ2)

≤ 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒖ℎ1 − 𝒖ℎ2‖𝑉 ‖𝒗ℎ1 − 𝒗ℎ2‖𝑉 ∀𝒖ℎ1,𝒖ℎ2,𝒗ℎ1,𝒗ℎ2 ∈ 𝑉ℎ. (3.28)

Finally, thanks to the smallness condition 𝐶1 > 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 ), we apply an argument similar to that in the proof of [28, Theorem 
2.19] to deduce that there exists a unique element 𝒖𝑛

ℎ
∈𝑈ℎ such that (3.21) holds. ■

4. Error estimates

In the numerical analysis, we will make use of the following discrete Gronwall inequality ([22, Lemma 7.25]).

Lemma 4.1. Assume {𝑔𝑛}𝑁𝑛=1 and {𝑒𝑛}𝑁𝑛=1 are two sequences of non-negative numbers satisfying

𝑒𝑛 ≤ 𝑐𝑔𝑛 + 𝑐
𝑛−1∑
𝑗=1
𝑘𝑗𝑒𝑗 , 𝑛 = 1,⋯ ,𝑁.

Then,

𝑒𝑛 ≤ 𝑐
(
𝑔𝑛 +

𝑛−1∑
𝑗=1
𝑘𝑗𝑔𝑗

)
, 𝑛 = 1,⋯ ,𝑁.

Therefore,

max
1≤𝑛≤𝑁 𝑒𝑛 ≤ 𝑐 max

1≤𝑛≤𝑁 𝑔𝑛.

First, we provide a uniform boundedness result on the numerical solution 𝒖ℎ.

Lemma 4.2. Under the assumptions stated in Theorem 3.4, for 0 ≤ 𝑛 ≤𝑁 , the numerical solution 𝒖𝑛
ℎ
∈𝑈ℎ is uniformly bounded independent 

of ℎ.

Proof. Let 𝒗ℎ = 𝟎 ∈ 𝑉ℎ in (3.21),

𝑎ℎ(𝒖𝑛ℎ,−𝒖
𝑛
ℎ
) +𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝟎) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛
ℎ
) ≥ ⟨𝒇ℎ,−𝒖𝑛ℎ⟩.

So

𝑎ℎ(𝒖𝑛ℎ,𝒖
𝑛
ℎ
) ≤ ⟨𝒇ℎ,𝒖𝑛ℎ⟩+𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖𝑛ℎ,𝟎) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖𝑛ℎ,𝒖𝑛ℎ). (4.1)

By (2.25) and Lemma 2.2,

𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖
𝑛
ℎ
,𝟎) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛
ℎ
) = 𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝟎) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛
ℎ
)

+𝜑(𝑡𝑛,𝑤𝑛ℎ,𝟎,𝒖
𝑛
ℎ
) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝟎,𝟎)

≤ 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒖𝑛ℎ‖2𝑉 . (4.2)

Apply (3.13), (3.18) and (4.2) in (4.1) to obtain

(𝐶1 − 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 ))‖𝒖𝑛ℎ‖2𝑉 ≤ 𝑐‖𝒖𝑛
ℎ
‖𝑉 .

By the smallness condition 𝐶1 > 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 ),‖𝒖𝑛
ℎ
‖𝑉 ≤ 𝑐

𝐶1 − 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )
,

which completes the proof. ■

Denote the numerical solution errors

𝒆𝑛 = 𝒖𝑛 − 𝒖𝑛
ℎ
, 𝜃𝑛 =𝑤𝑛 −𝑤𝑛

ℎ
, 0 ≤ 𝑛 ≤𝑁, (4.3)

where (𝒖𝑛, 𝑤𝑛) is the solution of Problem 2.3, and (𝒖𝑛
ℎ
, 𝑤𝑛
ℎ
) is the solution of Problem 3.3.

By adapting the proof of Theorem 4 in [24] to the case of non-uniform partition of the time interval, we have the following 
37

result.
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Lemma 4.3. Under the assumptions stated in Theorem 3.4 and 𝐻𝑎, we have

‖𝜃𝑛‖2𝑊 ≤ 𝑐𝑘2 + 𝑐
𝑛−1∑
𝑚=0
𝑘𝑚

(‖𝒆𝑚‖2𝑉 + ‖𝜃𝑚‖2𝑊 )
, 1 ≤ 𝑛 ≤𝑁. (4.4)

To derive an error estimate for the displacement, we add the following solution regularity assumption:

Assumption 4.4. The contact boundary Γ𝐶 can be expressed as the union of some line segments Γ𝐶 = ∪𝐼
𝑖=1Γ𝐶,𝑖, and Γ𝐶,𝑖 ∩ Γ𝐶,𝑗 = ∅

for 1 ≤ 𝑖 < 𝑗 ≤ 𝐼 . Assume

𝒖 ∈ 𝐶
(
[0, 𝑇 ];𝐻2(Ω)2

)
, 𝒖|Γ𝐶,𝑖 ∈ 𝐶 (

[0, 𝑇 ];𝐻2(Γ𝐶,𝑖)
)
, 𝝈𝝂 ∈ 𝐶

(
[0, 𝑇 ];𝐿2(Γ𝐶 )2

)
. (4.5)

Now we give the error estimates for the displacement.

Lemma 4.5. Under the assumptions stated in Theorem 3.4 and Assumption 4.4, we have

‖𝒆𝑛‖2𝑉 ≤ 𝑐 (‖𝒖𝑛 − 𝒖𝑛𝜋‖𝑉 ,ℎ + ‖𝒖𝑛 − 𝒖𝑛
𝐼
‖𝑉 + ‖𝒇 − 𝒇ℎ‖𝑉 ′

ℎ

)2

+ 𝑐 ‖𝜃𝑛‖2𝑊 + 𝑐 ‖𝒖𝑛 − 𝒖𝑛
𝐼
‖𝐿2(Γ𝐶 ), 0 ≤ 𝑛 ≤𝑁, (4.6)

where 𝒖𝑛
𝐼

is the interpolation of 𝒖𝑛, and 𝒖𝑛𝜋 is a piecewise polynomial approximation of 𝒖𝑛.

Proof. For 𝑛 ∈ {0, 1, ⋯ , 𝑁}, we split 𝒆𝑛 into two parts:

𝒆𝑛 = (𝒖𝑛 − 𝒖𝑛
𝐼
) + (𝒖𝑛

𝐼
− 𝒖𝑛

ℎ
) ∶= 𝒆𝑛

𝐼
+ 𝒆𝑛

ℎ
, (4.7)

where 𝒖𝑛
𝐼
∈ 𝑉ℎ is the interpolation of 𝒖𝑛.

By the coerciveness of 𝑎ℎ, setting 𝒗ℎ = 𝒆𝑛
ℎ
= 𝒖𝑛

𝐼
− 𝒖𝑛

ℎ
∈ 𝑉ℎ in (3.13), we get

𝐶1‖𝒆𝑛ℎ‖2𝑉 ≤ 𝑎ℎ(𝒆𝑛ℎ,𝒆𝑛ℎ) = 𝑎ℎ(𝒖𝑛𝐼 ,𝒆𝑛ℎ) − 𝑎ℎ(𝒖𝑛ℎ,𝒆𝑛ℎ). (4.8)

By the polynomial consistency of 𝑎ℎ in (3.6), we have

𝑎ℎ(𝒖𝑛𝐼 ,𝒆
𝑛
ℎ
) =

∑
𝐾∈ℎ

(𝑎𝐾ℎ (𝒖
𝑛
𝐼
− 𝒖𝑛𝜋 ,𝒆

𝑛
ℎ
) + 𝑎𝐾ℎ (𝒖

𝑛
𝜋,𝒆

𝑛
ℎ
))

=
∑
𝐾∈ℎ

(𝑎𝐾ℎ (𝒖
𝑛
𝐼
− 𝒖𝑛𝜋 ,𝒆

𝑛
ℎ
) + 𝑎𝐾 (𝒖𝑛𝜋,𝒆

𝑛
ℎ
))

=
∑
𝐾∈ℎ

(𝑎𝐾ℎ (𝒖
𝑛
𝐼
− 𝒖𝑛𝜋 ,𝒆

𝑛
ℎ
) + 𝑎𝐾 (𝒖𝑛𝜋 − 𝒖𝑛,𝒆𝑛

ℎ
)) + 𝑎𝐾 (𝒖𝑛,𝒆𝑛

ℎ
)). (4.9)

Let 𝒗ℎ = 𝒖𝑛
𝐼
∈ 𝑉ℎ in (3.21) to obtain

−𝑎ℎ(𝒖𝑛ℎ,𝒆
𝑛
ℎ
) = −𝑎ℎ(𝒖𝑛ℎ,𝒖

𝑛
𝐼
− 𝒖𝑛

ℎ
)

≤ −⟨𝒇ℎ,𝒖𝑛𝐼 − 𝒖𝑛
ℎ
⟩+𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖𝑛ℎ,𝒖𝑛𝐼 ) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖𝑛ℎ,𝒖𝑛ℎ). (4.10)

Combining (4.8)–(4.10), we have

𝐶1‖𝒆𝑛ℎ‖2𝑉 ≤𝑅1 +𝑅2 +𝑅3, (4.11)

where

𝑅1 =
∑
𝐾∈ℎ

(𝑎𝐾ℎ (𝒖
𝑛
𝐼
− 𝒖𝑛𝜋 ,𝒆

𝑛
ℎ
) + 𝑎𝐾ℎ (𝒖

𝑛
𝜋 − 𝒖𝑛,𝒆𝑛

ℎ
)),

𝑅2 =
⟨
𝒇 ,𝒆𝑛

ℎ

⟩
𝑉 ∗×𝑉 − ⟨𝒇ℎ,𝒆𝑛ℎ⟩,

𝑅3 = 𝑎(𝒖𝑛,𝒆𝑛ℎ) −
⟨
𝒇 ,𝒆𝑛

ℎ

⟩
𝑉 ∗×𝑉 +𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛
𝐼
) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛
ℎ
).

Let us bound each term on the right-hand side of (4.11). From the continuity of each 𝑎𝐾 and the Cauchy-Schwarz inequality,

𝑅1 ≤ 𝑐
⎛⎜⎜⎝(

∑
𝐾∈ℎ

‖𝒖𝑛
𝐼
− 𝒖𝑛𝜋‖2𝑉 ,𝐾 )1∕2 + (

∑
𝐾∈ℎ

‖𝒖𝑛 − 𝒖𝑛𝜋‖2𝑉 ,𝐾 )1∕2⎞⎟⎟⎠‖𝒆𝑛ℎ‖𝑉 . (4.12)
38

From (3.17),
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𝑅2 ≤ 𝐶‖𝒇 1 − 𝒇 1ℎ‖𝑉 ′
ℎ
‖𝒆𝑛
ℎ
‖𝑉 . (4.13)

By following the arguments presented in [22, Section 8.1], it can be shown that under Assumption 4.4, the solution of Problem 2.3
satisfies, for 𝑡 ∈ [0, 𝑇 ],

−div𝝈(𝑡) = 𝒇 1(𝑡) a.e. in Ω, (4.14)

𝝈(𝑡)𝝂 = 𝒇 2(𝑡) a.e. in Γ𝑁, (4.15)

where

𝝈(𝑡) = 𝜺(𝒖(𝑡)). (4.16)

Multiply both sides of the equation (4.14) at 𝑡 = 𝑡𝑛, 𝑛 ∈ {0, ⋯ , 𝑁}, by (𝒖𝑛
𝐼
− 𝒖𝑛

ℎ
) and integrate over Ω. By Green’s formula (2.1) and 

combining the boundary condition (4.15), we deduce that

𝑎(𝒖𝑛,𝒆𝑛
ℎ
) −

⟨
𝒇 ,𝒆𝑛

ℎ

⟩
𝑉 ∗×𝑉 = ∫

Γ𝐶

𝝈(𝑡𝑛)𝝂 ⋅ (𝒖𝑛
𝐼
− 𝒖𝑛

ℎ
)𝑑𝑠

= ∫
Γ𝐶

𝜎𝜈(𝑡𝑛)(𝑢𝑛𝐼𝜈 − 𝑢
𝑛
ℎ𝜈
)𝑑𝑠+ ∫

Γ𝐶

𝝈𝜏 (𝑡𝑛) ⋅ (𝒖𝑛𝐼𝜏 − 𝒖𝑛
ℎ𝜏
)𝑑𝑠

≤ −∫
Γ𝐶

𝑝(𝑢𝑛𝜈 −𝑤
𝑛)(𝑢𝑛

𝐼𝜈
− 𝑢𝑛
ℎ𝜈
)𝑑𝑠

− ∫
Γ𝐶

𝜇 𝑝(𝑢𝑛𝜈 −𝑤
𝑛)𝒏∗ ⋅ (𝒖𝑛

𝐼𝜏
− 𝒖𝑛

ℎ𝜏
)𝑑𝑠. (4.17)

By the definition of 𝜑 in (2.21), we get

𝑎(𝒖𝑛,𝒆𝑛
ℎ
) −

⟨
𝒇 ,𝒆𝑛

ℎ

⟩
𝑉 ∗×𝑉 ≤ −𝜑(𝑡𝑛,𝑤𝑛,𝒖𝑛,𝒖𝑛𝐼 ) +𝜑(𝑡𝑛,𝑤

𝑛,𝒖𝑛,𝒖𝑛
ℎ
). (4.18)

Use (4.18) to find

𝑅3 ≤ 𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖𝑛ℎ,𝒖𝑛𝐼 ) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖𝑛ℎ,𝒖𝑛ℎ) −𝜑(𝑡𝑛,𝑤𝑛,𝒖𝑛,𝒖𝑛𝐼 ) +𝜑(𝑡𝑛,𝑤𝑛,𝒖𝑛,𝒖𝑛ℎ)
=
(
𝜑(𝑡𝑛,𝑤𝑛,𝒖𝑛,𝒖𝑛ℎ) −𝜑(𝑡𝑛,𝑤

𝑛,𝒖𝑛,𝒖𝑛) +𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖
𝑛
ℎ
,𝒖𝑛) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛
ℎ
)
)

+
(
𝜑(𝑡𝑛,𝑤𝑛,𝒖𝑛,𝒖𝑛) −𝜑(𝑡𝑛,𝑤𝑛,𝒖𝑛,𝒖𝑛𝐼 )

)
+
(
𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛
𝐼
) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛)

)
. (4.19)

By (2.22) in Lemma 2.2, we get

𝜑(𝑡𝑛,𝑤𝑛,𝒖𝑛,𝒖𝑛ℎ) −𝜑(𝑡𝑛,𝑤
𝑛,𝒖𝑛,𝒖𝑛) +𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛
ℎ
)

≤𝐿𝑝 (𝑐0‖𝒖𝑛 − 𝒖𝑛
ℎ
‖𝑉 + ‖𝑤𝑛 −𝑤𝑛

ℎ
‖𝑊 )(

𝑐0‖𝜇‖𝐿∞(Γ𝐶 )‖𝒖𝑛 − 𝒖𝑛
ℎ
‖𝑉 + ‖𝑤𝑛 −𝑤𝑛

ℎ
‖𝑊 )

. (4.20)

By (2.25), 𝜑(𝑡, 𝑤, 𝟎, 𝒗) = 0 ∀ 𝒗 ∈ 𝑉 . By Lemma 2.2, we get

𝜑(𝑡𝑛,𝑤𝑛,𝒖𝑛,𝒖𝑛) −𝜑(𝑡𝑛,𝑤𝑛,𝒖𝑛,𝒖𝑛𝐼 ) = 𝜑(𝑡𝑛,𝑤
𝑛,𝒖𝑛,𝒖𝑛) −𝜑(𝑡𝑛,𝑤𝑛,𝒖𝑛,𝒖𝑛𝐼 )

+𝜑(𝑡𝑛,𝑤𝑛,𝟎,𝒖𝑛) −𝜑(𝑡𝑛,𝑤𝑛,𝟎,𝒖𝑛𝐼 )

≤𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒖𝑛‖𝐿2(Γ𝐶 )‖𝒖𝑛 − 𝒖𝑛
𝐼
‖𝐿2(Γ𝐶 ). (4.21)

Similarly, we have

𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖
𝑛
ℎ
,𝒖𝑛
𝐼
) −𝜑(𝑡𝑛,𝑤𝑛ℎ,𝒖

𝑛
ℎ
,𝒖𝑛) ≤𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒖𝑛ℎ‖𝐿2(Γ𝐶 )‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝐿2(Γ𝐶 ). (4.22)

Substitute (4.20)–(4.22) in (4.19) and use the boundedness results in Lemma 4.2 to obtain

𝑅3 ≤ 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒖𝑛 − 𝒖𝑛
ℎ
‖2𝑉 + 𝑐‖𝒖𝑛 − 𝒖𝑛

ℎ
‖𝑉 ‖𝑤𝑛 −𝑤𝑛ℎ‖𝑊

+ 𝑐‖𝑤𝑛 −𝑤𝑛
ℎ
‖2𝑊 + 𝑐‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝐿2(Γ𝐶 ). (4.23)

Using the Young inequality and triangle inequality

‖𝒖𝑛 − 𝒖𝑛
ℎ
‖𝑉 ≤ ‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝑉 + ‖𝒖𝑛

𝐼
− 𝒖𝑛

ℎ
‖𝑉 , (4.24)
39

we get
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𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒖𝑛 − 𝒖𝑛
ℎ
‖2𝑉 = 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )

(‖𝒆𝑛
ℎ
‖2𝑉 + 2‖𝒆𝑛

ℎ
‖𝑉 ‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝑉 + ‖𝒖𝑛 − 𝒖𝑛

𝐼
‖2𝑉 )

= 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒆𝑛ℎ‖2𝑉 + 2𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒆𝑛ℎ‖𝑉 ‖𝒖𝑛 − 𝒖𝑛
𝐼
‖𝑉

+𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒖𝑛 − 𝒖𝑛
𝐼
‖2𝑉

≤ 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒆𝑛ℎ‖2𝑉 + 𝜖1‖𝒆𝑛ℎ‖2𝑉 +
𝑐40𝐿

2
𝑝‖𝜇‖2𝐿∞(Γ𝐶 )

𝜖1
‖𝒖𝑛 − 𝒖𝑛

𝐼
‖2𝑉

+𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 )‖𝒖𝑛 − 𝒖𝑛
𝐼
‖2𝑉

≤ (𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 ) + 𝜖1)‖𝒆𝑛ℎ‖2𝑉 + 𝑐‖𝒖𝑛 − 𝒖𝑛
𝐼
‖2𝑉 , (4.25)

and

𝑐‖𝒖𝑛 − 𝒖𝑛
ℎ
‖𝑉 ‖𝑤𝑛 −𝑤𝑛ℎ‖𝑊 ≤ 𝑐‖𝒆𝑛

ℎ
‖𝑉 ‖𝑤𝑛 −𝑤𝑛ℎ‖𝑊 + 𝑐‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝑉 ‖𝑤𝑛 −𝑤𝑛ℎ‖𝑊

≤ 𝜖2‖𝒆𝑛ℎ‖2𝑉 + 𝑐
2

4𝜖2
‖𝑤𝑛 −𝑤𝑛

ℎ
‖2𝑊 + 𝑐

2
‖𝒖𝑛 − 𝒖𝑛

𝐼
‖2𝑉 + 𝑐

2
‖𝑤𝑛 −𝑤𝑛

ℎ
‖2𝑊

≤ 𝜖2‖𝒆𝑛ℎ‖2𝑉 + 𝑐‖𝒖𝑛 − 𝒖𝑛
𝐼
‖2𝑉 + 𝑐‖𝑤𝑛 −𝑤𝑛

ℎ
‖2𝑊 . (4.26)

Due to the smallness condition 𝐶1 > 𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 ), 𝐴 ∶= 𝐶1 −𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 ) is positive. We set 𝜖1 = 𝜖2 =𝐴∕4 and use (4.25)–(4.26)
in (4.23) to obtain

𝑅3 ≤ (𝑐20𝐿𝑝‖𝜇‖𝐿∞(Γ𝐶 ) + 𝜖1 + 𝜖2)‖𝒆𝑛ℎ‖2𝑉 + 𝑐‖𝒖𝑛 − 𝒖𝑛
𝐼
‖2𝑉 + 𝑐‖𝜃𝑛‖2𝑊 + 𝑐‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝐿2(Γ𝐶 ). (4.27)

Using (4.12), (4.13) and (4.27) in (4.11), combine the triangle inequality

𝐴

2
‖𝒆𝑛
ℎ
‖2𝑉 ≤ 𝑐 (‖𝒖𝑛 − 𝒖𝑛𝜋‖𝑉 ,ℎ + ‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝑉 + ‖𝒇 − 𝒇ℎ‖𝑉 ′

ℎ

)‖𝒆𝑛
ℎ
‖𝑉

+ 𝑐‖𝒖𝑛 − 𝒖𝑛
𝐼
‖2𝑉 + 𝑐‖𝜃𝑛‖2𝑊 + 𝑐‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝐿2(Γ𝐶 ). (4.28)

Applying the elementary result

𝑎, 𝑏, 𝑥 ≥ 0, 𝑥2 ≤ 𝑎𝑥+ 𝑏 ⇒ 𝑥2 ≤ 𝑎2 + 2𝑏,

we obtain

‖𝒆𝑛
ℎ
‖2𝑉 ≤ 𝑐 (‖𝒖𝑛 − 𝒖𝑛𝜋‖𝑉 ,ℎ + ‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝑉 + ‖𝒇 − 𝒇ℎ‖𝑉 ′

ℎ

)2
+ 𝑐‖𝜃𝑛‖2𝑊 + 𝑐‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝐿2(Γ𝐶 ). (4.29)

By the triangle inequality (4.24) and (4.7), we derive the result (4.6). ■

Combining the error estimate results of displacement and wear function, we have the following Ceá type inequality.

Theorem 4.6. Under the assumptions stated in Theorem 3.4 and Assumption 4.4, we have the following error estimate:

max
1≤𝑛≤𝑁

(‖𝒆𝑛‖2𝑉 + ‖𝜃𝑛‖2𝑊 ) ≤ 𝑐𝑘2 + 𝑐𝑘‖𝒆0‖2𝑉 + 𝑐 max
1≤𝑛≤𝑁 ‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝐿2(Γ𝐶 )

+ max
1≤𝑛≤𝑁 𝑐

(‖𝒖𝑛 − 𝒖𝑛𝜋‖𝑉 ,ℎ + ‖𝒖𝑛 − 𝒖𝑛
𝐼
‖𝑉 + ‖𝒇 − 𝒇ℎ‖𝑉 ′

ℎ

)2
. (4.30)

Proof. From (4.4) and (4.6),

‖𝒆𝑛‖2𝑉 ≤ 𝑐 (‖𝒖𝑛 − 𝒖𝑛𝜋‖𝑉 ,ℎ + ‖𝒖𝑛 − 𝒖𝑛
𝐼
‖𝑉 + ‖𝒇 − 𝒇ℎ‖𝑉 ′

ℎ

)2
+ 𝑐‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝐿2(Γ𝐶 )

+ 𝑐𝑘2 + 𝑐
𝑛−1∑
𝑚=0
𝑘𝑚

(‖𝒆𝑚‖2𝑉 + ‖𝜃𝑚‖2𝑊 )
. (4.31)

Since 𝜃0 =𝑤0 −𝑤0
ℎ
= 0, add (4.4) and (4.31) together to get

‖𝒆𝑛‖2𝑉 + ‖𝜃𝑛‖2𝑊 ≤ 𝑐 (‖𝒖𝑛 − 𝒖𝑛𝜋‖𝑉 ,ℎ + ‖𝒖𝑛 − 𝒖𝑛
𝐼
‖𝑉 + ‖𝒇 − 𝒇ℎ‖𝑉 ′

ℎ

)2
+ 𝑐‖𝒖𝑛 − 𝒖𝑛

𝐼
‖𝐿2(Γ𝐶 )

+ 𝑐𝑘2 + 𝑐𝑘‖𝒆0‖2𝑉 + 𝑐
𝑛−1∑
𝑚=1
𝑘𝑚

(‖𝒆𝑚‖2𝑉 + ‖𝜃𝑚‖2𝑊 )
. (4.32)

Applying Lemma 4.1, we derive the inequality (4.30) from (4.32). ■
40

We proceed to derive an optimal order error estimate for the fully discrete scheme.
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Theorem 4.7. Under the assumptions stated in Theorem 3.4 and Assumption 4.4, for the lowest order VEM with 𝑘 = 1, we have the optimal 
order error estimate

max
1≤𝑛≤𝑁

(‖𝒆𝑛‖𝑉 + ‖𝜃𝑛‖𝑊 ) ≤ 𝑐 (𝑘+ ℎ) . (4.33)

Proof. First, we bound the error ‖𝒆0‖𝑉 . By Lemma 4.5 and ‖𝜃0‖𝑊 = 0, we get

‖𝒆0‖2𝑉 ≤ 𝑐 (‖𝒖0 − 𝒖0𝜋‖𝑉 ,ℎ + ‖𝒖0 − 𝒖0
𝐼
‖𝑉 + ‖𝒇 − 𝒇ℎ‖𝑉 ′

ℎ

)2
+ 𝑐‖𝒖0 − 𝒖0

𝐼
‖𝐿2(Γ𝐶 ). (4.34)

For the lowest order VEM, by the approximation result in Proposition 3.1, for 𝑛 ∈ {0, ⋯ , 𝑁}, we have

‖𝒖𝑛 − 𝒖𝑛𝜋‖𝑉 ,ℎ ≤ 𝑐ℎ|𝒖𝑛|2,Ω, (4.35)‖𝒖𝑛 − 𝒖𝑛
𝐼
‖𝑉 ≤ 𝑐ℎ|𝒖𝑛|2,Ω, (4.36)

‖𝒖𝑛 − 𝒖𝑛
𝐼
‖𝐿2(Γ𝐶 ) ≤ 𝑐ℎ2( 𝐼∑

𝑖=1
|𝒖𝑛|22,Γ𝐶,𝑖 )1∕2. (4.37)

In addition, using the approximation results in (3.16), we get

‖𝒇 1 − 𝒇 1ℎ‖𝑉 ′
ℎ
≤ 𝑐 ℎ‖𝒇 1‖0. (4.38)

By using Theorem 4.6 and putting (4.34)–(4.38) into (4.30), we obtain

max
1≤𝑛≤𝑁

(‖𝒆𝑛‖2𝑉 + ‖𝜃𝑛‖2𝑊 ) ≤ 𝑐𝑘2 + 𝑐𝑘ℎ2 + 𝑐ℎ2 ≤ 𝑐(𝑘+ ℎ)2.
Then we have the optimal-order error estimate (4.33). ■

Remark 4.8. It is known that for the numerical solution of a variational inequality, high-order finite elements do not lead to optimal 
order error estimates even if the solution is assumed to be smooth ([12]). Moreover, it is also known that the smoothness of the 
solution of a variational inequality is quite limited ([11]). For these reasons, it makes sense only to consider numerical methods with 
the lowest-order element (𝑘 = 1).

Remark 4.9. The term max1≤𝑛≤𝑁 ‖𝒖𝑛 −𝒖𝑛
𝐼
‖𝐿2(Γ𝐶 ) in (4.30) represents an error occurring along the contact boundary. One strategy to 

reduce this error is to increase the degree of freedom along the contact boundary. As articulated in [36], we can do it by employing 
a locally refined mesh along the contact boundary. This approach is facilitated by the virtual element framework, wherein the 
incorporation of hanging nodes is permitted—a distinct advantage of VEM in tackling contact problems.

5. Numerical results

In this section, we report computer simulation results on some numerical experiments. Let 𝑑 = 2 and consider a rectangular shaped 
set Ω = (0, 2) × (0, 1) shown in Fig. 2 with the following partition of the boundary

Γ𝐷 = {0} × [0,1], Γ𝑁 = ([0,2] × {1}) ∪ ({2} × [0,1]) , Γ𝐶 = [0,2] × {0}.

The linear elasticity operator  is defined by

(𝝉) = 2 𝜂 𝝉 + 𝜆 tr(𝝉), 𝝉 ∈ 𝕊2,

where  denotes the identity matrix, tr denotes the trace of the matrix, 𝜆 > 0 and 𝜂 > 0 are the Lamé coefficients. In our simulations, 
we select 𝜆 = 𝜂 = 4, 𝑇 = 1 and take the following dimensionless data:

𝒖0(𝒙) = (0,0), 𝒙 ∈Ω,

𝑝(𝑟) =
{

0.4𝑟, 𝑟 ∈ [0,∞),
0, 𝑟 ∈ (−∞,0),

𝒇 1(𝒙, 𝑡) = (0,−0.06), 𝒙 ∈Ω, 𝑡 ∈ [0, 𝑇 ],
𝒇 2(𝒙, 𝑡) = (0,0), 𝒙 ∈ Γ𝑁, 𝑡 ∈ [0, 𝑇 ],
𝑔 = 0.1.

Remark 5.1. As 𝜆 tends towards infinity, many numerical methods for solving the linear elasticity system exhibit a locking phe-
nomenon. In the literature, some locking-free virtual element methods have been developed. In [40], a nonconforming virtual element 
method for solving the linear elasticity problem is shown to uniformly converge with respect to the Lamé constant. A mixed virtual 
element method is introduced in [10] for solving near-incompressible linear elastic equations. A stress-hybrid virtual element method 
41

on quadrilateral meshes is proposed in [9] for compressible and nearly-incompressible linear elasticity.
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Fig. 2. Initial setting.

Fig. 3. Wear and penetration for 𝜇 = 0.2, 𝜅 = 2, 𝒗∗ = (1,0) in Example 5.2.

We use the linear virtual element space 𝑉ℎ defined in (3.1) and its subset 𝑈ℎ defined in (3.4). To solve Problem 3.3, we use the 
Uzawa iteration described in [18] by introducing two Lagrange multipliers.

We first illustrate the impact of certain input data on the deformation of the body.

Example 5.2. In this example, we choose the following three data sets:

1. 𝜇 = 0.2, 𝜅 = 2, 𝒗∗ = (1, 0);
2. 𝜇 = 0.2, 𝜅 = 10, 𝒗∗ = (1, 0);
3. 𝜇 = 0.6, 𝜅 = 10, 𝒗∗ = (1, 0).

The numerical solutions correspond to the time step size 𝑘 = 1∕64, where the boundary Γ𝐶 of the body is divided into 32 equal parts.

In all cases, we show the wear 𝑤 and penetration 𝑢𝜈 −𝑤 of the soft layer of material covering Γ𝐶 at 𝑡 = 0.25, 0.5, 0.75, 1. Figs. 3–5
42

show corresponding graphs at these four moments. We observe a gradual increase of wear over time, which is consistent with our 
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Fig. 4. Wear and penetration for 𝜇 = 0.2, 𝜅 = 10, 𝒗∗ = (1,0) in Example 5.2.

Fig. 5. Wear and penetration for 𝜇 = 0.6, 𝜅 = 10, 𝒗∗ = (1,0) in Example 5.2.

daily life experience. Fig. 3 and Fig. 4 show that when we increase the wear coefficient 𝜅 from 2 to 10, the wear on the soft layer 
increases. Fig. 4 and Fig. 5 show that when we increase the friction coefficient 𝜇 from 0.2 to 0.6, the wear on the soft layer decreases, 
as a consequence of increased friction between the soft layer of material covering Γ𝐶 and the rigid foundation.

Example 5.3. We report numerical results for four different time-step subdivisions, which are as follows:

1. Uniform partition with a time step of 𝑘 = 1∕64;
43

2. Non-uniform partition with 𝑘2𝑙−1 = 1∕128 and 𝑘2𝑙 = 3∕128 for 𝑙 = 1, 2, … ;
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Fig. 6. Wear at 𝑡 = 1 in Example 5.3.

3. Uniform partition with a time step of 𝑘 = 1∕32;
4. Uniform partition with a time step of 𝑘 = 1∕16.

In all cases, we study the wear on the soft layer for 𝑡 = 1. In the simulation, we used a mesh size of ℎ = 1∕16, and the coefficients 
𝜇 = 0.2, 𝜅 = 2, 𝒗∗ = (1, 0).

Fig. 6 shows the numerical solutions of the wear for the different time-interval partitions. It shows that for this example, the 
numerical solution for the non-uniform partition is similar to that for uniform partitions.

In order to verify the effectiveness of VEM on general polygonal meshes, we consider the following example:

Example 5.4. In space, we use the following two groups of grids:

1. Uniform mesh, the mesh size is ℎ = 1∕32, a total of 2048 squares;
2. General polygon mesh division, a total of 2048 polygons.

We compute the numerical solution of displacement 𝒖ℎ and the wear on the soft layer. In the simulation, time step-size 𝑘 = 1∕64, 
and the coefficients 𝜇 = 0.2, 𝜅 = 2, 𝒗∗ = (1, 0).

Fig. 7 and Fig. 8 show the numerical solutions of the displacement 𝒖ℎ = (𝑢ℎ1, 𝑢ℎ2) for the two meshes, respectively. We observe 
that the displacement 𝑢ℎ1 and 𝑢ℎ1 on these meshes are almost the same, which shows that the virtual element method works well on 
meshes. In addition, as shown in Fig. 9, we give the scatter plot of normal displacement on the contact boundary and the wear of 
the soft layer. It can be observed that the wear and normal displacement almost coincide at the same boundary position. At different 
locations, the two sets of scatter plots are almost smoothly connected and highly consistent, which further illustrates the effectiveness 
of VEM on general polygonal meshes.

Example 5.5. We use a uniform discretization of the problem domain and time interval according to the spatial discretization pa-
rameter ℎ and time step 𝑘, respectively. The boundary Γ𝐶 of Ω is divided into 2∕ℎ parts. We start with ℎ = 1∕4 and 𝑘 = 1∕4, which 
are successively halved. We give the relative error and error order of displacement and wear.

Since we do not know the true solution of the variational inequality, we use the numerical solution computed on a finer grid as 
the reference solution. In this example, we choose the numerical solution with ℎ = 𝑘 = 1∕256 as the reference solution 𝒖𝑟𝑒𝑓 and 𝑤𝑟𝑒𝑓 . 
Because the virtual element solution 𝒖ℎ is not computable directly, we compute the relative error‖‖‖Π1(𝒖ℎ − 𝒖𝑟𝑒𝑓 )

‖‖‖𝐻1 ∕
‖‖‖Π1𝒖𝑟𝑒𝑓

‖‖‖𝐻1 ,

where the restriction of the projection Π1 on 𝐾 is defined by (3.8). In Table 1, we report the 𝐻1 displacement error of the numerical 
solutions and the corresponding convergence orders. We observe that the numerical convergence orders are close to one, which 
matches well the theoretical prediction. For the wear function, we compute ‖𝑤ℎ−𝑤𝑟𝑒𝑓‖𝐿2(Γ𝐶 )∕‖𝑤𝑟𝑒𝑓‖𝐿2(Γ𝐶 ). In Table 2, the numerical 
44

convergence orders for the numerical solutions of the wear function are also close to 1, which is consistent with theoretical analysis.
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Fig. 7. Approximate solution for square mesh of ℎ = 2−5 in Example 5.4. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 8. Approximate solution for general polygon mesh of ℎ = 2−5 in Example 5.4.

Table 1

Numerical error for displacement in Example 5.5.

ℎ = 𝑘 2−2 2−3 2−4 2−5 2−6

Error 7.0581e-2 3.9059e-2 2.1698e-2 1.2084e-2 6.5023e-3
Order - 0.85365 0.84807 0.84448 0.89407

Table 2

Numerical error for wear in Example 5.5.

ℎ = 𝑘 2−2 2−3 2−4 2−5 2−6

Error 1.1153e-1 5.4917e-2 2.5228e-2 1.1795e-2 5.4869e-3
Order - 1.0221 1.1223 1.0968 1.1041
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Fig. 9. Wear 𝑤 and the normal displacement 𝑢𝜈 in Example 5.4.
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