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1. Introduction

To model slip or leak phenomena for real-world applications of fluid flows, Fujita proposed slip or leak boundary conditions of
friction type for boundary value problems of steady motions of viscous incompressible fluids in the early 1990s [1,2]. Numerous
studies have followed in this area. Further analysis of such problems, including numerical approximation and regularity of the
solutions, was investigated in [3-7], and the conditions were also applied in non-Newtonian fluids [8]. Numerical methods for
solving these types of problems were studied in [9-15]. In these studies, the slip or leak boundary conditions are modeled by
nonsmooth monotone relations, and the corresponding weak formulations governed by the Stokes or Navier-Stokes equations are
variational inequalities. When the boundary conditions involve nonsmooth non-monotone relations, the weak formulations become
hemivariational inequalities, and they are studied in a number of papers, e.g., [16-21].

Hemivariational inequalities, or more generally, variational-hemivariational inequalities, were first introduced by Panagiotopou-
los in early 1980s [22]. Early comprehensive references on hemivariational inequalities include [23,24], while recent studies
on the mathematical theories of this subject can be found in [25-28]. In these references, abstract theory of pseudomonotone
operators is applied for solution existence. An alternative approach on variational-hemivariational inequalities, more suitable for
researchers in applied mathematics, sciences and engineering, is started in [29,30] and is well documented in [31]. Since there
is no analytic solution formula to solve variational-hemivariational inequalities, numerical methods are required to solve the
problems. The book [32] investigates finite element approximations of hemivariational inequalities, discussing the convergence
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of the numerical methods and presenting solution algorithms. Since the first optimal order error estimate for the numerical solution
of a hemivariational inequality was derived in [33], many articles have been published on error analysis and optimal order error
estimation for solving a variety of variational-hemivariational inequalities. For a comprehensive summary of the numerical analysis
of hemivariational inequalities, the reader is referred to the survey papers [34,35].

Damping effects arise from resistance to the motion of flows. Many physical processes, such as porous media flows, drag or
friction effects, and various dissipative mechanisms, involve damping phenomena (cf. [36,37]). The stationary and non-stationary
Navier-Stokes equations with damping have been studied in several papers. An initial-boundary value problem of the Navier—
Stokes equations with damping over the entire spatial space is studied in [38-40]. Analysis and numerical methods for a stationary
Navier-Stokes variational inequality with damping can be found in [41,42]. In this paper, we study a Navier-Stokes hemivariational
inequality for a viscous incompressible fluid flow with damping effect that is subject to a nonsmooth, not necessarily monotone, slip
boundary condition of friction type. This represents a novel mathematical model designed to describe incompressible fluid flows
influenced by damping effects, capturing a wider range of physical phenomena. Unlike most existing works that rely on abstract
surjectivity results for pseudomonotone operators to prove the existence of solutions to hemivariational inequalities, our method
is based on the well-posedness result from Ref. [43] on a Stokes hemivariational inequality with damping effect and follows the
approach presented in [31, Chapter 8]. We construct two auxiliary problems and apply fixed-point arguments twice to prove the
well-posedness of the Navier—Stokes hemivariational inequality. Only basic notions and results from functional analysis are used
throughout the proof. The mixed finite element method is used to solve the Navier-Stokes hemivariational inequality and the derived
error estimate is of optimal order for low-order mixed element pairs satisfying the discrete inf-sup condition under suitable solution
regularity assumptions. An efficient iterative algorithm is further presented to solve the problem, and numerical results are provided
to validate the theoretical analysis.

The rest of the paper is organized as follows. In Section 2, we describe the physical setting of the fluid, present the corresponding
Navier-Stokes hemivariational inequality, and provide the necessary preliminaries. In Section 3, we show an existence and
uniqueness result for the Navier-Stokes hemivariational inequality. In Section 4, we apply the mixed finite element method to
solve the Navier—Stokes hemivariational inequality and derive error estimates for the finite element solutions. In Section 5, we
introduce solution algorithms to solve the discrete Navier-Stokes hemivariational inequality and a related discrete Navier-Stokes
variational inequality. In Section 6, we report numerical simulation results.

2. The Navier-Stokes hemivariational inequality

We first introduce some notation. Let R¢ be the d-dimensional real Euclidean space, and let S¢ be the space of second-order
symmetric tensors on R?. In R¢ and S¢, the standard inner products and the induced norms are

u-v=uyuv, [V|pd = (@ - v!/2 forallu= W), v=(v) € R,

6T =01, lolse = (6 : 0)'/? forall 6 = (s;). T = (1) € S°.
The summation convention over a repeated index is adopted, e.g., u;v; stands for u;v; + - +uy0,.

We consider the Navier—Stokes equations in a domain £ in R?, d = 2 or 3. Assume the boundary I" = 912 is Lipschitz continuous.
The stationary Navier-Stokes equations with damping for the velocity u : 2 — R“ and pressure p : 2 — R with given external

force f : 2 — R? are
—divQue)) + - Vu+alul"?u+Vp=f in Q, 2.1)
divu=0 in Q. (2.2)

Here e(u) = %(Vu + (Vu)") denotes the deformation rate tensor, u > 0 is the kinematic viscosity coefficient. The damping effect is
represented by the term « |u|"~2u in (2.1), where a > 0 and r > 2 are two constants. The parameter « is known as the Forchheimer
coefficient, which accounts for the inertial effects of the fluid. The Forchheimer law extends Darcy’s law by incorporating the
additional nonlinear term to address the effects that become significant at higher flow velocities. We assume

2<r<owifd=2, 2<r<6ifd=3. (2.3)

Then, by the Sobolev embedding theorem [44], H'(2) < L’"(£2). We split the boundary I' to two disjoint measurable parts:
I = T, UT,, where I, and I are relatively open, |Iy| > 0, |I}| > 0, and I'; n I, = #. We comment on the case |I;| = 0 at
the end of Section 3. Let v = (v, ..., v,)T represent the unit outward normal vector on the boundary I'. The normal and tangential
components of a vector field u on I" are given by u, = u - v and u, = u — u, v, respectively. The normal and tangential components
of an S§¢-valued field ¢ on the boundary are ¢, = v ov and o, = 6v — 5, V.

Egs. (2.1)-(2.2) are supplemented by the following boundary conditions

u=0 on I, 2.4
u,=0, —o,€0y(u,) onl]. (2.5)
Here, o, is the tangential component of the stress tensor 6 = —pI + 2ve(u), I being the identity matrix. The super-potential

w : R? - R is assumed to be locally Lipschitz continuous, and dy is the subdifferential of y in the sense of Clarke, a concept
briefly reviewed below. The relation (2.5) is known as a slip boundary condition. The first part of the condition (2.5) indicates that
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there is no fluid leak on I',. The second part of (2.5) specifies a friction condition for the friction o, with respect to the tangential
velocity u.. When the super-potential y is convex, the weak formulation takes the form of a variational inequality. The specific case
where y(v,) = g |v,|, with g > 0, was previously studied in [42]. In this paper, we do not assume the convexity of y, and the weak
formulation of the problem (2.1)—(2.5) is a hemivariational inequality.

We now recall the definition of the generalized directional derivative and generalized subdifferential in the sense of Clarke [45].
For a locally Lipschitz continuous functional ¥ : ¥V — R defined on a real Banach space V, the generalized (Clarke) directional
derivative of ¥ at u € V in the direction v € V is defined by

b4 Av) =¥
YOy v) := lim sup M
wot, 110 A

>

whereas the generalized subdifferential of ¥ at u € V is
0P = {neV* | ¥uuv)2 (o) VveV}.
We refer to [45] for the basic properties of the generalized directional derivative and the generalized subdifferential, and we

present some fundamental ones needed for this paper.

Proposition 2.1. Let V be a Banach space.

@) If ¥ : V - Ris locally Lipschitz continuous and convex, then the subdifferential 0¥ (u) at any u € V in the sense of Clarke coincides
with the convex subdifferential 0¥ (u).

(ii) Let ¥ : V — R be locally Lipschitz continuous. Then d(A¥)(u) = A% () for all A € R and all u € V. Moreover, ¥° is positively
homogeneous and subadditive, i.e.,

YOou; Av) = A¥°w;0) VA0, wveV,
PO(u; v +0y) < PO(u; vy) + PO(u; vy) Yu,v,0, €V.
(iii) Let ¥,,¥, : V - R be locally Lipschitz functions. Then the inclusion
AP, + W) u) C 0P, (u) + 0¥, (u) VYueV (2.6)
holds, or equivalently,

) + %) w;v) <P 0) + PYw;0) VuveV. 2.7

To present the weak formulation of the problem, we introduce some function spaces. For the velocity variable, let
V={ve H' (@R |v=00n I, v,=00nTI}. (2.8)
Since || > 0, Korn’s inequality holds (cf. [46, p. 79]): for a constant ¢, > 0 depending only on 2 and I,
||v||H1(Q._Rd) < celle(v)lle(QSd) YvevV. (2.9)

Consequently, V is a Hilbert space with the inner product (u,v), := (¢(v), e@)) 12(Q:84) and the induced norm || - ||, = [le()]| 12(Q:84)
is equivalent to the standard H'!(£2;R?)-norm over V. The following trace inequality holds

-1/2
ol 2y ey < 45 Plelly Vo eV, 2.10)
where 4, > 0 is the smallest eigenvalue of the eigenvalue problem

uev, /e(u) ce(v)dx = ﬂ/ u,v.ds YvevV. (2.11)
Q n

We further introduce two subspaces of V:
Viy ={veV |divv=0ae. in 2},
Vo= Hj (RY).

For the pressure variable, we use the space

Q:Lg(g):{qeﬁ(gn/qu:o}. (2.12)
Q
Define the following forms:
a(w;u,v) = ay(u,v) + ay(w;u,v) Yw,u,vev, (2.13)
ay(u,v) = 2/4/ eu) : ew)dx YuvevV, (2.14)
Q
a(w;u,v) = a/ |w|’_2u~v dx Yw,u,vevV, (2.15)
Q
d(w;u,v):/(w-V)u~vdx Yw,uvev, (2.16)
Q
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b(v,q):—/qdivvdx YveV,qeO,
Q

(2.17)

and make the assumption throughout this paper that f € V*. Obviously, the bilinear form aqy(-,-) : ¥V x V — R, bilinear form

b(-,-) : ¥V x O — R and trilinear form d(;-,-) : ¥V XV xV — R are bounded. Moreover, g(-,) is coercive on V:

ag(v,v) = 2/4||v||%, Yvev.

The following inf-sup condition holds [47]: for a constant f, > 0,

b, q)
Bollall 2 < sup
E@ = sen vlly

VqeoQ.

Concerning the trilinear form d(-,-,-),
du,v,w)=—-du,w,v) and du,v,v)=0 VueVy, v,weV.
We use ¢; > 0 for the boundedness constant:
ld(:v.w)] < e llully Iwllylwly YuvweV.
For r in the range specified in (2.3), we have [43]
|y u,0)| < cllully lwlly YuveV,
oy s, w) = ay @30, w)] < ¢ (Nl + 101720, ) lu = wlly lwlly YavweV.
Inequality (2.22) can be replaced with [43]
|a) (s u, w) — a,(w; v, w)| < c (lully? + loll}2) llu-vllyllwly, Vuv.weV.

The following lemma will be used later in this paper.

Lemma 2.2. ([48, Section 5.3]) For r > 2,
(Inl"2n— 1EI"2E) -n— &) 20 VEneR?,
I 2n— 1612 < c(nl+ 1) In—¢] vEneR”

Regarding the super-potential v : RY — R, we assume the following hypothesis:
H(y). v : R? = R is locally Lipschitz, and there exist constants @y, ¢, 20 such that

wO& 18— E) +y(Eri 8 — &) <, & — &P VE.E ERY,
7l <co+c)l€] VEER 7€ ).
Condition (2.26) is known as a relaxed monotonicity condition [27] and can be written equivalently as
M —m)- (& —&) 2 ~a, 16 — &P VEER) n, €0p(g). i= 1.2
Combining (2.10) and (2.26), we have, for v,,v, € V,

0 . 0 . 2
/ [W (vl,r’ v2,r - vl.r) +y (UZ.T’ vl,r - vZ,T)] ds < aq/ / |vl,r - U2,r| ds
I Iy

1 2
S dy vy — ol

Examples of non-convex functions y satisfying H(y) can be found in [34, pp. 186—187].
By a standard procedure, we obtain the following weak formulation for the problem (2.1)-(2.5).

Problem 2.3. Find (u, p) € V x Q such that

a(u;u,v)+d(u;u,v)+b(v,p)+/ q/o(ur;vr)ds2<f,v) Yvev,
I

bu,q)=0 VqeoOQ.

(2.18)

(2.19)

(2.20)

(2.21)
(2.22)

(2.23)

(2.24)
(2.25)

(2.26)
(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

We comment that in the special case of a convex y, the weak formulation of the problem takes the form of a variational inequality.

Problem 2.4. Find (u,p) € V x QO such that

a(u;u,v—u)+d(u;u,v—u)+b(v—u,p)+/ y/(vr)ds—/ w(u,)ds

I I
>(f,v—u)y Yvev,

b(u,q)=0 VqeQ.

(2.32)
(2.33)
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3. Well-posedness

In this section, we explore the well-posedness of Problem 2.3. As a preparation, we first introduce a boundedness result on any
solution of Problem 2.3. We will assume

a, <2l 3.1)

and define a subset of the space V:

Ky ={veVyllvly <M}, (3.2)
where
cody PIL 2 + £ Ny
f = -1 ’ (33)
2u _au/)“o
Lemma 3.1. If Problem 2.3 has a solution (u,p) € V x Q and (3.1) holds, then
llully < M. (3.4)

Proof. Let v =—u in (2.30) to get

ag(u,u) + ay(u;u,u) < —d(u;u,u) — b(u, p) + / u/o(u,; —u)ds+(f,u).
I

Note that u € V. It follows known from (2.15), (2.20) and (2.31) that a;(u;u,u) > 0, d(u;u,u) = 0 and b(u, p) = 0. Hence we
derive from the previous inequality that

ag(u,u) < /r wOu,, —u,)ds + (f,u). (3.5
|
Write
v —u,) = [ —u,) + w°0su,)] - y'O0;u,).
Apply H(w) to bound the two parts of the right side of the above equality to obtain
w0y —u) < a lu ] + colu . 3.6)

Therefore, by the trace inequality (2.10), we derive from (3.5) that

2
L2

-1 2 1/2 ,-1/2
< ay, A5 Ml + co 125 2 lully, + 111y lully-

2 1/2
2pllull? < a, llull /

+eol N1 Nl g2y + 1L Ny Hlully
Therefore, the bound (3.4) holds. []

For the well-posedness result for Problem 2.3, we consider an auxiliary problem.
Problem 3.2. For any w, € V, any w, € Ky, find (u, p) € V x O such that

a(u;u,v) + b(v, p) +/ WO v)ds > (f.v)y —dwy,w,,v) Yvev, (3.7)
I

bu,q)=0 VYqeoO. (3.8)

The next result can be derived from [43, Theorem 3.6].

Proposition 3.3. Assume H(y) and (3.1). For any w, € V, any w, € K £ Problem 3.2 has a unique solution (u,p) € V X Q.
Proposition 3.3 allows us to define an operator P, : V' — V by
P(w))=u,

where u is the first component of the solution to Problem 3.2. Proceeding further, we will need the condition

cgM
— T < (3.9)
2;4—0:,,,)»6'

Proposition 3.4. Assume H(y), (3.1) and (3.9). Then for any w, € K £ the operator P, : V — V is a contraction.
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Proof. Let w,,w, € V, and denote by (u, p), (u, p) € V x Q the corresponding solutions of Problem 3.2. Then for any (v.q) € V X Q,
we have the relations

a(u; u, v)+b(v,§)+/r wo@, ) ds > (f,v) — dw,, w,, v), (3.10)
b(@, q) = 0, | (3.11)
a(u; u, V)+b(v,p)+/r v v ds > (f,v) — dwywy,v), (3.12)
bu, q) = 0. | (3.13)

Take v=u—u in (3.10), v =u—u in (3.12), add the two resulting inequalities, and use the Egs. (3.11) and (3.13) to obtain
ag—u,u—u) <aWuu—u)+a U uu—u)
+/r [wo@, s u, —u,) + ', u, —u,)|ds
- d(llvz;ﬁl —w,u—u.
From Lemma 2.2, we know that a;(@;u, u — u) + a;(u; u,u — u) < 0. Then, applying (2.29), we have

= 2 ~1)7 2 - =
2pllu—ully, <ay iy llu—ully +cllwllyllw, —willyllu—ully.

v S dydy
Consequently,
— callwslly caMy —
[l —ull, < T u—a il [lw; —wlly < r—a T llw; —willy.
~ Ay H= oy dy

Hence, the operator P, : V — V is a contraction. []

Under the conditions stated in Proposition 3.4, we can apply the Banach fixed-point theorem to conclude that for any w, € K,
the operator P; has a unique fixed-point u € V. Then, for some element p € Q, (u,p) € V X Q solves the next problem.

Problem 3.5. For any w, € K 15 find (u, p) € V x Q such that
a(u;u,v) + b(v, p) + d(wy;u,v) + / lyo(u,; v)ds>{(f.,v) VveV, (3.14)
Iy

bu,q)=0 VYqeO. (3.15)

Similar to Lemma 3.1, we can show that the solution component u also belongs to the set K ;. This allows us to define an operator
P K; > K, by

P,(w,) = u.

Proposition 3.6. Under the assumptions H(y), (3.1) and (3.9), the operator P, : K + — K is a contraction.

Proof. Letw,, w, € K 15 and denote by (u, p), (u, p) € V x Q the corresponding solutions of Problem 3.5. Then, for any (v,q) € V X Q,

a(; u,v) + d(W,; u, v) + b(v, p) +/F WO, v,)ds 2 (f,v), (3.16)
b(u,q) =0, | (3.17)
a(u; u, v) + d(wy; u,v) + b(v, p) + /F wousv)ds > (fv), (3.18)
b(u,q) =0. l (3.19)

Take v =u—u in (3.16), v =u —u in (3.18), add the two resulting inequalities and use the Egs. (3.17) and (3.19) to obtain
agu—u,u—u)<aWuu—u)+a W uu—u)
+ [ s, =)+ 0T - )] ds
I
+dWwysu,u—u)+dw,;u,u—u). (3.20)
Applying (2.20), we can write

dwy;u,u—u)+dw,,u,u—u) =d(w,;u,u —u)+dw,;u,u—u)

=dw, —w,;u,u—u).
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Then,
A@y;d,u — ) + dwy;u, 1 —u) < ¢y llully @, — wyly Iz — ull,
S egMyllw, —w,lly llu—ully.
From (3.20), (2.24) and (2.29), we have
2ullid—ully < a, 25 1@ - ull} + g M1, — w,lly I3 - ull, .
Consequently,
chf

[lu—ull, <
< — -
u (xwﬁo

lw, —w;lly.
Hence, the operator P,: K; — K[ is a contraction. []

Theorem 3.7. Assume H(y), (3.1) and (3.9). Then, Problem 2.3 has a unique solution (u,p) € V X Q, and for a constant ¢ > 0,

lully < (14111 (3.21)
lull e < e (1+ 1157 ). (3.22)
lellg < e (1+1£15.). (3.23)

Moreover, u € V depends Lipschitz continuously on f € V*, and p € Q depends locally Lipschitz continuously on f € V*.

Proof. From Proposition 3.6, by the Banach fixed-point theorem, the operator P, has a unique fixed point u € K. Then, for some
element p € Q, (u,p) € V x Q is a solution of Problem 2.3 and the solution component u is unique. To show the uniqueness of p,
assume (u, p) € V x Q is another solution of Problem 2.3. From (2.30),

a(u;u,v) +duu,v)+ b, p) =(f,v) YveV,, (3.24)
a(u;u,v)+du;u,v)+ b, p) =(f,v) YveV,.

Subtract the two equalities to obtain
bw,p—p)=0 Vvel,.

By the inf-sup condition (2.19),

- b(v,p—p)
Bollp = pllg < sup ——— =
vevy vy

Hence, p = p and the solution component p is unique.
To prove (3.21), we take v = —u in (2.30) to get

2,4/ le)|?dx + a/ lu|"dx < / wO(u,;—u,)ds + (f.u).
Q Q r
From the proof in [43, Theorem 3.6], we deduce that

2 2
lully + ey, 0 < e (L+1F15-) - (3.25)

From (2.19) and (3.24), we have

Bollpllo < sup —— [(£.0) — ag(u,v) — ay (s, v) — d(us u, )] .
AT

By the boundedness of the bilinear form q(-, -), the trilinear form d(-;-,-) and the bound (2.21),

lellg < (£l + lully + lully, + Nl )

Hence, (3.23) holds.
Finally, we prove the Lipschitz continuity of the solution. For any f,, f, € V*, let (u;,p,), (uy, p,) € V X O be the corresponding
solutions of Problem 2.3. Then, for allv e V,

a(ul;ul,v)+d(u1;u1,v)+b(v,pl)+/ lllo(ulyf;vr)ds 2 (f1,v), (3.26)

I

a(uy; uy,v) + d(uy;u,,v) + b(v, py) +/ wo(uz,f;vf)ds > (fy.0). (3.27)
I

Taking v = u, —u, in (3.26), v = u; — u, in (3.27), adding the two resulting inequalities and using Eq. (2.31) for u = u; and u,, we
obtain that

ag(uy —up,uy —up) < ap(upup,uy —uy) +a(Uy;uy, uyp — uy)
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+dupsuy,uy —uy) +duy;uy, up —uy)
0 . 0 .
+/ [W (ul,r7u2,r _ul,‘[)+ll’ (u2,‘r’u],‘r _u2,r)] ds
I

+(f1 = fruy —up),
which leads to
2 -1 2 2
2 luy —wolly, < oy g lluy —wslly, + cgMglluy —wslly, + 1Lfy = folly«lluy —uslly

Hence, 1
luy —uylly <

—— /i — fally= (3.28)
2/4—av,/161—chf fi= L2l

Therefore, u depends Lipschitz continuously on f. Note that (2.27) is not needed for this part of the result.
Similar to (3.24), we have

a(upu,v) +duu,v)+ b, p) =(f.v) Yvev,
a(uy; uy, v) + d(uy; uy, v) + b(v, py) = (fr,v) Yv e,
Subtract the two equalities to obtain
b, py —py) ={f1 = f2,v) —ap(u; —uy,v) - [al(ul;ul’v) - al(uz;“bv)]
— [d(ul;ul,v) - d(uz;uz,v)] Vv eV, (3.29)
By (2.22), we have

= [y (wiuy,0) = ay (w3, 0)] < e ([l + all 75y ) s = ally Nl

r—=2
sc (”"l e + ||”2||Lf(sz)d) [lu =]y Nwlly-
Moreover,
- [d(ul,ul,v) - d(uz,uz,v)] =- [d(u2 —uy,up,v)+duy,u; — uz,v)]
<y (”ul“V + ||“2||V) lluy —uslly llwlly -
We derive from (3.29) that
b@,p; —pp) < fi = Lally=llvlly +2 plluy —uslly llvlly
+c (||u1 lLr@y + ||u2||L’(SZ)d)r_2 lluy —uslly llwlly
+c (”ul”V + ”uZ”V) [lu; —wusllyllwlly -
By (3.22),
sl + uall raye < € (L 11 lly- + IIlelv*)z/r-
Hence,
b@,p; —pp) < i = Lally=llvlly +2 plluy —usllyllvlly
e (T4 Al + 1fally) ™22

Applying the inf-sup condition (2.19) and (3.28), we find

lluy —us lly NIl

1 b, p —py)
— sup — L2 < ¢ (L+ 1Al + 1Lf2 1y
ﬁo VeV, ”V”V

Thus, p € O depends locally Lipschitz continuously on f € V*. []

)max{ 1,2(r=2)/r}

llpy = pollp < lf1 = fally«.

In the special case of a convex function y, a, =0, the condition (3.1) is automatically satisfied, and the condition (3.9) reduces
to ¢;M; <2 u. Then we have the next result on Problems 2.4.

Theorem 3.8. Assume y is convex. Then for any f € V* with c;M £ <2u Problem 2.4 has a unique solution (u, p) € V x Q. Moreover,
(3.21)—(3.23) hold, u € V depends Lipschitz continuously on f € V* and p € Q depends locally Lipschitz continuously on f € V*.

In the case where |I'}| = 0, the weak formulation of the original problem reduces to an equality, and both Problems 2.3 and 2.4
are replaced by Problem 3.9 below.
Problem 3.9. Find (4, p) € V x O such that
a(u;u,v) +dw;u,v)+ b(v,p) = (f,v) YveV, (3.30)
bu,q9) =0 VgqgeO. (3.31)
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The argument presented earlier in this section, in a simpler form, also applies to establishing the well-posedness result for Problem
3.9. Here, for any f € V* satisfying c,|| ||, < 4u2, Problem 3.9 has a unique solution (u, p) € V x Q. Moreover, (3.21)-(3.23) hold,
u € V depends Lipschitz continuously on f € V* and p € QO depends locally Lipschitz continuously on f € V*.

4. Mixed finite element methods

We study the mixed finite element method for Problem 2.3 in this section. For simplicity, we assume 2 is a polygonal domain
(d = 2) or a polyhedral domain (d = 3). Let {T "} , be a regular family of finite element partitions of the domain Q into
triangular/tetrahedral elements that are compatible with the boundary decomposition to I, and I, i.e., if a side or face of an
element has non-trivial intersection with Iy, or I';, then the side or face lies entirely on T, or I;. Let & represent the discretization
parameter. We use finite element spaces V" ¢ V and Q" c Q that satisfy the discrete inf-sup condition holds: for a constant § > 0
independent of A,

b Uh, h
Blldlly < sup 29D ygneoh .1

o 1971y
where V' =V n ¥,
As examples, we may use the P1b/P1 finite elements [49],

yh = {v" eV nc @) | vh|; € [P(T)® B YT € T"},
0"={¢"€0nc’@laqlr e AN VT €T},
or P2/P1 finite elements ([50, Chapter II, Corollary 4.11),
yh= {v” eV nc@)7 | vh; e [Py VT € Th},
0" ={¢"eonc®@ lqlr e MVTET"},

where P, (T) denotes the space of polynomials of a degree less than or equal to k on T, and B(T) represents the space of bubble
functions on 7.
The mixed finite element method for Problem 2.3 is as follows.

Problem 4.1. Find (u", p") € V" x Q" such that

a@";u", v + d@";u", v +b(vh,ph)+/ u/o(uf_’;vf)ds > (f, 0"y Votevh (4.2)
I

bw", g =0 vq"e Q" (4.3)

Similar to the result for Problem 2.3, we obtain the following Theorem.

Theorem 4.2. Assume H(y), (3.1), (3.9), and the discrete inf-sup condition (4.1). Then Problem 4.1 has a unique solution (u",p") €
V" x Q". The solution component u”" belongs to the set K + and depends Lipschitz continuously on f. Moreover, for a constant ¢ > 0,

NI, + 111, 0 < € (14112 (4.4)

and p" depends locally Lipschitz continuously on f.

Next we will present a Céa-type error estimate result. The following modified Cauchy-Schwarz inequality will be applied several
times:

xyge)c2+4i€y2 Vx,y €R, (4.5)

where ¢ > 0 is arbitrarily small.

Theorem 4.3. Keep the assumptions of Theorem 4.2. Let (u, p) and (u”, p") be solutions of Problems 2.3 and 4.1, respectively. Then there
exists a positive constant ¢ independent of h such that

= w1, + llp = 51 < ¢ (e =01 + llue =0l 2o + = a"13)) Yo" € V", ¢" € O 6)

Proof. For an arbitrary v” € V", we have

2ullu-— uhll%, <ay(u- u u—ut = ag(u — u u—-ovh+ ay(u — u" v —uh

h

<ayu—-u",u- vy + ay(u, v —uh + ao(uh,uh —vh. 4.7)

Take v = u” — v" in (2.30) to obtain

ay(u, v — uh) <a (u;u, ul - vh) +du;u, u - vh) + b(uh - vh,p)
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0 . h h h h
+/ yo(usu —v)ds —(f,u" —v").
I

Substitute v with v" — u” in (4.2),
aO(uh, u — v") < al(uh; u vt — uh) + d(uh;uh, v — u") + b(vh - uh,ph)

+/ wo(uf;vf —uf)ds— (f, v —u").
I

Apply these two inequalities in (4.7), we have
2ullu—u"l, <agu—wu—vM+1, +1,+1,+1,, (4.8)
where
Ial = a](u;u,uh - vh) + a](uh;uh,vh - uh),
1, = d(u;u,uh - vh) + d(uh;uh,vh - uh),
I, = /r [y/o(ur;u:' - vf) + wo(uf;vf - u:‘)] ds,
1
I, = b —v", p—p.

From [43, Theorem 4.2], we have the estimation

agu —u",u—v") <2pllu— "y llu—v"ly <ellu—ulI}, +cllu-o"5, (4.9)

I, <cllu—ulllyllu— ol < ellu—ut3 +cllu— o2, (4.10)

1, <a, st lu—utl? +c (1 el 2y + ||uf||L2m)d) ety = 0 2, - (4.11)

1y < (llu=ul +1p = 913 ) + ¢ (=01 + 11 - a"113) (4.12)
We now bound the term 7. Write

I, =d (u,u—uh,uh —vh) +d (u—uh,uh,uh —v")

=d(u,u—uh,u—vh)+d(u—uh,uh,uh—vh),

where we used the equality d (u,u — u®,u" —u) = 0. Then

ta < cqlluly lu=a, Jlu=e], e flu=a], o], " -]
a < cqllully . ,tea . v v

S oMy fu] Jumer], +eatty fumut], Ju —e"],

Applying the triangle inequality

and the modified Cauchy-Schwarz inequality (4.5), we have a constant ¢ > 0 depending on e such that

S P P e
|4 14 Vv

1, < (chf +2¢) Hu —uh”i +c “u - vhHi. (4.13)

Applying (4.9)-(4.13) to (4.8), and recalling the assumption (3.9), we find that for any sufficiently small ¢ > 0, there exists a
constant ¢ depending on e such that

= w13 < el = 01, + g = 02l 2 + o= a1 ) + € llp = 21 (4.14)
By the triangle inequality,
lp=p"llo <llp—a"llo + 112" = q"llo- (4.15)

From the discrete inf-sup condition (4.1),

b", p" — g™
BlP" =q"llg < sup —2———.
vievh 0Pl

Write
b@", p" — g™ = b, p") — b@", p) + b@", p - ¢").
From (2.30) and (4.2), it follows that

ay(u, v+ a(u;u, M)+ d(u;u, v") + b, p) = (f, vh) vo' e 128
ag@", v + a @ ut, vy + d@hs ul v + b", p = (f, 0" VU e VO;K

10
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Hence,

b, p") = ", p) = = [ag", V") + a; W u", 0") + d@; u, o)
+ [ao(u, vh) +a,(u;u, vh) +d(u;u, vh)]

= ay(u— uh, vh) +a(u;u, vh) - al(uh; u”, vh)

Pou, o) + dWu - u”, oM.

+du—u
From (2.22), we obtain
. h h. h h h r=2 h h
aju;u,v") — a @ 0", 0" < e (lull prg + 14" | rgye) e = lly 10"y

By the boundedness of the form d, we get

du—u";u,v" +d@ u—ut, o) <y (lully + 16"1y) ="l 110",

<cllu—d"|l, "]y
Hence, we deduce the following bound from (4.15)
llp—p"llg < ¢ (Ilu—u"lly +1lp— a"llp) - (4.16)
Finally, (4.6) follows from (4.14) with a sufficiently small ¢ and (4.16). []

As sample error estimates for applications of the Céa’s inequality (4.6) and the standard finite element interpolation error
estimates [48,51,52], we consider the numerical methods with the use of the P1b/P1 elements and the P2/P1 elements. We express
I} as a union of a finite number of flat components:

—
I =021,

Theorem 4.4. Keep the assumptions of Theorem 4.2. Let (u, p) and (u", p") be solutions of Problems 2.3 and 4.1 with the P1b/P1 elements.
Assume the following solution regularities:

ue HXQ), ulp, € HXI ), 1<1<l, peH'(Q).
Then,

llu—ully +llp—p"llg < ch.

Theorem 4.5. Keep the assumptions of Theorem 4.2. Let (u, p) and (u", p") be solutions of Problems 2.3 and 4.1 with the P2/P1 elements.
Assume the following solution regularities:

ue H'Q), ulp, € HI ), 1<I<l, peH Q).
Then,

lu—u"lly +llp = p"llg < c ¥/

5. Solution algorithms

We introduce a numerical algorithm to solve Problem 4.1 following the idea presented in [43] in the context of a Stokes
hemivariational inequality. To handle the two nonlinear terms in the problem, we apply a Newton-type linearization. Let u”

n+1
be represented as u” + 62‘, where 62‘ = ui’+1 — u! is assumed to be small. Consider the following real-valued functions of a real
variable,

b0 = |u + zaf;|r_2 (u'+18"), 1€R,

()= (u +18") -V (u! +18!), teR.

We use the approximations

$1(D) = ¢1(0) + $10).  $y(1) = ¢, (0) + $(0)

to obtain
—2 r=2 r—4 r=2
I i S h h h o h h h h
Lo, Uy ™ Uy L +(r-2) u, (un ' un+1)un -(r=2 u, uy,,
h ho b gyh hogyh  _ gh b
u,. Vun+1 Ru, Vu, +u, Vun+1 u, - Vu,.

Thus, we are led to the following linearized iterative algorithm.

11
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Algorithm 5.1. Choose an initial guess u € V", Then for n > 0 until a stopping criterion is satisfied, find ( il P +1) evhxoh
such that

ag@" |, v") +a; o)+ 6", Pl )+ d(u! oM +d@l ol oM

(' -u,) u;;,vh>

n+l1’ un+l’ n+1’

—d(ufq’,ufq’,vh)+/ Wo(ui’n+l;vf)ds+a(r—2) < u"
n ’

> (f,vh> +(r—2)a1(u2’;u2’,vh) vo'evh,
b, .¢" =0 V4" e Q"

For the special case of a convex function y, the algorithm is as follows:

r—4

Algorithm 5.2. Choose an initial guess u € V", Then for n > 0 until a stopping criterion is satisfied, find ( it P +1) eVvhxoh

such that
h h h. h h _ .h h _ .h h
v _un+1)+a1(un’un+l’v un+l)+b(v un+1’pn+l)

o o hohoh
o U )+ d?, v —du,,u,,v")
r—4
+/ y/(vf)ds—/ y/(uf,1+l)ds+a(r—2)<‘ufq’ ("ﬁ’u:Jrl)uf:’vh_uZH)
I I ’

2(f,vh>+(r—2)a1(ufq’;ufq’,vh—u”;‘+l) Vvhth,
b, .¢" =0 V4" e Q"

ao(un+1 ’

+d(u n+1’

6. Numerical results

Since the exact solution of the hemivariational inequality is unknown, we demonstrate the performance of the algorithms in
two parts, based on the selection of the nonlinear slip boundary condition. First, we consider the special case where the function
y is convex. In this instance, the exact solution of the variational inequality is known, and the performance of the algorithm can
be clearly demonstrated by the experimental results. Then, we consider the general case where y is not a convex function, and we
showcase the convergence of the algorithm through numerical examples. The P1b/P1 elements are employed as the finite element
spaces.

6.1. An example with a convex y

Let w(v,) = glv,|, g > 0. For the implementation, we use the Uzawa iterative algorithm [53] to convert the inequality to
an equality. We consider a two-dimensional domain £ and choose the boundary I'| to be piecewise parallel to the axes for
the remainder of this section in describing the Uzawa algorithm. The iteration step in Algorithm 5.2 is reformulated as: find

h s Oh
WH,an,l )eV x Q" x A such that

aO(un+1’ h)+al(u n+1’ h)+b(v ’pn+1)+d(un+1’ h)+d(u n+1’vh)

—4
—d(u u vh)+/ gl,H_l 'T'ds+a(r—2)<|u:)r (uzvu::H)u;',vh)
=(f. ")+ (r = a @ ul v Vo' eV,

bw!,.q") =0 Vq" e,

h h — |,
ln+l Tn+l =

mH‘ a.e. on I,

where
A:{yGLZ(Tl)ZHMSla.e. onl‘l}.

Hence we will implement the following Uzawa iteration scheme: Begin with an initial guess u(’)' € V" and /1(’)' € A. Then for n > 0,
h s Oh
find ( n+1’pn+1’)'n+1) EVIXQO"XA,

ag@”, |, v") + a, oM +d@l, ul o)+ d@l o) - d@l, o7

-t )

=<f,vh>—/ g/l:‘H~vfds+(r—2)al(u;l;uf:,vh) Vvhth,
Iy

n+l1’ un+l’

+b@", pl ) +a(r—2) ( ul

R hy _ h h
bu,, ,.q")=0 Vq'€Q",
and
Al —PA</If,'+pgui’$n), p>0,

n+1

12
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Table 1
Numerical convergence orders, Example 6.1.
h lla=ly Order i /5 Order ="y Order Tteration
llully llull 20 lipllg
273 3.819%e-1 \ 1.116e-1 \ 2.181e-2 \ 3
24 1.946e-1 0.972 2.761le-2 2.015 8.248e-3 1.403 4
273 9.811e-2 0.988 6.709e—-3 2.041 2.953e-3 1.482 4
276 4.923e-2 0.995 1.675e-3 2.002 1.041e-3 1.504 4
where
inf(1, |ul) 2 5
Py(p) = TI‘ Vue LIy

Here P, represents the projection operator onto A. The stopping criterion for both Algorithms 5.1 and 5.2 is

h h
u —u
n+1 n _
Y <1078
ul
n+l||y

For the initial guess in the iteration in the following examples, we set ug =0. For /lg , on the boundary I'; parallel to the x-axis, we
set it as (1,0), and on the boundary I'| parallel to the y-axis, we set it as (0,—1)".

Example 6.1. Let 2 =[0,11%, I, =[0,1]x {1} U {1} X [0, 1] and Iy = I'\I'|. We solve the problem with the exact solution
—x2y(x - )3y -2)
xy2(y - 1H(3x —2)
It is easy to verify that u = 0 on I') and we have

2
ar:( 0 >on{1}><[0,1], a,:('4”x(x_1)>on[0,1]><{1}.

u(x,y) = < ) p(x,y) = 2x — D2y - 1).

duyr(y—1) 0
From the boundary condition (2.5), we know that
lo.| <s.
Thus, we can set
—4uy*(y—1) on {1} x[0,1],
gx,y) = )
—4ux-(x—1) on[0,1]x {1}.

We choose the parameter p = 0.5 and the meshes are uniform triangle meshes with the unit interval [0, 1] divided into 1/ equal
parts. We set r = 4, u = 0.05 and « = 0.1. Table 1 shows the numerical convergence orders as the mesh is refined. The numerical
results match the theoretical prediction on the H!-norm error of the velocity and appear to be half order higher for the L?>-norm
error of the pressure.

6.2. Examples with a non-convex y
Let
[ |
v (u,) = / w(t)dt, (t) = (a— b)exp(—yt) + b,
0

where a, b and y are constants with @ > b > 0 and y > 0. The slip boundary condition —¢, € dy (u,) can be expressed in the
following form:

U,

)., —o,=w(|u,l) ifu, #0.
Juc |

loc| <@ (Ju

Again, we employ the Uzawa algorithm for implementation. We introduce a Lagrange multiplier A = -0, /w (|u,|), an element of
the set

Az{yeLz(rl)zl|ﬂ|§1a.e.on1"l}.

Then, the iteration step in Algorithm 5.1 is reformulated as: find (uf,’ e pf,’ o /12‘ +1) € Vh x 0" x A such that

h
n+1’

- d(ui’,ui’,vh) +/ a)(
I

h h. o h h hoh
ay(u v +a(uu, v+ b p,

—4
h h h n|" h .k hoh
ur,n+l D inJrl ! deS + a(r - 2) <’un‘ (un : un+1) un’v )

h h h h o h h
l)+d(un+l’un’v )+d(un,un+l,v )

13
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Table 2
Numerical convergence orders, Example 6.2.
h lla=ly Order i /5 Order ="y Order Tteration
Tlally Tall 2 Tinllo
273 4.563e—-1 \ 1.293e-1 \ 2.633e-1 \ 6
24 2.566e—-1 0.830 3.480e-2 1.893 1.447e-1 0.863 7
273 1.387e-1 0.887 9.110e-3 1.934 7.429e-2 0.962 7
276 6.983e-2 0.990 2.315e-3 1.976 3.358e-2 1.146 7
Table 3
Numerical convergence orders, Example 6.3.
h Juafy Order [ 7Y Order le=r"llg Order Iteration
[lually llall ;2. lipllo
273 5.799%e-1 \ 3.537e-1 \ 9.547e-1 \ 6
274 3.345e-1 0.794 1.240e-1 1.512 3.865e—-1 1.305 6
273 1.741e-1 0.942 3.420e-2 1.858 1.352e-1 1.515 6
276 8.684e-2 1.004 8.415e-3 2.023 4.658e—2 1.538 6

=(f,vh>+(r—2)a1(uz’;u2’,vh) Vvhth,
b(u" .q")=0 V4" e 0",

n+1?

h h — |
ln+l ur,n+l - ur,n+l‘

a.e. on [7.

The corresponding Uzawa iteration scheme is: Begin with an initial guess u" € V', A% € A. Then for n > 0, find (uf Pt A 1) €
Vix Q" x A,

h
n+l1’

—d@),ul,v") + b@", pl', )+ alr - 2) <

ag!, | VM + a @ 0"+ d@l ol o)+ d@lul oM

—4
n|" h . h hoh
un‘ (un -un+l) un’v )

)AL, vhds + (= D @il 0" Vol eV,

n’

= (1)~ [ o

b .g"m=0 V"€

h
ur,n

and
/lf,’H =P, (/lfq’ +puf’n) , p>0,
where
inf (1, |ul)
Py(u) = Tl" Vue LX)

Example 6.2. Let 2 = [0, 112, I'=1[0,11x{1}u {1} x[0,1] and I, = I'\I'}. We choose y = 0.5, « = 0.1, r =4, a =0.255, b = 0.25,
y = 10.0 and p = 0.5u. The source term is defined by

fo=—udug+@-Vu+a |u0|r_2 ug + Vpgy
with
—x2y(x — DBy - 2)
xy2(y = DBx - 2)
We use uniform triangular meshes, dividing the unit interval [0, 1] into 1/A equal parts. In the absence of a known true solution,
we employ the numerical solution obtained on a sufficiently fine mesh (h = 1/256) as the reference solution (u, p) to assess errors

in the numerical solutions (u”, p") on coarser meshes at h = 1/2" for n < 6. From Table 2, we observe that the convergence orders
in the velocity space and pressure space align well with theoretical predictions.

up(x,y) = ( > po(x,y) = 2x — D2y - 1).

Example 6.3. Let 2 =[0,1]%, I} =[0,11x {1} and I, = I'\I';. We choose u = 1, « = 1, r = 3, a = 0.255, b = 0.25, y = 10.0 and
p = 1. The source term is defined by

fo=—ulug+@-Vu+a |u0|r_2 ug + Vpgy
with

—sin?(2zx) sin(4xy)

up(x,y) = (

We use uniform triangular meshes as in Example 6.2, and employ the numerical solution calculated on a sufficiently fine mesh
(h = 1/256) as the reference solution (u, p). The results are presented in Table 3. We notice that the convergence orders align well

-2
, ,y) = cos - 1).
sin2(27ry) sin(d) > Po(x, y) = cos(x) cos(y) — sin“(1)

14
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with theoretical predictions and the L?-norm error estimate of the pressure is half order higher than our theoretical analysis in this
example.
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