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 A B S T R A C T

This paper provides a well-posedness analysis and a mixed finite element method for a 
hemivariational inequality of the stationary Navier–Stokes equations with a nonlinear damping 
term. The Navier–Stokes hemivariational inequality describes a steady incompressible fluid flow 
subject to a nonsmooth slip boundary condition of friction type. The well-posedness of the 
Navier–Stokes hemivariational inequality is established by constructing two auxiliary problems 
and applying Banach fixed point arguments twice. Mixed finite element methods are introduced 
to solve the problem, and error estimates for the solutions are derived. The error estimates are of 
optimal order for low-order mixed element pairs under suitable solution regularity assumptions. 
An efficient iterative algorithm is presented, and numerical results are provided to verify the 
theoretical analysis.

. Introduction

To model slip or leak phenomena for real-world applications of fluid flows, Fujita proposed slip or leak boundary conditions of 
riction type for boundary value problems of steady motions of viscous incompressible fluids in the early 1990s [1,2]. Numerous 
tudies have followed in this area. Further analysis of such problems, including numerical approximation and regularity of the 
olutions, was investigated in [3–7], and the conditions were also applied in non-Newtonian fluids [8]. Numerical methods for 
olving these types of problems were studied in [9–15]. In these studies, the slip or leak boundary conditions are modeled by 
onsmooth monotone relations, and the corresponding weak formulations governed by the Stokes or Navier–Stokes equations are 
ariational inequalities. When the boundary conditions involve nonsmooth non-monotone relations, the weak formulations become 
emivariational inequalities, and they are studied in a number of papers, e.g., [16–21].
Hemivariational inequalities, or more generally, variational–hemivariational inequalities, were first introduced by Panagiotopou-

os in early 1980s [22]. Early comprehensive references on hemivariational inequalities include [23,24], while recent studies 
n the mathematical theories of this subject can be found in [25–28]. In these references, abstract theory of pseudomonotone 
perators is applied for solution existence. An alternative approach on variational–hemivariational inequalities, more suitable for 
esearchers in applied mathematics, sciences and engineering, is started in [29,30] and is well documented in [31]. Since there 
s no analytic solution formula to solve variational–hemivariational inequalities, numerical methods are required to solve the 
roblems. The book [32] investigates finite element approximations of hemivariational inequalities, discussing the convergence 
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of the numerical methods and presenting solution algorithms. Since the first optimal order error estimate for the numerical solution 
of a hemivariational inequality was derived in [33], many articles have been published on error analysis and optimal order error 
estimation for solving a variety of variational–hemivariational inequalities. For a comprehensive summary of the numerical analysis 
of hemivariational inequalities, the reader is referred to the survey papers [34,35].

Damping effects arise from resistance to the motion of flows. Many physical processes, such as porous media flows, drag or 
friction effects, and various dissipative mechanisms, involve damping phenomena (cf. [36,37]). The stationary and non-stationary 
Navier–Stokes equations with damping have been studied in several papers. An initial–boundary value problem of the Navier–
Stokes equations with damping over the entire spatial space is studied in [38–40]. Analysis and numerical methods for a stationary 
Navier–Stokes variational inequality with damping can be found in [41,42]. In this paper, we study a Navier–Stokes hemivariational 
inequality for a viscous incompressible fluid flow with damping effect that is subject to a nonsmooth, not necessarily monotone, slip 
boundary condition of friction type. This represents a novel mathematical model designed to describe incompressible fluid flows 
influenced by damping effects, capturing a wider range of physical phenomena. Unlike most existing works that rely on abstract 
surjectivity results for pseudomonotone operators to prove the existence of solutions to hemivariational inequalities, our method 
is based on the well-posedness result from Ref. [43] on a Stokes hemivariational inequality with damping effect and follows the 
approach presented in [31, Chapter 8]. We construct two auxiliary problems and apply fixed-point arguments twice to prove the 
well-posedness of the Navier–Stokes hemivariational inequality. Only basic notions and results from functional analysis are used 
throughout the proof. The mixed finite element method is used to solve the Navier–Stokes hemivariational inequality and the derived 
error estimate is of optimal order for low-order mixed element pairs satisfying the discrete inf-sup condition under suitable solution 
regularity assumptions. An efficient iterative algorithm is further presented to solve the problem, and numerical results are provided 
to validate the theoretical analysis.

The rest of the paper is organized as follows. In Section 2, we describe the physical setting of the fluid, present the corresponding 
Navier–Stokes hemivariational inequality, and provide the necessary preliminaries. In Section 3, we show an existence and 
uniqueness result for the Navier–Stokes hemivariational inequality. In Section 4, we apply the mixed finite element method to 
solve the Navier–Stokes hemivariational inequality and derive error estimates for the finite element solutions. In Section 5, we 
introduce solution algorithms to solve the discrete Navier–Stokes hemivariational inequality and a related discrete Navier–Stokes 
variational inequality. In Section 6, we report numerical simulation results.

2. The Navier–Stokes hemivariational inequality

We first introduce some notation. Let R𝑑 be the 𝑑-dimensional real Euclidean space, and let S𝑑 be the space of second-order 
symmetric tensors on R𝑑 . In R𝑑 and S𝑑 , the standard inner products and the induced norms are

𝒖 ⋅ 𝒗 = 𝑢𝑖𝑣𝑖, |𝒗|R𝑑 = (𝒗 ⋅ 𝒗)1∕2 for all 𝒖 = (𝑢𝑖), 𝒗 = (𝑣𝑖) ∈ R𝑑 ,

𝝈 ∶ 𝝉 = 𝜎𝑖𝑗𝜏𝑖𝑗 , |𝝈|S𝑑 = (𝝈 ∶ 𝝈)1∕2 for all 𝝈 = (𝜎𝑖𝑗 ), 𝝉 = (𝜏𝑖𝑗 ) ∈ S𝑑 .

The summation convention over a repeated index is adopted, e.g., 𝑢𝑖𝑣𝑖 stands for 𝑢1𝑣1 +⋯ + 𝑢𝑑𝑣𝑑 .
We consider the Navier–Stokes equations in a domain 𝛺 in R𝑑 , 𝑑 = 2 or 3. Assume the boundary 𝛤 = 𝜕𝛺 is Lipschitz continuous. 

The stationary Navier–Stokes equations with damping for the velocity 𝒖 ∶ 𝛺 → R𝑑 and pressure 𝑝 ∶ 𝛺 → R with given external 
force 𝒇 ∶ 𝛺 → R𝑑 are

− div(2𝜇𝜺(𝒖)) + (𝒖 ⋅ ∇)𝒖 + 𝛼 |𝒖|𝑟−2𝒖 + ∇𝑝 = 𝒇 in 𝛺, (2.1)

div 𝒖 = 0 in 𝛺. (2.2)

Here 𝜺(𝒖) = 1
2 (∇𝒖 + (∇𝒖)𝑇 ) denotes the deformation rate tensor, 𝜇 > 0 is the kinematic viscosity coefficient. The damping effect is 

represented by the term 𝛼 |𝒖|𝑟−2𝒖 in (2.1), where 𝛼 > 0 and 𝑟 ≥ 2 are two constants. The parameter 𝛼 is known as the Forchheimer 
coefficient, which accounts for the inertial effects of the fluid. The Forchheimer law extends Darcy’s law by incorporating the 
additional nonlinear term to address the effects that become significant at higher flow velocities. We assume 

2 ≤ 𝑟 < ∞ if 𝑑 = 2, 2 ≤ 𝑟 ≤ 6 if 𝑑 = 3. (2.3)

Then, by the Sobolev embedding theorem [44], 𝐻1(𝛺) ↪ 𝐿𝑟(𝛺). We split the boundary 𝛤  to two disjoint measurable parts: 
𝛤 = 𝛤0 ∪ 𝛤1, where 𝛤0 and 𝛤1 are relatively open, |𝛤0| > 0, |𝛤1| > 0, and 𝛤0 ∩ 𝛤1 = ∅. We comment on the case |𝛤1| = 0 at 
the end of Section 3. Let 𝝂 = (𝜈1,… , 𝜈𝑑 )𝑇  represent the unit outward normal vector on the boundary 𝛤 . The normal and tangential 
components of a vector field 𝒖 on 𝛤  are given by 𝑢𝜈 = 𝒖 ⋅ 𝝂 and 𝒖𝜏 = 𝒖 − 𝑢𝜈𝝂, respectively. The normal and tangential components 
of an S𝑑 -valued field 𝝈 on the boundary are 𝜎𝜈 = 𝝂 ⋅ 𝝈𝝂 and 𝝈𝜏 = 𝝈𝝂 − 𝜎𝜈𝝂.

Eqs. (2.1)–(2.2) are supplemented by the following boundary conditions
𝒖 = 𝟎 on 𝛤0, (2.4)

𝑢𝜈 = 0, −𝝈𝜏 ∈ 𝜕𝜓(𝒖𝜏 ) on 𝛤1. (2.5)

Here, 𝝈𝜏 is the tangential component of the stress tensor 𝝈 = −𝑝𝑰 + 2𝜈𝜺(𝒖), 𝑰 being the identity matrix. The super-potential 
𝜓 ∶ R𝑑 → R is assumed to be locally Lipschitz continuous, and 𝜕𝜓 is the subdifferential of 𝜓 in the sense of Clarke, a concept 
briefly reviewed below. The relation (2.5) is known as a slip boundary condition. The first part of the condition (2.5) indicates that 
2 
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there is no fluid leak on 𝛤1. The second part of (2.5) specifies a friction condition for the friction 𝝈𝜏 with respect to the tangential 
velocity 𝒖𝜏 . When the super-potential 𝜓 is convex, the weak formulation takes the form of a variational inequality. The specific case 
where 𝜓(𝒗𝜏 ) = 𝑔 |𝒗𝜏 |, with 𝑔 > 0, was previously studied in [42]. In this paper, we do not assume the convexity of 𝜓 , and the weak 
formulation of the problem (2.1)–(2.5) is a hemivariational inequality.

We now recall the definition of the generalized directional derivative and generalized subdifferential in the sense of Clarke [45]. 
For a locally Lipschitz continuous functional 𝛹 ∶ 𝑉 → R defined on a real Banach space 𝑉 , the generalized (Clarke) directional 
derivative of 𝛹 at 𝑢 ∈ 𝑉  in the direction 𝑣 ∈ 𝑉  is defined by

𝛹 0(𝑢; 𝑣) ∶= lim sup
𝑤→𝑢, 𝜆↓0

𝛹 (𝑤 + 𝜆𝑣) − 𝛹 (𝑤)
𝜆

,

whereas the generalized subdifferential of 𝛹 at 𝑢 ∈ 𝑉  is
𝜕𝛹 (𝑢) ∶=

{

𝜂 ∈ 𝑉 ∗ ∣ 𝛹 0(𝑢; 𝑣) ≥ ⟨𝜂, 𝑣⟩ ∀ 𝑣 ∈ 𝑉
}

.

We refer to [45] for the basic properties of the generalized directional derivative and the generalized subdifferential, and we 
present some fundamental ones needed for this paper.

Proposition 2.1.  Let 𝑉  be a Banach space.
(i) If 𝛹 ∶𝑉 → R is locally Lipschitz continuous and convex, then the subdifferential 𝜕𝛹 (𝑢) at any 𝑢 ∈ 𝑉  in the sense of Clarke coincides 

with the convex subdifferential 𝜕𝛹 (𝑢).
(ii) Let 𝛹 ∶ 𝑉 → R be locally Lipschitz continuous. Then 𝜕(𝜆𝛹 )(𝑢) = 𝜆 𝜕𝛹 (𝑢) for all 𝜆 ∈ R and all 𝑢 ∈ 𝑉 . Moreover, 𝛹 0 is positively 

homogeneous and subadditive, i.e.,
𝛹 0(𝑢; 𝜆 𝑣) = 𝜆𝛹 0(𝑢; 𝑣) ∀ 𝜆 ≥ 0, 𝑢, 𝑣 ∈ 𝑉 ,

𝛹 0(𝑢; 𝑣1 + 𝑣2) ≤ 𝛹 0(𝑢; 𝑣1) + 𝛹 0(𝑢; 𝑣2) ∀ 𝑢, 𝑣1, 𝑣2 ∈ 𝑉 .

(iii) Let 𝛹1, 𝛹2 ∶𝑉 → R be locally Lipschitz functions. Then the inclusion 
𝜕(𝛹1 + 𝛹2)(𝑢) ⊆ 𝜕𝛹1(𝑢) + 𝜕𝛹2(𝑢) ∀ 𝑢 ∈ 𝑉 (2.6)

holds, or equivalently, 
(𝛹1 + 𝛹2)0(𝑢; 𝑣) ≤ 𝛹 0

1 (𝑢; 𝑣) + 𝛹
0
2 (𝑢; 𝑣) ∀ 𝑢, 𝑣 ∈ 𝑉 . (2.7)

To present the weak formulation of the problem, we introduce some function spaces. For the velocity variable, let 
𝑉 =

{

𝒗 ∈ 𝐻1(𝛺;R𝑑 ) ∣ 𝒗 = 𝟎 on 𝛤0, 𝑣𝜈 = 0 on 𝛤1
}

. (2.8)

Since |𝛤0| > 0, Korn’s inequality holds (cf. [46, p. 79]): for a constant 𝑐𝑒 > 0 depending only on 𝛺 and 𝛤0, 
‖𝒗‖𝐻1(𝛺;R𝑑 ) ≤ 𝑐𝑒‖𝜺(𝒗)‖𝐿2(𝛺;S𝑑 ) ∀ 𝒗 ∈ 𝑉 . (2.9)

Consequently, 𝑉  is a Hilbert space with the inner product (𝒖, 𝒗)𝑉 ∶= (𝜺(𝒗), 𝜺(𝒗))𝐿2(𝛺;S𝑑 ) and the induced norm ‖ ⋅ ‖𝑉 = ‖𝜺(⋅)‖𝐿2(𝛺;S𝑑 )
is equivalent to the standard 𝐻1(𝛺;R𝑑 )-norm over 𝑉 . The following trace inequality holds 

‖𝒗𝜏‖𝐿2(𝛤1;R𝑑 ) ≤ 𝜆−1∕20 ‖𝒗‖𝑉 ∀ 𝒗 ∈ 𝑉 , (2.10)

where 𝜆0 > 0 is the smallest eigenvalue of the eigenvalue problem 

𝒖 ∈ 𝑉 , ∫𝛺
𝜺(𝒖) ∶ 𝜺(𝒗) 𝑑𝑥 = 𝜆∫𝛤1

𝒖𝜏 ⋅𝒗𝜏 𝑑𝑠 ∀ 𝒗 ∈ 𝑉 . (2.11)

We further introduce two subspaces of 𝑉 :
𝑉div = {𝒗 ∈ 𝑉 ∣ div𝒗 = 0 a.e. in 𝛺} ,

𝑉0 = 𝐻1
0
(

𝛺;R𝑑
)

.

For the pressure variable, we use the space 

𝑄 = 𝐿2
0(𝛺) =

{

𝑞 ∈ 𝐿2(𝛺) ∣ ∫𝛺
𝑞 𝑑𝑥 = 0

}

. (2.12)

Define the following forms:
𝑎(𝒘; 𝒖, 𝒗) = 𝑎0(𝒖, 𝒗) + 𝑎1(𝒘; 𝒖, 𝒗) ∀𝒘, 𝒖, 𝒗 ∈ 𝑉 , (2.13)

𝑎0(𝒖, 𝒗) = 2𝜇 ∫𝛺
𝜺(𝒖) ∶ 𝜺(𝒗) 𝑑𝑥 ∀ 𝒖, 𝒗 ∈ 𝑉 , (2.14)

𝑎1(𝒘; 𝒖, 𝒗) = 𝛼 ∫𝛺
|𝒘|

𝑟−2𝒖⋅𝒗 𝑑𝑥 ∀𝒘, 𝒖, 𝒗 ∈ 𝑉 , (2.15)

𝑑(𝒘; 𝒖, 𝒗) = (𝒘 ⋅ ∇)𝒖 ⋅ 𝒗 𝑑𝑥 ∀𝒘, 𝒖, 𝒗 ∈ 𝑉 , (2.16)
∫𝛺

3 
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𝑏(𝒗, 𝑞) = −∫𝛺
𝑞 div𝒗 𝑑𝑥 ∀ 𝒗 ∈ 𝑉 , 𝑞 ∈ 𝑄, (2.17)

and make the assumption throughout this paper that 𝒇 ∈ 𝑉 ∗. Obviously, the bilinear form 𝑎0(⋅, ⋅) ∶ 𝑉 × 𝑉 → R, bilinear form 
𝑏(⋅, ⋅) ∶ 𝑉 ×𝑄 → R and trilinear form 𝑑(⋅; ⋅, ⋅) ∶ 𝑉 × 𝑉 × 𝑉 → R are bounded. Moreover, 𝑎0(⋅, ⋅) is coercive on 𝑉 : 

𝑎0(𝒗, 𝒗) = 2𝜇‖𝒗‖2𝑉 ∀ 𝒗 ∈ 𝑉 . (2.18)

The following inf-sup condition holds [47]: for a constant 𝛽0 > 0, 

𝛽0‖𝑞‖𝐿2(𝛺) ≤ sup
𝒗∈𝑉0

𝑏(𝒗, 𝑞)
‖𝒗‖𝑉

∀ 𝑞 ∈ 𝑄. (2.19)

Concerning the trilinear form 𝑑(⋅, ⋅, ⋅), 
𝑑(𝒖, 𝒗,𝒘) = −𝑑(𝒖,𝒘, 𝒗)  and 𝑑(𝒖, 𝒗, 𝒗) = 0 ∀ 𝒖 ∈ 𝑉div, 𝒗,𝒘 ∈ 𝑉 . (2.20)

We use 𝑐𝑑 > 0 for the boundedness constant:
|𝑑(𝒖; 𝒗,𝒘)| ≤ 𝑐𝑑‖𝒖‖𝑉 ‖𝒗‖𝑉 ‖𝒘‖𝑉 ∀ 𝒖, 𝒗,𝒘 ∈ 𝑉 .

For 𝑟 in the range specified in (2.3), we have [43]
|

|

𝑎1(𝒖; 𝒖, 𝒗)|| ≤ 𝑐 ‖𝒖‖𝑟−1𝑉 ‖𝒗‖𝑉 ∀ 𝒖, 𝒗 ∈ 𝑉 , (2.21)
|

|

𝑎1(𝒖; 𝒖,𝒘) − 𝑎1(𝒗; 𝒗,𝒘)|
|

≤ 𝑐
(

‖𝒖‖𝑟−2𝐿𝑟(𝛺) + ‖𝒗‖𝑟−2𝐿𝑟(𝛺)

)

‖𝒖 − 𝒗‖𝑉 ‖𝒘‖𝑉 ∀ 𝒖, 𝒗,𝒘 ∈ 𝑉 . (2.22)

Inequality (2.22) can be replaced with [43] 
|

|

𝑎1(𝒖; 𝒖,𝒘) − 𝑎1(𝒗; 𝒗,𝒘)|
|

≤ 𝑐
(

‖𝒖‖𝑟−2𝑉 + ‖𝒗‖𝑟−2𝑉
)

‖𝒖 − 𝒗‖𝑉 ‖𝒘‖𝑉 ∀ 𝒖, 𝒗,𝒘 ∈ 𝑉 . (2.23)

The following lemma will be used later in this paper.

Lemma 2.2.  ([48, Section 5.3]) For 𝑟 ≥ 2,
(

|𝜼|𝑟−2𝜼 − |𝝃|𝑟−2𝝃
)

⋅ (𝜼 − 𝝃) ≥ 0 ∀ 𝝃, 𝜼 ∈ R𝑑 , (2.24)
|

|

|

|𝜼|𝑟−2𝜼 − |𝝃|𝑟−2𝝃||
|

≤ 𝑐 (|𝜼| + |𝝃|)𝑟−2 |𝜼 − 𝝃| ∀ 𝝃, 𝜼 ∈ R𝑑 . (2.25)

Regarding the super-potential 𝜓 ∶ R𝑑 → R, we assume the following hypothesis:
𝐻(𝜓). 𝜓 ∶R𝑑 → R is locally Lipschitz, and there exist constants 𝛼𝜓 , 𝑐0, 𝑐1 ≥ 0 such that

𝜓0(𝝃1; 𝝃2 − 𝝃1) + 𝜓0(𝝃2; 𝝃1 − 𝝃2) ≤ 𝛼𝜓 |𝝃1 − 𝝃2|2 ∀ 𝝃1, 𝝃2 ∈ R𝑑 , (2.26)

|𝜼| ≤ 𝑐0 + 𝑐1|𝝃| ∀ 𝝃 ∈ R𝑑 , 𝜼 ∈ 𝜕𝜓(𝝃). (2.27)

Condition (2.26) is known as a relaxed monotonicity condition [27] and can be written equivalently as 
(𝜼1 − 𝜼2) ⋅ (𝝃1 − 𝝃2) ≥ −𝛼𝜓 |𝝃1 − 𝝃2|2 ∀ 𝝃𝑖 ∈ R𝑑 , 𝜼𝑖 ∈ 𝜕𝜓(𝝃𝑖), 𝑖 = 1, 2. (2.28)

Combining (2.10) and (2.26), we have, for 𝒗1, 𝒗2 ∈ 𝑉 , 

∫𝛤1

[

𝜓0(𝒗1,𝜏 ; 𝒗2,𝜏 − 𝒗1,𝜏 ) + 𝜓0(𝒗2,𝜏 ; 𝒗1,𝜏 − 𝒗2,𝜏 )
]

𝑑𝑠 ≤ 𝛼𝜓 ∫𝛤1
|𝒗1,𝜏 − 𝒗2,𝜏 |2𝑑𝑠

≤ 𝛼𝜓𝜆
−1
0 ‖𝒗1 − 𝒗2‖2𝑉 .

(2.29)

Examples of non-convex functions 𝜓 satisfying 𝐻(𝜓) can be found in [34, pp. 186—187].
By a standard procedure, we obtain the following weak formulation for the problem (2.1)–(2.5).

Problem 2.3.  Find (𝒖, 𝑝) ∈ 𝑉 ×𝑄 such that

𝑎(𝒖; 𝒖, 𝒗) + 𝑑(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) + ∫𝛤1
𝜓0(𝒖𝜏 ; 𝒗𝜏 ) 𝑑𝑠 ≥ ⟨𝒇 , 𝒗⟩ ∀ 𝒗 ∈ 𝑉 , (2.30)

𝑏(𝒖, 𝑞) = 0 ∀ 𝑞 ∈ 𝑄. (2.31)

We comment that in the special case of a convex 𝜓 , the weak formulation of the problem takes the form of a variational inequality.

Problem 2.4.  Find (𝒖, 𝑝) ∈ 𝑉 ×𝑄 such that

𝑎(𝒖; 𝒖, 𝒗 − 𝒖) + 𝑑(𝒖; 𝒖, 𝒗 − 𝒖) + 𝑏(𝒗 − 𝒖, 𝑝) + ∫𝛤1
𝜓(𝒗𝜏 ) 𝑑𝑠 − ∫𝛤1

𝜓(𝒖𝜏 ) 𝑑𝑠

≥ ⟨𝒇 , 𝒗 − 𝒖⟩ ∀ 𝒗 ∈ 𝑉 , (2.32)

𝑏(𝒖, 𝑞) = 0 ∀ 𝑞 ∈ 𝑄. (2.33)
4 
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3. Well-posedness

In this section, we explore the well-posedness of Problem  2.3. As a preparation, we first introduce a boundedness result on any 
solution of Problem  2.3. We will assume 

𝛼𝜓 < 2𝜇 𝜆0, (3.1)

and define a subset of the space 𝑉 : 

𝐾𝒇 =
{

𝒗 ∈ 𝑉div ∣ ‖𝒗‖𝑉 ≤𝑀𝒇
}

, (3.2)

where 

𝑀𝒇 =
𝑐0𝜆

−1∕2
0 |𝛤1|1∕2 + ‖𝒇‖𝑉 ∗

2𝜇 − 𝛼𝜓𝜆−10
, (3.3)

Lemma 3.1.  If Problem  2.3 has a solution (𝒖, 𝑝) ∈ 𝑉 ×𝑄 and (3.1) holds, then 

‖𝒖‖𝑉 ≤𝑀𝒇 . (3.4)

Proof.  Let 𝒗 = −𝒖 in (2.30) to get

𝑎0(𝒖, 𝒖) + 𝑎1(𝒖; 𝒖, 𝒖) ≤ −𝑑(𝒖; 𝒖, 𝒖) − 𝑏(𝒖, 𝑝) + ∫𝛤1
𝜓0(𝒖𝜏 ; −𝒖𝜏 ) 𝑑𝑠 + ⟨𝒇 , 𝒖⟩.

Note that 𝒖 ∈ 𝑉div. It follows known from (2.15), (2.20) and (2.31) that 𝑎1(𝒖; 𝒖, 𝒖) ≥ 0, 𝑑(𝒖; 𝒖, 𝒖) = 0 and 𝑏(𝒖, 𝑝) = 0. Hence we 
derive from the previous inequality that 

𝑎0(𝒖, 𝒖) ≤ ∫𝛤1
𝜓0(𝒖𝜏 ; −𝒖𝜏 ) 𝑑𝑠 + ⟨𝒇 , 𝒖⟩. (3.5)

Write

𝜓0(𝒖𝜏 ; −𝒖𝜏 ) =
[

𝜓0(𝒖𝜏 ; −𝒖𝜏 ) + 𝜓0(𝟎; 𝒖𝜏 )
]

− 𝜓0(𝟎; 𝒖𝜏 ).

Apply 𝐻(𝜓) to bound the two parts of the right side of the above equality to obtain 

𝜓0(𝒖𝜏 ; −𝒖𝜏 ) ≤ 𝛼𝜓 |𝒖𝜏 |2 + 𝑐0|𝒖𝜏 |. (3.6)

Therefore, by the trace inequality (2.10), we derive from (3.5) that
2𝜇 ‖𝒖‖2𝑉 ≤ 𝛼𝜓‖𝒖𝜏‖2𝐿2(𝛤1)𝑑

+ 𝑐0|𝛤1|1∕2‖𝒖𝜏‖𝐿2(𝛤1)𝑑 + ‖𝒇‖𝑉 ∗‖𝒖‖𝑉

≤ 𝛼𝜓𝜆
−1
0 ‖𝒖‖2𝑉 + 𝑐0|𝛤1|1∕2𝜆

−1∕2
0 ‖𝒖‖𝑉 + ‖𝒇‖𝑉 ∗‖𝒖‖𝑉 .

Therefore, the bound (3.4) holds.  □

For the well-posedness result for Problem  2.3, we consider an auxiliary problem.

Problem 3.2.  For any 𝒘1 ∈ 𝑉 , any 𝒘2 ∈ 𝐾𝒇 , find (𝒖, 𝑝) ∈ 𝑉 ×𝑄 such that

𝑎(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) + ∫𝛤1
𝜓0(𝒖𝜏 ; 𝒗𝜏 ) 𝑑𝑠 ≥ ⟨𝒇 , 𝒗⟩ − 𝑑(𝒘2;𝒘1, 𝒗) ∀ 𝒗 ∈ 𝑉 , (3.7)

𝑏(𝒖, 𝑞) = 0 ∀ 𝑞 ∈ 𝑄. (3.8)

The next result can be derived from [43, Theorem 3.6].

Proposition 3.3.  Assume 𝐻(𝜓) and (3.1). For any 𝒘1 ∈ 𝑉 , any 𝒘2 ∈ 𝐾𝒇 , Problem  3.2 has a unique solution (𝒖, 𝑝) ∈ 𝑉 ×𝑄.

Proposition  3.3 allows us to define an operator 𝑃1 ∶𝑉 → 𝑉  by
𝑃1(𝒘1) = 𝒖,

where 𝒖 is the first component of the solution to Problem  3.2. Proceeding further, we will need the condition 
𝑐𝑑𝑀𝒇

2𝜇 − 𝛼𝜓𝜆−10
< 1. (3.9)

Proposition 3.4.  Assume 𝐻(𝜓), (3.1) and (3.9). Then for any 𝒘 ∈ 𝐾 , the operator 𝑃 ∶ 𝑉 → 𝑉  is a contraction.
2 𝒇 1
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Proof.  Let 𝒘1,𝒘1 ∈ 𝑉 , and denote by (𝒖, 𝑝), (𝒖, 𝑝) ∈ 𝑉 ×𝑄 the corresponding solutions of Problem  3.2. Then for any (𝒗, 𝑞) ∈ 𝑉 ×𝑄, 
we have the relations

𝑎(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) + ∫𝛤1
𝜓0(𝒖𝜏 ; 𝒗𝜏 ) 𝑑𝑠 ≥ ⟨𝒇 , 𝒗⟩ − 𝑑(𝒘2;𝒘1, 𝒗), (3.10)

𝑏(𝒖, 𝑞) = 0, (3.11)

𝑎(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) + ∫𝛤1
𝜓0(𝒖𝜏 ; 𝒗𝜏 ) 𝑑𝑠 ≥ ⟨𝒇 , 𝒗⟩ − 𝑑(𝒘2;𝒘1, 𝒗), (3.12)

𝑏(𝒖, 𝑞) = 0. (3.13)

Take 𝒗 = 𝒖 − 𝒖 in (3.10), 𝒗 = 𝒖 − 𝒖 in (3.12), add the two resulting inequalities, and use the Eqs. (3.11) and (3.13) to obtain
𝑎0(𝒖 − 𝒖, 𝒖 − 𝒖) ≤ 𝑎1(𝒖; 𝒖, 𝒖 − 𝒖) + 𝑎1(𝒖; 𝒖, 𝒖 − 𝒖)

+ ∫𝛤1

[

𝜓0(𝒖𝜏 ; 𝒖𝜏 − 𝒖𝜏 ) + 𝜓0(𝒖𝜏 ; 𝒖𝜏 − 𝒖𝜏 )
]

𝑑𝑠

− 𝑑(𝒘2;𝒘1 −𝒘, 𝒖 − 𝒖).

From Lemma  2.2, we know that 𝑎1(𝒖; 𝒖, 𝒖 − 𝒖) + 𝑎1(𝒖; 𝒖, 𝒖 − 𝒖) ≤ 0. Then, applying (2.29), we have
2𝜇 ‖𝒖 − 𝒖‖2𝑉 ≤ 𝛼𝜓𝜆

−1
0 ‖𝒖 − 𝒖‖2𝑉 + 𝑐𝑑‖𝒘2‖𝑉 ‖𝒘1 −𝒘1‖𝑉 ‖𝒖 − 𝒖‖𝑉 .

Consequently,

‖𝒖 − 𝒖‖𝑉 ≤
𝑐𝑑‖𝒘2‖𝑉

2𝜇 − 𝛼𝜓𝜆−10
‖𝒘1 −𝒘1‖𝑉 ≤

𝑐𝑑𝑀𝒇

2𝜇 − 𝛼𝜓𝜆−10
‖𝒘1 −𝒘1‖𝑉 .

Hence, the operator 𝑃1 ∶𝑉 → 𝑉  is a contraction. □

Under the conditions stated in Proposition  3.4, we can apply the Banach fixed-point theorem to conclude that for any 𝒘2 ∈ 𝐾𝒇 , 
the operator 𝑃1 has a unique fixed-point 𝒖 ∈ 𝑉 . Then, for some element 𝑝 ∈ 𝑄, (𝒖, 𝑝) ∈ 𝑉 ×𝑄 solves the next problem.

Problem 3.5.  For any 𝒘2 ∈ 𝐾𝒇 , find (𝒖, 𝑝) ∈ 𝑉 ×𝑄 such that

𝑎(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) + 𝑑(𝒘2; 𝒖, 𝒗) + ∫𝛤1
𝜓0(𝒖𝜏 ; 𝒗𝜏 ) 𝑑𝑠 ≥ ⟨𝒇 , 𝒗⟩ ∀ 𝒗 ∈ 𝑉 , (3.14)

𝑏(𝒖, 𝑞) = 0 ∀ 𝑞 ∈ 𝑄. (3.15)

Similar to Lemma  3.1, we can show that the solution component 𝒖 also belongs to the set 𝐾𝒇 . This allows us to define an operator 
𝑃2 ∶𝐾𝒇 → 𝐾𝒇  by

𝑃2(𝒘2) = 𝒖.

Proposition 3.6.  Under the assumptions 𝐻(𝜓), (3.1) and (3.9), the operator 𝑃2 ∶𝐾𝒇 → 𝐾𝒇  is a contraction.

Proof.  Let 𝒘2,𝒘2 ∈ 𝐾𝒇 , and denote by (𝒖, 𝑝), (𝒖, 𝑝) ∈ 𝑉 ×𝑄 the corresponding solutions of Problem  3.5. Then, for any (𝒗, 𝑞) ∈ 𝑉 ×𝑄,

𝑎(𝒖; 𝒖, 𝒗) + 𝑑(𝒘2; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) + ∫𝛤1
𝜓0(𝒖𝜏 ; 𝒗𝜏 ) 𝑑𝑠 ≥ ⟨𝒇 , 𝒗⟩, (3.16)

𝑏(𝒖, 𝑞) = 0, (3.17)

𝑎(𝒖; 𝒖, 𝒗) + 𝑑(𝒘2; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) + ∫𝛤1
𝜓0(𝒖𝜏 ; 𝒗𝜏 ) 𝑑𝑠 ≥ ⟨𝒇 , 𝒗⟩, (3.18)

𝑏(𝒖, 𝑞) = 0. (3.19)

Take 𝒗 = 𝒖 − 𝒖 in (3.16), 𝒗 = 𝒖 − 𝒖 in (3.18), add the two resulting inequalities and use the Eqs. (3.17) and (3.19) to obtain
𝑎0(𝒖 − 𝒖, 𝒖 − 𝒖) ≤ 𝑎1(𝒖; 𝒖, 𝒖 − 𝒖) + 𝑎1(𝒖; 𝒖, 𝒖 − 𝒖)

+ ∫𝛤1

[

𝜓0(𝒖𝜏 ; 𝒖𝜏 − 𝒖𝜏 ) + 𝜓0(𝒖𝜏 ; 𝒖𝜏 − 𝒖𝜏 )
]

𝑑𝑠

+ 𝑑(𝒘2; 𝒖, 𝒖 − 𝒖) + 𝑑(𝒘2; 𝒖, 𝒖 − 𝒖). (3.20)

Applying (2.20), we can write
𝑑(𝒘2; 𝒖, 𝒖 − 𝒖) + 𝑑(𝒘2; 𝒖, 𝒖 − 𝒖) = 𝑑(𝒘2; 𝒖, 𝒖 − 𝒖) + 𝑑(𝒘2; 𝒖, 𝒖 − 𝒖)

= 𝑑(𝒘 −𝒘 ; 𝒖, 𝒖 − 𝒖).
2 2
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Then,

𝑑(𝒘2; 𝒖, 𝒖 − 𝒖) + 𝑑(𝒘2; 𝒖, 𝒖 − 𝒖) ≤ 𝑐𝑑‖𝒖‖𝑉 ‖𝒘2 −𝒘2‖𝑉 ‖𝒖 − 𝒖‖𝑉
≤ 𝑐𝑑𝑀𝒇‖𝒘2 −𝒘2‖𝑉 ‖𝒖 − 𝒖‖𝑉 .

From (3.20), (2.24) and (2.29), we have
2𝜇 ‖𝒖 − 𝒖‖2𝑉 ≤ 𝛼𝜓𝜆

−1
0 ‖𝒖 − 𝒖‖2𝑉 + 𝑐𝑑𝑀𝒇‖𝒘2 −𝒘2‖𝑉 ‖𝒖 − 𝒖‖𝑉 .

Consequently,

‖𝒖 − 𝒖‖𝑉 ≤
𝑐𝑑𝑀𝒇

2𝜇 − 𝛼𝜓𝜆−10
‖𝒘2 −𝒘2‖𝑉 .

Hence, the operator 𝑃2 ∶𝐾𝒇 → 𝐾𝒇  is a contraction. □

Theorem 3.7.  Assume 𝐻(𝜓), (3.1) and (3.9). Then, Problem  2.3 has a unique solution (𝒖, 𝑝) ∈ 𝑉 ×𝑄, and for a constant 𝑐 > 0,

‖𝒖‖𝑉 ≤ 𝑐
(

1 + ‖𝒇‖𝑉 ∗
)

, (3.21)

‖𝒖‖𝐿𝑟(𝛺)𝑑 ≤ 𝑐
(

1 + ‖𝒇‖2∕𝑟𝑉 ∗

)

, (3.22)

‖𝑝‖𝑄 ≤ 𝑐
(

1 + ‖𝒇‖2𝑉 ∗
)

. (3.23)

Moreover, 𝒖 ∈ 𝑉  depends Lipschitz continuously on 𝒇 ∈ 𝑉 ∗, and 𝑝 ∈ 𝑄 depends locally Lipschitz continuously on 𝒇 ∈ 𝑉 ∗.

Proof.  From Proposition  3.6, by the Banach fixed-point theorem, the operator 𝑃2 has a unique fixed point 𝒖 ∈ 𝐾𝒇 . Then, for some 
element 𝑝 ∈ 𝑄, (𝒖, 𝑝) ∈ 𝑉 × 𝑄 is a solution of Problem  2.3 and the solution component 𝒖 is unique. To show the uniqueness of 𝑝, 
assume (𝒖, 𝑝̃) ∈ 𝑉 ×𝑄 is another solution of Problem  2.3. From (2.30),

𝑎(𝒖; 𝒖, 𝒗) + 𝑑(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = ⟨𝒇 , 𝒗⟩ ∀ 𝒗 ∈ 𝑉0, (3.24)
𝑎(𝒖; 𝒖, 𝒗) + 𝑑(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝̃) = ⟨𝒇 , 𝒗⟩ ∀ 𝒗 ∈ 𝑉0.

Subtract the two equalities to obtain
𝑏(𝒗, 𝑝 − 𝑝̃) = 0 ∀ 𝒗 ∈ 𝑉0.

By the inf-sup condition (2.19),

𝛽0‖𝑝 − 𝑝̃‖𝑄 ≤ sup
𝒗∈𝑉0

𝑏(𝒗, 𝑝 − 𝑝̃)
‖𝒗‖𝑉

= 0.

Hence, 𝑝̃ = 𝑝 and the solution component 𝑝 is unique.
To prove (3.21), we take 𝒗 = −𝒖 in (2.30) to get

2𝜇 ∫𝛺
|𝜺(𝒖)|2𝑑𝑥 + 𝛼 ∫𝛺

|𝒖|𝑟𝑑𝑥 ≤ ∫𝛤1
𝜓0(𝒖𝜏 ; −𝒖𝜏 ) 𝑑𝑠 + ⟨𝒇 , 𝒖⟩.

From the proof in [43, Theorem 3.6], we deduce that 
‖𝒖‖2𝑉 + ‖𝒖‖𝑟

𝐿𝑟(𝛺)𝑑 ≤ 𝑐
(

1 + ‖𝒇‖2𝑉 ∗
)

. (3.25)

From (2.19) and (3.24), we have

𝛽0‖𝑝‖𝑄 ≤ sup
𝒗∈𝑉0

1
‖𝒗‖𝑉

[

⟨𝒇 , 𝒗⟩ − 𝑎0(𝒖, 𝒗) − 𝑎1(𝒖; 𝒖, 𝒗) − 𝑑(𝒖; 𝒖, 𝒗)
]

.

By the boundedness of the bilinear form 𝑎0(⋅, ⋅), the trilinear form 𝑑(⋅; ⋅, ⋅) and the bound (2.21),

‖𝑝‖𝑄 ≤ 𝑐
(

‖𝒇‖𝑉 ∗ + ‖𝒖‖𝑉 + ‖𝒖‖2𝑉 + ‖𝒖‖𝑟−1
𝐿𝑟(𝛺)𝑑

)

.

Hence, (3.23) holds.
Finally, we prove the Lipschitz continuity of the solution. For any 𝒇1,𝒇2 ∈ 𝑉 ∗, let (𝒖1, 𝑝1), (𝒖2, 𝑝2) ∈ 𝑉 ×𝑄 be the corresponding 

solutions of Problem  2.3. Then, for all 𝒗 ∈ 𝑉 ,

𝑎(𝒖1; 𝒖1, 𝒗) + 𝑑(𝒖1; 𝒖1, 𝒗) + 𝑏(𝒗, 𝑝1) + ∫𝛤1
𝜓0(𝒖1,𝜏 ; 𝒗𝜏 ) 𝑑𝑠 ≥ ⟨𝒇1, 𝒗⟩, (3.26)

𝑎(𝒖2; 𝒖2, 𝒗) + 𝑑(𝒖2; 𝒖2, 𝒗) + 𝑏(𝒗, 𝑝2) + ∫𝛤1
𝜓0(𝒖2,𝜏 ; 𝒗𝜏 ) 𝑑𝑠 ≥ ⟨𝒇2, 𝒗⟩. (3.27)

Taking 𝒗 = 𝒖2 − 𝒖1 in (3.26), 𝒗 = 𝒖1 − 𝒖2 in (3.27), adding the two resulting inequalities and using Eq. (2.31) for 𝒖 = 𝒖1 and 𝒖2, we 
obtain that

𝑎 (𝒖 − 𝒖 , 𝒖 − 𝒖 ) ≤ 𝑎 (𝒖 ; 𝒖 , 𝒖 − 𝒖 ) + 𝑎 (𝒖 ; 𝒖 , 𝒖 − 𝒖 )
0 1 2 1 2 1 1 1 2 1 1 2 2 1 2
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+ 𝑑(𝒖1; 𝒖1, 𝒖2 − 𝒖1) + 𝑑(𝒖2; 𝒖2, 𝒖1 − 𝒖2)

+ ∫𝛤1

[

𝜓0(𝒖1,𝜏 ; 𝒖2,𝜏 − 𝒖1,𝜏 ) + 𝜓0(𝒖2,𝜏 ; 𝒖1,𝜏 − 𝒖2,𝜏 )
]

𝑑𝑠

+ ⟨𝒇1 − 𝒇2, 𝒖1 − 𝒖2⟩,

 which leads to
2𝜇 ‖𝒖1 − 𝒖2‖2𝑉 ≤ 𝛼𝜓𝜆

−1
0 ‖𝒖1 − 𝒖2‖2𝑉 + 𝑐𝑑𝑀𝒇‖𝒖1 − 𝒖2‖2𝑉 + ‖𝒇1 − 𝒇2‖𝑉 ∗‖𝒖1 − 𝒖2‖𝑉 .

Hence, 
‖𝒖1 − 𝒖2‖𝑉 ≤ 1

2𝜇 − 𝛼𝜓𝜆−10 − 𝑐𝑑𝑀𝒇
‖𝒇1 − 𝒇2‖𝑉 ∗ . (3.28)

Therefore, 𝒖 depends Lipschitz continuously on 𝒇 . Note that (2.27) is not needed for this part of the result.
Similar to (3.24), we have

𝑎(𝒖1; 𝒖1, 𝒗) + 𝑑(𝒖1; 𝒖1, 𝒗) + 𝑏(𝒗, 𝑝1) = ⟨𝒇1, 𝒗⟩ ∀ 𝒗 ∈ 𝑉0,

𝑎(𝒖2; 𝒖2, 𝒗) + 𝑑(𝒖2; 𝒖2, 𝒗) + 𝑏(𝒗, 𝑝2) = ⟨𝒇2, 𝒗⟩ ∀ 𝒗 ∈ 𝑉0.

Subtract the two equalities to obtain
𝑏(𝒗, 𝑝1 − 𝑝2) = ⟨𝒇1 − 𝒇2, 𝒗⟩ − 𝑎0(𝒖1 − 𝒖2, 𝒗) −

[

𝑎1(𝒖1; 𝒖1, 𝒗) − 𝑎1(𝒖2; 𝒖2, 𝒗)
]

−
[

𝑑(𝒖1; 𝒖1, 𝒗) − 𝑑(𝒖2; 𝒖2, 𝒗)
]

∀ 𝒗 ∈ 𝑉0. (3.29)

By (2.22), we have
−
[

𝑎1
(

𝒖1; 𝒖1, 𝒗
)

− 𝑎1
(

𝒖2; 𝒖2, 𝒗
)]

≤ 𝑐
(

‖

‖

𝒖1‖‖
𝑟−2
𝐿𝑟(𝛺)𝑑 + ‖

‖

𝒖2‖‖
𝑟−2
𝐿𝑟(𝛺)𝑑

)

‖

‖

𝒖1 − 𝒖2‖‖𝑉 ‖𝒗‖𝑉

≤ 𝑐
(

‖

‖

𝒖1‖‖𝐿𝑟(𝛺)𝑑 + ‖

‖

𝒖2‖‖𝐿𝑟(𝛺)𝑑

)𝑟−2
‖

‖

𝒖1 − 𝒖2‖‖𝑉 ‖𝒗‖𝑉 .

Moreover,

−
[

𝑑(𝒖1, 𝒖1, 𝒗) − 𝑑(𝒖2, 𝒖2, 𝒗)
]

= −
[

𝑑(𝒖2 − 𝒖1, 𝒖1, 𝒗) + 𝑑(𝒖2, 𝒖1 − 𝒖2, 𝒗)
]

≤ 𝑐𝑑
(

‖𝒖1‖𝑉 + ‖𝒖2‖𝑉
)

‖𝒖1 − 𝒖2‖𝑉 ‖𝒗‖𝑉 .

We derive from (3.29) that
𝑏(𝒗, 𝑝1 − 𝑝2) ≤ ‖𝒇1 − 𝒇2‖𝑉 ∗‖𝒗‖𝑉 + 2𝜇 ‖𝒖1 − 𝒖2‖𝑉 ‖𝒗‖𝑉

+ 𝑐
(

‖𝒖1‖𝐿𝑟(𝛺)𝑑 + ‖𝒖2‖𝐿𝑟(𝛺)𝑑
)𝑟−2

‖𝒖1 − 𝒖2‖𝑉 ‖𝒗‖𝑉
+ 𝑐

(

‖𝒖1‖𝑉 + ‖𝒖2‖𝑉
)

‖𝒖1 − 𝒖2‖𝑉 ‖𝒗‖𝑉 .

By (3.22),
‖𝒖1‖𝐿𝑟(𝛺)𝑑 + ‖𝒖2‖𝐿𝑟(𝛺)𝑑 ≤ 𝑐

(

1 + ‖𝒇1‖𝑉 ∗ + ‖𝒇2‖𝑉 ∗
)2∕𝑟 .

Hence,

𝑏(𝒗, 𝑝1 − 𝑝2) ≤ ‖𝒇1 − 𝒇2‖𝑉 ∗‖𝒗‖𝑉 + 2𝜇 ‖𝒖1 − 𝒖2‖𝑉 ‖𝒗‖𝑉
+ 𝑐

(

1 + ‖𝒇1‖𝑉 ∗ + ‖𝒇2‖𝑉 ∗
)max{1,2(𝑟−2)∕𝑟}

‖𝒖1 − 𝒖2‖𝑉 ‖𝒗‖𝑉 .

Applying the inf-sup condition (2.19) and (3.28), we find

‖𝑝1 − 𝑝2‖𝑄 ≤ 1
𝛽0

sup
𝒗∈𝑉0

𝑏(𝒗, 𝑝1 − 𝑝2)
‖𝒗‖𝑉

≤ 𝑐
(

1 + ‖𝒇1‖𝑉 ∗ + ‖𝒇2‖𝑉 ∗
)max{1,2(𝑟−2)∕𝑟}

‖𝒇1 − 𝒇2‖𝑉 ∗ .

Thus, 𝑝 ∈ 𝑄 depends locally Lipschitz continuously on 𝒇 ∈ 𝑉 ∗. □

In the special case of a convex function 𝜓 , 𝛼𝜓 = 0, the condition (3.1) is automatically satisfied, and the condition (3.9) reduces 
to 𝑐𝑑𝑀𝒇 < 2𝜇. Then we have the next result on Problems  2.4.

Theorem 3.8.  Assume 𝜓 is convex. Then for any 𝒇 ∈ 𝑉 ∗ with 𝑐𝑑𝑀𝒇 < 2𝜇, Problem  2.4 has a unique solution (𝒖, 𝑝) ∈ 𝑉 ×𝑄. Moreover, 
(3.21)–(3.23) hold, 𝒖 ∈ 𝑉  depends Lipschitz continuously on 𝒇 ∈ 𝑉 ∗ and 𝑝 ∈ 𝑄 depends locally Lipschitz continuously on 𝒇 ∈ 𝑉 ∗.

In the case where |𝛤1| = 0, the weak formulation of the original problem reduces to an equality, and both Problems  2.3 and 2.4 
are replaced by Problem  3.9 below. 

Problem 3.9.  Find (𝒖, 𝑝) ∈ 𝑉 ×𝑄 such that
𝑎(𝒖; 𝒖, 𝒗) + 𝑑(𝒖; 𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = ⟨𝒇 , 𝒗⟩ ∀ 𝒗 ∈ 𝑉 , (3.30)

𝑏(𝒖, 𝑞) = 0 ∀ 𝑞 ∈ 𝑄. (3.31)
8 
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The argument presented earlier in this section, in a simpler form, also applies to establishing the well-posedness result for Problem 
3.9. Here, for any 𝒇 ∈ 𝑉 ∗ satisfying 𝑐𝑑‖𝒇‖𝑉 ∗ < 4𝜇2, Problem  3.9 has a unique solution (𝒖, 𝑝) ∈ 𝑉 ×𝑄. Moreover, (3.21)–(3.23) hold, 
𝒖 ∈ 𝑉  depends Lipschitz continuously on 𝒇 ∈ 𝑉 ∗ and 𝑝 ∈ 𝑄 depends locally Lipschitz continuously on 𝒇 ∈ 𝑉 ∗.

4. Mixed finite element methods

We study the mixed finite element method for Problem  2.3 in this section. For simplicity, we assume 𝛺 is a polygonal domain 
(𝑑 = 2) or a polyhedral domain (𝑑 = 3). Let { ℎ}

ℎ be a regular family of finite element partitions of the domain 𝛺̄ into 
triangular/tetrahedral elements that are compatible with the boundary decomposition to 𝛤0 and 𝛤1, i.e., if a side or face of an 
element has non-trivial intersection with 𝛤0 or 𝛤1, then the side or face lies entirely on 𝛤0 or 𝛤1. Let ℎ represent the discretization 
parameter. We use finite element spaces 𝑉 ℎ ⊂ 𝑉  and 𝑄ℎ ⊂ 𝑄 that satisfy the discrete inf-sup condition holds: for a constant 𝛽 > 0
independent of ℎ, 

𝛽 ‖𝑞ℎ‖𝑄 ≤ sup
𝒗ℎ∈𝑉 ℎ0

𝑏(𝒗ℎ, 𝑞ℎ)
‖𝒗ℎ‖𝑉

∀ 𝑞ℎ ∈ 𝑄ℎ, (4.1)

where 𝑉 ℎ
0 = 𝑉 ℎ ∩ 𝑉0.

As examples, we may use the P1b/P1 finite elements [49],
𝑉 ℎ =

{

𝒗ℎ ∈ 𝑉 ∩ 𝐶0(𝛺)𝑑 ∣ 𝒗ℎ|𝑇 ∈ [𝑃1(𝑇 )⊕𝐵(𝑇 )]𝑑 ∀ 𝑇 ∈  ℎ
}

,

𝑄ℎ =
{

𝑞ℎ ∈ 𝑄 ∩ 𝐶0(𝛺) ∣ 𝑞|𝑇 ∈ 𝑃1(𝑇 ) ∀ 𝑇 ∈  ℎ
}

,

or P2/P1 finite elements ([50, Chapter II, Corollary 4.1]),
𝑉 ℎ =

{

𝒗ℎ ∈ 𝑉 ∩ 𝐶0(𝛺)𝑑 ∣ 𝒗ℎ|𝑇 ∈ [𝑃2(𝑇 )]𝑑 ∀ 𝑇 ∈  ℎ
}

,

𝑄ℎ =
{

𝑞ℎ ∈ 𝑄 ∩ 𝐶0(𝛺) ∣ 𝑞|𝑇 ∈ 𝑃1(𝑇 ) ∀ 𝑇 ∈  ℎ
}

,

where 𝑃𝑘(𝑇 ) denotes the space of polynomials of a degree less than or equal to 𝑘 on 𝑇 , and 𝐵(𝑇 ) represents the space of bubble 
functions on 𝑇 .

The mixed finite element method for Problem  2.3 is as follows.

Problem 4.1.  Find (𝒖ℎ, 𝑝ℎ) ∈ 𝑉 ℎ ×𝑄ℎ such that

𝑎(𝒖ℎ; 𝒖ℎ, 𝒗ℎ) + 𝑑(𝒖ℎ; 𝒖ℎ, 𝒗ℎ) + 𝑏(𝒗ℎ, 𝑝ℎ) + ∫𝛤1
𝜓0(𝒖ℎ𝜏 ; 𝒗

ℎ
𝜏 ) 𝑑𝑠 ≥ ⟨𝒇 , 𝒗ℎ⟩ ∀ 𝒗ℎ ∈ 𝑉 ℎ, (4.2)

𝑏(𝒖ℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ. (4.3)

Similar to the result for Problem  2.3, we obtain the following Theorem.

Theorem 4.2.  Assume 𝐻(𝜓), (3.1), (3.9), and the discrete inf-sup condition (4.1). Then Problem  4.1 has a unique solution (𝒖ℎ, 𝑝ℎ) ∈
𝑉 ℎ ×𝑄ℎ. The solution component 𝒖ℎ belongs to the set 𝐾𝒇  and depends Lipschitz continuously on 𝒇 . Moreover, for a constant 𝑐 > 0, 

‖𝒖ℎ‖2𝑉 + ‖𝒖ℎ‖𝑟
𝐿𝑟(𝛺)𝑑 ≤ 𝑐

(

1 + ‖𝒇‖2𝑉 ∗
)

, (4.4)

and 𝑝ℎ depends locally Lipschitz continuously on 𝒇 .
Next we will present a Céa-type error estimate result. The following modified Cauchy–Schwarz inequality will be applied several 

times: 
𝑥 𝑦 ≤ 𝜖 𝑥2 + 1

4 𝜖
𝑦2 ∀ 𝑥, 𝑦 ∈ R, (4.5)

where 𝜖 > 0 is arbitrarily small.

Theorem 4.3.  Keep the assumptions of Theorem  4.2. Let (𝒖, 𝑝) and (𝒖ℎ, 𝑝ℎ) be solutions of Problems  2.3 and 4.1, respectively. Then there 
exists a positive constant 𝑐 independent of ℎ such that 

‖𝒖 − 𝒖ℎ‖2𝑉 + ‖𝑝 − 𝑝ℎ‖2𝑄 ≤ 𝑐
(

‖𝒖 − 𝒗ℎ‖2𝑉 + ‖𝒖𝜏 − 𝒗ℎ𝜏 ‖𝐿2(𝛤1)𝑑 + ‖𝑝 − 𝑞ℎ‖2𝑄
)

∀ 𝒗ℎ ∈ 𝑉 ℎ, 𝑞ℎ ∈ 𝑄ℎ. (4.6)

Proof.  For an arbitrary 𝒗ℎ ∈ 𝑉 ℎ, we have
2𝜇 ‖𝒖 − 𝒖ℎ‖2𝑉 ≤ 𝑎0(𝒖 − 𝒖ℎ, 𝒖 − 𝒖ℎ) = 𝑎0(𝒖 − 𝒖ℎ, 𝒖 − 𝒗ℎ) + 𝑎0(𝒖 − 𝒖ℎ, 𝒗ℎ − 𝒖ℎ)

≤ 𝑎0(𝒖 − 𝒖ℎ, 𝒖 − 𝒗ℎ) + 𝑎0(𝒖, 𝒗ℎ − 𝒖ℎ) + 𝑎0(𝒖ℎ, 𝒖ℎ − 𝒗ℎ). (4.7)

Take 𝒗 = 𝒖ℎ − 𝒗ℎ in (2.30) to obtain
𝑎 (𝒖, 𝒗ℎ − 𝒖ℎ) ≤ 𝑎 (𝒖; 𝒖, 𝒖ℎ − 𝒗ℎ) + 𝑑(𝒖; 𝒖, 𝒖ℎ − 𝒗ℎ) + 𝑏(𝒖ℎ − 𝒗ℎ, 𝑝)
0 1
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+ ∫𝛤1
𝜓0(𝒖𝜏 ; 𝒖ℎ𝜏 − 𝒗ℎ𝜏 ) 𝑑𝑠 − ⟨𝒇 , 𝒖ℎ − 𝒗ℎ⟩.

Substitute 𝒗ℎ with 𝒗ℎ − 𝒖ℎ in (4.2),
𝑎0(𝒖ℎ, 𝒖ℎ − 𝒗ℎ) ≤ 𝑎1(𝒖ℎ; 𝒖ℎ, 𝒗ℎ − 𝒖ℎ) + 𝑑(𝒖ℎ; 𝒖ℎ, 𝒗ℎ − 𝒖ℎ) + 𝑏(𝒗ℎ − 𝒖ℎ, 𝑝ℎ)

+ ∫𝛤1
𝜓0(𝒖ℎ𝜏 ; 𝒗

ℎ
𝜏 − 𝒖ℎ𝜏 ) 𝑑𝑠 − ⟨𝒇 , 𝒗ℎ − 𝒖ℎ⟩.

Apply these two inequalities in (4.7), we have 
2𝜇 ‖𝒖 − 𝒖ℎ‖2𝑉 ≤ 𝑎0(𝒖 − 𝒖ℎ, 𝒖 − 𝒗ℎ) + 𝐼𝑎1 + 𝐼𝑑 + 𝐼𝜓 + 𝐼𝑏, (4.8)

where

𝐼𝑎1 = 𝑎1(𝒖; 𝒖, 𝒖ℎ − 𝒗ℎ) + 𝑎1(𝒖ℎ; 𝒖ℎ, 𝒗ℎ − 𝒖ℎ),

𝐼𝑑 = 𝑑(𝒖; 𝒖, 𝒖ℎ − 𝒗ℎ) + 𝑑(𝒖ℎ; 𝒖ℎ, 𝒗ℎ − 𝒖ℎ),

𝐼𝜓 = ∫𝛤1

[

𝜓0(𝒖𝜏 ; 𝒖ℎ𝜏 − 𝒗ℎ𝜏 ) + 𝜓
0(𝒖ℎ𝜏 ; 𝒗

ℎ
𝜏 − 𝒖ℎ𝜏 )

]

𝑑𝑠,

𝐼𝑏 = 𝑏(𝒖ℎ − 𝒗ℎ, 𝑝 − 𝑝ℎ).

From [43, Theorem 4.2], we have the estimation
𝑎0(𝒖 − 𝒖ℎ, 𝒖 − 𝒗ℎ) ≤ 2𝜇 ‖𝒖 − 𝒖ℎ‖𝑉 ‖𝒖 − 𝒗ℎ‖𝑉 ≤ 𝜖 ‖𝒖 − 𝒖ℎ‖2𝑉 + 𝑐 ‖𝒖 − 𝒗ℎ‖2𝑉 , (4.9)

𝐼𝑎1 ≤ 𝑐 ‖𝒖 − 𝒖ℎ‖𝑉 ‖𝒖 − 𝒗ℎ‖𝑉 ≤ 𝜖 ‖𝒖 − 𝒖ℎ‖2𝑉 + 𝑐 ‖𝒖 − 𝒗ℎ‖2𝑉 , (4.10)

𝐼𝜓 ≤ 𝛼𝜓𝜆
−1
0 ‖𝒖 − 𝒖ℎ‖2𝑉 + 𝑐

(

1 + ‖𝒖𝜏‖𝐿2(𝛤1)𝑑 + ‖𝒖ℎ𝜏 ‖𝐿2(𝛤1)𝑑
)

‖𝒖𝜏 − 𝒗ℎ𝜏 ‖𝐿2(𝛤1)𝑑 , (4.11)

𝐼𝑏 ≤ 𝜖
(

‖𝒖 − 𝒖ℎ‖2𝑉 + ‖𝑝 − 𝑝ℎ‖2𝑄
)

+ 𝑐
(

‖𝒖 − 𝒗ℎ‖2𝑉 + ‖𝑝 − 𝑞ℎ‖2𝑄
)

. (4.12)

We now bound the term 𝐼𝑑 . Write
𝐼𝑑 = 𝑑

(

𝒖, 𝒖 − 𝒖ℎ, 𝒖ℎ − 𝒗ℎ
)

+ 𝑑
(

𝒖 − 𝒖ℎ, 𝒖ℎ, 𝒖ℎ − 𝒗ℎ
)

= 𝑑
(

𝒖, 𝒖 − 𝒖ℎ, 𝒖 − 𝒗ℎ
)

+ 𝑑
(

𝒖 − 𝒖ℎ, 𝒖ℎ, 𝒖ℎ − 𝒗ℎ
)

,

where we used the equality 𝑑 (𝒖, 𝒖 − 𝒖ℎ, 𝒖ℎ − 𝒖
)

= 0. Then

𝐼𝑑 ≤ 𝑐𝑑‖𝒖‖𝑉
‖

‖

‖

𝒖 − 𝒖ℎ‖‖
‖𝑉

‖

‖

‖

𝒖 − 𝒗ℎ‖‖
‖𝑉

+ 𝑐𝑑
‖

‖

‖

𝒖 − 𝒖ℎ‖‖
‖𝑉

‖

‖

‖

𝒖ℎ‖‖
‖𝑉

‖

‖

‖

𝒖ℎ − 𝒗ℎ‖‖
‖𝑉

≤ 𝑐𝑑𝑀𝒇
‖

‖

‖

𝒖 − 𝒖ℎ‖‖
‖𝑉

‖

‖

‖

𝒖 − 𝒗ℎ‖‖
‖𝑉

+ 𝑐𝑑𝑀𝒇
‖

‖

‖

𝒖 − 𝒖ℎ‖‖
‖𝑉

‖

‖

‖

𝒖ℎ − 𝒗ℎ‖‖
‖𝑉

.

Applying the triangle inequality
‖

‖

‖

𝒖ℎ − 𝒗ℎ‖‖
‖𝑉

≤ ‖

‖

‖

𝒖 − 𝒖ℎ‖‖
‖𝑉

+ ‖

‖

‖

𝒖 − 𝒗ℎ‖‖
‖𝑉

and the modified Cauchy–Schwarz inequality (4.5), we have a constant 𝑐 > 0 depending on 𝜖 such that 

𝐼𝑑 ≤
(

𝑐𝑑𝑀𝒇 + 2𝜖
)

‖

‖

‖

𝒖 − 𝒖ℎ‖‖
‖

2

𝑉
+ 𝑐 ‖‖

‖

𝒖 − 𝒗ℎ‖‖
‖

2

𝑉
. (4.13)

Applying (4.9)–(4.13) to (4.8), and recalling the assumption (3.9), we find that for any sufficiently small 𝜖 > 0, there exists a 
constant 𝑐 depending on 𝜖 such that 

‖𝒖 − 𝒖ℎ‖2𝑉 ≤ 𝑐
(

‖𝒖 − 𝒗ℎ‖2𝑉 + ‖𝒖𝜏 − 𝒗ℎ𝜏 ‖𝐿2(𝛤1)𝑑 + ‖𝑝 − 𝑞ℎ‖2𝑄
)

+ 𝜖 ‖𝑝 − 𝑝ℎ‖2𝑄. (4.14)

By the triangle inequality, 
‖𝑝 − 𝑝ℎ‖𝑄 ≤ ‖𝑝 − 𝑞ℎ‖𝑄 + ‖𝑝ℎ − 𝑞ℎ‖𝑄. (4.15)

From the discrete inf-sup condition (4.1),

𝛽 ‖𝑝ℎ − 𝑞ℎ‖𝑄 ≤ sup
𝒗ℎ∈𝑉 ℎ0

𝑏(𝒗ℎ, 𝑝ℎ − 𝑞ℎ)
‖𝒗ℎ‖𝑉

.

Write

𝑏(𝒗ℎ, 𝑝ℎ − 𝑞ℎ) = 𝑏(𝒗ℎ, 𝑝ℎ) − 𝑏(𝒗ℎ, 𝑝) + 𝑏(𝒗ℎ, 𝑝 − 𝑞ℎ).

From (2.30) and (4.2), it follows that
𝑎0(𝒖, 𝒗ℎ) + 𝑎1(𝒖; 𝒖, 𝒗ℎ) + 𝑑(𝒖; 𝒖, 𝒗ℎ) + 𝑏(𝒗ℎ, 𝑝) = ⟨𝒇 , 𝒗ℎ⟩ ∀ 𝒗ℎ ∈ 𝑉0,

𝑎0(𝒖ℎ, 𝒗ℎ) + 𝑎1(𝒖ℎ; 𝒖ℎ, 𝒗ℎ) + 𝑑(𝒖ℎ; 𝒖ℎ, 𝒗ℎ) + 𝑏(𝒗ℎ, 𝑝ℎ) = ⟨𝒇 , 𝒗ℎ⟩ ∀ 𝒗ℎ ∈ 𝑉 ℎ
0 .
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Hence,

𝑏(𝒗ℎ, 𝑝ℎ) − 𝑏(𝒗ℎ, 𝑝) = −
[

𝑎0(𝒖ℎ, 𝒗ℎ) + 𝑎1(𝒖ℎ; 𝒖ℎ, 𝒗ℎ) + 𝑑(𝒖ℎ; 𝒖ℎ, 𝒗ℎ)
]

+
[

𝑎0(𝒖, 𝒗ℎ) + 𝑎1(𝒖; 𝒖, 𝒗ℎ) + 𝑑(𝒖; 𝒖, 𝒗ℎ)
]

= 𝑎0(𝒖 − 𝒖ℎ, 𝒗ℎ) + 𝑎1(𝒖; 𝒖, 𝒗ℎ) − 𝑎1(𝒖ℎ; 𝒖ℎ, 𝒗ℎ)

+ 𝑑(𝒖 − 𝒖ℎ; 𝒖, 𝒗ℎ) + 𝑑(𝒖ℎ; 𝒖 − 𝒖ℎ, 𝒗ℎ).

From (2.22), we obtain
𝑎1(𝒖; 𝒖, 𝒗ℎ) − 𝑎1(𝒖ℎ; 𝒖ℎ, 𝒗ℎ) ≤ 𝑐

(

‖𝒖‖𝐿𝑟(𝛺)𝑑 + ‖𝒖ℎ‖𝐿𝑟(𝛺)𝑑
)𝑟−2

‖𝒖 − 𝒖ℎ‖𝑉 ‖𝒗ℎ‖𝑉 .

By the boundedness of the form 𝑑, we get
𝑑(𝒖 − 𝒖ℎ; 𝒖, 𝒗ℎ) + 𝑑(𝒖ℎ; 𝒖 − 𝒖ℎ, 𝒗ℎ) ≤ 𝑐𝑑

(

‖𝒖‖𝑉 + ‖𝒖ℎ‖𝑉
)

‖𝒖 − 𝒖ℎ‖𝑉 ‖𝒗ℎ‖𝑉
≤ 𝑐‖𝒖 − 𝒖ℎ‖𝑉 ‖𝒗ℎ‖𝑉 .

Hence, we deduce the following bound from (4.15)
‖𝑝 − 𝑝ℎ‖𝑄 ≤ 𝑐

(

‖𝒖 − 𝒖ℎ‖𝑉 + ‖𝑝 − 𝑞ℎ‖𝑄
)

. (4.16)

Finally, (4.6) follows from (4.14) with a sufficiently small 𝜖 and (4.16). □

As sample error estimates for applications of the Céa’s inequality (4.6) and the standard finite element interpolation error 
estimates [48,51,52], we consider the numerical methods with the use of the P1b/P1 elements and the P2/P1 elements. We express 
𝛤1 as a union of a finite number of flat components:

𝛤1 = ∪𝑙0𝑙=1𝛤1,𝑙 .

Theorem 4.4.  Keep the assumptions of Theorem  4.2. Let (𝒖, 𝑝) and (𝒖ℎ, 𝑝ℎ) be solutions of Problems  2.3 and 4.1 with the P1b/P1 elements. 
Assume the following solution regularities:

𝒖 ∈ 𝐻2(𝛺)𝑑 , 𝒖𝜏 |𝛤1,𝑙 ∈ 𝐻2(𝛤1,𝑙)𝑑 , 1 ≤ 𝑙 ≤ 𝑙0, 𝑝 ∈ 𝐻1(𝛺).

Then,

‖𝒖 − 𝒖ℎ‖𝑉 + ‖𝑝 − 𝑝ℎ‖𝑄 ≤ 𝑐 ℎ.

Theorem 4.5.  Keep the assumptions of Theorem  4.2. Let (𝒖, 𝑝) and (𝒖ℎ, 𝑝ℎ) be solutions of Problems  2.3 and 4.1 with the P2/P1 elements. 
Assume the following solution regularities:

𝒖 ∈ 𝐻3(𝛺)𝑑 , 𝒖𝜏 |𝛤1,𝑙 ∈ 𝐻3(𝛤1,𝑙)𝑑 , 1 ≤ 𝑙 ≤ 𝑙0, 𝑝 ∈ 𝐻2(𝛺).

Then,

‖𝒖 − 𝒖ℎ‖𝑉 + ‖𝑝 − 𝑝ℎ‖𝑄 ≤ 𝑐 ℎ3∕2.

5. Solution algorithms

We introduce a numerical algorithm to solve Problem  4.1 following the idea presented in [43] in the context of a Stokes 
hemivariational inequality. To handle the two nonlinear terms in the problem, we apply a Newton-type linearization. Let 𝒖ℎ𝑛+1
be represented as 𝒖ℎ𝑛 + 𝜹ℎ𝑛 , where 𝜹ℎ𝑛 = 𝒖ℎ𝑛+1 − 𝒖ℎ𝑛 is assumed to be small. Consider the following real-valued functions of a real 
variable,

𝝓1(𝑡) =
|

|

|

𝒖ℎ𝑛 + 𝑡𝜹
ℎ
𝑛
|

|

|

𝑟−2 (
𝒖ℎ𝑛 + 𝑡𝜹

ℎ
𝑛
)

, 𝑡 ∈ R,

𝝓2(𝑡) =
(

𝒖ℎ𝑛 + 𝑡𝜹
ℎ
𝑛
)

⋅ ∇
(

𝒖ℎ𝑛 + 𝑡𝜹
ℎ
𝑛
)

, 𝑡 ∈ R.

We use the approximations
𝝓1(1) ≈ 𝝓1(0) + 𝝓′

1(0), 𝝓2(1) ≈ 𝝓2(0) + 𝝓′
2(0)

to obtain
|

|

|

𝒖ℎ𝑛+1
|

|

|

𝑟−2
𝒖ℎ𝑛+1 ≈

|

|

|

𝒖ℎ𝑛
|

|

|

𝑟−2
𝒖ℎ𝑛+1 + (𝑟 − 2) ||

|

𝒖ℎ𝑛
|

|

|

𝑟−4
(𝒖ℎ𝑛 ⋅ 𝒖

ℎ
𝑛+1)𝒖

ℎ
𝑛 − (𝑟 − 2) ||

|

𝒖ℎ𝑛
|

|

|

𝑟−2
𝒖ℎ𝑛 ,

𝒖ℎ𝑛+1 ⋅ ∇𝒖
ℎ
𝑛+1 ≈ 𝒖ℎ𝑛+1 ⋅ ∇𝒖

ℎ
𝑛 + 𝒖ℎ𝑛 ⋅ ∇𝒖

ℎ
𝑛+1 − 𝒖ℎ𝑛 ⋅ ∇𝒖

ℎ
𝑛 .

Thus, we are led to the following linearized iterative algorithm.
11 
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Algorithm 5.1. Choose an initial guess 𝒖ℎ0 ∈ 𝑉 ℎ. Then for 𝑛 ≥ 0 until a stopping criterion is satisfied, find 
(

𝒖ℎ𝑛+1, 𝑝
ℎ
𝑛+1

)

∈ 𝑉 ℎ × 𝑄ℎ

such that
𝑎0(𝒖ℎ𝑛+1, 𝒗

ℎ) + 𝑎1(𝒖ℎ𝑛 ; 𝒖
ℎ
𝑛+1, 𝒗

ℎ) + 𝑏(𝒗ℎ, 𝑝ℎ𝑛+1) + 𝑑(𝒖
ℎ
𝑛+1, 𝒖

ℎ
𝑛 , 𝒗

ℎ) + 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛+1, 𝒗

ℎ)

− 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛 , 𝒗

ℎ) + ∫𝛤1
𝜓0(𝒖ℎ𝜏,𝑛+1; 𝒗

ℎ
𝜏 ) 𝑑𝑠 + 𝛼(𝑟 − 2)

(

|

|

|

𝒖ℎ𝑛
|

|

|

𝑟−4 (
𝒖ℎ𝑛 ⋅ 𝒖

ℎ
𝑛+1

)

𝒖ℎ𝑛 , 𝒗
ℎ
)

≥
⟨

𝒇 , 𝒗ℎ
⟩

+ (𝑟 − 2)𝑎1(𝒖ℎ𝑛 ; 𝒖
ℎ
𝑛 , 𝒗

ℎ) ∀ 𝒗ℎ ∈ 𝑉 ℎ,

𝑏(𝒖ℎ𝑛+1, 𝑞
ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ.

For the special case of a convex function 𝜓 , the algorithm is as follows:

Algorithm 5.2. Choose an initial guess 𝒖ℎ0 ∈ 𝑉 ℎ. Then for 𝑛 ≥ 0 until a stopping criterion is satisfied, find 
(

𝒖ℎ𝑛+1, 𝑝
ℎ
𝑛+1

)

∈ 𝑉 ℎ × 𝑄ℎ

such that
𝑎0(𝒖ℎ𝑛+1, 𝒗

ℎ − 𝒖ℎ𝑛+1) + 𝑎1(𝒖
ℎ
𝑛 ; 𝒖

ℎ
𝑛+1, 𝒗

ℎ − 𝒖ℎ𝑛+1) + 𝑏(𝒗
ℎ − 𝒖ℎ𝑛+1, 𝑝

ℎ
𝑛+1)

+ 𝑑(𝒖ℎ𝑛+1, 𝒖
ℎ
𝑛 , 𝒗

ℎ) + 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛+1, 𝒗

ℎ) − 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛 , 𝒗

ℎ)

+ ∫𝛤1
𝜓(𝒗ℎ𝜏 ) 𝑑𝑠 − ∫𝛤1

𝜓(𝒖ℎ𝜏,𝑛+1) 𝑑𝑠 + 𝛼(𝑟 − 2)
(

|

|

|

𝒖ℎ𝑛
|

|

|

𝑟−4 (
𝒖ℎ𝑛 ⋅ 𝒖

ℎ
𝑛+1

)

𝒖ℎ𝑛 , 𝒗
ℎ − 𝒖ℎ𝑛+1

)

≥
⟨

𝒇 , 𝒗ℎ
⟩

+ (𝑟 − 2)𝑎1(𝒖ℎ𝑛 ; 𝒖
ℎ
𝑛 , 𝒗

ℎ − 𝒖ℎ𝑛+1) ∀ 𝒗ℎ ∈ 𝑉 ℎ,

𝑏(𝒖ℎ𝑛+1, 𝑞
ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ.

6. Numerical results

Since the exact solution of the hemivariational inequality is unknown, we demonstrate the performance of the algorithms in 
two parts, based on the selection of the nonlinear slip boundary condition. First, we consider the special case where the function 
𝜓 is convex. In this instance, the exact solution of the variational inequality is known, and the performance of the algorithm can 
be clearly demonstrated by the experimental results. Then, we consider the general case where 𝜓 is not a convex function, and we 
showcase the convergence of the algorithm through numerical examples. The P1b/P1 elements are employed as the finite element 
spaces.

6.1. An example with a convex 𝜓

Let 𝜓(𝒗𝜏 ) = 𝑔|𝒗𝜏 |, 𝑔 > 0. For the implementation, we use the Uzawa iterative algorithm [53] to convert the inequality to 
an equality. We consider a two-dimensional domain 𝛺 and choose the boundary 𝛤1 to be piecewise parallel to the axes for 
the remainder of this section in describing the Uzawa algorithm. The iteration step in Algorithm  5.2 is reformulated as: find 
(

𝒖ℎ𝑛+1, 𝑝
ℎ
𝑛+1,𝝀

ℎ
𝑛+1

)

∈ 𝑉 ℎ ×𝑄ℎ × 𝛬 such that

𝑎0(𝒖ℎ𝑛+1, 𝒗
ℎ) + 𝑎1(𝒖ℎ𝑛 ; 𝒖

ℎ
𝑛+1, 𝒗

ℎ) + 𝑏(𝒗ℎ, 𝑝ℎ𝑛+1) + 𝑑(𝒖
ℎ
𝑛+1, 𝒖

ℎ
𝑛 , 𝒗

ℎ) + 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛+1, 𝒗

ℎ)

− 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛 , 𝒗

ℎ) + ∫𝛤1
𝑔𝝀ℎ𝑛+1 ⋅ 𝒗

ℎ
𝜏 𝑑𝑠 + 𝛼(𝑟 − 2)

(

|

|

|

𝒖ℎ𝑛
|

|

|

𝑟−4 (
𝒖ℎ𝑛 ⋅ 𝒖

ℎ
𝑛+1

)

𝒖ℎ𝑛 , 𝒗
ℎ
)

=
⟨

𝒇 , 𝒗ℎ
⟩

+ (𝑟 − 2)𝑎1(𝒖ℎ𝑛 ; 𝒖
ℎ
𝑛 , 𝒗

ℎ) ∀ 𝒗ℎ ∈ 𝑉 ℎ,

𝑏(𝒖ℎ𝑛+1, 𝑞
ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ,

𝝀ℎ𝑛+1 ⋅ 𝒖
ℎ
𝜏,𝑛+1 =

|

|

|

𝒖ℎ𝜏,𝑛+1
|

|

|

 a.e. on 𝛤1,
where

𝛬 =
{

𝝁 ∈ 𝐿2 (𝛤1
)2 ∣ |𝝁| ≤ 1 a.e. on 𝛤1

}

.

Hence we will implement the following Uzawa iteration scheme: Begin with an initial guess 𝒖ℎ0 ∈ 𝑉 ℎ and 𝝀ℎ0 ∈ 𝛬. Then for 𝑛 ≥ 0, 
find 

(

𝒖ℎ𝑛+1, 𝑝
ℎ
𝑛+1,𝝀

ℎ
𝑛+1

)

∈ 𝑉 ℎ ×𝑄ℎ × 𝛬,

𝑎0(𝒖ℎ𝑛+1, 𝒗
ℎ) + 𝑎1(𝒖ℎ𝑛 ; 𝒖

ℎ
𝑛+1, 𝒗

ℎ) + 𝑑(𝒖ℎ𝑛+1, 𝒖
ℎ
𝑛 , 𝒗

ℎ) + 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛+1, 𝒗

ℎ) − 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛 , 𝒗

ℎ)

+ 𝑏(𝒗ℎ, 𝑝ℎ𝑛+1) + 𝛼(𝑟 − 2)
(

|

|

|

𝒖ℎ𝑛
|

|

|

𝑟−4 (
𝒖ℎ𝑛 ⋅ 𝒖

ℎ
𝑛+1

)

𝒖ℎ𝑛 , 𝒗
ℎ
)

=
⟨

𝒇 , 𝒗ℎ
⟩

− ∫𝛤1
𝑔𝝀ℎ𝑛+1 ⋅ 𝒗

ℎ
𝜏 𝑑𝑠 + (𝑟 − 2)𝑎1(𝒖ℎ𝑛 ; 𝒖

ℎ
𝑛 , 𝒗

ℎ) ∀ 𝒗ℎ ∈ 𝑉 ℎ,

𝑏(𝒖ℎ𝑛+1, 𝑞
ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ,

and

𝝀ℎ = 𝑃
(

𝝀ℎ + 𝜌𝑔𝒖ℎ
)

, 𝜌 > 0,
𝑛+1 𝛬 𝑛 𝜏,𝑛

12 
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Table 1
Numerical convergence orders, Example  6.1.
 ℎ ‖

‖

𝒖−𝒖ℎ‖
‖𝑉

‖𝒖‖𝑉
Order

‖

‖

𝒖−𝒖ℎ‖
‖𝐿2 (𝛺)

‖𝒖‖𝐿2 (𝛺)
Order

‖

‖

𝑝−𝑝ℎ‖
‖𝑄

‖𝑝‖𝑄
Order Iteration 

 2−3 3.819e−1 \ 1.116e−1 \ 2.181e−2 \ 3  
 2−4 1.946e−1 0.972 2.761e−2 2.015 8.248e−3 1.403 4  
 2−5 9.811e−2 0.988 6.709e−3 2.041 2.953e−3 1.482 4  
 2−6 4.923e−2 0.995 1.675e−3 2.002 1.041e−3 1.504 4  

where

𝑃𝛬(𝝁) =
inf(1, |𝝁|)

|𝝁|
𝝁 ∀𝝁 ∈ 𝐿2(𝛤1)2.

Here 𝑃𝛬 represents the projection operator onto 𝛬. The stopping criterion for both Algorithms 5.1 and 5.2 is
‖

‖

‖

𝒖ℎ𝑛+1 − 𝒖ℎ𝑛
‖

‖

‖𝑉
‖

‖

‖

𝒖ℎ𝑛+1
‖

‖

‖𝑉

≤ 10−8.

For the initial guess in the iteration in the following examples, we set 𝒖ℎ0 = 𝟎. For 𝝀ℎ0 , on the boundary 𝛤1 parallel to the 𝑥-axis, we 
set it as (1, 0)𝑇 , and on the boundary 𝛤1 parallel to the 𝑦-axis, we set it as (0,−1)𝑇 .

Example 6.1.  Let 𝛺 = [0, 1]2, 𝛤1 = [0, 1] × {1} ∪ {1} × [0, 1] and 𝛤0 = 𝛤∖𝛤1. We solve the problem with the exact solution

𝒖(𝑥, 𝑦) =
(

−𝑥2𝑦(𝑥 − 1)(3𝑦 − 2)
𝑥𝑦2(𝑦 − 1)(3𝑥 − 2)

)

, 𝑝(𝑥, 𝑦) = (2𝑥 − 1)(2𝑦 − 1).

It is easy to verify that 𝒖 = 𝟎 on 𝛤0 and we have

𝝈𝜏 =
(

0
4𝜇𝑦2(𝑦 − 1)

)

on {1} × [0, 1], 𝝈𝜏 =
(

−4𝜇𝑥2(𝑥 − 1)
0

)

on [0, 1] × {1}.

From the boundary condition (2.5), we know that
|

|

𝝈𝜏 || ≤ 𝑔.

Thus, we can set

𝑔(𝑥, 𝑦) =

{

−4𝜇𝑦2(𝑦 − 1)  on {1} × [0, 1],
−4𝜇𝑥2(𝑥 − 1)  on [0, 1] × {1}.

We choose the parameter 𝜌 = 0.5𝜇 and the meshes are uniform triangle meshes with the unit interval [0, 1] divided into 1∕ℎ equal 
parts. We set 𝑟 = 4, 𝜇 = 0.05 and 𝛼 = 0.1. Table  1 shows the numerical convergence orders as the mesh is refined. The numerical 
results match the theoretical prediction on the 𝐻1-norm error of the velocity and appear to be half order higher for the 𝐿2-norm 
error of the pressure.

6.2. Examples with a non-convex 𝜓

Let

𝜓
(

𝒖𝜏
)

= ∫

|

|

𝒖𝜏 ||

0
𝜔(𝑡)𝑑𝑡, 𝜔(𝑡) = (𝑎 − 𝑏) exp(−𝛾𝑡) + 𝑏,

where 𝑎, 𝑏 and 𝛾 are constants with 𝑎 > 𝑏 > 0 and 𝛾 > 0. The slip boundary condition −𝝈𝜏 ∈ 𝜕𝜓
(

𝒖𝜏
) can be expressed in the 

following form:
|

|

𝝈𝜏 || ≤ 𝜔
(

|

|

𝒖𝜏 ||
)

, −𝝈𝜏 = 𝜔
(

|

|

𝒖𝜏 ||
) 𝒖𝜏
|

|

𝒖𝜏 ||
 if 𝒖𝜏 ≠ 𝟎.

Again, we employ the Uzawa algorithm for implementation. We introduce a Lagrange multiplier 𝝀 = −𝝈𝜏∕𝜔
(

|

|

𝒖𝜏 ||
)

, an element of 
the set

𝛬 =
{

𝝁 ∈ 𝐿2 (𝛤1
)2 ∣ |𝝁| ≤ 1 a.e. on 𝛤1

}

.

Then, the iteration step in Algorithm  5.1 is reformulated as: find 
(

𝒖ℎ𝑛+1, 𝑝
ℎ
𝑛+1,𝝀

ℎ
𝑛+1

)

∈ 𝑉 ℎ ×𝑄ℎ × 𝛬 such that

𝑎0(𝒖ℎ𝑛+1, 𝒗
ℎ) + 𝑎1(𝒖ℎ𝑛 ; 𝒖

ℎ
𝑛+1, 𝒗

ℎ) + 𝑏(𝒗ℎ, 𝑝ℎ𝑛+1) + 𝑑(𝒖
ℎ
𝑛+1, 𝒖

ℎ
𝑛 , 𝒗

ℎ) + 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛+1, 𝒗

ℎ)

− 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛 , 𝒗

ℎ) + 𝜔
(

|

|𝒖ℎ𝜏,𝑛+1
|

|

)

𝝀ℎ𝑛+1 ⋅ 𝒗
ℎ
𝜏 𝑑𝑠 + 𝛼(𝑟 − 2)

(

|

|𝒖ℎ𝑛
|

|

𝑟−4 (
𝒖ℎ𝑛 ⋅ 𝒖

ℎ
𝑛+1

)

𝒖ℎ𝑛 , 𝒗
ℎ
)

∫𝛤1 | | | |

13 
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Table 2
Numerical convergence orders, Example  6.2.
 ℎ ‖

‖

𝒖−𝒖ℎ‖
‖𝑉

‖𝒖‖𝑉
Order

‖

‖

𝒖−𝒖ℎ‖
‖𝐿2 (𝛺)

‖𝒖‖𝐿2 (𝛺)
Order

‖

‖

𝑝−𝑝ℎ‖
‖𝑄

‖𝑝‖𝑄
Order Iteration 

 2−3 4.563e−1 \ 1.293e−1 \ 2.633e−1 \ 6  
 2−4 2.566e−1 0.830 3.480e−2 1.893 1.447e−1 0.863 7  
 2−5 1.387e−1 0.887 9.110e−3 1.934 7.429e−2 0.962 7  
 2−6 6.983e−2 0.990 2.315e−3 1.976 3.358e−2 1.146 7  

Table 3
Numerical convergence orders, Example  6.3.
 ℎ ‖

‖

𝒖−𝒖ℎ‖
‖𝑉

‖𝒖‖𝑉
Order

‖

‖

𝒖−𝒖ℎ‖
‖𝐿2 (𝛺)

‖𝒖‖𝐿2 (𝛺)
Order

‖

‖

𝑝−𝑝ℎ‖
‖𝑄

‖𝑝‖𝑄
Order Iteration 

 2−3 5.799e−1 \ 3.537e−1 \ 9.547e−1 \ 6  
 2−4 3.345e−1 0.794 1.240e−1 1.512 3.865e−1 1.305 6  
 2−5 1.741e−1 0.942 3.420e−2 1.858 1.352e−1 1.515 6  
 2−6 8.684e−2 1.004 8.415e−3 2.023 4.658e−2 1.538 6  

=
⟨

𝒇 , 𝒗ℎ
⟩

+ (𝑟 − 2)𝑎1(𝒖ℎ𝑛 ; 𝒖
ℎ
𝑛 , 𝒗

ℎ) ∀ 𝒗ℎ ∈ 𝑉 ℎ,

𝑏
(

𝒖ℎ𝑛+1, 𝑞
ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ,

𝝀ℎ𝑛+1 ⋅ 𝒖
ℎ
𝜏,𝑛+1 =

|

|

|

𝒖ℎ𝜏,𝑛+1
|

|

|

 a.e. on 𝛤1.

The corresponding Uzawa iteration scheme is: Begin with an initial guess 𝒖ℎ0 ∈ 𝑉 ℎ, 𝝀ℎ0 ∈ 𝛬. Then for 𝑛 ≥ 0, find 
(

𝒖ℎ𝑛+1, 𝑝
ℎ
𝑛+1,𝝀

ℎ
𝑛+1

)

∈
𝑉 ℎ ×𝑄ℎ × 𝛬,

𝑎0(𝒖ℎ𝑛+1, 𝒗
ℎ) + 𝑎1(𝒖ℎ𝑛 ; 𝒖

ℎ
𝑛+1, 𝒗

ℎ) + 𝑑(𝒖ℎ𝑛+1, 𝒖
ℎ
𝑛 , 𝒗

ℎ) + 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛+1, 𝒗

ℎ)

− 𝑑(𝒖ℎ𝑛 , 𝒖
ℎ
𝑛 , 𝒗

ℎ) + 𝑏(𝒗ℎ, 𝑝ℎ𝑛+1) + 𝛼(𝑟 − 2)
(

|

|

|

𝒖ℎ𝑛
|

|

|

𝑟−4 (
𝒖ℎ𝑛 ⋅ 𝒖

ℎ
𝑛+1

)

𝒖ℎ𝑛 , 𝒗
ℎ
)

=
⟨

𝒇 , 𝒗ℎ
⟩

− ∫𝛤1
𝜔
(

|

|

|

𝒖ℎ𝜏,𝑛
|

|

|

)

𝝀ℎ𝑛+1 ⋅ 𝒗
ℎ
𝜏 𝑑𝑠 + (𝑟 − 2)𝑎1(𝒖ℎ𝑛 ; 𝒖

ℎ
𝑛 , 𝒗

ℎ) ∀ 𝒗ℎ ∈ 𝑉 ℎ,

𝑏(𝒖ℎ𝑛+1, 𝑞
ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ,

and

𝝀ℎ𝑛+1 = 𝑃𝛬
(

𝝀ℎ𝑛 + 𝜌𝒖
ℎ
𝜏,𝑛

)

, 𝜌 > 0,

where

𝑃𝛬(𝝁) =
inf(1, |𝝁|)

|𝝁|
𝝁 ∀𝝁 ∈ 𝐿2(𝛤1)2.

Example 6.2.  Let 𝛺 = [0, 1]2, 𝛤1 = [0, 1] × {1} ∪ {1} × [0, 1] and 𝛤0 = 𝛤∖𝛤1. We choose 𝜇 = 0.5, 𝛼 = 0.1, 𝑟 = 4, 𝑎 = 0.255, 𝑏 = 0.25, 
𝛾 = 10.0 and 𝜌 = 0.5𝜇. The source term is defined by

𝒇 0 = −𝜇𝛥𝒖0 + (𝒖 ⋅ ∇)𝒖 + 𝛼 |
|

𝒖0||
𝑟−2 𝒖0 + ∇𝑝0

with

𝒖0(𝑥, 𝑦) =
(

−𝑥2𝑦(𝑥 − 1)(3𝑦 − 2)
𝑥𝑦2(𝑦 − 1)(3𝑥 − 2)

)

, 𝑝0(𝑥, 𝑦) = (2𝑥 − 1)(2𝑦 − 1).

We use uniform triangular meshes, dividing the unit interval [0, 1] into 1∕ℎ equal parts. In the absence of a known true solution, 
we employ the numerical solution obtained on a sufficiently fine mesh (ℎ = 1∕256) as the reference solution (𝒖, 𝑝) to assess errors 
in the numerical solutions (𝒖ℎ𝑛 , 𝑝ℎ𝑛 ) on coarser meshes at ℎ = 1∕2𝑛 for 𝑛 ≤ 6. From Table  2, we observe that the convergence orders 
in the velocity space and pressure space align well with theoretical predictions.

Example 6.3.  Let 𝛺 = [0, 1]2, 𝛤1 = [0, 1] × {1} and 𝛤0 = 𝛤∖𝛤1. We choose 𝜇 = 1, 𝛼 = 1, 𝑟 = 3, 𝑎 = 0.255, 𝑏 = 0.25, 𝛾 = 10.0 and 
𝜌 = 1. The source term is defined by

𝒇 0 = −𝜇𝛥𝒖0 + (𝒖 ⋅ ∇)𝒖 + 𝛼 |
|

𝒖0||
𝑟−2 𝒖0 + ∇𝑝0

with

𝒖0(𝑥, 𝑦) =
(

− sin2(2𝜋𝑥) sin(4𝜋𝑦)
sin2(2𝜋𝑦) sin(4𝜋𝑥)

)

, 𝑝0(𝑥, 𝑦) = cos(𝑥) cos(𝑦) − sin2(1).

We use uniform triangular meshes as in Example  6.2, and employ the numerical solution calculated on a sufficiently fine mesh 
(ℎ = 1∕256) as the reference solution (𝒖, 𝑝). The results are presented in Table  3. We notice that the convergence orders align well 
14 
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with theoretical predictions and the 𝐿2-norm error estimate of the pressure is half order higher than our theoretical analysis in this 
example.
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