Discrete and Continuous Dynamical Systems
Vol. 44, No. 8, August 2024, pp. 2309-2326 al
doi:10.3934/dcds.2024028 &

i

OPTIMAL CONTROL OF A STATIONARY
NAVIER-STOKES HEMIVARIATIONAL INEQUALITY
WITH NUMERICAL APPROXIMATION

WENST WANGP! | X1AOLIANG CHENG™! AND WEIMIN HAN™?
IThe school of mathematical science
Zhejiang University, Hangzhou, Zhejiang 310058, China
2Department of Mathematics, University of Iowa, Iowa City, IA 52242-1410, USA

(Communicated by Roger Temam)

ABSTRACT. In this paper, we study an optimal control problem for a station-
ary Navier—Stokes hemivariational inequality with control constraints and its
numerical approximation. The hemivariational inequality is the weak formula-
tion of a stationary incompressible fluid flow problem, modeled by the Navier-
Stokes equations subject to a nonleak boundary condition and a subdifferential
condition of friction type. We investigate the stability of the solution of the
hemivariational inequality with respect to perturbations in the density of ex-
ternal force and superpotential, and demonstrate the existence of a solution
for the optimal control problem with the external force density as the control.
Moreover, we consider the numerical solution of the optimal control problem
and show its convergence. As an example and for definiteness, the numerical
solution is defined through the finite element method.

1. Introduction. Optimal control of a stationary Stokes hemivariational inequal-
ity and its numerical approximation is discussed in several publications ([6, 9, 10]).
In this paper, we take one step further and discuss the optimal control problem of
a stationary Navier-Stokes hemivariational inequality and its numerical approxima-
tion. The hemivariational inequality models a steady flow of incompressible viscous
fluid subject to a nonleak boundary condition and a subdifferential condition of
friction type.

The notion of hemivariational inequalities was proposed by Panagiotopoulos
([30]), and it provides a mathematical framework for understanding and address-
ing complex interactions and constraints in various systems involving nonsmooth
and nonmonotone relations among physical quantities. Mathematical theory of
hemivariational inequalities has been developed in a variety of publications, e.g.,
the comprehensive references [26, 27]. Since there is no analytic solution formula,
hemivariational inequalities must be solved by numerical methods. In this regard,
one is referred to [21] for early development of numerical methods and algorithms for
solving hemivariational inequalities and to [20] for a survey of recent development
and mathematical theories of the numerical solution of hemivariational inequalities.
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For the Navier-Stokes equations, when a boundary condition involves non-smooth
monotone relations, the weak formulation is a variational inequality, which has been
studied in various publications, e.g., [5, 11]. When the boundary condition involves
non-smooth nonmonotone relations, the weak formulation becomes a hemivaria-
tional inequality. Well-posedness of the Navier-Stokes hemivariational inequality
was first addressed in [23, 25] by employing an abstract surjectivity result for pseu-
domonotone operators. The optimal control problem and the existence of its solu-
tions were subsequently introduced in [24]. Unlike [25, 23], well-posedness of the
Navier-Stokes hemivariational inequality is established using only basic concepts
and results from functional analysis in [15, 22], following the approach developed in
[13, 14] for elliptic hemivariational inequalities and in [17, 18] for mixed hemivaria-
tional inequalities.

The control of fluid flow has garnered sustained attention from both engineers
and scientists prompted by the demand for intricate technological applications.
Optimal control problems subject to the regular boundary value problems of the
Navier-Stokes equations are studied in a variety of publications, e.g., [1, 4]. Optimal
control problems related to variational-hemivariational inequalities have also been
studied in various papers, e.g., [9, 24, 33]. Here, we study the optimal control
problem of the Navier-Stokes hemivariational inequality with force density as control
and its numerical approximation by the finite element method. We comment that
other numerical methods, such as the discontinuous Galerkin method, the virtual
element method, can be also applied and analyzed for solving the optimal control
problem of the Navier-Stokes hemivariational inequality.

To prepare for a study of the optimal control problem, we first analyze the
stability for the solution of the Navier-Stokes hemivariational inequality with respect
to the density of the external force and superpotential. The stability result is
of interest by itself. We comment that some results on the stability of elliptic
hemivariational inequalities are shown in [16, 33].

The rest of the paper is structured as follows. We review some basic notation
and present preliminary material needed later in this paper in Section 2. In Section
3, we first provide a stability analysis for the solution of the stationary Navier-
Stokes hemivariational inequality subject to perturbations of external force density
and superpotential. Subsequently, we study the optimal control of the stationary
Navier-Stokes hemivariational inequality with control constraints. In Section 4, we
investigate the numerical approximation of the optimal control problem and show
the convergence of the numerical method in a fairly broad context.

2. Notation and preliminaries. We consider a viscous incompressible fluid flow
in Q ¢ R? (d = 2,3), where € is a bounded simply connected Lipschitz domain
with a smooth boundary I' = 0f2 partitioned into two measurable and disjoint
parts I'p and T's with meas(I'p) # 0. Denote the fluid velocity and the pressure
by u = (uy,... ,ud)T and p respectively, which are the unknown variables of the
problem. Let v > 0 be the constant coefficient of kinematic viscosity and f the
external force density. Denote by e(u) = 1(Vu + (Vu)T) the deformation rate
tensor. The stress tensor is & = —plI + 2ve(u), where I is the identity matrix.
Denote by m the unit outward normal to I'. Since the boundary is Lipschitz
continuous, n exists a.e. on I'. We decompose the velocity and the stress tensor on
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the boundary into their normal and tangential components, respectively:
Uy = U Ny, Uy = U — Uy N,
on(w) = (@(w)n) - n, o, (u) = o(u) — on(w)n.

Let S? stand for the space of second-order symmetric tensors on R?. The canon-
ical inner products and the corresponding norms on R? and S¢ are

UV =uv;,  ||V|ge = (V- v)?  forall w = (u;),v = (v;) € RY,
o:T=0iTij, ||T|lsa = (7 7')% for all & = (0y;), T = (1i;) € S©.

The definitions and some properties of the generalized directional derivative and
the generalized gradient of Clarke for a locally Lipschitz function are recalled bellow
for later use.

Definition 2.1. ([8, p. 10]) Let X be a Banach space, and let ¢ : X — R be a
locally Lipschitz continuous function. The generalized directional derivative of ¢ at
r € X in the direction z € X, denoted by ¥°(x; 2), is defined by
Az) —
) — ey LEHAD =),
y—x,A—0+ A

The generalized gradient or subdifferential of ¥ at x, denoted by 9u(zx), is a
subset of the dual space X* given by

O(z) = {Ce X" | ¢ (z;2) > ((,2)x+xx V2 € X}.

Proposition 2.2. ([26, Propsition 3.23]) Let X be a Banach space, and let 1 :
X — R be a locally Lipschitz continuous function. Then the following statements
hold:

(i) For every x € X, the function X > z w ¢%(z;2) € R is positively ho-
mogeneous and subadditive, i.e., °(x; z) = MO (x;2) for all X > 0,z € X and
PO (w521 + 29) <0 (w521) + Y0 (25 22) for all 21,22 € X, respectively.

(ii) The function X x H 3 (z,2) — ¥%(z;2) € R is upper semicontinuous, i.e.,
forallze X, z€ X, {z,} C X, {2,} C H such that x,, » x in X and z, — z in
X, we have limsup 1° (z,,; z,,) < ¥9(x; 2).

(iii) For all z € X, ¢°(x;2) = max {{(,2)x~xx | ¢ € OY(x)}.

3. Navier—Stokes hemivariational inequality and optimal control. Con-
sider the incompressible stationary Navier-Stokes problem with the Dirichlet bound-
ary condition on I'p and a nonleak and nonsmooth slip boundary condition of
friction type on I's. The equations are as follows

—vAu+ (u-V)u+Vp=fFf in Q, (1)
dive=0 in €, (2)

u=20 on TI'p, (3)

up, =0, —o,€(u,) on Tg. (4)

Here f and 1 : I's x R* — R are given functions and 9 is the subdifferential
of 1(x,-) in the sense of Clarke. The divergence free condition (2) reflects the
incompressibility of the fluid. As for boundary conditions, the first part of (4)
signifies the nonleak property, indicating that the flow cannot penetrate beyond I'g
outside the domain and the second part shows the connection between the frictional
force o, and the tangential velocity w,. We use 1(u,) to represent ¢(x,u,) for
simplicity and assume 1 satisfies the assumptions.
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H(1). ¢ : T's x R? — R is such that

(i) ¥(-, &) is measurable on T'g for all £ € R? and +(-,0) € L'(I's);
(ii) (=, -) is locally Lipschitz on R? for a.e. = € I's;

(iii) ||nllge < co + c1|€]lre VE € R, 5 € O(x, €) ae. x € T's with ¢y, eq > 0;
(iv) 0 (@, €182 — &) + 90 (@, €2:&1 — &2) < m|[&r — fz”f@ VE1,€2 € RY ae

x €'g with m > 0.
By Prop. 2.2, H(v) (iii) implies
|40 (, €1 €2)]|gu < (co+ c1 [€1llpa) 1€2llpa  VE1,&2 €R%ae. x €Ts.  (5)
The problem (1)—(4) is studied through its weak formulation. To derive the weak

formulation, assume the problem has a smooth solution (u,p). First we notice that
the incompressibility condition (2) implies that

Au =2Dive(u).
Thus, (1) can be equivalently written as

—2vDive(u)+ (u-V)u+Vp=f inQ

or, thanks to the definition of the stress tensor o,

—Dive+ (u-Viu=f inQ.

Multiply the above equation by an arbitrary smooth test function v with v =0
on I'p and v, = 0 on I'g, and integrate over €2 to obtain

—/Diva-vdm+/(u-V)u-vdm=/f~’uda:.
Q Q

Q
Integrate by parts,

_Lﬂan.vd5+/S20:€(v)d:c+/Q(U'V)U"Ud$:/Qf'vdx. (6)

By making use of the conditions v = 0 on I'p and v, = 0 on I'g, as well as the
identity

oN- -V =0+ UV + 0pUn,

—/ o'n~'uds:—/ o, v.ds.
o0 T's

We further have, thanks to the second boundary condition in (4),

—/ on-vds < V0 (ur;vy) ds.
a0 I's
Moreover, from the definition of o,

we have

o:e(v) =2ve(u): e(v) — pdive.
Hence, from (6), we obtain the inequality

1% : . . _ i 0 .
2 /sE(U) :—:('u)da:—&-/ﬂ(u V)u - vdx /pdvvdx—i— P (ur;v,)ds

2 Q I's
.vd 7
Z/vax (7)

for any smooth function v with v =0 on I'p and v,, = 0 on I's. We multiply (2)
by any L?(2) function ¢ with a vanishing mean in 2 and integrate over € to get

/quivudx:O. (8)
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An inspection of the smoothness requirements on the functions u, v, p and ¢ in
(7)—(8) suggests that we use the function spaces
V= {veHl(Q)\v:OonFD,funzoonFS},

Q=13 = {ac 2@ | [ g =0

for the velocity and pressure variables. Here, the space H'(Q) := (H'(Q))?.Since
meas(I'p) > 0, Korn’s inequality ([29, p. 79]) implies that over the space V,

ndmm@=(éewwdeQé

defines a norm and is equivalent to the standard H'(Q)-norm. We use || - |y =
lle()lo.q for the norm on V' and (V| - ||v) is a Hilbert space. The space @ is
equipped with the standard L?(2)-norm. Denote by Vg := H}(Q;R?) a subspace
of V', and denote H := L?(2;R?). We identify H with its dual H*, and denote
the duality pairing between V' and V* by (-,-). Note that V ¢ H = H* C V*
and the embeddings are dense, continuous and compact.

Define

a(u,v):21//s(u):s(v)dx Vu,veV,

Q

d(u,v,w):/(u~V)v'wdx Vu,v,weV,
Q

b(v,q) = / gdivvdx Vv eV,qgeQ.
Q
and assume f € V*. Then (7)—(8) lead to the following weak formulation of the
problem (1)—(4).
Problem (3.1). Find (u,p) € V x Q such that

a(u,v) + d(u,u,v) — b(v,p) + VO (ursv,)ds > (f,v) YoeV, (9)
I's

b(u,q) =0 Vqgeq. (10)
Obviously, the bilinear form a(-,-) is continuous and coercive on V- x V :
a(u,v) < 2v|ullv|v|lv and a(v,v) =2v|v|i VYu,veV.
The trilinear form d(-,-,-) is continuous on V. x V x V :
d(w, v, w) < callullv [[v]lv[wlly  Vu,v,weV, (11)
and for w € V satisfies (2), the following estimates hold:
d(u,v,w) = —d(u,w,v) and d(u,v,v)=0 Yo,weV. (12)
The bilinear form b(-,-) is bounded on V' x @Q :
b(v,9) < vlvlvidlle YveV,qecQ.
The following inf-sup condition holds ([32]): for a constant 8 > 0,

b(v,
Bllallieey < sup 229
o Tl

Vg € Q. (13)
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By the Sobolev trace theorem ([28]), we have the inequality
1/2
lorlore <20 Il Yoev, (14)

where A\g > 0 is the smallest eigenvalue of the eigenvalue problem
ueV, / dz:—/\/F U, -v,ds YveV.
Combining H (1) (iv) and (14), we have, for 21,7_)2 ev,
/F [0 (V17 V27 — v17) + U0 (Var; V1, — vor)] ds < /F m v, — o, ||” ds
s s

<mAgt[Jvr — vay -

Let
oy = 0 VAT + Iy 15)
2U —mAy !
The existence and uniqueness result for Problem 3.1 and the boundedness of the
solution are stated below, which can be found in [15, Theorem 3.1].

Theorem 3.1. Assume H(¢), f € V*, and the smallness condition
0 <cqay < 21/—m)\51.
Then Problem 3.1 has a unique solution (u,p) € V x Q. Moreover,
[ullv < ap.

3.1. A stability result. For further analysis, we first study a perturbed stationary
Navier-Stokes hemivariational inequality in which the external force density f and
the superpotential ¢ are substituted with their respective perturbations f, € V*
and i, for n > 1.

Similar to H (1), we make assumptions regarding ,,.

H(4{y,). ¢y :Tg x RT — R is such that

(i) ¥n (-, &) is measurable on I'g for all £ € R? and ¢(-,0) € L*(T's);

(ii) 9 (z, -) is locally Lipschitz on R? for a.e. « € I'g;

(iil) [|m]lge < con + c1nl|€]|re V€ € RE, n € Oy, (z, &) ace. & € I's with 0 < ¢p,, <
0,0 < c1n < 0y

(iv) ) (@, €15 €2 — €1)+U8 (2, €2: €1 — €2) < myy [|€1 — 52”]?@ Vér, €2 € R%ae.
z € I'g with m,,, > 0, and there exists a constant m, > 0 such that m,, <m, for
each n € N.

The perturbed problem is then constructed as follows.

Problem (3.2). Find (u,,pn) € V X Q such that
a(un,v) + d(unvuna ’U) - b(’U,pn) + wg (’LLn-,—;UT) dS Z < n>'U> VU € V’ (16)
s

b(un,q) =0 VgeQ. (17)
To assess the proximity of the problem data, we introduce the following assump-
tion related to the superpotential.
H). If ¢, — € and i,, — 1 in R, then

limsup 2 (€,;m,,) < ¥°(&;n).

n—o0

In [10], an example is presented where H (1), H(v,) and H(v),) are satisfied.
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To guarantee the existence result of the perturbed problem, an additional con-
straint on the force density is required. For a given constant mq > 0, define a subset
V5., CV*by

Voo ={F €V i | fllv- <mo}.

Similar to (15), denote

B coAg /*|Ts[Y/? + mg

m —
0 2U —myu X 1

We have the following result.
Theorem 3.2. Assume H(v), H(Yy), f,f, € V. and the smallness condition

mo
0 < Caumy < 2v —muAg " (18)
Then Problem 3.1 has a unique solution (u,p) € V x Q, Problem 3.2 has a
unique solution (Un,pn) € V X Q, and
[ullv < amg,  [lunllv < am,.
Moreover, assume || f, — fllv- — 0 and H(v}), then
U, >uinV, p,—>pin@, asn— co.
Proof. 1t follows from Theorem 3.1 that under the stated assumptions, Problem 3.1
and Problem 3.2 have a unique solution (u,p) € V x @ and (u,,p,) € V X Q,
respectively. Now assume f, — f in V* and H(¢)).
Step 1. First, we prove that the sequences {||u, ||\, } and {HanLZ(Q)} are bounded.

For v € V, following a standard procedure similar to the derivation of Problem
3.1, equations (1)-(4) lead to

a(u,v) + d(u,u,v) — b(v,p) = (f,v) YveV,. (19)
Likewise, from the perturbed problem, we have
a(Un, V) + d(Up, Un,v) —b(v,py) = (f,,v) Yv eV (20)

Subtracting (19) from (20) yields
b(v,pn —p) =a(u, —u,v) +d(up, un,v) — du,u,v) + (f — f,,v) VveV
With v € Vo, 2!
d (Up, Up,v) — d(u,u,v) = —d (Up, v, u,) + d(u,v,u)
=d(u— tUn,v,u) +d(Up,v,u —uy) (22)
< ca(lullv + [unlly) [[vllv lw = ually -

In view of (21), (22) and the inf -sup condition (13), we have

b(v,pn —p)
n — < sup — 22
Blion =Pl < 50 =
= sup a(unfuvv)+d(unvunvv)7d(uvuav)+<f7.fnvv>
veV ||'UHV

<20 un —ully +ca (lullv + lunlly) v —wnlly + £ = Flly--
(23)

As {|lun|ly} and {||f,|ly-} are bounded, it follows that {llpn||L2(Q)} is also
bounded.
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Step 2. We now prove the weak convergence:

u, ~uinV, p,—pin@Q, asn— oco.

Since {||un ||\, } and {Hpn||L2(Q)} are bounded, there exist subsequences of {u,,}

and {p, }, still denoted by {u,} and {p,}, and two elements w € V and p € Q such
that

u, ~uin V and p, — pin Q as n — oo.

By resorting to a subsequence if necessary, we have u,, — u a.e. on I'g. Taking
upper limit in (16), from H (¢,,) we obtain that for any v € V,

(f,v) < a(@,v) +d(w,a,v) —b(v,p) +limsup [ 2 (wn,;v,)ds
n—oo JTg

(24)
< a(@,v) +d(u,w,v) - b(v,p) + / limsup ¥y (wnr; vr) ds.

I's n—o0

Since w,, — @, a.e. on I's, by H(v]),

lim sup 92 (s 0,) < 60 (T3 07)
n— oo

Therefore, we can derive from (24) that for any v € V,
(F,0) < a(@v) + d(@,5,v) — bw,p) + [ 00 (@-ive)ds.  (25)
s
Letting n — oo in (17), we have
b(w,q) =0 VgeQ. (26)

Hence, from (25)-(26), we conclude that (@, p) € V' x @ is a solution of Problem
3.1. And it follows from Theorem 3.1, the unique solvability of Problem 3.1, that
u = wand p = p. This implies that every subsequence of {(u,, p,)} which converges
weakly in V' x @ has the same limit and hence the entire sequence {(wy,,pn)}
converges weakly in V' x @ to (u,p), as n — oo.

Step 3. We are left to prove the strong convergence of the sequences. Again,
without loss of generality, we can assume u, — u a.e. on I's for the solution
sequence {u,}. By (9) and (16), we have

a(uy —u,v) +d (U, Un, v) — d(u,u,v) — b(v,p,) + b(v,p)

100 i)+ 00 (i) s = (7, — o). 27)

Take v = u — u,, in (27), we obtain
b(u — un,p) = b(w — un,pn) =0,
this is a direct result from (10) and (17). Thus
2v ||u, — u||%, =a (U, — U, Uy — U)
S/F [V (e wr — wnr) + 90 (Ur; Upr — ur)] ds
s

+d(u, v,y — u) — d(Un, Up, Uy, —u) + (f, — frun —u).
(28)
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By (11)-(12), we have
d(u,u,uy —u) — d(Up, Up, Up —u) < d(U— Up, U, U, —u)
2
< cillullv [lun —ully
< Cqtimg [lun —ul3 -
Hence, by (18), we can derive from (28) that

(2v — caom,) [[un — u”%/ S/ [wg (Unr Ur — Upy) + P° (Ur; Upr — u‘r)] ds
I's (29)

+<fn7f7un7u>
Applying H(v],), H(1)), and Proposition 2.2(i),

lim sup 1?2 (uTLT; Ur — unT) ds < / lim sup ¢2 (unT; Ur — un'r) ds

n—oo JI'g s n—oo

< 0 (ur;ur —ur)ds
Ts

= Y0 (u,;0)ds
T's
=0.

Similarly, applying H () and Proposition 2.2(ii),

lim sup 0 (Upr;Ur — Upyr)ds < / lim sup ¢ (Wpr; Ur — Uy ) ds

n—oo JI'g g n—oo

< wo (u7'§ O) ds
I's
= 0.
Since f,, — f in V*, u,, — u in V, taking the upper limit in (29), we have

limsup ||u, — ully, <0.

n—oo
Hence,
Jim {Ju, —ully, =0,
i.e., u, converges to uw in V. By (23), p,, converges to p in Q. O

If we only consider perturbations in the external force density, we have a similar
result for the following problem.

Problem (3.3). Find (u,,p,) € V X Q such that
a(Up, V) + d(Un, Up, v) — b(V,py) + g 0 (Unr;v7)ds > (f,,v) YveEV,
b(un,q) =0 VqeQ. )

Corollary 3.3. Assume H(y), f, f, € V., and the smallness condition

0 < cqtums <2v — mAy . (30)

where

. co)\al/z\FSP/Q +myo
af = .
mo 2 —mAg "
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Then Problem 3.1 has a unique solution (u,p) € V x Q, Problem 3.3 has a
unique solution (Un,pn) € V X Q, and

*

[ullv < ag,,

Iflfn = Fllv- =0, then

U, >uinV, p,—>pin@Q, asn— oo.

[unllv < ag,,-

3.2. An optimal control. Consider the optimal control of Navier-Stokes hemivari-
ational inequality (9)—(10) with the external force density f € V* as the control
space. Let V., C V7 be the set of admissible controls and S : V x Q x V* —
R U {400} be the objective functional, which is of the form

S(f) = S(u(f),p(f), ),

where (u(f),p(f)) € V x Q is the solution of Problem 3.1 corresponding to f. To
simplify the notation, we denote the cost function by

S(f) = S(w,p, f),

where (u,p) = (u(f),p(f)). The optimal control problem can then be derived in
the form

inf {S(f) | f € Viaa}- (31)
Concerning the problem (31), we assume the following hypotheses for the control
space and the objective functional.

H(V3,): V.4 CV;, isanonempty and compact subset of V'*.
H(S): S:V xQxV*—RU{+o0} is lower semicontinuous, i.e., if u,, — w in
V,pp, = pinQand f,, = f in V*, then

S(u,p, f) < lirginfS(un,pn, Fn)-

An example of the objective functional is
a @
S =3 [ lul@)  wa@)Zsdo+ F [ Ip(a) - pa(a)* de
Q Q

+ 5 [ 1@ o (32)

where the external force density f € H C V* is the control, (u,p) is the solution
of Problem 3.1 corresponding to f. The targets uy and py are the ideal velocity
distribution and pressure distribution, respectively. The cost parameters are fixed
with a1, s > 0 satisfying a7 + s = 1, and ag > 0. These constants determine
the relative weights of the three integral terms in S(f). When a3 = 0, the control
focuses solely on matching the desired pressure field. In contrast, when as = 0, the
control shifts to matching the desired velocity field exclusively. The inclusion of the
stabilization term with ag > 0 ensures the force density to be within a reasonable
range so that the control can still be physically realized. The goal is to control
the force density of the flow field so that the velocity and pressure are close to the
desired velocity and pressure. The choice (32) satisfies H(.S).

We are now in a position to deliver an existence result for the optimal control
problem (31).

Theorem 3.4. Assume H (), H(V3,), H(S) and (30). Then the optimal control
problem (31) has a solution.
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Proof. Let {f,},~; be a minimizing sequence for the problem (31), i.e., f,, € V7,
and B
HImS (f,)=nf{S(f) | feV.,}= M.

We write (w,,,p,) € V x Q for the solution of Problem 3.3. Since {f,} C V7,
which is a compact subset of V*, by considering a subsequence if necessary, we
have an element f* € V', such that f, — f* in V*. We apply Corollary 3.3 to
conclude that u, — u* in V and p, — p* in Q, where (u*,p*) is the solution of
Problem 3.1 corresponding to f*. Due to hypothesis H(S), we have

M <8, p*, f*) <liminf S (upn, pn, f,) = M.
Therefore, f* € V7, is a solution of the optimal control problem (31). O

4. Numerical approximation of the optimal control problem. We study the
numerical approximation of the optimal control problem (31) in this section. We
keep all the assumptions stated in Theorem 3.4. Let h > 0 denote the discretiza-
tion parameter and let {(Vh, Qh, V:dﬁ)} n be finite dimensional approximations

of (V,Q,V5,,) as h — 0.

We make the following assumptions for the discrete spaces.

(Hv,): Vi, C V, and for any v € V, there exists v, € V', with |[v, — |, = 0
as h — 0.

(Hq,): Qn C Q, and for any ¢ € Q, there exists g, € Qn with [|gn —gl[g — 0 as
h —0.

(Hv:,,): Vaan C Vi, is a nonempty and compact subset of V™. For any
f € Vi, there exists f, € Vi, with ||f, — flly~ — 0 as h — 0 and for any
{Fntn: Fr € Viyap, there exists a sequence {f},}, C Vi, with || £, — £1,/|- — 0
as h — 0.

Assumption (Hy: ) is weaker than assuming V3,4, C Vig.

(Hv,g,n) : There exists a constant $; > 0 such that

b Uh,dh
Billanllg < sup b(vr, 4n) Yan € Qn, (33)
v €Von th”V
where Vo, =V, N V.

Note that (Hy,g,p) is known as the Babuska-Brezzi condition. We list some well-
known finite element spaces which satisfy the condition. We assume €2 is a polygonal
domain (d = 2) or a polyhedral domain (d = 3). Let {Th}h be a regular family of
finite element partitions of the domain 2 into triangular/tetrahedral elements. For
an integer k > 0, Py(T) is the space of polynomials of a total degree less than or
equal to k in T, and B(T) is the space of bubble functions on T. In this context,
one option is to employ the Mini element ([2, Section 2])

Vi = {vh eV NCUD)! | wnly € [PUT) @ BT VT e Th} :

Qn=1{0€QNC°Q) | anlp € P(T)VT € T"},
or P,/ P finite element pair ([12, Section IV.4.2])

Vi={o, e V@ | vuly € [PAT)) vT T}
Qn={an€QNCQ) | anly € A(T)VT €T"}.
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For commonly used finite element spaces, (Hy,) and (Hg, ) are verified with a
standard technique well-known in the finite element research community (cf. e.g.,
the proof of Theorem 10.4.1 in [3]), through a combination of the density of smooth
functions in a function space under concern, V' or @ in the current context, and
standard error bounds for finite element interpolations of smooth functions found in
virtually any textbook on the finite element method. One is referred to [19, Section
7.1] and references therein on the density of V. N C>(;RY) in V. The density of
C*> () functions in L?(2) is well-known in the Sobolev space theory, and it is then
trivial to deduce the density of Q N C°°(Q) in Q.

Regarding the approximation of the control space, as the admissible set does
not have the structure of a vector space, the set V7,, is not in general con-
tained in the set V' ;. We follow the approach developed for the obstacle problem
and make assumption (HVZd,h)' For (HVZd,h)’ the specific approximation space
is determined by the given form of V7 ; and the final property in it is automati-
cally satisfied if V,;, C Vi, Vh € (0,1). We will present an example to illus-
trate the validity of this assumption. Let g,,g9, € H and define G(x) = G :=
max ([|g, || @ra), 192l L (@re)), V& € Q. Assume ||G|lv- < mo and consider
the admissible control set described by

w=1f€H|g < f<gyae inQ}.

From the above definition and the properties of g, g,, it follows that V;, C V7, .
Since V7, is a closed nonempty convex subset of H, it is a nonempty and weakly
closed subset of H ([3, Section 3.3]). Given that H compactly embeds into V'*, we
see that H(V',) is satisfied.

Define

Up={f,e HNCQ)| fulp e P(T)VT € T"}.

Letting N}, denote the set of the nodes of the spaces U}, and define

Vian =1fn€Un|Vbe Ny g1(b) < f,(b) < ga(b)}.

Thus, V,,, C V3, is a nonempty and compact subset of V*, and by ([7,

mo

Theorem 5.1.2]), we know that (Hy- ) is satisfied.
We then give the discrete form of Problem 3.1.

Problem (4.1). Find (up,pr) € Vi, X Qp such that

a(up,vp) + d(un, up, vy) — b(vy,pp) + VO (up ;v )ds > (F,vn)
I's

Yo, € Vi,

b(un,qn) =0 Van € Q. (35)

We have an existence, uniqueness and boundedness result for Problem 4.1, similar
to Theorem 3.1. The numerical approximation of (31) is then

inf {Sh (fn) | frne V:d,h} ) (36)

(34)

where

Sh (fh) =5 (uhaphv fh) s
and (up, pr) = (up (F) ,pn (f1,)) is the solution of Problem 4.1.
Similar to the optimal control problem (31), under the assumptions H (¢), H(S),
(30), and (Hv,), (Hg,), (Hv:,,), (Hv,q,), the discrete problem (36) has a solu-

tion. To obtain the convergence analysis of (36), we first prove a convergence result
for Problem 4.1 as f,, — f in V*.
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Theorem 4.1. Assume H (1), (30), and (Hv,,), (Hg, ), and (Hy o.n). Let (u,p) €
V x @ and (up,pp) be the solutions of Problem 3.1 and Problem 4.1, respectively.
Then as f, — f in V™, we have

ln —wlly + lpn —pllg =0 ash—0.
Proof. We split the proof into several steps.

Step 1. We prove the uniform boundedness of the numerical solutions. Since
Vian C Vi, we have {||f[ly,-} is bounded. Thus from the discrete analog of
Theorem 3.1, {||uyl|y } is bounded. Similar to (19),

a(un,vp) + d(un, un, vn) = b(vn,pr) = (Fr,vn) Yo € Vg, (37)
SO
b(vn,pn) = a(un,vn) + d(un, wp,vn) — (F,vn)  Von € Vo
By the Babuska-Brezzi condition (33)

b(vn,pn
Billpllg < sup ¥,
vh€Von HUhHV

we thus have

Bullonll, < sup Lo on) +d(n,un, vh) = (F1,00)
1 =
¢ vevan fonlly

2
< (lwnlly + lunlly + 1 £lly- ) -

Therefore, since {[|un|ly }, and {||flly+}, are bounded, so is {thHQ}h.
Step 2. Since {||unlly }, and {||ph||Q} are bounded, there exist a subsequence,
h

still denoted by {(un,pn)},, and elements w € V,p € Q such that
up,—~uinV, wu,—uwin H, p,—pin@Q ash—0. (38)

Step 3. Let us prove that

b(w,q) =0 Vgeq. (39)
For an arbitrarily fixed ¢ € Q, by (Hg, ), there exists g5 € @}, such that
gn = qin Q. (40)
By (35),
b(un,qn) = 0.
Write

b(un,qn) =b(ur —u,qn) +b (T, qn)
=b(up — W, qn —q) +b(up —a,q) +b(w,qn)-

Since [lup — ul|y, is bounded independent of i and |[gr — ¢[|g — 0 as h — 0, we
have

(41)

b(un =@, qn — q)| < cllun =Ty llgn —allg =0 ash—0.
Due to (38), as h — 0,
b(up, —u,q) — 0.
By (40), as h — 0,
b(w,qn) — b(w,q).
Thus, taking the limit » — 0 in (41), we prove (39).
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Step 4. We prove the strong convergence
up, >uwinV, ash—0. (42)
By (Hy,) and (Hg, ), there exist w;, € V', and p;, € Q) such that
up, —wuwinV, p,—pin@, ash—0. (43)
We start with
W@ —uplly < a(@-—up T —up)

,u —up) —a(up, @ —uy) —a(up, tp —up) .

gl

= a(
By (34) with v, = up — up,
—a (up, up —up) < d(up, wp, wp — up) — b (w, — wn, pp)

+ [ O (Unrs U — wn) ds — (@ — up) -
I's

Then from (44),
2v||w — uh||%, <a(@aw—up)—a(up,@—uy)+d(up, up, an —up)
—b(up — up,pn) + g O° (Wh, 7 Wnr — wpr) ds
s
= (fn,un —un). (45)
By (12), we have that:
d (up, wp, tp —up) = d(up, up, tp — @) + d (up, up, @) .
We now consider each term on the right side of (45). Since up, =@ in V/,
a(w,w—wup) — 0,
d(up,up, @) — 0.
Since ||[@ — wp|ly, — 0 and |lup ||y, is bounded independent of h,
|a (wn, @ —up)| <20 ||unlly @ —anlly, =0,
| (wn, wn, p, = )| < callunlly |[@ = @y, — 0.

Write
—b(wn — wn,pn) = =b(wn,pn) + b (wn, pn)
= —b(@n,pn)
= —b(un, —u,pp)
< lprllg llun —ally,
where for the second equality, we used (35), and for the third equality, we used (39).
Since [[@ — @n|ly, — 0 and ||px||q is bounded independent of h, we obtain
b(ap, — up,pn) — 0.
Using H (1) and for a subsequence, due to the compact embedding H'(Q) C
L*(T's) ([28, p. 7)),

”ﬁh,r - uh,THLZ(FS;Rd) < ||'ah,~r - ETHL2(FS;Rd) + ||ﬂ~r - uhv"'”Lz(Fg;Rd) — 0,
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we have
/ O (wprs Wy — py) ds < / (co+ 1 [uprl) [nr — upr|ds
I's I's
S C(l + ||uhHV) ”ﬁhﬂ' - uth”Lz(Fs;Rd)
— 0.

Note that @, —up — 0 in V and f;, — f in V*, the latter implies the uniform
boundedness of f, in V*. Then,

[{Frs@n = un)| < [ Fplly- @n —unlly = 0.
Hence, we obtain the strong convergence (42) from (45).

Step 5. We prove that the limit (@,p) is the unique solution of Problem 3.1. For
any v € V and ¢ € @, by assumptions (Hy,) and (Hg,), we have a sequence
{(Vh,qn)} CV x Q with v}, € Vi, qn € Qp, such that

vp—vinV, gp—qin Q.
From (34),

a(up,vp) +d (wn, wp,vp) —b(Vnpn) + | V0 (Wnrsvns)ds > (F,vn) . (46)
I's

Due to (4), (38) and f, — f in V*, we have, as h — 0,
a(up,vp) = a(w,v),
d (up, up,vy) = d(w,w,v),
b(vn, pn) — b(v,D),
(Frovn) = (f,0).
Also, for subsequences, still denoted by {wy ;}, and {vy - },, we have

Upr — Ur and vy, = v, a.e. on g,

and then
limsup [ ¢° (wp,r;vn,-)ds S/ limsup¥® (up -5 vn,-)ds < [ 0 (W,;v,)ds.
h—0 I's I's h—0 I's

Thus, we derive from (46) that
a(@,v) +d (@, u,v) = b(v,p) + | ¥°(@r;v,)ds > (f,0).
I's

This relation and (39) show that (@,p) = (u, p) is the unique solution of Problem

3.1. Since the limit (u,p) is unique, the entire sequence converges: as h — 0,
up, —uwin'V, ¢q, —qin Q.
Step 6. We prove the strong convergence:
pn—p in Q. (47)
By the Babuska-Brezzi condition (33),

_ b(vn,pn — D
Billon — Pl < sup b (v, pr — Py)
v,EVon ||'UhHV

Write
b(vn,pn — D) = b(Wn,prn —p) +b (v, p—Dp) -
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Recall (37),
a(up,vn) +d(up, up,vy) — b(vn,pn) = (fr,vn) You € V.
From (19), we have
a(uavh) + d(u’u7vh) - b(vhap) = <-favh> \V/'Uh € VOh-
Thus, it follows that
b(vhvph _p) = a(uh - u7vh) + d(uh,Uh,’Uh) - d(u’u7vh) - <fh - favh> 5
here
d (up,up,vp) — du,u,vp) = —d (up, vp, wp) + d(u, vy, u)

=d(u —up,vp,u) +d(up, v, u — up)
<cq(|lullv + lunlly) lvnllv lw — unlly -

Then,

51 th_ﬁh”Q < sup 7[0’(’“}1 _u7vh)+d(uh7uh7vh) _d(uvuvvh)
vh€Von th”V

- <-fh - fvvh> +b(vhap779h)]
< ¢ [lun = ully +1£5 = Flly- + I = Ballg) -
By the triangle inequality
Ipn = pllg < llPn = Prllg + P = Prllg »
we then obtain
lpn =Pl < e [lun —ully + 1 = Flly- +lIp—Bullg) -

From this inequality and (42), (43), noting that w = u, p = p and f;, — f in

V*, we conclude that (47) holds. O

Let us make a further assumption on the cost function S in the convergence
analysis of the numerical approximation of the optimal control problem (36).

H(S): fu, »>uwin V,p, = pin Q, and f, — f in V", then
S(u,p, f) = lim S (un,pn, f,)-
n—oo
Note that the function (32) has the property H(S").
Theorem 4.2. Assume H(¢), H(V3,,), H(S), (30), (Hv,), (Hg,), (Hy=

),
ad,h
(Hyv,g,n), and in addition H(S"). For each h > 0, let f, be a solution of the
problem (36). Then there exist a subsequence, again denoted as {f,}, and an
element f € V', such that

fhﬁflnvﬁ uh(.fh)*}u(f)znv7 ph(.fh)ﬁp(f)mQ7
and f € V', is a solution of the optimal control problem (31).
Proof. By H(V ), we have a sequence {f},}, C V7, with |1 — fﬁz”v — 0 as
h — 0. Since V', is compact, by considering a subsequence if necessary, we can

obtain that f}, — f in V* for some element f € V. It immediately follows from
the triangle inequality that f;, — f in V*. By Theorem 4.1, we obtain

up, —>uin'V, pp, —pin Q.
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So by H(S"),
S(f) = Lim Sp (fn)-

We need to show that f is a solution of (31). Let f be a solution of (31). By

(HVZd,h>’ there exists f;, € Vaan with

f,—f inV*®
Then by Theorem 4.1,
up (fr) = w(f) in V., pu(fn) = p(f) inQ.
By H (5"), B B
%E}%Sh (Fr) = S(F)
From the definition of f;,,

Sh(fn) <Sn(fr)-
Taking the limit of both sides of the above inequality as h — 0, we obtain

S(f) <S(f).
Thus, f is a solution of (31). O
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