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ARTICLE INFO ABSTRACT
Keywords: We explore the well-posedness and conduct a numerical analysis of hemivariational inequal-
Navier-Stokes/Navier-Stokes coupled system ities for the coupled stationary Navier-Stokes/Navier-Stokes system. The interface condition

Slip interface condition
Hemivariational inequality
Finite element method
Error analysis

involves the Clark subgradient and serves as a generalization of various interface interaction
relations, including nonlinear transmission conditions and friction-type conditions. We present
an existence and uniqueness result for a solution of the continuous model. We propose a domain
decomposition approach to solve the coupled system and examine the convergence of iterations.
Moreover, we use the finite element approximation to discretize the hemivariational inequality
of the coupled system and derive error estimates, which lead to an optimal order for the P15/P1
pair under appropriate solution regularity assumptions. Numerical results are reported that
illustrate the optimal convergence order predicted by theoretical analysis.

1. Introduction

Various geophysical flows, including atmosphere-ocean interaction [1-4], two layers of a stratified fluid [5,6], and cou-
pled turbulent fluids [7-10], rely on fluid—fluid interaction models. These models couple fluids through linear or nonlinear
transmission conditions on a shared interface. In this work, we introduce a generalized interface condition to stationary Navier—
Stokes/Navier-Stokes (NS/NS) coupled flows, incorporating the Clark subgradient and producing a hemivariational inequality. The
mathematical model is described as follows.

Let 2 be a Lipschitz domain in R? (d = 2,3), which is decomposed into two subdomains £, and £2,. The common boundary of
£, and @, is the interface I' = 02, N 9£2,. For i = 1,2, the remaining part of the boundary of &, is denoted by I'; := dQ,\I', and we
assume |I;| > 0. We denote by (u;, p;) the velocity and pressure in the subregion £;, and by v, the unit outer normal vector to 0,
(see Fig. 1). The deformation rate tensor and stress tensor are represented by D(;) := (Vu; + V'u;)/2 and o;(u;, p;) = 2u,D(w;) — p;1,
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respectively, with the constant viscosity y; > 0 and unit tensor L. In the subregion £;, the fluid flow is governed by the stationary
incompressible Navier-Stokes equations supplemented by a Dirichlet boundary condition on I7;:

=V o, p)+ - Vu; = f; in Q;, (1.1a)
Veu; =0  in @, (1.1b)
u; =0 on I;. (1.10)

To describe the transmission condition on the interface I', we adopt the rigid lid hypothesis [5]: I" is a mean interface and the
values of u; and p; are mean values of the velocity and the pressure; and I' is unmoving. We now introduce the notation of the
normal and tangential components of the velocity and the stress vector:

Uiy "= -V, U, =I-vevu,
Giy =0V, 6;r = =v@v)2u;D(u)y;.

where v :=v; = —v,. We use [s] to represent the jump of s on I', for example,
[u] :=uy —u,, [u] i=uy —up .

Different transmission conditions have been introduced to simulate diverse physical phenomena on the interface, for instance,
adhesion [11,12], friction [3,4,7-9], coupling with the porous medium flows [13]. An example of modeling the atmosphere-ocean
interaction is through the introduction of the linear coupling condition [14]:

0,7, =(=D'k[u] onT  (i=1,2), (1.2)

where x > 0 is the friction coefficient. It reflects the bulk fluids across the boundary layers slide past each other with a horizontal
frictional force linearly depending on the jump of velocities. Meanwhile, the nonlinear transmission condition

o1, = (~Dik|ullll]l onT  (i=1,2), 1.3)

has also been utilized to model geophysical flows [5,7-9,15-17]. As is proposed in [11,12,18], the relationship between the
horizontal frictional drag force and the jump of velocities can be represented by the general power-law type condition:

6,1 = (=D'k|[W]|*[u] onT (x>0, i=1,2). 1.9
Note that (1.4) can be equivalently expressed as

(-Dix .
0% = gy V(W) (@20,0=1.2).
Instead of using the gradient V[MJ(I[M]|“+2), a subgradient of a convex function can be used as a general type condition. The Tresca-
friction type slip boundary condition, as explained in [19,20], is suggested for modeling snowslides and mud-rock flows. The

interface version of this condition is stated below:
ul,v = M2,v = 0’ (153)
Ol = =027 O € gal[ur]ls (15b)

where g € C(I') is a given threshold with g > 0. This friction-type slip condition expresses a monotone relationship between the
traction force and the jump of tangential velocity. When integrated into the incompressible Navier-Stokes equations [19,20], this
condition leads to a second-kind variational inequality (VI) for weak formulation. Fujita and his collaborators [19-24] and other
researchers [25-32] have explored the variational inequalities of the second kind that are governed by the Stokes and Navier-Stokes
equations.

Our paper presents an extension of the interface condition to include a broader range of friction types. Specifically, we consider
nonsmooth boundary conditions that involve non-monotone relationships between physical quantities. This leads to hemivariational
inequalities (HVIs) in the weak formulation.

We propose the following friction-type slip interface condition:

w, =0, i=12 (1.6)
Ol = =027 ~O1r € 01”([”‘[])’ (l6b)

where w(u,) is a short-hand notation for w(x, u,). The function w : I'xR¢ — R is called a superpotential. It is assumed to be locally
Lipschitz with respect to its last argument. The subdifferential of y(x,-) in the Clarke sense is denoted by dy. Note that (1.5) is a
special case of (1.6) when the function y(x,u,) = g|u,|, where g is again a positive threshold function.

The notion of hemivariational inequality was first introduced by Panagiotopoulos in early 1980s [33], which is closely related to
the development of the concept of the generalized directional derivative and subdifferential of a locally Lipschitz functional in the
sense of Clarke [34,35]. Hemivariational inequalities provide mathematical formulations to treat successfully problems involving
non-monotone, nonsmooth, and multivalued constitutive laws, forces, and boundary conditions. The mixed finite element methods
for stationary hemivariational inequalities of the hydrodynamic equations have been studied in [36-40], optimal control problems
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related to the stationary hemivariational inequality are considered in [41-43], nonstationary hemivariational inequality in [44,45].
One is referred to [46-48] for comprehensive coverages of mathematical theories of hemivariational inequalities, and [49-52] for
representative papers on numerical analysis of hemivariational inequalities.

Our research delves into the coupling of two viscous fluids with the non-monotone and nonsmooth slip interface condition (1.6).
This paper makes a threefold contribution. Firstly, we investigate the existence and uniqueness of the NS/NS hemivariational
inequality (HVI) solution. Then, we propose and analyze a domain decomposition method, which decouples the NS/NS HVI system
into two NS problems in the subregions with the Dirichlet boundary condition and the slip boundary condition, respectively.
Moreover, we study the mixed finite element method for the NS/NS hemivariational inequality using the P1b/P1-element and
conduct error analysis. Numerical analysis of NS hemivariational inequalities has been explored in the literature, e.g., [37,38].
However, in this paper, we investigate a novel NS/NS hemivariational inequality for a coupled system of two fluids with an interface
transmission condition. Solving the NS/NS hemivariational inequality numerically is more complex than solving a standard NS
hemivariational inequality. Specifically, we propose and analyze a domain decomposition method to tackle this new problem.

The rest of the paper is organized as follows. In Section 2, we review some definitions and auxiliary material. In Section 3, we
introduce the NS/NS HVI and establish its well-posedness. The domain decomposition approach for the solution of the NS/NS HVI
is studied in Section 4. We apply the finite element method to NS/NS HVI in Section 5 and establish the convergence analysis.
Section 6 is devoted to the numerical experiments.

2. Preliminaries

All the function spaces in this paper are real. For a normed space X, we denote by | - ||y its norm, by X* its topological dual,
and by (-, ) y+xx the duality pairing between X* and X. For simplicity in writing, in the following we always assume X is a Banach
space, unless stated otherwise.

We first recall the definition of generalized directional derivative and subdifferential in the sense of Clarke for a locally Lipschitz
function [35].

Definition 2.1. Lety : X — R be a locally Lipschitz function. The generalized directional derivative of y at x € X in the direction
v € X, denoted by w°(x; v), is defined by

Opur v _ o WO+ RO —w(y)
v (x;0) = limsup ——.
y—x,hl0 h

The generalized gradient or subdifferential of y at x, denoted by dw(x), is a subset of the dual space X* given by

W) = {€X* : yOx;0) 2 (£, 0)yony YU E X}

We list the basic properties of the generalized directional derivative and the generalized gradient in the next two propositions [35,
53].

Proposition 2.1. Assume that w : X — R is a locally Lipschitz function. The following statements are valid.
@) wOu, kv) = ky®(u,v) Vk>0,u,veX.
(ii) wO(u; v) = max{(¢,v) : ¢ € dw(w)} VYu,veE X.
(i) wO(u; v+ 0y < vOu; )+ vOu; vy) Yu,v,0, € X.
(iv) If u, » u and v, — v in X, then limy°(u,;v,) < wO(u; v).
(v) For every u € X, oy (u) is nonempty, convex and weakly* compact in X*.
i) Ifu, > uin X, ¢, € oy(u,), and ¢, —» ¢ weakly* in X*, then ¢ € oy (u).
(vii) If v : X — R is convex, then the Clark subdifferential oy (u) at any u € X coincides with the convex subdifferential oy (u).

Proposition 2.2. Let w,y;,y, : X — R be locally Lipschitz functions. Then
(i) o(ky)(u) = kow(u) Vk>O0,uc X.
(i) oy +yr)W) C oy () + dyr(w) Vu € X,
equivalently,

W1 + ) w0) < wlws ) +ywv) VYuveX.

3. Hemivariational inequalities

To present the weak formulation of the problem defined by (1.1) and (1.6), we use the following function spaces:
Vii={y, € H'(@Q) 1 vlp, =0, v,,lp =0}, V=V xV,,
0, :=L*Q). 0,:=L}2). 0:=0,%x0, 0:=0,x0,.
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Q,

Qo

Fig. 1. A 2D domain.

Here, L(z)(.Q,-) denotes the subspace of L?(£2) of functions with a vanishing integral over £,. For all u := (u,uy),v := (v}, 0,), W =

(wy,w,y) €V and p :=(p;,p,) € O, we define

a;(u;,v;) = 2;4,-/ D(u;) : D(v;)dx, a(u,v) = a;(uy,v)) + ay(uy, vy),

bi(v;, p;) i=— /-Q p;iV-v;dx, b(v, p) := by (vy, py) + by(vy, pr),
Cilu; v wy) 1= /Q‘(u,. - Vv, w; dx, Cusv,w) := Cy(uy; vy, wy) + Cy(uy; vy, WH),
(frodi= [ fi-oidn (F.0) 1= (1o + o).

By Korn’s inequality [54], we can equip V; and V' with norms defined by the following relations:

lloll3, :=/!2 D(v;) : D(vydx Vo, €V Nolly, i=llogll, +lloalls, Yu=(0n0)€V.

For b,(-,-) and b(-, -), the following inf-sup conditions hold [55]: for a constant C > 0,

S b(v, p)
2 Clipllg, Vp €0 Slellg ol

bi(Ui,Pi)
vi€V; ”U[”Vi

>Clplly VpeO.

Evidently, for i = 1,2,
a[(U,-,U‘-) = 2M;||U;||2‘,s |a,~(u‘-, U,‘)' < 2”;”"1”1/[””[”1/‘. Vu,"U; € V;,
and there exist constants C, N > 0 such that
bi(vi» q;) < Cllvlly, llgillg,» Vv, €Vi,q; €0,
Ciuis vy wi) < Nlluglly, o lly, Nlwilly,, Vu, v, w; €V,
With the bilinear forms b, and b, at our disposal, we further define the spaces
VIV = {0, €V, 1 bi(0g) =0V g € Q). VIV =V x v,
Io/i = Hol(‘Qi)dv I"/idiv = IO/, n Vidiv’ I}div = f/ldiv x I°/2div_
Concerning the superpotential y, we assume the following properties.
H@y): v : I' xR? - R is such that
i) w(-, &) is measurable on I for all £ € R? and w(-,0) € L'(I").
(ii) w(x,-) is locally Lipschitz on R? for a.e. x € I
(iii) 7] < ¢y +¢1€| for all &€ € RY, 5 € dw(x, &), a.e. x € T with ¢, ¢; > 0.
V) O — m)- (&) — &) 2 —c, & — &> forall & € RY, y; € dw(x, &), i = 1,2, ae. x € I’ with ¢, > 0.

The condition H (y) (iv) is known as a relaxed monotonicity condition in the literature [56], and it is equivalent to

WO — )+ v &g — &) <S¢, &6 — &1 V&L ERY
Define a functional ¥ : V — R by
() = / v, [v](x)ds, veV.
r

The next result is similar to [57, Theorem 3.47].

(3.1

(3.2)

(3.3)
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Lemma 3.1. Assume that y : I'XR — R satisfies the hypothesis H(y). Then the functional ¥ defined by (3.3) has the following properties.
@) ¥ () is locally Lipschitz in V.
G0 lzlly= <c(1+lolly) YoV, z € 0¥ (v).
@) YO v) < [pwOlu () [0 )(x) ds Vu,v € V.

Let us derive a weak formulation of the problem defined by (1.1) and (1.6). For this purpose, we temporarily assume that
fi € L2(2;R9) and f, € L*(2,;R?), and that the problem admits a smooth solution (u;,p,), i = 1,2. Multiplying (1.1a) by an
arbitrary v; € V; and integrating by parts, we get

/(a,.~D(u,.)+(u,.~V)u,.-u,.)dx—/ (oiv,-)~v,-ds=/ fi - v dx. 3.4
0Q; Q;

i

Since v; =0 on I; and v;, =0 on T,

—/ (o;v;) - v;ds = —/ G Ujds.
09; r

i

Since 6; = 24;D(y;) — p;I, we obtain from (3.4) that

/ (2 D) - D) + (u; - VI - v; — p;V - v;) dx — / i Ui ds= / fi v dx.
Q r

Q.

i i

We add the above equality for i = 1 and that for i =2 to get

a(u, v) + b(v, p) + C(u;u, v) + /r(_gl’r SV =0y, Uy )ds =(f,0). (3.5)
It follows from (1.6b) that

/ (=01 U1 = O Uy )ds = / (=o1.0) - [v]ds < / ywO(lu ) [o D) ds.

r r r

Hence, we derive from (3.5) that

a(u, v) + b(v, p) + C(u; u,v) + /r wOlu i [v, ) ds > (f,v) YveV.
Then we multiply (1.1b) by an arbitrary ¢; € Q,, integrate over £2;, and add the two equalities for i = 1 and 2 to get

b(u,q) =0.

Summarizing, we have derived the following hemivariational inequality for the problem defined by (1.1) and (1.6).

Problem 3.1 (HVI-NS). Find (u, p) € V x O such that

au, v) + b(v, p) + Clu; u, v) + /F wO([u, ;o D ds > (f,v) YveV, (3.6)

bu,q)=0 VYgeO. 3.7)
Restricting u and v to the subspace V4V, we can eliminate b(-,-) and get the following reduced problem:
Problem 3.2 (HVI-NS).4V Find u € V4V such that
a(u, v) + C(u; u, v) + /F WOl v, ds = (f,v) Yoevd, (3.8)
By removing the trilinear term C(:;-,-), we get the hemivariational inequalities for the Stokes/Stokes coupling problem.
Problem 3.3 (HVL-S). Find (4, p) € V x O such that

a(u, v) + b(v, p) + / WO([uT]; [v.Dds>(f,v) VYveV, (3.9)
r

bu,q)=0 VqeO. (3.10)
Problem 3.4 (HVI-S).4V Find u € V4V such that
a(u, U)+/W0([ur];[ur])ds > (f,v) Voeviv, (3.11)
r

For a well-posedness analysis of the above hemivariational inequalities, we introduce a smallness condition:

ey <2phy, p i=min(uy, py), (3.12)
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where 4 > 0 is the smallest eigenvalue of the eigenvalue problem
uev, /]D)(u) : D(v)dx=/1/[uT]~[UT]ds VvevV.
Q r
In other words, Aal/ 2 is the best constant of trace’s inequality

Mo 2¢ripey < cllvlly YoeV. (3.13)

Note that the condition (3.12) means the viscosity term dominates, or equivalently, the degree of non-convexity of y is relatively
not strong. Combining (3.2), Lemma 3.1(iii) and (3.13), we have

P00y —0) + POvpi0, — 0y) < / W01 [0, — 1) + w0y, 1s [0y, — 05 1) ds
r

< c,‘,/ vy, — 1}2r]|2 ds
r

<c, it v = vlly, Vo, €V v, €V (3.19)

3.1. The Stokes hemivariational inequalities
Let us fist discuss the well-posedness of Problems 3.3 and 3.4.

Theorem 3.1. (i) If (HVI-S) has a solution (u, p), then u is a solution of (HVI-S)?"*.
(ii) Suppose that f € V*, H(y) and (3.12) hold. Then, (HVI-S)4¥ admits a unique solution u, and there exists a unique p € O such
that (u, p) is the unique solution of (HVI-S). In addition, we have the following bound:

-1/2
coay 2112 + 11 £ lly -

1 (3.15)
2u— cwla

flally <cf =
The solution (u, p) depends Lipschitz-continuously on f, i.e., there exists a constant ¢ > 0 such that for solutions (u',p') and (u?, p?*) of
(HVI-S) corresponding to f = f' and f?,

lu' =l +1p" = Pllg ENS" = F2lly-. (3.16)

Proof. (i) It is trivial. (ii) Since a(-, ) is coercive, applying [58, Theorem 10] with ¥ (v) there replaced by ¥([v]), we can see that
(HVI-S)4V admits a unique solution u € V4V, In view of

a(u,v) = {f,v) Vove Vi,
and by using the inf-sup condition (3.1), we know that there exists a unique p, € 0, such that

a;(u;,v) + b, p) = (fio0) Yo, €V i=1,2,
or equivalently,

a(u,v) + b(v,p) = (f,v) YveV. (3.17)
Let v = (v}, 0,) € V be arbitrary but fixed. According to the inf-sup condition (3.1), there is a v! = (v}, u;) € V such that

b(v'.q) = bv.q) Vq€OQ. (3.18)
Set v? := v —v!. Then v? € V4V, It follows from (3.11) that

a(u, v*) + /F wO(lu 1 WD ds > (f.0%). (3.19)
In view of (3.17) we have

a(u,v") + b0, p) = (f,0").
By (3.18) and (3.19), this equality leads to

a(u, v) + b(v, p) + /r wOu s (v, ) ds = a(u, v") + b', p) + a(u, v*) + /r wO(lu ;v ds

2 (f. o) +(f.0%) = (f.0).

Thus, we have shown that (u, p) is the unique solution of (HVI-S). The bound (3.15) and the Lipschitz continuity (3.16) can be
derived by standard arguments as in [38, Theorem 3.2]. []
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Remark 3.1. The well-posedness of (HVI-S) is proved through consideration of a related convex minimization following the idea in
[58,59]. This extends to well-posedness analysis of general HVIs without related convex minimization problems through a fixed-point
argument [60]. Such an approach eliminates the need for the notion of pseudomonotonicity, as well as an abstract surjectivity result
of pseudomonotone operators commonly used in the literature on hemivariational inequalities (cf. [36,56]).

3.2. The Navier-Stokes hemivariational inequalities
We now give the well-posedness analysis of Problem 3.1.

Theorem 3.2. (i) If (u, p) is a solution of (HVI-NS), then u also solves (HVI-NS)?/,
(ii) Assume f € V*, H(y) and (3.12). Then (HVI-NS)?"* admits a solution u satisfying

lally < e (3.20)
In addition, under the assumption that
ch
0< ——— <1, (3.21)
2u— Cwﬂal

u is the unique solution of (HVI-NS)?". Furthermore, there exists a unique p € O such that (u, p) solves (HVI-NS). The solution (u, p) depends
Lipschitz continuously on f, i.e., there exists a constant ¢ > 0 such that for solutions u' and u* of (HVI-NS) corresponding to f = f' and

fzi

1_ 2 1_ 2 =il _ g2
l" =wlly +1lp" = pllg Clf =/l

Proof. (i) It is evident. (ii) Problem 3.1 can be considered as a special case of Problem 2.1 in [38] without the stability term. After
a trivial modification for the result from [38, Theorem 2.2], the well-posedness of Problem 3.1 is covered. Moreover, the proof of
the Lipschitz continuity of the solution with respect to the right hand side function is similar to that of [38, Theorem 3.2]. [

Remark 3.2. In case the functional y is convex, Problems 3.3 and 3.1 reduce to a coupled problem of variational inequality similar
to the ones studied in [61] for the leak interface.

Remark 3.3. Arguing as in Remark 12 of Migoérski and Ochal [57], or Remark 2.2 of Mahdioui, Ben Aadi and Akhlil [42], we
conclude that if (4, p) € V x O is a solution to Problem 3.1 and sufficiently smooth, then (u, p) satisfies the Navier—Stokes equations
(1.1) and the condition (1.5).

4. The domain decomposition method

To simulate the two-subregion coupled fluid flow system, we apply the domain decomposition method. In each iteration step
of the method, we solve two sub-problems of smaller size. The key question is how to design the decoupling approach for the
interface condition —o; , € dy([u,]). Our idea is to separate the original system into a sub-problem in 2, with a boundary condition
of subdifferential type on I', and a fluid problem in ©Q, with Neumann boundary condition on I'. Below we present the domain
decomposition algorithm for (HVI-NS) and provide a convergence analysis. The case of (HVI-S) is similar and simpler.

Note that sufficiently large x4 guarantees that both (4.1) and (4.2) admit unique solution (see [37] for a detailed discussion of
the unique existence of (4.1)). In the following, we skip the argument on the well-posedness of (4.1) and (4.2), and only show the
convergence of the domain decomposition algorithm.

Theorem 4.1. Let (u, p) and (™, p™) be the unique solutions of (HVI-NS) and (4.1)-(4.2), respectively. For u sufficiently large and 0
sufficiently small, there is a constant n € (0, 1) such that |lu — u®™||,, < Cy". In particular, this implies the convergence: |lu —u®™||,, — 0 as
n — oo.

Remark 4.1. It can be seen from the proof below that we need y sufficiently large so that (4.10) and (4.28) hold, and we need 6
sufficiently small so that (4.29) holds.

Proof. The proof is divided into three steps. We first show that [[u™||,, is bounded independent of # and n. Then, we bound
[l — ul|,,, and finally show that ||u® —u||,, — 0 as n — co.

Step 1. Given uf"_l) € V; (i = 1,2), the existence of a unique weak solution (u(l"), p(l") )E V) X (jl of (4.1) follows from an argument
similar to that of the Navier-Stokes hemivariational inequality (cf. [62, Theorem 3.7]). The existence of a unique weak solution
(u(z"), p;")) eV, ><Q°2 of (4.2) follows from a standard argument for the Navier-Stokes equations with the Dirichlet boundary condition
(cf. [63, Theorem 2.2, Chapter IV], or [55, Theorem 1.3, Chapter 2]).
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Algorithm 1 The domain decomposition algorithm

« Initialization. Choose 6 € (0, 1) and specify a stopping criterion. Let n = 1, u;OZ =0 and —a,(u(zo)) =0

Iteration. For n = 1,2, --- until the stopping criterion is satisfied, solve the boundary value problem in £,:

-V oo@” p™) + @ V" = £, in 2, (4.1a)
Vi =0 in 2, (4.1b)

u(") =0 on I, (4.10)

—o, (") € oy @’ —uy7"), u” =0 on T, (4.1d)

and the boundary value problem in £,:

~Vo@. p") + @ V" = f, in Q,, (4.2a)

Veoul’ =0 in 2,, (4.2b)

u(2") =0 on I, (4.20)

6. ™) = (1= 0o, @ )+ (=0, ™), u™ =0 onTl (4.2d)
i\ () oty : :

We will show the boundedness of u. To this end, testing (4.1a) by v, € VI‘“" and testing (4.2a) by v, € Vzdi", we have

al(u Ul) +C (u(") u("), vy) = / fi1-vpdx+ / GT(u(l")) vy, ds, (4.32)
Q r

() (), (m) - . oy . 4.3b

ay(uy ', 0p) + Cyluy s uy, 0y) = fr-vpdx+ [ o.(uy) vy, ds. (4.3b)
@ r

It follows from (4.1d) and (4.2d) that
—/Ur(u(l"))mlﬁ ds < / wO(u (1”3 “(2"11) vy ) ds, (4.4a)
r r
/a,(u;")) cvy.ds = /(1 - 00,y vy, ds - / 06" - v, ds
r ' r ' r ’

:/F(1—9)Za,(u;”‘2>)~uzy, ds—/r<6’(l —0)6,(14(1"_1))+967(u(1n))).Uzvr ds

(4.4b)
n—1 )
= /(1 -0)6,) - vy, ds — 9/ Y =-0)o, ") v, ds.
r I =
Taking v, = —u" and in view of Cl(“(”) u/' (")) = 0, we obtain
2 ||u(1")||2] <IIfi ||Vl*||u(1")||y1 +/(co + c1|u<"> (" 1)I)I (")Ids (by Lemma Lemma 3.1)
r
[ _
< (Wil + ol T12 207 + 25 e Ul + ™) Yy, By (3.13),
which implies
1o-3 (n-1)
® ||f1||Vl*"‘CO|F|2)~02 + 45 ey,
[lery "lly, < - . (4.5)
-4
On the other hand, substituting v, = u( into (4.3b) and (4.4b), and in view of Cz(u(") u ;") )=0and o (u(o)) =0, we calculate as
n—1
21”15, < 2l Nyl =0 (1 = 6) / o ") ul) ds
i=0
n—1 _
< Mfallv 5y +02<1 -0y / 0" —uy Ty Ul ds by (4.1d) (4.6)
n—1 1
< allyy Ny, +6 (1 - 0 (col 17 + 14 2<||u(" Py, + 16y lyy) g 2 147 sy
i=0
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where we have applied Lemma 3.1 and (3.13) in the last inequality. Inserting (4.5) to the right-hand side of (4.6), we get

[
nl Lo ag Ay + el T2 40 %)
. 1 -z 1% 1y, 0 0
240l 13, < W fallyz N, +0 Y (1= 0) (o112 4, 2 R sl
i=0 Hi= 4 4 “4.7)
S i ety (=i=Dy ()
+0 21 =0 e 25" (s + 1)1y gy
; 0 2”1_’15161 2 R 11 i,
which yields (by X/ (1 -6) = ~'(1 = (1 - 6)")
(n) (n—i—1)
2pplluy Ny, < M f2llyy + e+ ommax llue; llv, - (4.8)
where
1 -1
1 L cl/lgl(llflllyl*+co|F|2/102) cl/lal
o = (c0|r|i/102 + ) e 0= claal(— + 1). (4.9)
2p — /l(;lc 2uy — Aalcl
Under the assumption (this is satisfied if y, is sufficiently large)
c3 < 24y, (4.10)
we assert that
o ||f2||V2* +o )
||M2 ”VZ S m =. C4 (1 S 1 S n). (4.11)
This is proved by an induction as follows. In view of u(o) =0, it is easy to see from (4.8) that (4.11) holds for i = 1. Suppose that
. 120y
||u(2')||V2 < ZM; holds for 0 <i < n— 1. We obtain from (4.8) that
2

Ifallys +e2 Quy =3+ el ally; +e2)

2y —c3 24y —c3

>

215l < W 2llvy + 2 + 3

which concludes (4.11).
It follows from (4.5) and (4.11) that

Wfillye + ol 13 2g7 + ey o
iy + el 1242 + 45 e ——2—
1 My —C:
1y, < — S (4.12)
My — Ay e
Hence, we have shown the boundedness
™1y < 1y, + 16" 1ly, < g +cs. (4.13)

Note that the constants {c‘-}f_:2 depend on ¢, ¢;, Ay, i, #y and || f|l;+, and are independent of n and 6. Moreover, it is easy to
observe that ¢, and {Ci}is=2 decrease as y and y, increase, and c, ¢; and ¢s tend to 0 as y; and y, go to co.
Step 2. For brevity, denote
@ ") =@ —u”p = p") (=12 e =" e, p" = (" py").

Our goal is to estimate (™, e™). 1t follows from (1.1), (1.6), (4.1) (4.2) that

1 2
=Vo@. ¢+ @ Vyuy - @ -Vl =0, Ve =0 inQ, (4.14a)
(1”3 =0, Gr(e(ln)) =o.(u) - O'T(u(ln)), —o.(u) € oy ([u,)), —GT(u(ln)) € 61;/(14(1’2 (" ])) on I, (4.14b)
— V0@ ¢\ + @y Viug = @ -V’ =0, V-e” =0 inQ, (4.14c)
) =0, o) =(1=00. (") +0(-0,(e]") onT, (4.14d)
(") =0 on I}, e(z") =0 on . (4.14e)

Testing the first equation in (4.14a) by v, € Vldi", testing the first equation in (4.14c) by v, € Vzdi", applying the boundary
conditions, and noting that

@ Vo = @ V" = @ Vo + @ - Ve,

we obtain
ay @, o)+ C "y, o)+ C U5, v)) = W) —o,@™)) v, . d (4.15a)
(e} vy 1 1: 01 1 = [ o (u)—o ")) v ds, -1loa
az(e(z"), vy) + Cz(e(zn); Uy, Uy) + Cz(u(zn); e(zn), vy) = / a,(e(zn)) Uy ds. (4.15b)
r

9
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Taking v, = e1 in (4.15a) and v, = e(z"_” in (4.15b) with n replaced by n — 1, and summing up the results, we get (noting that
C( (n). (") (")) = 0)
Up>€ ¢
2;4|||e(")||2 T 1>||2 +Ci e up ™) + Gyl sy e 7Yy = R + RYY, (4.16)

where

R§">=/ (o’r(ul)— (("))) (@ = ey ds, R;")=/(a,(e(l”>)+a,(e(" D) eV ds.
r ’ r

The convection terms on the left-hand side of (4.16) are bounded as follows:

1€y uy 6 < N 15, N ly, (4.17a)

Gy sy, €™ < Nl ™I, Nl ly, - (4.17b)

Since e(l"z - e(z"_l) =[u,]—(u (1") (" 1)), we can apply Lemma 3.1(iv) to bound R(")

T T

(n) (n) (n D
R <c, ||e ||L2(F) (4.18)

On the other hand, by (4.14d),
o) + 0, (e8) = 071 (0, () ") = 5, (eI (4.19)
Using (4.19) and (4.15b), we get
) _ g1 (n=1)y  (n=1) -1 )y . n=1)
R2 =60 /Fr)'T(e2 )-ez’r ds—6 /rar(e2 )~ez’r ds
— e—laz(e(znfl),e(znfl)) + g—lcz(e(nfl). uz,e(znfl)) + g—lc ( (,,,1). (,,,1) (n—l))
— 0 (e, ("_1))—9_1C2(e;"),u2,e("_1)) 01 Cy(u <2n)’ o, <2n n)
= R? + RY + R

23°

where

R = 07y — o, oY),
<n> = 071y = ey, oD,

(ﬂ) —p-l n), (n=1) _ (ﬂ) (n )]
R23 =0 Cz(u2 ey e, e, )

and we have used C(u(" . (2" b ;”_])) = C(u(");e;"_]),e(z”_l)) = 0 in the last step. In view of
1 1 2
RS = 107 (leS V115, = eS”15, + ey ™ = e5”I13,)
— 1 1
IRV < 07" Nlluylly, ||e;" >—e;")||vz||e;” lly,»
—1 —1 —1
IR < 07 N IIuS Ny, e ™ = ey, 1ed" Iy,

we obtain a bound on R(z"):

— —1 —1
Ry < w0 1y ™IS, — 15”15, + Nles™ = 5”13,

(4.20)
— 1 —1
+ 07 N(llually, + 165”1y leS ™ = 1y, el -
Using (4.17), (4.18) and (4.20) in (4.16), we find that
Mo —1 -1
5 WV, = 1e5715) > @y = Nllay )l 15, + @uz = Nl lly, ey ™1,
_ P - _ 2 () _ (" D
1™ = VI, — el [
N -1 -1 -1
= 5 el + 1P llleg'™ = &l el
Applying the trace inequality (3.13), we have
H —1
5 V15, = 15”15,
—1
> Quy = Nlluyly)lle” 15, + @uy = Nllally)les" 115, (4.21)

Ha -1 -1 2 N -1 -1 -1
~ (5 + ey 2™ = &P, = -y, + 1y, eyl 1™ = &y,

10
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We intend to find a sufficient condition on u and 6 such that the right-hand side of (4.21) keeps positive so that we can deduce
that ||e(2")||%,2 1 0 as n > co. To this end, we derive from (4.15b) that

/(U (e(" ])) O'T(e(zn))) ~(e(2";1) ("))ds
r .

:/g,(e;"‘”y(e;";” o) ds - /o‘ @) (e — ey ds
r ’ r

_ 02(e(n ])’e;n—l) _ e(zn)) + Cz(e(n—])‘ uz,e(zn—]) (n)) + Cz( (n 1)’ (2n ]),e(zn—]) _ e(zn)) (422)
—az(e("),e(z”‘” _ e;")) _ Cz(e;"),uz,e("‘” _ e(;)) Cyu <2n>’ ;")ae(z" ) _e<2n))

-1 1 —1 —1
= 2plley ™ = &I, + Catey' ™" — e sud 0, e — )

-1 -1 -1
> 2 lley ™ = eI, = Ny Vlly, lled"™ = 5713,
where we used Cz(u("> W _ e;"_l), eé"_l) - e;")) =0 and u(z"_l) - u(2") = e(zn> - e(z"_l) . Meanwhile, by using (4.19),

/(0' (e(" 1)) GT(e("))) (" b_ ("l) ds = / H(UT(e(I")) + of(e;"_l))) ~(e(2";1) - e;"i) ds = Ry + Ry, (4.23)
r 2 r ’ ’
where

R3 =9/ s (e(n)) ( (n n_ (nl)ds’

R4=0/0' @ 1)) (@ = ey ds.
r

By (4.15b) with » replaced by (n — 1), we derive a bound on R,:
R, =9(a2(eg"l>,e;"’l) —eg'))+C2(eg””;u2,e;"’l> (n))+c (u(n D, (2n 0 ;n n_ (n))>

-1 -1 -1 -1
<0(20mlle ™ Iy, + Nllually, + ™yl >||V2)||e;” T = ey,

To bound R;, denote & := (e(z";l) ("))| r€H 0(F) Note that £-n =0 on I" and the zero extension of ¢ to agl or 0£2, (also denoted

by &) is continuous (cf. [28, Lemma A.1]). By [64, Theorem IV.1.1], there exists an extension of ¢ from OO(F) to V,.le (i=12),
denoted by E;¢, such that

1 —1
Eg=¢onT, |E&ly <cgliél )—cEne(” e ;(F)chc,ue;” "=l (4.24)

where ¢g,¢, > 0 are constants. Thus,

Ry = 9/ o (&) eds = 9/ o (") E\&ds
r

0( (el E18) + Cesun, B0 + Cals e, E19)) - (by (4.154))

< 020"y 1 Exéllyy + Nl lly, + 1yl ly, i€l )
< 020116y, + Nyl + 1 y)llelly, Jege, ey ™ = ey, by (4.24)).
From a combination of (4.22) and (4.23), together with the above estimates of R; and R,, we obtain
(20 = N1l ey ™ = 57115,
<0 ( 2115 lly, + Nllually, + 16511y )led 1y,
+2uiepe, 1€ Iy, + cpe, Nllluylly, + e ly)le 1y, ) llel ™" = &Sy,

leading to

-1 -1 -1 -1
(2002 = N1l 1S ™ = €My <0 ( (2ma+ Nl + ™ ) el
(4.25)
+ ey (21 + Nyl + 16l el ) -

11



F. Jing et al. Nonlinear Analysis: Real World Applications 85 (2025) 104366
Using (4.25) in (4.21), we have

Ha -1

5 11T, = eI,

Ho _ 2 —1 _
> (21 = Nl lly, = (5 + ¢, 451026232 (2000 + Nl lly, + 16 l1y))* @oen = N1 ™12 )1 1,

H _ — 2 — _ _
+ (20 = Nl lly, = (F + 451202 2y + Nl lly, + 116 lly,))@ra = Nl ly,) 72 11, (4.26)

—1 —1 —1 — —1
= N (llually, + '™y, ) (202 + Nlually, + '™y, ) 2oy = Nla§™ 1)) lleS V15,
—1 —1 —1 —1
= N (llually, + 16y, ) ee, (2 + Nl lly, + 168l )@ = NS, ) Sl 1™y,

According to Theorem 3.2 and the result from Step 1, we have the bounds
lally <epo NNy, <ew My, <es.
Hence, we can simplify (4.26) and obtain that
2SI, — 15”1,
> (2,41 - Ney - (% + ¢, 452032 (2 + Niey +¢5)) iy — Nc4)-2)||e<l">||%,l
+ (20 = Nep = (B2 46, 251926% (2 + NGy + ) @uir = Ne) 2 16511,
— N(es + )2y + Nieg + )2y = N leS V5,

= N(es +eg)epe, 2y + Ncg +es)2y = Neg ™ el ™y, llellly,
N(es +c)ege, (4.27)
> 24 = Ne, - —L 22" (24, + N(c, +
‘< MmN T Ry = Ney N T es)

— 2 _
= 0y + ¢, A5 0)2¢5c2 (2u; + N(cj +¢5)) 2y = Ney)™? > lle§™ 113,

N(cy+cy) N(cy +cg)ege,
——— (2uy + N(cr+cy) - =
Nc4( Ho (c;+¢y))

om —Nep) (2uy + N(cy +cs))

+(2;42—ch—2”
y —

- 2 _ —
=0y + ¢, 251 002(2py + N(c/ +¢4)) (2uy — Ney) 2) ey 113,

-1 1 -1 . .
where we have used ||e(2" )||V2 ||€(1")||V1 < §(|Ie(2" )||%, + ||e(|")||%,l) to get the last inequality.

Step 3. As commented at the end of Step 1, we find that ¢/, ¢, and cs decrease as y; and y, increase, and c,, ¢, and c5 tends to 0
as u; and p, go to co. Assume that y; and u, are sufficiently large such that

N(cyp +cy)ege

¢ 1=2u; — Ney — T Nc4)y Quy + N(cs +¢5) >0, (4.28a)
) N(cf +cs) 1
¢ :=2p, — Ney — m(%@ + N(cy+e)+ ECECy(Zl‘l + N(cy +¢c5)) > 0. (4.28b)

Furthermore, we can choose small enough 6 to guarantee that
co = O(uy + ¢, Ay 0)2¢3.c7 (2 + N(ey + 5))’Q@us = Ney)™2 > 0, (4.292)
e7 = 0y + ¢, 25002 (21 + N(cy + )’y = Neg)™ > 0. (4.29b)

In this case, ||eg')||%,7 decreases unless ||e(1”)||1,l = ||e(2”’1)||1,2 =0. Thus ||e(2")||1,2 } 0 as n — oo, which also implies (by (4.27)) ||e(1")||V1 - 0.
More preciously, by setting

— _ 2 _
ni=1-0u;" (c7 — Oy + ¢, 25102203 + Nicy +¢)) 2y — Ney) 2) €. 1),
it follows from (4.27) that
- 0
e 15, < nlleS'™"II5, < - < n"lle3” 113, -

Together with (4.27), we assert ||e(1")||%,] <Cnp"->0asn—o0. []

Remark 4.2. For the Problem (HVI-S), analogously to the above argument, we can also prove the convergence of the domain
decomposition method under the assumptions of large u,, 4,, and small 6.

5. Mixed finite element method

For simplicity, we assume that both 2, and £, are polygonal domains, and I" consists of plot components. For i = 1,2, we
introduce a family of quasi-uniform triangulations {7;"} to &, and assume that for any h, Tl" and Tz" are compatible on the

12
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interface I' in the sense that the restrictions of Tlh and Tzh on I' coincide. The triangulations of £, and £, have the same mesh size

h = max gy diam(K). Let V" and Q" be finite element subspaces of ¥; and Q; associated with the triangulation 7,". Denote
1 2
vhi=vixvl vhi=hevh =0l
0" :=01x0}. O!:=0/nLj) 0O":=01x0}
Ldiv . iv . Jdi Jdi
Vih iv = {U’h = V/I . b,-(vfl,q,-h) =0 Vq,.h = va}’ Vh,le = Vlh iv x Vzh 1v.
Since V" c ¥, the coercivity of a(-,-) remains to be valid on V*:
a@", v 2 2ull"1E Vot e Vi
We assume that the following inf-sup condition holds for the pair Vl.” X Qﬁ:
b,(", p1) .
sup ——— > Cllpfllg, Vp! €0 (5.1)
vrev vy,
Note that the P1b/P1 and P2/P1 pairs (see (5.15) and (5.16) below) satisfy the discrete inf-sup condition (5.1).
5.1. The discrete problems

We consider the finite element approximations of the Navier-Stokes hemivariational inequality.

Problem 5.1 (HVI-NS"). Find u" € V" and p" € 0" such that
a@", ") + b(W", pM) + il V) +/ WOl [0 ) ds > (f, o) vl e vh, (5.2)
r

b, q") =0 Vgt e " (5.3)
A reduced version of Problem 5.1 reads:

Problem 5.2 (HVI-NS™4¥), Find u” € V"4V guch that
a@”, ") + c@Wuf, v +/ WO [ ds > (f,0") Vot e vhdi, (5.4)
r
Under the assumptions stated in Theorem 3.2 and (5.1), we can show that Problems 5.1 and 5.2 have unique solutions and the
two problems are equivalent. Moreover,
™[l < ey (5.5)

where ¢y is defined by (3.15).
5.2. Error bound

Let us bound the error between the continuous and discrete solutions. Noting that v| = 0 for all v € V, we have
a(u,v) + b(v, p) + Cusu,v) = (f,v) Vve V. (5.6)
The discrete analogue of (5.6) is derived from (5.2),
a@”, o™y + b", ") + CWu", ") = (f, ") Vot e VI (5.7)
Let ¢" € O" be arbitrary. By (5.1),

b(", p" — ¢")
Clip" = q"llg < sup —————.
epn 0Py

(5.8)
For any v € V*, by (5.6) and (5.7),
b, p" = (f, ") — a@h, vy — @ ul, 0",
b, p) = (f, 0"y — a(u, V") — CQuzu, v™).
We see that
b(w". p" — p) = b(0" . p") = b(". p)
a(u — ul, oM + Clusu, Uh) - C(uh;uh, Uh)

a(u — uh, vh) + C(u;u — uh, Uh) + C(u— uh;uh, Uh).

13
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Hence, it follows from (5.8) and
b, p" = g") = b@", p" = p) + b, p— 4"
that
Ip" = q"llg < e (1+llully + 1" lly) lu—u"lly +cllp - ¢"llo-
Since ||u||;; and ||u"||;; are bounded by the constant ¢ 15
le" = q"llg < c(llu=u"lly +1llp—q"llp)-
Using the triangle inequality
lp=p"lg <llp—d"llg +1Ip" = a"llg.
we then derive the inequality
lp—p"llp <c(lu—u"lly +llp—d"lp) .

On the other hand, for any " € V",

2pllu— "1 < a(u—u,u—u"
=a(u,u — uh) - a(uh,u — uh)

= a(u,u —u") — a@",u — ") + a@" u" = M.
Substituting v = u”* — u into (3.6) yields
a(u,u —u"y < Cusu,u" — u) + b" — u, p) + / wO(lu,); [u:_' —uDds—(f,u" —u).
r

By (5.2) with v" replaced by v — u",

a", " = oM < CWhsul 0" — )+ b - ) + / vOQ L W) = !l ds = (f, 0" = u").
r

Also, Substituting v = u — v"* into (3.6), and in view of

h

—a(uh,u - Uh) =au—u",u— Uh) + a(u, ot — u),

we get
a(u, v —u) < Cuyu,u— ™) + bu— 0", p) + / WO s [, — 0" ds = (f,u— o).
r
Inserting these inequalities into (5.10) results
2ullu—u"? < a(u—ut u—- U")+Ic +1,+1,,
where
I.=C(u uu — u) + C(uh;uh,vh — uh) + C(u;u,u — vh),
I, = b@" —u, p) + b" —u", p") + b(u — ", p),
I, = /F (wO(lu, s [ = u, D)+ w1 [0 = uPD) + wO(lu,1: [, — 0P) ds.
We rewrite I, as
I, =C(usu, uh — Uh) + C(uh;uh, ot — uh)
=C(u;u— ul ul — Uh) + Clu,uu" = Uh) + C(uh;uh, o — u'
=Cu;u— uh,uh — vh) +Cu-— uh;uh,uh — Uh)
=Cluzu—u" u— 0"+ Cu— i i i — oM,

h

where we used c(u,u — u",u" —u) = 0 in the last step. Then we bound I, by

I, < N lullyllu = u"lly llu = "Iy + Nl llu =" [l la® = 0"
< Nepllu—utlly (lu=v"lly + lu" = o"1ly) .
Using (3.7) and (5.3) repeatedly, we have
I, = b" —u, p— g") + ", p") — b(", p)

= b" —u,p— ") + b, p" — p)

14
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= bW —u,p—q") + b" —u, p" - p).
Thus,
Iy<c(lu=u"llylp—q"llg +llu—o"llyllp—p"lg) -
By the sub-additivity (iii) in Proposition 2.1,
WOl ] [ — ) < w0 [, — D) + 9Ol 0! = D).

As a result, I, can be bounded by
I, < / (WOl s [ = D) + w0 [, — D) + w1 [0 = u ) + Ol ): [w, — 07)) ds
r

2
s/ (e llue = 17+ (oo + el 1D + o + e D)l = 0211) s
r
< Cwl(;l”u - uh”%/ +c (1 + ”[”f]”LZ(r;Rd) + ”[”f]”LZ(r;Rd)) ”[”f - Uf]”LZ(r;]Rd)-
-1/2 -1/2
By (3.13), llu Ml 2y < Ag*llully and 11?1l o pgay < Ay"/* Nl By (3.20) and (5.5), ||ull, and |lu"], are bounded by c;.
Hence, from (5.11), we obtain
2pllu—utI3 < e llu=ullyllu— 0"y + N epllu—ullly (llu=o"lly + la" = o"]1,,)
+e(llu—u"lylp—q"llo +llu—o"lyllp - p"llo)
+ey Ayt lu—u" 15, + e llu, = V2l 2 gy (5.12)
By the triangle inequality
llu" = V"l < llu =Pl + llu = 0"l
We apply the modified Cauchy inequality
xy< ex2+y2/(4e), Vx,yeR, Ve>0
to the terms ¢ |lu—u" ||y lu= "y, ¢ lu—utllyllp—q"ll g ¢ llu—v"lly llp— p"ll o, and derive from (5.12) that for e > 0 arbitrarily small,
(2;4 - cv,/lal - Ncy— e) [Jlu— uh||%,
< (=" + lIp = g"1 + e = o2l 2 gy ) + € llp = 111 (5.13)
By choosing ¢ > 0 sufficiently small, we can combine (5.13) and (5.9) to get

=l + ='Wy < it (= I+ Do = a1+ e = 02l 2z ) (5.14)

(Wh.ghevhxoh
This Céa’s inequality is the starting point for error estimation of the numerical solution ", p"). In particular, consider a family of
regular finite element partitions of the domain 2, U<,, formed as unions of finite element partitions on £, and £, whose restrictions
on I are identical and such that the partitions are compatible to the boundary splitting 062, = I'; U I, i = 1,2. Let us use P1b/P1
finite elements [65]
Vi = (vt eV,nc%@p)!: oy e (DI @ BT VT €T, (5.15a)
Ol =1{qe0,nC"@):q"; e L) VT €T}, (5.15b)
or P2/P1 finite elements [63]
V! =l eV,nCh@": !y € (B VT € T, (5.162)
O'=1{ql e0nCQ): ¢!y e A(DVT €T, (5.16b)
where P, (T) represents the space of polynomials of a total degree less than or equal to k in T, and B(T) is the space of bubble
functions on T'. For these choices, the discrete inf-sup condition (5.1) is satisfied. We can then derive an optimal order error estimate

for the P1b/P1 element solution from (5.14) and standard finite element interpolation error bounds, under certain solution regularity
assumptions. We write I” as the union of a finite number of flat components:
_ /o
Ir=v j=l}/j’
where each y; is a line segment in 2D or a polygon in 3D.

Theorem 5.1.  Let (u,p) and (u",p") be the solutions of Problems 3.1 (HVI-NS) and 5.1 (HVI-NS") with the P1b/P1 elements
(5.15a)—(5.15b). Assume f € V*, H(y), (3.12), (3.21), and the regularities u € H?(2)¢, ul, € H2(y)), 1< j < jo, and p € H'(Q),
there exists a constant ¢ depending on u and p such that

lu=u"lly +lp=p"llg < ch. (5.17)
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6. Numerical experiments
In the numerical experiments, we take the function y in the form

2]
w(z) = / (1) dt,
0

where @ : [0, 0) — R is continuous, (0) > 0. Then the slip boundary condition —¢, , € dy/([u.]) is equivalent to

. [u.] .
[o) ] @(0)if [u,]1=0, -0,=0([u]l) m if [u,]#0.
Introduce a Lagrange multiplier
2 Ol
" o(|[u 1)

and define a set
A={ne L’(I;RY : |g] <lae.onl}.

Then Problem 3.1 can be restated as follows.

Problem 6.1. Find (u,p) € V x O and A € A such that

a(u, v)+b(v,p)+C(u;u,U)+/a)(|[u,]|)l-[ur]ds:(f,u) YvevV, (6.1)
r

b(u,q) =0 VgeO, (6.2)

A-fu =14 [ ] =0 ae.on I'. (6.3)

We adopt a projection-type iterative procedure [27] to solve Problem 6.1. The algorithm is presented below. Choose a constant
parameter p > 0 and an initial guess u™®. Then for n = 1,2, ..., find (™™, p™) € ¥’ x Q" such that for all (v", ¢") € V" x O,

a@" ™, ") + b(", p" ) + CMD; MO Wy = (oM - / o(|[u™ =D ) A [t ds, (6.4a)

r

bum™, gy =0, (6.4b)
and update the Lagrange multiplier:
AR = PG 4 p [ ™)), (6.5)

where P is the orthogonal projection operator from R to the unit closed ball in R?. To solve (6.4), we again utilize the
projection-iteration scheme stated as follows.
Choose an initial guess ﬂg’("). Then for I =0,1,...,

1. find (ulh‘("),plh'(”)) € V" x Q" such that, for all (v, ¢") € VI x Q",

AW ) 4 b, PO 4 DM by = (7, oty _/ (1 1) 21 [t ds, 6.62)
I

b(ulh,(n)’qh) =0 (6.6b)
2. update the Lagrange multiplier:

h(n) h,(n) h, h(n)q\ .
a0 = P (41 4 poola @1, D11

3. iterate (1) and (2) until ||u[h‘(") - ulh;(l")ll 120 < & and at that time, let (™ ph 30y be the most recent iterates.

Repeat the above procedure until [[u"™ — @~ 5 o < . In our tests, we take &;,&, = 1075,
In the examples below, we take

wt)=(@-be ™™ +b (a>b). (6.7)
to illustrate performance of the numerical method. Let 2 = (0, 1)x(—1, 1) with the subregions 2, = (0, 1)x(0, 1) and £, = (0, 1)x(-1,0),
the interface I = (0, 1) x {0}, and the Dirichlet boundary 0@2\I'. Let y; = pu, =1 and f; = =V - 6(u;y, p;o) in 2; (i = 1,2), where

20x%(x = D2y = D2y = 1)

up(x, y) = (—20x(x — D2x = DYy — 1)2> > pio(x,y) =202x — D2y — 1),
and

20x%(x — D2 y(y + D2y + 1)

yg(x. y) = (_ZOX(X o Dyt 1)2> . pa(x.y) =20Qx — D@y + 1).
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0.1
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-0.1
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0 0.2 04 06 08 1
(a) 017 (b) u,r

(c) |ul (d) velocity

Fig. 2. Tangential traction o, , and tangential velocity u,, on the interface I'; |u| and the velocity u in £ of (HVI-NS).
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log(h) log(h)
(a) projection-HVI (b) projection-VI

Fig. 3. Convergence behaviors of numerical solutions of (HVI-NS) and (6.8) under the projection iterative procedure.

We adopt a sequence of uniform triangular meshes with the interval [0, 1] being split into A~ equal sub-intervals, and use the
P1b/P1 finite elements. Since the exact solution is unknown, we take the numerical solution (u; ef, Py refs Ua ref» Poref) ON @ fine mesh
(h = 278) as the reference solution, and compare the solutions (1, p;,) on the coarse meshes (h = 273,274,273, 276) with the reference
solution. The experimental errors are plotted in Figs. 3 and 4, where the following notation is used in our figures:

DIUL2 := |luy _””LZ(Ql)v D2UL2 := ||uy —ulle(Qz), DIUHI := |uy _ulﬂl(ﬂl)’
D2UHI := |u, —u|H1(92), DIPL2 := ||p, _plllé(-ol)’ D2PL2 := ||p, _p”Lg(Qz)'

Now we apply the discrete projection-type iterative algorithm (6.6) to solve Problem 3.3 ((3.6)-(3.7)) with a = 0.255, b = 0.25,
a =10 in (6.7), and with the initial guess /1510) = 0 and parameter p = 1. We plot the figures of the tangential traction ¢, , and the
tangential velocity u, , on the interface I', as well as the velocity fields (u,u,) in Fig. 2. The experimental errors are shown in Table
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5r —<— DiPL2
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Fig. 4. Convergence of numerical solutions of (HVI-NS) under the domain decomposition algorithm.

Table 1
Errors of numerical solutions of (HVI-NS) with interface slip boundary condition (1.6).
h Q, Q,
D1UL2 D1UH1 D1PL2 D2UL2 D2UH1 D2PL2
273 7.3704e—03 9.9777e—02 1.8587e-01 7.3857e—03 9.8593e—02 1.9202e-01
274 1.9469e-03 3.8134e-02 6.5195e-02 1.9429e-03 3.7628e-02 6.6871e—02
275 4.7749e—04 1.5663e-02 2.2523e—-02 4.7664e—04 1.5454e-02 2.2758e—02
2°6 1.1203e-04 6.7453e—03 7.7155e—03 1.1205e-04 6.6560e—03 7.5848e—03
Order 2.09 1.22 1.55 2.09 1.22 1.59
Table 2
Errors of numerical solutions of (HVI-NS) under the domain decomposition algorithm.
h Q, Q,
D1UL2 D1UH1 D1PL2 D2UL2 D2UH1 D2PL2
273 7.4826e—03 9.9294e—02 1.8350e-01 7.3857e—03 9.8593e—02 1.8948e-01
274 1.9926e-03 3.7981e—02 6.4491e-02 1.9429e-03 3.7628e-02 6.6708e—02
273 4.9984e—04 1.5577e-02 2.2206e-02 4.7664e—04 1.5454e-02 2.2747e-02
2°6 1.2255e-04 6.6916e—03 7.5269e—-03 1.1205e-04 6.6560e—03 7.5845e—03
Order 2.03 1.22 1.56 2.09 1.22 1.58

1 and Fig. 3(a). We see the O(h) convergence of |lu;, — ul| y1(q); while O(h') of the ||p, — pll o which is commonly observed for the
P1b/P1 finite elements in numerical tests. Moreover, we observe the O(h?)-convergence for ||u;, — u| 12Q)

In addition, if we fix the friction function w(¢) in (6.7) as a positive constant, e.g., = 0.255, w(x,-) in (1.6b) is convex and the
interface condition degenerates into (1.5), then the variational formulation of (1.1) turns into an inequality:

a(u,v—u)+b(v—u,p)+C(u;u,v—u)+/wl[vr]lds—/wl[u,]ldSZ(f,U—u) YvevV,
r r (6.8)

bu,q) =0 VgqeO.

This inequality can be solved via the projection iteration [25,27,61]. The convergence behaviors are shown in Fig. 3(b). Figures
of the tangential traction, the tangential velocity and the velocity field are omitted, which are similar to that for the case of the
hemivariational inequality.

In the following, we examine the applicability of the domain decomposition algorithm. We set the parameter § = 0.35 and the
initial value (ug;'), pg;!)) =(0,0), and carry out the simulation with the same nonconstant w(r) as mentioned above. The experimental
errors (Table 2) and convergence behavior (Fig. 4(a)) are almost the same as that shown in Table 1 and Fig. 3(a) obtained without
using domain decomposition method. Figures of velocity, o, , and u; , are similar to those obtained as aforementioned. We only

plot the iteration errors ||u;k) - u;,k_])” and ||p;lk) - p;k_])” in Fig. 4(b), which decreases exponentially fast and coincides with the
theoretical prediction.

7. Conclusions

In this work, the finite element method is applied to solve model problems of two viscous fluids with the nonlinear slip interface
condition of friction type. The nonsmooth and nonmonotone property of the slip interface condition leads to a NS/NS hemivariational
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inequality. Well-posedness of the hemivariational inequality is proved, so is the convergence of the domain decomposition algorithm.
Optimal order error estimates are derived for the mixed finite element method with the P1b/P1 element under appropriate solution
regularity assumptions and numerical tests are given to illustrate the theoretical result. In a future study, the nonstationary
hemivariational inequality and efficient decoupling algorithms will be considered.
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