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 A B S T R A C T

We explore the well-posedness and conduct a numerical analysis of hemivariational inequal-
ities for the coupled stationary Navier–Stokes/Navier–Stokes system. The interface condition 
involves the Clark subgradient and serves as a generalization of various interface interaction 
relations, including nonlinear transmission conditions and friction-type conditions. We present 
an existence and uniqueness result for a solution of the continuous model. We propose a domain 
decomposition approach to solve the coupled system and examine the convergence of iterations. 
Moreover, we use the finite element approximation to discretize the hemivariational inequality 
of the coupled system and derive error estimates, which lead to an optimal order for the 𝑃 1𝑏/𝑃 1
pair under appropriate solution regularity assumptions. Numerical results are reported that 
illustrate the optimal convergence order predicted by theoretical analysis.

. Introduction

Various geophysical flows, including atmosphere–ocean interaction [1–4], two layers of a stratified fluid [5,6], and cou-
led turbulent fluids [7–10], rely on fluid–fluid interaction models. These models couple fluids through linear or nonlinear 
ransmission conditions on a shared interface. In this work, we introduce a generalized interface condition to stationary Navier–
tokes/Navier–Stokes (NS/NS) coupled flows, incorporating the Clark subgradient and producing a hemivariational inequality. The 
athematical model is described as follows.
Let 𝛺 be a Lipschitz domain in R𝑑 (𝑑 = 2, 3), which is decomposed into two subdomains 𝛺1 and 𝛺2. The common boundary of 

1 and 𝛺2 is the interface 𝛤 = 𝜕𝛺1 ∩ 𝜕𝛺2. For 𝑖 = 1, 2, the remaining part of the boundary of 𝛺𝑖 is denoted by 𝛤𝑖 ∶= 𝜕𝛺𝑖∖𝛤 , and we 
ssume |𝛤𝑖| > 0. We denote by (𝑢𝑖, 𝑝𝑖) the velocity and pressure in the subregion 𝛺𝑖, and by 𝜈𝑖 the unit outer normal vector to 𝜕𝛺𝑖
see Fig.  1). The deformation rate tensor and stress tensor are represented by D(𝑢𝑖) ∶= (∇𝑢𝑖 +∇⊤𝑢𝑖)∕2 and 𝜎𝑖(𝑢𝑖, 𝑝𝑖) ∶= 2𝜇𝑖D(𝑢𝑖) − 𝑝𝑖I, 
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respectively, with the constant viscosity 𝜇𝑖 > 0 and unit tensor I. In the subregion 𝛺𝑖, the fluid flow is governed by the stationary 
incompressible Navier–Stokes equations supplemented by a Dirichlet boundary condition on 𝛤𝑖: 

−∇ ⋅ 𝜎(𝑢𝑖, 𝑝𝑖) + (𝑢𝑖 ⋅ ∇)𝑢𝑖 = 𝑓𝑖 in 𝛺𝑖, (1.1a)

∇ ⋅ 𝑢𝑖 = 0 in 𝛺𝑖, (1.1b)

𝑢𝑖 = 0 on 𝛤𝑖. (1.1c)

To describe the transmission condition on the interface 𝛤 , we adopt the rigid lid hypothesis [5]: 𝛤  is a mean interface and the 
values of 𝑢𝑖 and 𝑝𝑖 are mean values of the velocity and the pressure; and 𝛤  is unmoving. We now introduce the notation of the 
normal and tangential components of the velocity and the stress vector:

𝑢𝑖,𝜈 ∶= 𝑢𝑖 ⋅ 𝜈𝑖, 𝑢𝑖,𝜏 ∶= (I − 𝜈 ⊗ 𝜈)𝑢𝑖,

𝜎𝑖,𝜈 ∶= 𝜎𝑖𝜈 ⋅ 𝜈, 𝜎𝑖,𝜏 ∶= (I − 𝜈 ⊗ 𝜈)2𝜇𝑖D(𝑢𝑖)𝜈𝑖.

where 𝜈 ∶= 𝜈1 = −𝜈2. We use [𝑠] to represent the jump of 𝑠 on 𝛤 , for example,
[𝑢] ∶= 𝑢1 − 𝑢2, [𝑢𝜏 ] ∶= 𝑢1,𝜏 − 𝑢2,𝜏 .

Different transmission conditions have been introduced to simulate diverse physical phenomena on the interface, for instance, 
adhesion [11,12], friction [3,4,7–9], coupling with the porous medium flows [13]. An example of modeling the atmosphere–ocean 
interaction is through the introduction of the linear coupling condition [14]: 

𝜎𝑖𝜏𝑖 = (−1)𝑖𝜅[𝑢] on 𝛤 (𝑖 = 1, 2), (1.2)

where 𝜅 > 0 is the friction coefficient. It reflects the bulk fluids across the boundary layers slide past each other with a horizontal 
frictional force linearly depending on the jump of velocities. Meanwhile, the nonlinear transmission condition 

𝜎𝑖𝜏𝑖 = (−1)𝑖𝜅|[𝑢]|[𝑢] on 𝛤 (𝑖 = 1, 2), (1.3)

has also been utilized to model geophysical flows [5,7–9,15–17]. As is proposed in [11,12,18], the relationship between the 
horizontal frictional drag force and the jump of velocities can be represented by the general power-law type condition: 

𝜎𝑖𝜏𝑖 = (−1)𝑖𝜅|[𝑢]|𝛼[𝑢] on 𝛤 (𝛼 ≥ 0, 𝑖 = 1, 2). (1.4)

Note that (1.4) can be equivalently expressed as

𝜎𝑖𝜏𝑖 =
(−1)𝑖𝜅
(𝛼 + 2)

∇[𝑢](|[𝑢]|
𝛼+2) (𝛼 ≥ 0, 𝑖 = 1, 2).

Instead of using the gradient ∇[𝑢](|[𝑢]|
𝛼+2), a subgradient of a convex function can be used as a general type condition. The Tresca-

friction type slip boundary condition, as explained in [19,20], is suggested for modeling snowslides and mud-rock flows. The 
interface version of this condition is stated below: 

𝑢1,𝜈 = 𝑢2,𝜈 = 0, (1.5a)

𝜎1,𝜏 = −𝜎2,𝜏 , −𝜎1,𝜏 ∈ 𝑔𝜕|[𝑢𝜏 ]|, (1.5b)

where 𝑔 ∈ 𝐶(𝛤 ) is a given threshold with 𝑔 > 0. This friction-type slip condition expresses a monotone relationship between the 
traction force and the jump of tangential velocity. When integrated into the incompressible Navier–Stokes equations [19,20], this 
condition leads to a second-kind variational inequality (VI) for weak formulation. Fujita and his collaborators [19–24] and other 
researchers [25–32] have explored the variational inequalities of the second kind that are governed by the Stokes and Navier–Stokes 
equations.

Our paper presents an extension of the interface condition to include a broader range of friction types. Specifically, we consider 
nonsmooth boundary conditions that involve non-monotone relationships between physical quantities. This leads to hemivariational 
inequalities (HVIs) in the weak formulation.

We propose the following friction-type slip interface condition: 
𝑢𝑖,𝜈 = 0, 𝑖 = 1, 2, (1.6a)

𝜎1,𝜏 = −𝜎2,𝜏 , −𝜎1,𝜏 ∈ 𝜕𝜓([𝑢𝜏 ]), (1.6b)

where 𝜓(𝑢𝜏 ) is a short-hand notation for 𝜓(𝑥, 𝑢𝜏 ). The function 𝜓 ∶ 𝛤 ×R𝑑 → R is called a superpotential. It is assumed to be locally 
Lipschitz with respect to its last argument. The subdifferential of 𝜓(𝑥, ⋅) in the Clarke sense is denoted by 𝜕𝜓 . Note that (1.5) is a 
special case of (1.6) when the function 𝜓(𝑥, 𝑢𝜏 ) = 𝑔|𝑢𝜏 |, where 𝑔 is again a positive threshold function.

The notion of hemivariational inequality was first introduced by Panagiotopoulos in early 1980s [33], which is closely related to 
the development of the concept of the generalized directional derivative and subdifferential of a locally Lipschitz functional in the 
sense of Clarke [34,35]. Hemivariational inequalities provide mathematical formulations to treat successfully problems involving 
non-monotone, nonsmooth, and multivalued constitutive laws, forces, and boundary conditions. The mixed finite element methods 
for stationary hemivariational inequalities of the hydrodynamic equations have been studied in [36–40], optimal control problems 
2
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related to the stationary hemivariational inequality are considered in [41–43], nonstationary hemivariational inequality in [44,45]. 
One is referred to [46–48] for comprehensive coverages of mathematical theories of hemivariational inequalities, and [49–52] for 
representative papers on numerical analysis of hemivariational inequalities.

Our research delves into the coupling of two viscous fluids with the non-monotone and nonsmooth slip interface condition (1.6). 
This paper makes a threefold contribution. Firstly, we investigate the existence and uniqueness of the NS/NS hemivariational 
inequality (HVI) solution. Then, we propose and analyze a domain decomposition method, which decouples the NS/NS HVI system 
into two NS problems in the subregions with the Dirichlet boundary condition and the slip boundary condition, respectively. 
Moreover, we study the mixed finite element method for the NS/NS hemivariational inequality using the P1b/P1-element and 
conduct error analysis. Numerical analysis of NS hemivariational inequalities has been explored in the literature, e.g., [37,38]. 
However, in this paper, we investigate a novel NS/NS hemivariational inequality for a coupled system of two fluids with an interface 
transmission condition. Solving the NS/NS hemivariational inequality numerically is more complex than solving a standard NS 
hemivariational inequality. Specifically, we propose and analyze a domain decomposition method to tackle this new problem.

The rest of the paper is organized as follows. In Section 2, we review some definitions and auxiliary material. In Section 3, we 
introduce the NS/NS HVI and establish its well-posedness. The domain decomposition approach for the solution of the NS/NS HVI 
is studied in Section 4. We apply the finite element method to NS/NS HVI in Section 5 and establish the convergence analysis. 
Section 6 is devoted to the numerical experiments.

2. Preliminaries

All the function spaces in this paper are real. For a normed space 𝑋, we denote by ‖ ⋅ ‖𝑋 its norm, by 𝑋∗ its topological dual, 
and by ⟨⋅, ⋅⟩𝑋∗×𝑋 the duality pairing between 𝑋∗ and 𝑋. For simplicity in writing, in the following we always assume 𝑋 is a Banach 
space, unless stated otherwise.

We first recall the definition of generalized directional derivative and subdifferential in the sense of Clarke for a locally Lipschitz 
function [35]. 

Definition 2.1.  Let 𝜓 ∶ 𝑋 → R be a locally Lipschitz function. The generalized directional derivative of 𝜓 at 𝑥 ∈ 𝑋 in the direction 
𝑣 ∈ 𝑋, denoted by 𝜓0(𝑥; 𝑣), is defined by

𝜓0(𝑥; 𝑣) = lim sup
𝑦→𝑥,ℎ↓0

𝜓(𝑦 + ℎ𝑣) − 𝜓(𝑦)
ℎ

.

The generalized gradient or subdifferential of 𝜓 at 𝑥, denoted by 𝜕𝜓(𝑥), is a subset of the dual space 𝑋∗ given by
𝜕𝜓(𝑥) = {𝜁 ∈ 𝑋∗ ∶ 𝜓0(𝑥; 𝑣) ≥ ⟨𝜁, 𝑣⟩𝑋∗×𝑋 ∀ 𝑣 ∈ 𝑋}.

We list the basic properties of the generalized directional derivative and the generalized gradient in the next two propositions [35,
53].

Proposition 2.1.  Assume that 𝜓 ∶ 𝑋 → R is a locally Lipschitz function. The following statements are valid.
(i) 𝜓0(𝑢, 𝑘𝑣) = 𝑘𝜓0(𝑢, 𝑣) ∀ 𝑘 > 0, 𝑢, 𝑣 ∈ 𝑋.
(ii) 𝜓0(𝑢; 𝑣) = max{⟨𝜁, 𝑣⟩ ∶ 𝜁 ∈ 𝜕𝜓(𝑢)} ∀ 𝑢, 𝑣 ∈ 𝑋.
(iii) 𝜓0(𝑢; 𝑣1 + 𝑣2) ≤ 𝜓0(𝑢; 𝑣1) + 𝜓0(𝑢; 𝑣2) ∀ 𝑢, 𝑣1, 𝑣2 ∈ 𝑋.
(iv) If 𝑢𝑛 → 𝑢 and 𝑣𝑛 → 𝑣 in 𝑋, then lim𝜓0(𝑢𝑛; 𝑣𝑛) ≤ 𝜓0(𝑢; 𝑣).
(v) For every 𝑢 ∈ 𝑋, 𝜕𝜓(𝑢) is nonempty, convex and weakly∗ compact in 𝑋∗.
(vi) If 𝑢𝑛 → 𝑢 in 𝑋, 𝜁𝑛 ∈ 𝜕𝜓(𝑢𝑛), and 𝜁𝑛 → 𝜁 weakly∗ in 𝑋∗, then 𝜁 ∈ 𝜕𝜓(𝑢).
(vii) If 𝜓 ∶ 𝑋 → R is convex, then the Clark subdifferential 𝜕𝜓(𝑢) at any 𝑢 ∈ 𝑋 coincides with the convex subdifferential 𝜕𝜓(𝑢).

Proposition 2.2.  Let 𝜓,𝜓1, 𝜓2 ∶ 𝑋 → R be locally Lipschitz functions. Then
(i) 𝜕(𝑘𝜓)(𝑢) = 𝑘𝜕𝜓(𝑢) ∀ 𝑘 > 0, 𝑢 ∈ 𝑋.
(ii) 𝜕(𝜓1 + 𝜓2)(𝑢) ⊂ 𝜕𝜓1(𝑢) + 𝜕𝜓2(𝑢) ∀ 𝑢 ∈ 𝑋,
equivalently,

(𝜓1 + 𝜓2)0(𝑢; 𝑣) ≤ 𝜓0
1 (𝑢; 𝑣) + 𝜓

0
2 (𝑢; 𝑣) ∀ 𝑢, 𝑣 ∈ 𝑋.

3. Hemivariational inequalities

To present the weak formulation of the problem defined by (1.1) and (1.6), we use the following function spaces:
𝑉𝑖 ∶= {𝑣𝑖 ∈ 𝐻1(𝛺𝑖)𝑑 ∶ 𝑣𝑖|𝛤𝑖 = 0, 𝑣𝑖,𝜈 |𝛤 = 0}, 𝑉 ∶= 𝑉1 × 𝑉2,

𝑄𝑖 ∶= 𝐿2(𝛺𝑖), 𝑄̊𝑖 ∶= 𝐿2
0(𝛺𝑖), 𝑄 ∶= 𝑄1 ×𝑄2, 𝑄̊ ∶= 𝑄̊1 × 𝑄̊2.
3
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Fig. 1. A 2D domain.

Here, 𝐿2
0(𝛺𝑖) denotes the subspace of 𝐿2(𝛺) of functions with a vanishing integral over 𝛺𝑖. For all 𝑢 ∶= (𝑢1, 𝑢2), 𝑣 ∶= (𝑣1, 𝑣2), 𝑤 ∶=

(𝑤1, 𝑤2) ∈ 𝑉  and 𝑝 ∶= (𝑝1, 𝑝2) ∈ 𝑄, we define

𝑎𝑖(𝑢𝑖, 𝑣𝑖) ∶= 2𝜇𝑖 ∫𝛺𝑖
D(𝑢𝑖) ∶ D(𝑣𝑖) 𝑑𝑥, 𝑎(𝑢, 𝑣) ∶= 𝑎1(𝑢1, 𝑣1) + 𝑎2(𝑢2, 𝑣2),

𝑏𝑖(𝑣𝑖, 𝑝𝑖) ∶= −∫𝛺𝑖
𝑝𝑖∇ ⋅ 𝑣𝑖 𝑑𝑥, 𝑏(𝑣, 𝑝) ∶= 𝑏1(𝑣1, 𝑝1) + 𝑏2(𝑣2, 𝑝2),

𝑖(𝑢𝑖; 𝑣𝑖, 𝑤𝑖) ∶= ∫𝛺𝑖
(𝑢𝑖 ⋅ ∇)𝑣𝑖 𝑤𝑖 𝑑𝑥, (𝑢; 𝑣,𝑤) ∶= 1(𝑢1; 𝑣1, 𝑤1) + 2(𝑢2; 𝑣2, 𝑤2),

⟨𝑓𝑖, 𝑣𝑖⟩ ∶= ∫𝛺𝑖
𝑓𝑖 ⋅ 𝑣𝑖 𝑑𝑥, ⟨𝑓, 𝑣⟩ ∶= ⟨𝑓1, 𝑣1⟩ + ⟨𝑓2, 𝑣2⟩.

By Korn’s inequality [54], we can equip 𝑉𝑖 and 𝑉  with norms defined by the following relations:

‖𝑣𝑖‖
2
𝑉𝑖

∶= ∫𝛺𝑖
D(𝑣𝑖) ∶ D(𝑣𝑖) 𝑑𝑥 ∀ 𝑣𝑖 ∈ 𝑉𝑖, ‖𝑣‖2𝑉 ∶= ‖𝑣1‖

2
𝑉1

+ ‖𝑣2‖
2
𝑉2

∀ 𝑣 = (𝑣1, 𝑣2) ∈ 𝑉 .

For 𝑏𝑖(⋅, ⋅) and 𝑏(⋅, ⋅), the following inf–sup conditions hold [55]: for a constant 𝐶 > 0, 

sup
𝑣𝑖∈𝑉𝑖

𝑏𝑖(𝑣𝑖, 𝑝𝑖)
‖𝑣𝑖‖𝑉𝑖

≥ 𝐶‖𝑝𝑖‖𝑄𝑖 ∀ 𝑝𝑖 ∈ 𝑄̊𝑖, sup
𝑣∈𝑉

𝑏(𝑣, 𝑝)
‖𝑣‖𝑉

≥ 𝐶‖𝑝‖𝑄 ∀ 𝑝 ∈ 𝑄̊. (3.1)

Evidently, for 𝑖 = 1, 2,

𝑎𝑖(𝑣𝑖, 𝑣𝑖) = 2𝜇𝑖‖𝑣𝑖‖2𝑉𝑖 , |𝑎𝑖(𝑢𝑖, 𝑣𝑖)| ≤ 2𝜇𝑖‖𝑢𝑖‖𝑉𝑖‖𝑣𝑖‖𝑉𝑖 ∀ 𝑢𝑖, 𝑣𝑖 ∈ 𝑉𝑖,

and there exist constants 𝐶,𝑁 > 0 such that
𝑏𝑖(𝑣𝑖, 𝑞𝑖) ≤ 𝐶‖𝑣𝑖‖𝑉𝑖‖𝑞𝑖‖𝑄𝑖 , ∀ 𝑣𝑖 ∈ 𝑉𝑖, 𝑞𝑖 ∈ 𝑄𝑖,

𝑖(𝑢𝑖; 𝑣𝑖, 𝑤𝑖) ≤ 𝑁‖𝑢𝑖‖𝑉𝑖‖𝑣𝑖‖𝑉𝑖‖𝑤𝑖‖𝑉𝑖 , ∀ 𝑢𝑖, 𝑣𝑖, 𝑤𝑖 ∈ 𝑉𝑖.

With the bilinear forms 𝑏1 and 𝑏2 at our disposal, we further define the spaces
𝑉 div𝑖 ∶= {𝑣𝑖 ∈ 𝑉𝑖 ∶ 𝑏𝑖(𝑣𝑖, 𝑞𝑖) = 0 ∀ 𝑞𝑖 ∈ 𝑄̊𝑖}, 𝑉 div ∶= 𝑉 div1 × 𝑉 div2 ,

𝑉̊𝑖 ∶= 𝐻1
0 (𝛺𝑖)𝑑 , 𝑉̊ div𝑖 ∶= 𝑉̊𝑖 ∩ 𝑉 div𝑖 , 𝑉̊ div ∶= 𝑉̊ div1 × 𝑉̊ div2 .

Concerning the superpotential 𝜓 , we assume the following properties.
𝐻(𝜓): 𝜓 ∶ 𝛤 × R𝑑 → R is such that
(i) 𝜓(⋅, 𝜉) is measurable on 𝛤  for all 𝜉 ∈ R𝑑 and 𝜓(⋅, 0) ∈ 𝐿1(𝛤 ).
(ii) 𝜓(𝑥, ⋅) is locally Lipschitz on R𝑑 for a.e. 𝑥 ∈ 𝛤 .
(iii) |𝜂| ≤ 𝑐0 + 𝑐1|𝜉| for all 𝜉 ∈ R𝑑 , 𝜂 ∈ 𝜕𝜓(𝑥, 𝜉), a.e. 𝑥 ∈ 𝛤  with 𝑐0, 𝑐1 ≥ 0.
(iv) (𝜂1 − 𝜂2)⋅(𝜉1 − 𝜉2) ≥ −𝑐𝜓 |𝜉1 − 𝜉2|

2 for all 𝜉𝑖 ∈ R𝑑 , 𝜂𝑖 ∈ 𝜕𝜓(𝑥, 𝜉𝑖), 𝑖 = 1, 2, a.e. 𝑥 ∈ 𝛤  with 𝑐𝜓 ≥ 0.
The condition 𝐻(𝜓) (iv) is known as a relaxed monotonicity condition in the literature [56], and it is equivalent to 

𝜓0(𝜉1; 𝜉2 − 𝜉1) + 𝜓0(𝜉2; 𝜉1 − 𝜉2) ≤ 𝑐𝜓 |𝜉1 − 𝜉2|
2 ∀ 𝜉1, 𝜉2 ∈ R𝑑 . (3.2)

Define a functional 𝛹 ∶ 𝑉 → R by 

𝛹 (𝑣) = ∫𝛤
𝜓(𝑥, [𝑣𝜏 ](𝑥)) 𝑑𝑠, 𝑣 ∈ 𝑉 . (3.3)

The next result is similar to [57, Theorem 3.47].
4
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Lemma 3.1.  Assume that 𝜓 ∶ 𝛤 ×R → R satisfies the hypothesis 𝐻(𝜓). Then the functional 𝛹 defined by (3.3) has the following properties.
(i) 𝛹 (⋅) is locally Lipschitz in 𝑉 .
(ii) ‖𝑧‖𝑉 ∗ ≤ 𝑐

(

1 + ‖𝑣‖𝑉
)

∀ 𝑣 ∈ 𝑉 , 𝑧 ∈ 𝜕𝛹 (𝑣).
(iii) 𝛹 0(𝑢; 𝑣) ≤ ∫𝛤 𝜓

0([𝑢𝜏 ](𝑥); [𝑣𝜏 ](𝑥)) 𝑑𝑠 ∀ 𝑢, 𝑣 ∈ 𝑉 .

Let us derive a weak formulation of the problem defined by (1.1) and (1.6). For this purpose, we temporarily assume that 
𝑓1 ∈ 𝐿2(𝛺1;R𝑑 ) and 𝑓2 ∈ 𝐿2(𝛺2;R𝑑 ), and that the problem admits a smooth solution (𝑢𝑖, 𝑝𝑖), 𝑖 = 1, 2. Multiplying (1.1a) by an 
arbitrary 𝑣𝑖 ∈ 𝑉𝑖 and integrating by parts, we get 

∫𝛺𝑖

(

𝜎𝑖 ⋅ D(𝑣𝑖) + (𝑢𝑖 ⋅ ∇)𝑢𝑖 ⋅ 𝑣𝑖
)

𝑑𝑥 − ∫𝜕𝛺𝑖
(𝜎𝑖𝜈𝑖) ⋅ 𝑣𝑖 𝑑𝑠 = ∫𝛺𝑖

𝑓𝑖 ⋅ 𝑣𝑖 𝑑𝑥. (3.4)

Since 𝑣𝑖 = 0 on 𝛤𝑖 and 𝑣𝑖,𝜈 = 0 on 𝛤 ,

−∫𝜕𝛺𝑖
(𝜎𝑖𝜈𝑖) ⋅ 𝑣𝑖 𝑑𝑠 = −∫𝛤

𝜎𝑖,𝜏 ⋅ 𝑣𝑖,𝜏𝑑𝑠.

Since 𝜎𝑖 = 2𝜇𝑖D(𝑢𝑖) − 𝑝𝑖I, we obtain from (3.4) that

∫𝛺𝑖

(

2𝜇𝑖D(𝑢𝑖) ⋅ D(𝑣𝑖) + (𝑢𝑖 ⋅ ∇)𝑢𝑖 ⋅ 𝑣𝑖 − 𝑝𝑖∇ ⋅ 𝑣𝑖
)

𝑑𝑥 − ∫𝛤
𝜎𝑖,𝜏 ⋅ 𝑣𝑖,𝜏𝑑𝑠 = ∫𝛺𝑖

𝑓𝑖 ⋅ 𝑣𝑖 𝑑𝑥.

We add the above equality for 𝑖 = 1 and that for 𝑖 = 2 to get 

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) + (𝑢; 𝑢, 𝑣) + ∫𝛤
(−𝜎1,𝜏 ⋅ 𝑣1,𝜏 − 𝜎2,𝜏 ⋅ 𝑣2,𝜏 ) 𝑑𝑠 = ⟨𝑓, 𝑣⟩. (3.5)

It follows from (1.6b) that

∫𝛤
(−𝜎1,𝜏 ⋅ 𝑣1,𝜏 − 𝜎2,𝜏 ⋅ 𝑣2,𝜏 ) 𝑑𝑠 = ∫𝛤

(−𝜎1,𝜏 ) ⋅ [𝑣𝜏 ] 𝑑𝑠 ≤ ∫𝛤
𝜓0([𝑢𝜏 ]; [𝑣𝜏 ]) 𝑑𝑠.

Hence, we derive from (3.5) that

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) + (𝑢; 𝑢, 𝑣) + ∫𝛤
𝜓0([𝑢𝜏 ]; [𝑣𝜏 ]) 𝑑𝑠 ≥ ⟨𝑓, 𝑣⟩ ∀ 𝑣 ∈ 𝑉 .

Then we multiply (1.1b) by an arbitrary 𝑞𝑖 ∈ 𝑄̊𝑖, integrate over 𝛺𝑖, and add the two equalities for 𝑖 = 1 and 2 to get
𝑏(𝑢, 𝑞) = 0.

Summarizing, we have derived the following hemivariational inequality for the problem defined by (1.1) and (1.6).

Problem 3.1 (HVI-NS). Find (𝑢, 𝑝) ∈ 𝑉 × 𝑄̊ such that

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) + (𝑢; 𝑢, 𝑣) + ∫𝛤
𝜓0([𝑢𝜏 ]; [𝑣𝜏 ]) 𝑑𝑠 ≥ ⟨𝑓, 𝑣⟩ ∀ 𝑣 ∈ 𝑉 , (3.6)

𝑏(𝑢, 𝑞) = 0 ∀ 𝑞 ∈ 𝑄̊. (3.7)

Restricting 𝑢 and 𝑣 to the subspace 𝑉 div, we can eliminate 𝑏(⋅, ⋅) and get the following reduced problem:

Problem 3.2 (HVI-NS).div Find 𝑢 ∈ 𝑉 div such that 

𝑎(𝑢, 𝑣) + (𝑢; 𝑢, 𝑣) + ∫𝛤
𝜓0([𝑢𝜏 ]; [𝑣𝜏 ]) 𝑑𝑠 ≥ ⟨𝑓, 𝑣⟩ ∀ 𝑣 ∈ 𝑉 div. (3.8)

By removing the trilinear term (⋅; ⋅, ⋅), we get the hemivariational inequalities for the Stokes/Stokes coupling problem.

Problem 3.3 (HVI-S). Find (𝑢, 𝑝) ∈ 𝑉 × 𝑄̊ such that

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) + ∫𝛤
𝜓0([𝑢𝜏 ]; [𝑣𝜏 ]) 𝑑𝑠 ≥ ⟨𝑓, 𝑣⟩ ∀ 𝑣 ∈ 𝑉 , (3.9)

𝑏(𝑢, 𝑞) = 0 ∀ 𝑞 ∈ 𝑄̊. (3.10)

Problem 3.4 (HVI-S).div Find 𝑢 ∈ 𝑉 div such that 

𝑎(𝑢, 𝑣) + ∫𝛤
𝜓0([𝑢𝜏 ]; [𝑣𝜏 ]) 𝑑𝑠 ≥ ⟨𝑓, 𝑣⟩ ∀ 𝑣 ∈ 𝑉 div. (3.11)

For a well-posedness analysis of the above hemivariational inequalities, we introduce a smallness condition: 
𝑐 < 2𝜇𝜆 , 𝜇 ∶= min(𝜇 , 𝜇 ), (3.12)
5
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where 𝜆0 > 0 is the smallest eigenvalue of the eigenvalue problem

𝑢 ∈ 𝑉 , ∫𝛺
D(𝑢) ∶ D(𝑣) 𝑑𝑥 = 𝜆∫𝛤

[𝑢𝜏 ]⋅[𝑣𝜏 ] 𝑑𝑠 ∀ 𝑣 ∈ 𝑉 .

In other words, 𝜆−1∕20  is the best constant of trace’s inequality 

‖[𝑣𝜏 ]‖𝐿2(𝛤 ;R𝑑 ) ≤ 𝑐 ‖𝑣‖𝑉 ∀ 𝑣 ∈ 𝑉 . (3.13)

Note that the condition (3.12) means the viscosity term dominates, or equivalently, the degree of non-convexity of 𝜓 is relatively 
not strong. Combining (3.2), Lemma  3.1(iii) and (3.13), we have

𝛹 0(𝑣1; 𝑣2 − 𝑣1) + 𝛹 0(𝑣2; 𝑣1 − 𝑣2) ≤ ∫𝛤
(𝜓0([𝑣1𝜏 ]; [𝑣2𝜏 − 𝑣1𝜏 ]) + 𝜓0([𝑣2𝜏 ]; [𝑣1𝜏 − 𝑣2𝜏 ])) 𝑑𝑠

≤ 𝑐𝜓 ∫𝛤
|[𝑣1𝜏 − 𝑣2𝜏 ]|

2 𝑑𝑠

≤ 𝑐𝜓𝜆
−1
0 ‖𝑣1 − 𝑣2‖2𝑉 ∀ 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2. (3.14)

3.1. The Stokes hemivariational inequalities

Let us fist discuss the well-posedness of Problems  3.3 and 3.4.

Theorem 3.1.  (i) If (HVI-S) has a solution (𝑢, 𝑝), then 𝑢 is a solution of (HVI-S)𝑑𝑖𝑣.
(ii) Suppose that 𝑓 ∈ 𝑉 ∗, 𝐻(𝜓) and (3.12) hold. Then, (HVI-S)𝑑𝑖𝑣 admits a unique solution 𝑢, and there exists a unique 𝑝 ∈ 𝑄̊ such 

that (𝑢, 𝑝) is the unique solution of (HVI-S). In addition, we have the following bound: 

‖𝑢‖𝑉 ≤ 𝑐𝑓 ∶=
𝑐0𝜆

−1∕2
0 |𝛤 |1∕2 + ‖𝑓‖𝑉 ∗

2𝜇 − 𝑐𝜓𝜆−10
. (3.15)

The solution (𝑢, 𝑝) depends Lipschitz-continuously on 𝑓 , i.e., there exists a constant 𝑐 > 0 such that for solutions (𝑢1, 𝑝1) and (𝑢2, 𝑝2) of 
(HVI-S) corresponding to 𝑓 = 𝑓 1 and 𝑓 2, 

‖𝑢1 − 𝑢2‖𝑉 + ‖𝑝1 − 𝑝2‖𝑄 ≤ 𝑐 ‖𝑓 1 − 𝑓 2
‖𝑉 ∗ . (3.16)

Proof.  (i) It is trivial. (ii) Since 𝑎(⋅, ⋅) is coercive, applying [58, Theorem 10] with 𝛹 (𝑣) there replaced by 𝛹 ([𝑣]), we can see that 
(HVI-S)div admits a unique solution 𝑢 ∈ 𝑉 div. In view of

𝑎(𝑢, 𝑣) = ⟨𝑓, 𝑣⟩ ∀ 𝑣 ∈ 𝑉̊ div,

and by using the inf–sup condition (3.1), we know that there exists a unique 𝑝𝑖 ∈ 𝑄̊𝑖 such that
𝑎𝑖(𝑢𝑖, 𝑣𝑖) + 𝑏𝑖(𝑣𝑖, 𝑝𝑖) = ⟨𝑓𝑖, 𝑣𝑖⟩ ∀ 𝑣𝑖 ∈ 𝑉̊𝑖, 𝑖 = 1, 2,

or equivalently, 

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) = ⟨𝑓, 𝑣⟩ ∀ 𝑣 ∈ 𝑉̊ . (3.17)

Let 𝑣 = (𝑣1, 𝑣2) ∈ 𝑉  be arbitrary but fixed. According to the inf–sup condition (3.1), there is a 𝑣1 = (𝑣11, 𝑣
1
2) ∈ 𝑉̊  such that 

𝑏(𝑣1, 𝑞) = 𝑏(𝑣, 𝑞) ∀ 𝑞 ∈ 𝑄̊. (3.18)

Set 𝑣2 ∶= 𝑣 − 𝑣1. Then 𝑣2 ∈ 𝑉 div. It follows from (3.11) that 

𝑎(𝑢, 𝑣2) + ∫𝛤
𝜓0([𝑢𝜏 ]; [𝑣2𝜏 ]) 𝑑𝑠 ≥ ⟨𝑓, 𝑣2⟩. (3.19)

In view of (3.17) we have
𝑎(𝑢, 𝑣1) + 𝑏(𝑣1, 𝑝) = ⟨𝑓, 𝑣1⟩.

By (3.18) and (3.19), this equality leads to

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) + ∫𝛤
𝜓0([𝑢𝜏 ]; [𝑣𝜏 ]) 𝑑𝑠 = 𝑎(𝑢, 𝑣1) + 𝑏(𝑣1, 𝑝) + 𝑎(𝑢, 𝑣2) + ∫𝛤

𝜓0([𝑢𝜏 ]; [𝑣2𝜏 ]) 𝑑𝑠

≥ ⟨𝑓, 𝑣1⟩ + ⟨𝑓, 𝑣2⟩ = ⟨𝑓, 𝑣⟩.

Thus, we have shown that (𝑢, 𝑝) is the unique solution of (HVI-S). The bound (3.15) and the Lipschitz continuity (3.16) can be 
derived by standard arguments as in [38, Theorem 3.2]. □
6
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Remark 3.1.  The well-posedness of (HVI-S) is proved through consideration of a related convex minimization following the idea in 
[58,59]. This extends to well-posedness analysis of general HVIs without related convex minimization problems through a fixed-point 
argument [60]. Such an approach eliminates the need for the notion of pseudomonotonicity, as well as an abstract surjectivity result 
of pseudomonotone operators commonly used in the literature on hemivariational inequalities (cf. [36,56]).

3.2. The Navier–Stokes hemivariational inequalities

We now give the well-posedness analysis of Problem  3.1.

Theorem 3.2.  (i) If (𝑢, 𝑝) is a solution of (HVI-NS), then 𝑢 also solves (HVI-NS)𝑑𝑖𝑣.
(ii) Assume 𝑓 ∈ 𝑉 ∗, 𝐻(𝜓) and (3.12). Then (HVI-NS)𝑑𝑖𝑣 admits a solution 𝑢 satisfying 

‖𝑢‖𝑉 ≤ 𝑐𝑓 . (3.20)

In addition, under the assumption that 

0 <
𝑁𝑐𝑓

2𝜇 − 𝑐𝜓𝜆−10
< 1, (3.21)

𝑢 is the unique solution of (HVI-NS)𝑑𝑖𝑣. Furthermore, there exists a unique 𝑝 ∈ 𝑄̊ such that (𝑢, 𝑝) solves (HVI-NS). The solution (𝑢, 𝑝) depends 
Lipschitz continuously on 𝑓 , i.e., there exists a constant 𝑐 > 0 such that for solutions 𝑢1 and 𝑢2 of (HVI-NS) corresponding to 𝑓 = 𝑓 1 and 
𝑓 2,

‖𝑢1 − 𝑢2‖𝑉 + ‖𝑝1 − 𝑝2‖𝑄 ≤ 𝑐 ‖𝑓 1 − 𝑓 2
‖𝑉 ∗ .

Proof.  (i) It is evident. (ii) Problem  3.1 can be considered as a special case of Problem 2.1 in [38] without the stability term. After 
a trivial modification for the result from [38, Theorem 2.2], the well-posedness of Problem  3.1 is covered. Moreover, the proof of 
the Lipschitz continuity of the solution with respect to the right hand side function is similar to that of [38, Theorem 3.2]. □

Remark 3.2.  In case the functional 𝜓 is convex, Problems  3.3 and 3.1 reduce to a coupled problem of variational inequality similar 
to the ones studied in [61] for the leak interface.

Remark 3.3.  Arguing as in Remark 12 of Migórski and Ochal [57], or Remark 2.2 of Mahdioui, Ben Aadi and Akhlil [42], we 
conclude that if (𝑢, 𝑝) ∈ 𝑉 × 𝑄̊ is a solution to Problem  3.1 and sufficiently smooth, then (𝑢, 𝑝) satisfies the Navier–Stokes equations 
(1.1) and the condition (1.5).

4. The domain decomposition method

To simulate the two-subregion coupled fluid flow system, we apply the domain decomposition method. In each iteration step 
of the method, we solve two sub-problems of smaller size. The key question is how to design the decoupling approach for the 
interface condition −𝜎1,𝜏 ∈ 𝜕𝜓([𝑢𝜏 ]). Our idea is to separate the original system into a sub-problem in 𝛺1 with a boundary condition 
of subdifferential type on 𝛤 , and a fluid problem in 𝛺2 with Neumann boundary condition on 𝛤 . Below we present the domain 
decomposition algorithm for (HVI-NS) and provide a convergence analysis. The case of (HVI-S) is similar and simpler.

Note that sufficiently large 𝜇 guarantees that both (4.1) and (4.2) admit unique solution (see [37] for a detailed discussion of 
the unique existence of (4.1)). In the following, we skip the argument on the well-posedness of (4.1) and (4.2), and only show the 
convergence of the domain decomposition algorithm.

Theorem 4.1.  Let (𝑢, 𝑝) and (𝑢(𝑛), 𝑝(𝑛)) be the unique solutions of (HVI-NS) and (4.1)–(4.2), respectively. For 𝜇 sufficiently large and 𝜃
sufficiently small, there is a constant 𝜂 ∈ (0, 1) such that ‖𝑢 − 𝑢(𝑛)‖𝑉 ≤ 𝐶𝜂𝑛. In particular, this implies the convergence: ‖𝑢 − 𝑢(𝑛)‖𝑉 → 0 as 
𝑛→ ∞.

Remark 4.1.  It can be seen from the proof below that we need 𝜇 sufficiently large so that (4.10) and (4.28) hold, and we need 𝜃
sufficiently small so that (4.29) holds.

Proof.  The proof is divided into three steps. We first show that ‖𝑢(𝑛)‖𝑉  is bounded independent of 𝜃 and 𝑛. Then, we bound 
‖𝑢(𝑛) − 𝑢‖𝑉 , and finally show that ‖𝑢(𝑛) − 𝑢‖𝑉 → 0 as 𝑛→ ∞.

Step 1. Given 𝑢(𝑛−1)𝑖 ∈ 𝑉𝑖 (𝑖 = 1, 2), the existence of a unique weak solution (𝑢(𝑛)1 , 𝑝(𝑛)1 ) ∈ 𝑉1 × 𝑄̊1 of (4.1) follows from an argument 
similar to that of the Navier–Stokes hemivariational inequality (cf. [62, Theorem 3.7]). The existence of a unique weak solution 
(𝑢(𝑛)2 , 𝑝(𝑛)2 ) ∈ 𝑉2×𝑄̊2 of (4.2) follows from a standard argument for the Navier–Stokes equations with the Dirichlet boundary condition 
(cf. [63, Theorem 2.2, Chapter IV], or [55, Theorem 1.3, Chapter 2]).
7
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Algorithm 1 The domain decomposition algorithm

• Initialization. Choose 𝜃 ∈ (0, 1) and specify a stopping criterion. Let 𝑛 = 1, 𝑢(0)2,𝜏 = 0 and −𝜎𝜏 (𝑢(0)2 ) = 0.

• Iteration. For 𝑛 = 1, 2,⋯ until the stopping criterion is satisfied, solve the boundary value problem in 𝛺1: 

−∇ ⋅ 𝜎(𝑢(𝑛)1 , 𝑝(𝑛)1 ) + (𝑢(𝑛)1 ⋅ ∇)𝑢(𝑛)1 = 𝑓1  in 𝛺1, (4.1a)

∇ ⋅ 𝑢(𝑛)1 = 0  in 𝛺1, (4.1b)

𝑢(𝑛)1 = 0  on 𝛤1, (4.1c)

−𝜎𝜏 (𝑢
(𝑛)
1 ) ∈ 𝜕𝜓(𝑢(𝑛)1,𝜏 − 𝑢

(𝑛−1)
2,𝜏 ), 𝑢(𝑛)1,𝜈 = 0  on 𝛤 , (4.1d)

 and the boundary value problem in 𝛺2: 

−∇ ⋅ 𝜎(𝑢(𝑛)2 , 𝑝(𝑛)2 ) + (𝑢(𝑛)2 ⋅ ∇)𝑢(𝑛)2 = 𝑓2  in 𝛺2, (4.2a)

∇ ⋅ 𝑢(𝑛)2 = 0  in 𝛺2, (4.2b)

𝑢(𝑛)2 = 0  on 𝛤2, (4.2c)

𝜎𝜏 (𝑢
(𝑛)
2 ) = (1 − 𝜃)𝜎𝜏 (𝑢

(𝑛−1)
2 ) + 𝜃(−𝜎𝜏 (𝑢

(𝑛)
1 )), 𝑢(𝑛)2,𝜈 = 0  on 𝛤 . (4.2d)

We will show the boundedness of 𝑢(𝑛). To this end, testing (4.1a) by 𝑣1 ∈ 𝑉 div
1  and testing (4.2a) by 𝑣2 ∈ 𝑉 div

2 , we have 

𝑎1(𝑢
(𝑛)
1 , 𝑣1) + 1(𝑢

(𝑛)
1 ; 𝑢(𝑛)1 , 𝑣1) = ∫𝛺1

𝑓1 ⋅ 𝑣1 𝑑𝑥 + ∫𝛤
𝜎𝜏 (𝑢

(𝑛)
1 ) ⋅ 𝑣1,𝜏 𝑑𝑠, (4.3a)

𝑎2(𝑢
(𝑛)
2 , 𝑣2) + 2(𝑢

(𝑛)
2 ; 𝑢(𝑛)2 , 𝑣2) = ∫𝛺2

𝑓2 ⋅ 𝑣2 𝑑𝑥 + ∫𝛤
𝜎𝜏 (𝑢

(𝑛)
2 ) ⋅ 𝑣2,𝜏 𝑑𝑠. (4.3b)

It follows from (4.1d) and (4.2d) that 

− ∫𝛤
𝜎𝜏 (𝑢

(𝑛)
1 ) ⋅ 𝑣1,𝜏 𝑑𝑠 ≤ ∫𝛤

𝜓0(𝑢(𝑛)1,𝜏 − 𝑢
(𝑛−1)
2,𝜏 ; 𝑣1,𝜏 ) 𝑑𝑠, (4.4a)

∫𝛤
𝜎𝜏 (𝑢

(𝑛)
2 ) ⋅ 𝑣2,𝜏 𝑑𝑠 = ∫𝛤

(1 − 𝜃)𝜎𝜏 (𝑢
(𝑛−1)
2 ) ⋅ 𝑣2,𝜏 𝑑𝑠 − ∫𝛤

𝜃𝜎𝜏 (𝑢
(𝑛)
1 ) ⋅ 𝑣2,𝜏 𝑑𝑠

= ∫𝛤
(1 − 𝜃)2𝜎𝜏 (𝑢

(𝑛−2)
2 ) ⋅ 𝑣2,𝜏 𝑑𝑠 − ∫𝛤

(

𝜃(1 − 𝜃)𝜎𝜏 (𝑢
(𝑛−1)
1 ) + 𝜃𝜎𝜏 (𝑢

(𝑛)
1 )

)

⋅ 𝑣2,𝜏 𝑑𝑠

⋮

= ∫𝛤
(1 − 𝜃)𝑛𝜎𝜏 (𝑢

(0)
2 ) ⋅ 𝑣2,𝜏 𝑑𝑠 − 𝜃 ∫𝛤

𝑛−1
∑

𝑖=0
(1 − 𝜃)𝑖𝜎𝜏 (𝑢

(𝑛−𝑖)
1 ) ⋅ 𝑣2,𝜏 𝑑𝑠.

(4.4b)

Taking 𝑣1 = −𝑢(𝑛)1  and in view of 1(𝑢(𝑛)1 ; 𝑢(𝑛)1 , 𝑢(𝑛)1 ) = 0, we obtain

2𝜇1‖𝑢
(𝑛)
1 ‖

2
𝑉1

≤ ‖𝑓1‖𝑉 ∗
1
‖𝑢(𝑛)1 ‖𝑉1 + ∫𝛤

(

𝑐0 + 𝑐1|𝑢
(𝑛)
1,𝜏 − 𝑢

(𝑛−1)
2,𝜏 |

)

|𝑢(𝑛)1,𝜏 | 𝑑𝑠 (by Lemma Lemma  3.1)

≤
(

‖𝑓1‖𝑉 ∗
1
+ 𝑐0|𝛤 |

1
2 𝜆

− 1
2

0 + 𝜆−10 𝑐1(‖𝑢
(𝑛)
1 ‖𝑉1 + ‖𝑢(𝑛−1)2 ‖𝑉2 )

)

‖𝑢(𝑛)1 ‖𝑉1 (by (3.13)),
which implies 

‖𝑢(𝑛)1 ‖𝑉1 ≤
‖𝑓1‖𝑉 ∗

1
+ 𝑐0|𝛤 |

1
2 𝜆

− 1
2

0 + 𝜆−10 𝑐1‖𝑢
(𝑛−1)
2 ‖𝑉2

2𝜇1 − 𝜆−10 𝑐1
. (4.5)

On the other hand, substituting 𝑣2 = 𝑢(𝑛)2  into (4.3b) and (4.4b), and in view of 2(𝑢(𝑛)2 ; 𝑢(𝑛)2 , 𝑢(𝑛)2 ) = 0 and 𝜎𝜏 (𝑢(0)2 ) = 0, we calculate as 

2𝜇2‖𝑢
(𝑛)
2 ‖

2
𝑉2

≤ ‖𝑓2‖𝑉 ∗
2
‖𝑢(𝑛)2 ‖𝑉2 − 𝜃

𝑛−1
∑

𝑖=0
(1 − 𝜃)𝑖 ∫𝛤

𝜎𝜏 (𝑢
(𝑛−𝑖)
1 ) ⋅ 𝑢(𝑛)2,𝜏 𝑑𝑠

≤ ‖𝑓2‖𝑉 ∗
2
‖𝑢(𝑛)2 ‖𝑉2 + 𝜃

𝑛−1
∑

𝑖=0
(1 − 𝜃)𝑖 ∫𝛤

𝜓0(𝑢(𝑛−𝑖)1,𝜏 − 𝑢(𝑛−𝑖−1)2,𝜏 ) ⋅ 𝑢(𝑛)2,𝜏 𝑑𝑠 (by (4.1d))

≤ ‖𝑓2‖𝑉 ∗
2
‖𝑢(𝑛)2 ‖𝑉2 + 𝜃

𝑛−1
∑

(1 − 𝜃)𝑖
(

𝑐0|𝛤 |
1
2 + 𝑐1𝜆

− 1
2

0 (‖𝑢(𝑛−𝑖)1 ‖𝑉1 + ‖𝑢(𝑛−𝑖−1)2 ‖𝑉2 )
)

𝜆
− 1

2
0 ‖𝑢(𝑛)2 ‖𝑉2 ,

(4.6)
8

𝑖=0
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where we have applied Lemma  3.1 and (3.13) in the last inequality. Inserting (4.5) to the right-hand side of (4.6), we get 

2𝜇2‖𝑢
(𝑛)
2 ‖

2
𝑉2

≤ ‖𝑓2‖𝑉 ∗
2
‖𝑢(𝑛)2 ‖𝑉2 + 𝜃

𝑛−1
∑

𝑖=0
(1 − 𝜃)𝑖

(

𝑐0|𝛤 |
1
2 𝜆

− 1
2

0 +
𝑐1𝜆−10 (‖𝑓1‖𝑉 ∗

1
+ 𝑐0|𝛤 |

1
2 𝜆

− 1
2

0 )

2𝜇1 − 𝜆−10 𝑐1

)

‖𝑢(𝑛)2 ‖𝑉2

+ 𝜃
𝑛−1
∑

𝑖=0
(1 − 𝜃)𝑖𝑐1𝜆−10

( 𝑐1𝜆−10
2𝜇1 − 𝜆−10 𝑐1

+ 1
)

‖𝑢(𝑛−𝑖−1)2 ‖𝑉2‖𝑢
(𝑛)
2 ‖𝑉2 ,

(4.7)

which yields (by ∑𝑛−1
𝑖=0 (1 − 𝜃)

𝑖 = 𝜃−1(1 − (1 − 𝜃)𝑛)) 
2𝜇2‖𝑢

(𝑛)
2 ‖𝑉2 ≤ ‖𝑓2‖𝑉 ∗

2
+ 𝑐2 + 𝑐3 max

0≤𝑖≤𝑛−1
‖𝑢(𝑛−𝑖−1)2 ‖𝑉2 , (4.8)

where 

𝑐2 ∶=
(

𝑐0|𝛤 |
1
2 𝜆

− 1
2

0 +
𝑐1𝜆−10 (‖𝑓1‖𝑉 ∗

1
+ 𝑐0|𝛤 |

1
2 𝜆

− 1
2

0 )

2𝜇1 − 𝜆−10 𝑐1

)

, 𝑐3 ∶= 𝑐1𝜆
−1
0

( 𝑐1𝜆−10
2𝜇1 − 𝜆−10 𝑐1

+ 1
)

. (4.9)

Under the assumption (this is satisfied if 𝜇2 is sufficiently large) 
𝑐3 < 2𝜇2, (4.10)

we assert that 

‖𝑢(𝑖)2 ‖𝑉2 ≤
‖𝑓2‖𝑉 ∗

2
+ 𝑐2

2𝜇2 − 𝑐3
=∶ 𝑐4 (1 ≤ 𝑖 ≤ 𝑛). (4.11)

This is proved by an induction as follows. In view of 𝑢(0)2 = 0, it is easy to see from (4.8) that (4.11) holds for 𝑖 = 1. Suppose that 
‖𝑢(𝑖)2 ‖𝑉2 ≤

‖𝑓2‖𝑉 ∗
2
+𝑐2

2𝜇2−𝑐3
 holds for 0 ≤ 𝑖 ≤ 𝑛 − 1. We obtain from (4.8) that

2𝜇2‖𝑢
(𝑛)
2 ‖𝑉2 ≤ ‖𝑓2‖𝑉 ∗

2
+ 𝑐2 + 𝑐3

‖𝑓2‖𝑉 ∗
2
+ 𝑐2

2𝜇2 − 𝑐3
=

(2𝜇2 − 𝑐3 + 𝑐3)(‖𝑓2‖𝑉 ∗
2
+ 𝑐2)

2𝜇2 − 𝑐3
,

which concludes (4.11).
It follows from (4.5) and (4.11) that 

‖𝑢(𝑛)1 ‖𝑉1 ≤
‖𝑓1‖𝑉 ∗

1
+ 𝑐0|𝛤 |

1
2 𝜆

− 1
2

0 + 𝜆−10 𝑐1
‖𝑓2‖𝑉 ∗

2
+𝑐2

2𝜇2−𝑐3

2𝜇1 − 𝜆−10 𝑐1
=∶ 𝑐5. (4.12)

Hence, we have shown the boundedness 
‖𝑢(𝑛)‖𝑉 ≤ ‖𝑢(𝑛)1 ‖𝑉1 + ‖𝑢(𝑛)2 ‖𝑉2 ≤ 𝑐4 + 𝑐5. (4.13)

Note that the constants {𝑐𝑖}5𝑖=2 depend on 𝑐0, 𝑐1, 𝜆0, 𝜇1, 𝜇2 and ‖𝑓‖𝑉 ∗ , and are independent of 𝑛 and 𝜃. Moreover, it is easy to 
observe that 𝑐𝑓  and {𝑐𝑖}5𝑖=2 decrease as 𝜇1 and 𝜇2 increase, and 𝑐𝑓 , 𝑐4 and 𝑐5 tend to 0 as 𝜇1 and 𝜇2 go to ∞.

Step 2. For brevity, denote
(𝑒(𝑛)𝑖 , 𝜙

(𝑛)
𝑖 ) ∶= (𝑢𝑖 − 𝑢

(𝑛)
𝑖 , 𝑝𝑖 − 𝑝

(𝑛)
𝑖 ) (𝑖 = 1, 2), 𝑒(𝑛) ∶= (𝑒(𝑛)1 , 𝑒(𝑛)2 ), 𝑝(𝑛) ∶= (𝑝(𝑛)1 , 𝑝(𝑛)2 ).

Our goal is to estimate (𝑒(𝑛)1 , 𝑒(𝑛)2 ). It follows from (1.1), (1.6), (4.1) (4.2) that 

− ∇ ⋅ 𝜎(𝑒(𝑛)1 , 𝜙(𝑛)
1 ) + (𝑢1 ⋅ ∇)𝑢1 − (𝑢(𝑛)1 ⋅ ∇)𝑢(𝑛)1 = 0, ∇ ⋅ 𝑒(𝑛)1 = 0  in 𝛺1, (4.14a)

𝑒(𝑛)1,𝜈 = 0, 𝜎𝜏 (𝑒
(𝑛)
1 ) = 𝜎𝜏 (𝑢1) − 𝜎𝜏 (𝑢

(𝑛)
1 ), −𝜎𝜏 (𝑢1) ∈ 𝜕𝜓([𝑢𝜏 ]), −𝜎𝜏 (𝑢

(𝑛)
1 ) ∈ 𝜕𝜓(𝑢(𝑛)1,𝜏 − 𝑢

(𝑛−1)
2,𝜏 )  on 𝛤 , (4.14b)

− ∇ ⋅ 𝜎(𝑒(𝑛)2 , 𝜙(𝑛)
2 ) + (𝑢2 ⋅ ∇)𝑢2 − (𝑢(𝑛)2 ⋅ ∇)𝑢(𝑛)2 = 0, ∇ ⋅ 𝑒(𝑛)2 = 0  in 𝛺2, (4.14c)

𝑒(𝑛)2,𝜈 = 0, 𝜎𝜏 (𝑒
(𝑛)
2 ) = (1 − 𝜃)𝜎𝜏 (𝑒

(𝑛−1)
2 ) + 𝜃(−𝜎𝜏 (𝑒

(𝑛)
1 ))  on 𝛤 , (4.14d)

𝑒(𝑛)1 = 0 on 𝛤1, 𝑒(𝑛)2 = 0  on 𝛤2. (4.14e)

Testing the first equation in (4.14a) by 𝑣1 ∈ 𝑉 div
1 , testing the first equation in (4.14c) by 𝑣2 ∈ 𝑉 div

2 , applying the boundary 
conditions, and noting that

(𝑢𝑖 ⋅ ∇)𝑢𝑖 − (𝑢(𝑛)𝑖 ⋅ ∇)𝑢(𝑛)𝑖 = (𝑒(𝑛)𝑖 ⋅ ∇)𝑢𝑖 + (𝑢(𝑛)𝑖 ⋅ ∇)𝑒(𝑛)𝑖 ,

we obtain 
𝑎1(𝑒

(𝑛)
1 , 𝑣1) + 1(𝑒

(𝑛)
1 ; 𝑢1, 𝑣1) + 1(𝑢

(𝑛)
1 ; 𝑒(𝑛)1 , 𝑣1) = ∫𝛤

(

𝜎𝜏 (𝑢1) − 𝜎𝜏 (𝑢
(𝑛)
1 )

)

⋅𝑣1,𝜏 𝑑𝑠, (4.15a)

𝑎2(𝑒
(𝑛), 𝑣2) + 2(𝑒

(𝑛); 𝑢2, 𝑣2) + 2(𝑢
(𝑛); 𝑒(𝑛), 𝑣2) = 𝜎𝜏 (𝑒

(𝑛)) ⋅ 𝑣2,𝜏 𝑑𝑠. (4.15b)
9

2 2 2 2 ∫𝛤 2
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Taking 𝑣1 = 𝑒(𝑛)1  in (4.15a) and 𝑣2 = 𝑒(𝑛−1)2  in (4.15b) with 𝑛 replaced by 𝑛 − 1, and summing up the results, we get (noting that 
(𝑢(𝑛)𝑖 ; 𝑒(𝑛)𝑖 , 𝑒

(𝑛)
𝑖 ) = 0) 

2𝜇1‖𝑒
(𝑛)
1 ‖

2
𝑉1

+ 2𝜇2‖𝑒
(𝑛−1)
2 ‖

2
𝑉2

+ 1(𝑒
(𝑛)
1 ; 𝑢1, 𝑒

(𝑛)
1 ) + 2(𝑒

(𝑛−1)
2 ; 𝑢2, 𝑒

(𝑛−1)
2 ) = 𝑅(𝑛)

1 + 𝑅(𝑛)
2 , (4.16)

where

𝑅(𝑛)
1 = ∫𝛤

(

𝜎𝜏 (𝑢1) − 𝜎𝜏 (𝑢
(𝑛)
1 )

)

⋅(𝑒(𝑛)1,𝜏 − 𝑒
(𝑛−1)
2,𝜏 ) 𝑑𝑠, 𝑅(𝑛)

2 = ∫𝛤

(

𝜎𝜏 (𝑒
(𝑛)
1 ) + 𝜎𝜏 (𝑒

(𝑛−1)
2 )

)

⋅ 𝑒(𝑛−1)2,𝜏 𝑑𝑠.

The convection terms on the left-hand side of (4.16) are bounded as follows: 

|1(𝑒
(𝑛)
1 ; 𝑢1, 𝑒

(𝑛)
1 )| ≤ 𝑁‖𝑒(𝑛)1 ‖

2
𝑉1
‖𝑢1‖𝑉1 , (4.17a)

|2(𝑒
(𝑛−1)
2 ; 𝑢2, 𝑒

(𝑛−1)
2 )| ≤ 𝑁‖𝑒(𝑛−1)2 ‖

2
𝑉2
‖𝑢2‖𝑉2 . (4.17b)

Since 𝑒(𝑛)1,𝜏 − 𝑒
(𝑛−1)
2,𝜏 = [𝑢𝜏 ] − (𝑢(𝑛)1,𝜏 − 𝑢

(𝑛−1)
2,𝜏 ), we can apply Lemma  3.1(iv) to bound 𝑅(𝑛)

1 : 

𝑅(𝑛)
1 ≤ 𝑐𝜓‖𝑒

(𝑛)
1,𝜏 − 𝑒

(𝑛−1)
2,𝜏 ‖

2
𝐿2(𝛤 )

. (4.18)

On the other hand, by (4.14d), 

𝜎𝜏 (𝑒
(𝑛)
1 ) + 𝜎𝜏 (𝑒

(𝑛−1)
2 ) = 𝜃−1(𝜎𝜏 (𝑒

(𝑛−1)
2 ) − 𝜎𝜏 (𝑒

(𝑛)
2 )). (4.19)

Using (4.19) and (4.15b), we get

𝑅(𝑛)
2 = 𝜃−1 ∫𝛤

𝜎𝜏 (𝑒
(𝑛−1)
2 ) ⋅ 𝑒(𝑛−1)2,𝜏 𝑑𝑠 − 𝜃−1 ∫𝛤

𝜎𝜏 (𝑒
(𝑛)
2 ) ⋅ 𝑒(𝑛−1)2,𝜏 𝑑𝑠

= 𝜃−1𝑎2(𝑒
(𝑛−1)
2 , 𝑒(𝑛−1)2 ) + 𝜃−12(𝑒

(𝑛−1)
2 ; 𝑢2, 𝑒

(𝑛−1)
2 ) + 𝜃−12(𝑢

(𝑛−1)
2 ; 𝑒(𝑛−1)2 , 𝑒(𝑛−1)2 )

− 𝜃−1𝑎2(𝑒
(𝑛)
2 , 𝑒(𝑛−1)2 ) − 𝜃−12(𝑒

(𝑛)
2 ; 𝑢2, 𝑒

(𝑛−1)
2 ) − 𝜃−12(𝑢

(𝑛)
2 ; 𝑒(𝑛)2 , 𝑒(𝑛−1)2 )

= 𝑅(𝑛)
21 + 𝑅(𝑛)

22 + 𝑅(𝑛)
23 ,

where

𝑅(𝑛)
21 ∶= 𝜃−1𝑎2(𝑒

(𝑛−1)
2 − 𝑒(𝑛)2 , 𝑒(𝑛−1)2 ),

𝑅(𝑛)
22 ∶= 𝜃−12(𝑒

(𝑛−1)
2 − 𝑒(𝑛)2 ; 𝑢2, 𝑒

(𝑛−1)
2 ),

𝑅(𝑛)
23 ∶= 𝜃−12(𝑢

(𝑛)
2 ; 𝑒(𝑛−1)2 − 𝑒(𝑛)2 , 𝑒(𝑛−1)2 )

and we have used (𝑢(𝑛−1)2 ; 𝑒(𝑛−1)2 , 𝑒(𝑛−1)2 ) = (𝑢(𝑛)2 ; 𝑒(𝑛−1)2 , 𝑒(𝑛−1)2 ) = 0 in the last step. In view of

𝑅(𝑛)
21 = 𝜇2𝜃

−1(‖𝑒(𝑛−1)2 ‖

2
𝑉2

− ‖𝑒(𝑛)2 ‖

2
𝑉2

+ ‖𝑒(𝑛−1)2 − 𝑒(𝑛)2 ‖

2
𝑉2
),

|𝑅(𝑛)
22 | ≤ 𝜃−1𝑁‖𝑢2‖𝑉2‖𝑒

(𝑛−1)
2 − 𝑒(𝑛)2 ‖𝑉2‖𝑒

(𝑛−1)
2 ‖𝑉2 ,

|𝑅(𝑛)
23 | ≤ 𝜃−1𝑁‖𝑢(𝑛)2 ‖𝑉2‖𝑒

(𝑛−1)
2 − 𝑒(𝑛)2 ‖𝑉2‖𝑒

(𝑛−1)
2 ‖𝑉2 ,

we obtain a bound on 𝑅(𝑛)
2 : 

𝑅(𝑛)
2 ≤ 𝜇2𝜃

−1(‖𝑒(𝑛−1)2 ‖

2
𝑉2

− ‖𝑒(𝑛)2 ‖

2
𝑉2

+ ‖𝑒(𝑛−1)2 − 𝑒(𝑛)2 ‖

2
𝑉2
)

+ 𝜃−1𝑁(‖𝑢2‖𝑉2 + ‖𝑢(𝑛)2 ‖𝑉2 )‖𝑒
(𝑛−1)
2 − 𝑒(𝑛)2 ‖𝑉2‖𝑒

(𝑛−1)
2 ‖𝑉2 .

(4.20)

Using (4.17), (4.18) and (4.20) in (4.16), we find that
𝜇2
𝜃
(‖𝑒(𝑛−1)2 ‖

2
𝑉2

− ‖𝑒(𝑛)2 ‖

2
𝑉2
) ≥ (2𝜇1 −𝑁‖𝑢1‖𝑉1 )‖𝑒

(𝑛)
1 ‖

2
𝑉1

+ (2𝜇2 −𝑁‖𝑢2‖𝑉2 )‖𝑒
(𝑛−1)
2 ‖

2
𝑉1

−
𝜇2
𝜃
‖𝑒(𝑛−1)2 − 𝑒(𝑛)2 ‖

2
𝑉2

− 𝑐𝜓‖𝑒
(𝑛)
1𝜏 − 𝑒(𝑛−1)2𝜏 ‖

2
𝐿2(𝛤 )

− 𝑁
𝜃
(‖𝑢2‖𝑉2 + ‖𝑢(𝑛−1)2 ‖𝑉2 )‖𝑒

(𝑛−1)
2 − 𝑒(𝑛)2 ‖𝑉2‖𝑒

(𝑛−1)
2 ‖𝑉2 .

Applying the trace inequality (3.13), we have 
𝜇2
𝜃
(‖𝑒(𝑛−1)2 ‖

2
𝑉2

− ‖𝑒(𝑛)2 ‖

2
𝑉2
)

≥ (2𝜇1 −𝑁‖𝑢1‖𝑉1 )‖𝑒
(𝑛)
1 ‖

2
𝑉1

+ (2𝜇2 −𝑁‖𝑢2‖𝑉2 )‖𝑒
(𝑛−1)
2 ‖

2
𝑉1

− (
𝜇2 + 𝑐𝜓𝜆−1)‖𝑒

(𝑛−1) − 𝑒(𝑛)‖2 − 𝑁 (‖𝑢2‖𝑉 + ‖𝑢(𝑛−1)‖𝑉 )‖𝑒(𝑛−1)‖𝑉 ‖𝑒(𝑛−1) − 𝑒(𝑛)‖𝑉 .

(4.21)
10
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We intend to find a sufficient condition on 𝜇 and 𝜃 such that the right-hand side of (4.21) keeps positive so that we can deduce 
that ‖𝑒(𝑛)2 ‖

2
𝑉2

↓ 0 as 𝑛 → ∞. To this end, we derive from (4.15b) that 

∫𝛤

(

𝜎𝜏 (𝑒
(𝑛−1)
2 ) − 𝜎𝜏 (𝑒

(𝑛)
2 )

)

⋅ (𝑒(𝑛−1)2,𝜏 − 𝑒(𝑛)2,𝜏 ) 𝑑𝑠

= ∫𝛤
𝜎𝜏 (𝑒

(𝑛−1)
2 ) ⋅ (𝑒(𝑛−1)2,𝜏 − 𝑒(𝑛)2,𝜏 ) 𝑑𝑠 − ∫𝛤

𝜎𝜏 (𝑒
(𝑛)
2 ) ⋅ (𝑒(𝑛−1)2,𝜏 − 𝑒(𝑛)2,𝜏 ) 𝑑𝑠

= 𝑎2(𝑒
(𝑛−1)
2 , 𝑒(𝑛−1)2 − 𝑒(𝑛)2 ) + 2(𝑒

(𝑛−1)
2 ; 𝑢2, 𝑒

(𝑛−1)
2 − 𝑒(𝑛)2 ) + 2(𝑢

(𝑛−1)
2 ; 𝑒(𝑛−1)2 , 𝑒(𝑛−1)2 − 𝑒(𝑛)2 )

− 𝑎2(𝑒
(𝑛)
2 , 𝑒(𝑛−1)2 − 𝑒(𝑛)2 ) − 2(𝑒

(𝑛)
2 ; 𝑢2, 𝑒

(𝑛−1)
2 − 𝑒(𝑛)2 ) − 2(𝑢

(𝑛)
2 ; 𝑒(𝑛)2 , 𝑒(𝑛−1)2 − 𝑒(𝑛)2 )

= 2𝜇2‖𝑒
(𝑛−1)
2 − 𝑒(𝑛)2 ‖

2
𝑉2

+ 2(𝑒
(𝑛−1)
2 − 𝑒(𝑛)2 ; 𝑢(𝑛−1)2 , 𝑒(𝑛−1)2 − 𝑒(𝑛)2 )

≥ 2𝜇2‖𝑒
(𝑛−1)
2 − 𝑒(𝑛)2 ‖

2
𝑉2

−𝑁‖𝑢(𝑛−1)2 ‖𝑉2‖𝑒
(𝑛−1)
2 − 𝑒(𝑛)2 ‖

2
𝑉2
,

(4.22)

where we used 2(𝑢(𝑛)2 ; 𝑒(𝑛)2 − 𝑒(𝑛−1)2 , 𝑒(𝑛−1)2 − 𝑒(𝑛)2 ) = 0 and 𝑢(𝑛−1)2 − 𝑢(𝑛)2 = 𝑒(𝑛)2 − 𝑒(𝑛−1)2 . Meanwhile, by using (4.19), 

∫𝛤

(

𝜎𝜏 (𝑒
(𝑛−1)
2 ) − 𝜎𝜏 (𝑒

(𝑛)
2 )

)

⋅ (𝑒(𝑛−1)2,𝜏 − 𝑒(𝑛)2,𝜏 ) 𝑑𝑠 = ∫𝛤
𝜃
(

𝜎𝜏 (𝑒
(𝑛)
1 ) + 𝜎𝜏 (𝑒

(𝑛−1)
2 )

)

⋅ (𝑒(𝑛−1)2,𝜏 − 𝑒(𝑛)2,𝜏 ) 𝑑𝑠 = 𝑅3 + 𝑅4, (4.23)

where

𝑅3 = 𝜃 ∫𝛤
𝜎𝜏 (𝑒

(𝑛)
1 ) ⋅ (𝑒(𝑛−1)2,𝜏 − 𝑒(𝑛)2,𝜏 ) 𝑑𝑠,

𝑅4 = 𝜃 ∫𝛤
𝜎𝜏 (𝑒

(𝑛−1)
2 ) ⋅ (𝑒(𝑛−1)2,𝜏 − 𝑒(𝑛)2,𝜏 ) 𝑑𝑠.

By (4.15b) with 𝑛 replaced by (𝑛 − 1), we derive a bound on 𝑅4:

𝑅4 = 𝜃
(

𝑎2(𝑒
(𝑛−1)
2 , 𝑒(𝑛−1)2 − 𝑒(𝑛)2 ) + 2(𝑒

(𝑛−1)
2 ; 𝑢2, 𝑒

(𝑛−1)
2 − 𝑒(𝑛)2 ) + 2(𝑢

(𝑛−1)
2 ; 𝑒(𝑛−1)2 , 𝑒(𝑛−1)2 − 𝑒(𝑛)2 )

)

≤ 𝜃
(

2𝜇2‖𝑒
(𝑛−1)
2 ‖𝑉2 +𝑁(‖𝑢2‖𝑉2 + ‖𝑢(𝑛−1)2 ‖𝑉2 )‖𝑒

(𝑛−1)
2 ‖𝑉2

)

‖𝑒(𝑛−1)2 − 𝑒(𝑛)2 ‖𝑉2 .

To bound 𝑅3, denote 𝜉 ∶= (𝑒(𝑛−1)2,𝜏 − 𝑒(𝑛)2,𝜏 )|𝛤 ∈ 𝐻
1
2
00(𝛤 ). Note that 𝜉 ⋅ 𝑛 = 0 on 𝛤  and the zero extension of 𝜉 to 𝜕𝛺1 or 𝜕𝛺2 (also denoted 

by 𝜉) is continuous (cf. [28, Lemma A.1]). By [64, Theorem IV.1.1], there exists an extension of 𝜉 from 𝐻
1
2
00(𝛤 ) to 𝑉 div

𝑖 (𝑖 = 1, 2), 
denoted by 𝐸𝑖𝜉, such that 

𝐸𝑖𝜉 = 𝜉 on 𝛤 , ‖𝐸𝑖𝜉‖𝑉𝑖 ≤ 𝑐𝐸‖𝜉‖
𝐻

1
2 (𝛤 )

= 𝑐𝐸‖𝑒
(𝑛−1)
2𝜏 − 𝑒(𝑛)2𝜏 ‖𝐻

1
2 (𝛤 )

≤ 𝑐𝐸𝑐𝛾‖𝑒
(𝑛−1)
2 − 𝑒(𝑛)2 ‖𝑉2 , (4.24)

where 𝑐𝐸 , 𝑐𝛾 > 0 are constants. Thus,

𝑅3 = 𝜃 ∫𝛤
𝜎𝜏 (𝑒

(𝑛)
1 ) ⋅ 𝜉 𝑑𝑠 = 𝜃 ∫𝛤

𝜎𝜏 (𝑒
(𝑛)
1 ) ⋅ 𝐸1𝜉 𝑑𝑠

= 𝜃
(

𝑎1(𝑒
(𝑛)
1 , 𝐸1𝜉) + (𝑒(𝑛)1 ; 𝑢1, 𝐸1𝜉) + (𝑢(𝑛)1 ; 𝑒(𝑛)1 , 𝐸1𝜉)

)

(by (4.15a))

≤ 𝜃
(

2𝜇1‖𝑒
(𝑛)
1 ‖𝑉1‖𝐸1𝜉‖𝑉1 +𝑁(‖𝑢1‖𝑉1 + ‖𝑢(𝑛)1 ‖𝑉1 )‖𝑒

(𝑛)
1 ‖𝑉1‖𝐸1𝜉‖𝑉1

)

≤ 𝜃
(

2𝜇1‖𝑒
(𝑛)
1 ‖𝑉1 +𝑁(‖𝑢1‖𝑉1 + ‖𝑢(𝑛)1 ‖𝑉1 )‖𝑒

(𝑛)
1 ‖𝑉1

)

𝑐𝐸𝑐𝛾‖𝑒
(𝑛−1)
2 − 𝑒(𝑛)2 ‖𝑉2 (by (4.24)).

From a combination of (4.22) and (4.23), together with the above estimates of 𝑅3 and 𝑅4, we obtain
(

2𝜇2 −𝑁‖𝑢(𝑛−1)2 ‖𝑉2

)

‖𝑒(𝑛−1)2 − 𝑒(𝑛)2 ‖

2
𝑉2

≤ 𝜃
(

2𝜇2‖𝑒
(𝑛−1)
2 ‖𝑉2 +𝑁(‖𝑢2‖𝑉2 + ‖𝑢(𝑛−1)2 ‖𝑉2 )‖𝑒

(𝑛−1)
2 ‖𝑉2

+ 2𝜇1𝑐𝐸𝑐𝛾‖𝑒
(𝑛)
1 ‖𝑉1 + 𝑐𝐸𝑐𝛾𝑁(‖𝑢1‖𝑉1 + ‖𝑢(𝑛)1 ‖𝑉1 )‖𝑒

(𝑛)
1 ‖𝑉1

)

‖𝑒(𝑛−1)2 − 𝑒(𝑛)2 ‖𝑉2 ,

leading to 
(

2𝜇2 −𝑁‖𝑢(𝑛−1)2 ‖𝑉2

)

‖𝑒(𝑛−1)2 − 𝑒(𝑛)2 ‖𝑉2 ≤ 𝜃
(

(

2𝜇2 +𝑁(‖𝑢2‖𝑉2 + ‖𝑢(𝑛−1)2 ‖𝑉2 )
)

‖𝑒(𝑛−1)2 ‖𝑉2

+ 𝑐 𝑐
(

2𝜇 +𝑁(‖𝑢 ‖ + ‖𝑢(𝑛)‖ )
)

‖𝑒(𝑛)‖
)

.
(4.25)
11
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Using (4.25) in (4.21), we have 
𝜇2
𝜃
(‖𝑒(𝑛−1)2 ‖

2
𝑉2

− ‖𝑒(𝑛)2 ‖

2
𝑉2
)

≥
(

2𝜇1 −𝑁‖𝑢1‖𝑉1 − (
𝜇2
𝜃

+ 𝑐𝜓𝜆−10 )2𝜃2𝑐2𝐸𝑐
2
𝛾
(

2𝜇1 +𝑁(‖𝑢1‖𝑉1 + ‖𝑢(𝑛)1 ‖𝑉1 )
)2(2𝜇2 −𝑁‖𝑢(𝑛−1)2 ‖𝑉2 )

−2
)

‖𝑒(𝑛)1 ‖

2
𝑉1

+
(

2𝜇2 −𝑁‖𝑢2‖𝑉1 − (
𝜇2
𝜃

+ 𝑐𝜓𝜆−10 )2𝜃2
(

2𝜇2 +𝑁(‖𝑢2‖𝑉2 + ‖𝑢(𝑛−1)2 ‖𝑉2 )
)2(2𝜇2 −𝑁‖𝑢(𝑛−1)2 ‖𝑉2 )

−2
)

‖𝑒(𝑛−1)2 ‖

2
𝑉2

−𝑁
(

‖𝑢2‖𝑉2 + ‖𝑢(𝑛−1)2 ‖𝑉2

)(

2𝜇2 +𝑁(‖𝑢2‖𝑉2 + ‖𝑢(𝑛−1)2 ‖𝑉2 )(2𝜇2 −𝑁‖𝑢(𝑛−1)2 ‖𝑉2 )
−1)

‖𝑒(𝑛−1)2 ‖

2
𝑉2

−𝑁
(

‖𝑢2‖𝑉2 + ‖𝑢(𝑛−1)2 ‖𝑉2

)

𝑐𝐸𝑐𝛾
(

2𝜇1 +𝑁(‖𝑢1‖𝑉1 + ‖𝑢(𝑛)1 ‖𝑉1 )(2𝜇2 −𝑁‖𝑢(𝑛−1)2 ‖𝑉2 )
−1)

‖𝑒(𝑛−1)2 ‖𝑉2‖𝑒
(𝑛)
1 ‖𝑉1 .

(4.26)

According to Theorem  3.2 and the result from Step 1, we have the bounds
‖𝑢‖𝑉 ≤ 𝑐𝑓 , ‖𝑢(𝑛)2 ‖𝑉2 ≤ 𝑐4, ‖𝑢(𝑛)1 ‖𝑉1 ≤ 𝑐5.

Hence, we can simplify (4.26) and obtain that 
𝜇2
𝜃
(‖𝑒(𝑛−1)2 ‖

2
𝑉2

− ‖𝑒(𝑛)2 ‖

2
𝑉2
)

≥
(

2𝜇1 −𝑁𝑐𝑓 − (
𝜇2
𝜃

+ 𝑐𝜓𝜆−10 )2𝜃2𝑐2𝐸𝑐
2
𝛾
(

2𝜇1 +𝑁(𝑐𝑓 + 𝑐5)
)2(2𝜇2 −𝑁𝑐4)−2

)

‖𝑒(𝑛)1 ‖

2
𝑉1

+
(

2𝜇2 −𝑁𝑐𝑓 − (
𝜇2
𝜃

+ 𝑐𝜓𝜆−10 )2𝜃2
(

2𝜇2 +𝑁(𝑐𝑓 + 𝑐5)
)2(2𝜇2 −𝑁𝑐4)−2

)

‖𝑒(𝑛−1)2 ‖

2
𝑉2

−𝑁(𝑐𝑓 + 𝑐4)(2𝜇2 +𝑁(𝑐𝑓 + 𝑐4))(2𝜇2 −𝑁𝑐4)−1‖𝑒
(𝑛−1)
2 ‖

2
𝑉2

−𝑁(𝑐𝑓 + 𝑐4)𝑐𝐸𝑐𝛾 (2𝜇1 +𝑁(𝑐𝑓 + 𝑐5))(2𝜇2 −𝑁𝑐4)−1‖𝑒
(𝑛−1)
2 ‖𝑉2‖𝑒

(𝑛)
1 ‖𝑉1

≥
(

2𝜇1 −𝑁𝑐𝑓 −
𝑁(𝑐𝑓 + 𝑐4)𝑐𝐸𝑐𝛾
2(2𝜇2 −𝑁𝑐4)

(

2𝜇1 +𝑁(𝑐𝑓 + 𝑐5)
)

− 𝜃(𝜇2 + 𝑐𝜓𝜆−10 𝜃)2𝑐2𝐸𝑐
2
𝛾
(

2𝜇1 +𝑁(𝑐𝑓 + 𝑐5)
)2(2𝜇2 −𝑁𝑐4)−2

)

‖𝑒(𝑛)1 ‖

2
𝑉1

+
(

2𝜇2 −𝑁𝑐𝑓 −
𝑁(𝑐𝑓 + 𝑐4)
2𝜇2 −𝑁𝑐4

(

2𝜇2 +𝑁(𝑐𝑓 + 𝑐4)
)

−
𝑁(𝑐𝑓 + 𝑐4)𝑐𝐸𝑐𝛾
2(2𝜇2 −𝑁𝑐4)

(

2𝜇1 +𝑁(𝑐𝑓 + 𝑐5)
)

− 𝜃(𝜇2 + 𝑐𝜓𝜆−10 𝜃)2
(

2𝜇2 +𝑁(𝑐𝑓 + 𝑐4)
)2(2𝜇2 −𝑁𝑐4)−2

)

‖𝑒(𝑛−1)2 ‖

2
𝑉2
,

(4.27)

where we have used ‖𝑒(𝑛−1)2 ‖𝑉2‖𝑒
(𝑛)
1 ‖𝑉1 ≤ 1

2 (‖𝑒
(𝑛−1)
2 ‖

2
𝑉2

+ ‖𝑒(𝑛)1 ‖

2
𝑉1
) to get the last inequality.

Step 3. As commented at the end of Step 1, we find that 𝑐𝑓 , 𝑐4 and 𝑐5 decrease as 𝜇1 and 𝜇2 increase, and 𝑐𝑓 , 𝑐4 and 𝑐5 tends to 0
as 𝜇1 and 𝜇2 go to ∞. Assume that 𝜇1 and 𝜇2 are sufficiently large such that 

𝑐6 ∶= 2𝜇1 −𝑁𝑐𝑓 −
𝑁(𝑐𝑓 + 𝑐4)𝑐𝐸𝑐𝛾
2(2𝜇2 −𝑁𝑐4)

(2𝜇1 +𝑁(𝑐𝑓 + 𝑐5)) > 0, (4.28a)

𝑐7 ∶= 2𝜇2 −𝑁𝑐𝑓 −
𝑁(𝑐𝑓 + 𝑐5)
2𝜇2 −𝑁𝑐4

(

2𝜇2 +𝑁(𝑐𝑓 + 𝑐4) +
1
2
𝑐𝐸𝑐𝛾 (2𝜇1 +𝑁(𝑐𝑓 + 𝑐5))

)

> 0. (4.28b)

Furthermore, we can choose small enough 𝜃 to guarantee that 
𝑐6 − 𝜃(𝜇2 + 𝑐𝜓𝜆−10 𝜃)2𝑐2𝐸𝑐

2
𝛾
(

2𝜇1 +𝑁(𝑐𝑓 + 𝑐5)
)2(2𝜇2 −𝑁𝑐4)−2 > 0, (4.29a)

𝑐7 − 𝜃(𝜇2 + 𝑐𝜓𝜆−10 𝜃)2
(

2𝜇2 +𝑁(𝑐𝑓 + 𝑐4)
)2(2𝜇2 −𝑁𝑐4)−2 > 0. (4.29b)

In this case, ‖𝑒(𝑛)2 ‖

2
𝑉2

 decreases unless ‖𝑒(𝑛)1 ‖𝑉1 = ‖𝑒(𝑛−1)2 ‖𝑉2 = 0. Thus ‖𝑒(𝑛)2 ‖𝑉2 ↓ 0 as 𝑛→ ∞, which also implies (by (4.27)) ‖𝑒(𝑛)1 ‖𝑉1 → 0. 
More preciously, by setting

𝜂 ∶= 1 − 𝜃𝜇−12
(

𝑐7 − 𝜃(𝜇2 + 𝑐𝜓𝜆−10 𝜃)2
(

2𝜇2 +𝑁(𝑐𝑓 + 𝑐4)
)2(2𝜇2 −𝑁𝑐4)−2

)

∈ (0, 1),

it follows from (4.27) that
‖𝑒(𝑛)2 ‖

2
𝑉2

≤ 𝜂‖𝑒(𝑛−1)2 ‖

2
𝑉2

≤ ⋯ ≤ 𝜂𝑛‖𝑒(0)2 ‖

2
𝑉2
.

Together with (4.27), we assert ‖𝑒(𝑛)1 ‖

2
𝑉1

≤ 𝐶𝜂𝑛 → 0 as 𝑛→ ∞. □

Remark 4.2.  For the Problem (HVI-S), analogously to the above argument, we can also prove the convergence of the domain 
decomposition method under the assumptions of large 𝜇1, 𝜇2, and small 𝜃.

5. Mixed finite element method

For simplicity, we assume that both 𝛺1 and 𝛺2 are polygonal domains, and 𝛤  consists of plot components. For 𝑖 = 1, 2, we 
introduce a family of quasi-uniform triangulations { ℎ} to 𝛺 , and assume that for any ℎ,  ℎ and  ℎ are compatible on the 
12
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interface 𝛤  in the sense that the restrictions of  ℎ
1  and  ℎ

2  on 𝛤  coincide. The triangulations of 𝛺1 and 𝛺2 have the same mesh size 
ℎ = max𝐾∈ ℎ1 ∪ ℎ2

diam(𝐾). Let 𝑉 ℎ
𝑖  and 𝑄ℎ𝑖  be finite element subspaces of 𝑉𝑖 and 𝑄𝑖 associated with the triangulation  ℎ

𝑖 . Denote

𝑉 ℎ ∶= 𝑉 ℎ
1 × 𝑉 ℎ

2 , 𝑉̊ ℎ ∶= {𝑣ℎ ∈ 𝑉 ℎ ∶ 𝑣ℎ|𝛤 = 0},

𝑄ℎ ∶= 𝑄ℎ1 ×𝑄
ℎ
2 , 𝑄̊ℎ𝑖 ∶= 𝑄ℎ𝑖 ∩ 𝐿

2
0(𝛺𝑖), 𝑄̊ℎ ∶= 𝑄̊ℎ1 × 𝑄̊

ℎ
2 ,

𝑉 ℎ,div
𝑖 ∶= {𝑣ℎ𝑖 ∈ 𝑉 ℎ

𝑖 ∶ 𝑏𝑖(𝑣ℎ𝑖 , 𝑞
ℎ
𝑖 ) = 0 ∀ 𝑞ℎ𝑖 ∈ 𝑄ℎ𝑖 }, 𝑉 ℎ,div ∶= 𝑉 ℎ,div

1 × 𝑉 ℎ,div
2 .

Since 𝑉 ℎ
𝑖 ⊂ 𝑉𝑖, the coercivity of 𝑎(⋅, ⋅) remains to be valid on 𝑉 ℎ:

𝑎(𝑣ℎ, 𝑣ℎ) ≥ 2𝜇‖𝑣ℎ‖2𝑉 ∀ 𝑣ℎ ∈ 𝑉 ℎ.

We assume that the following inf–sup condition holds for the pair 𝑉 ℎ
𝑖 ×𝑄ℎℎ: 

sup
𝑣ℎ𝑖 ∈𝑉

ℎ
𝑖

𝑏𝑖(𝑣ℎ𝑖 , 𝑝
ℎ
𝑖 )

‖𝑣ℎ𝑖 ‖𝑉𝑖
≥ 𝐶‖𝑝ℎ𝑖 ‖𝑄𝑖 ∀ 𝑝ℎ𝑖 ∈ 𝑄̊ℎ𝑖 . (5.1)

Note that the P1b/P1 and P2/P1 pairs (see (5.15) and (5.16) below) satisfy the discrete inf–sup condition (5.1).

5.1. The discrete problems

We consider the finite element approximations of the Navier–Stokes hemivariational inequality.

Problem 5.1 (HVI-NSℎ). Find 𝑢ℎ ∈ 𝑉 ℎ and 𝑝ℎ ∈ 𝑄̊ℎ such that

𝑎(𝑢ℎ, 𝑣ℎ) + 𝑏(𝑣ℎ, 𝑝ℎ) + (𝑢ℎ; 𝑢ℎ, 𝑣ℎ) + ∫𝛤
𝜓0([𝑢ℎ𝜏 ]; [𝑣

ℎ
𝜏 ]) 𝑑𝑠 ≥ ⟨𝑓, 𝑣ℎ⟩ ∀ 𝑣ℎ ∈ 𝑉 ℎ, (5.2)

𝑏(𝑢ℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄̊ℎ. (5.3)

A reduced version of Problem  5.1 reads:

Problem 5.2 (HVI-NSℎ,div). Find 𝑢ℎ ∈ 𝑉 ℎ,div such that 

𝑎(𝑢ℎ, 𝑣ℎ) + (𝑢ℎ; 𝑢ℎ, 𝑣ℎ) + ∫𝛤
𝜓0([𝑢ℎ𝜏 ]; [𝑣

ℎ
𝜏 ]) 𝑑𝑠 ≥ ⟨𝑓, 𝑣ℎ⟩ ∀ 𝑣ℎ ∈ 𝑉 ℎ,div. (5.4)

Under the assumptions stated in Theorem  3.2 and (5.1), we can show that Problems  5.1 and 5.2 have unique solutions and the 
two problems are equivalent. Moreover, 

‖𝑢ℎ‖𝑉 ≤ 𝑐𝑓 , (5.5)

where 𝑐𝑓  is defined by (3.15).

5.2. Error bound

Let us bound the error between the continuous and discrete solutions. Noting that 𝑣|𝛤 = 0 for all 𝑣 ∈ 𝑉̊ , we have 
𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) + (𝑢; 𝑢, 𝑣) = ⟨𝑓, 𝑣⟩ ∀ 𝑣 ∈ 𝑉̊ . (5.6)

The discrete analogue of (5.6) is derived from (5.2), 
𝑎(𝑢ℎ, 𝑣ℎ) + 𝑏(𝑣ℎ, 𝑝ℎ) + (𝑢ℎ; 𝑢ℎ, 𝑣ℎ) = ⟨𝑓, 𝑣ℎ⟩ ∀ 𝑣ℎ ∈ 𝑉̊ ℎ. (5.7)

Let 𝑞ℎ ∈ 𝑄̊ℎ be arbitrary. By (5.1), 

𝐶‖𝑝ℎ − 𝑞ℎ‖𝑄 ≤ sup
𝑣ℎ∈𝑉̊ ℎ

𝑏(𝑣ℎ, 𝑝ℎ − 𝑞ℎ)
‖𝑣ℎ‖𝑉

. (5.8)

For any 𝑣ℎ ∈ 𝑉̊ ℎ, by (5.6) and (5.7),
𝑏(𝑣ℎ, 𝑝ℎ) = ⟨𝑓, 𝑣ℎ⟩ − 𝑎(𝑢ℎ, 𝑣ℎ) − (𝑢ℎ; 𝑢ℎ, 𝑣ℎ),

𝑏(𝑣ℎ, 𝑝) = ⟨𝑓, 𝑣ℎ⟩ − 𝑎(𝑢, 𝑣ℎ) − (𝑢; 𝑢, 𝑣ℎ).

We see that
𝑏(𝑣ℎ, 𝑝ℎ − 𝑝) = 𝑏(𝑣ℎ, 𝑝ℎ) − 𝑏(𝑣ℎ, 𝑝)

= 𝑎(𝑢 − 𝑢ℎ, 𝑣ℎ) + (𝑢; 𝑢, 𝑣ℎ) − (𝑢ℎ; 𝑢ℎ, 𝑣ℎ)

= 𝑎(𝑢 − 𝑢ℎ, 𝑣ℎ) + (𝑢; 𝑢 − 𝑢ℎ, 𝑣ℎ) + (𝑢 − 𝑢ℎ; 𝑢ℎ, 𝑣ℎ).
13
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Hence, it follows from (5.8) and
𝑏(𝑣ℎ, 𝑝ℎ − 𝑞ℎ) = 𝑏(𝑣ℎ, 𝑝ℎ − 𝑝) + 𝑏(𝑣ℎ, 𝑝 − 𝑞ℎ)

that

‖𝑝ℎ − 𝑞ℎ‖𝑄 ≤ 𝑐
(

1 + ‖𝑢‖𝑉 + ‖𝑢ℎ‖𝑉
)

‖𝑢 − 𝑢ℎ‖𝑉 + 𝑐 ‖𝑝 − 𝑞ℎ‖𝑄.

Since ‖𝑢‖𝑉  and ‖𝑢ℎ‖𝑉  are bounded by the constant 𝑐𝑓 ,
‖𝑝ℎ − 𝑞ℎ‖𝑄 ≤ 𝑐

(

‖𝑢 − 𝑢ℎ‖𝑉 + ‖𝑝 − 𝑞ℎ‖𝑄
)

.

Using the triangle inequality
‖𝑝 − 𝑝ℎ‖𝑄 ≤ ‖𝑝 − 𝑞ℎ‖𝑄 + ‖𝑝ℎ − 𝑞ℎ‖𝑄,

we then derive the inequality 
‖𝑝 − 𝑝ℎ‖𝑄 ≤ 𝑐

(

‖𝑢 − 𝑢ℎ‖𝑉 + ‖𝑝 − 𝑞ℎ‖𝑄
)

. (5.9)

On the other hand, for any 𝑣ℎ ∈ 𝑉 ℎ,

2𝜇 ‖𝑢 − 𝑢ℎ‖2𝑉 ≤ 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝑢ℎ)

= 𝑎(𝑢, 𝑢 − 𝑢ℎ) − 𝑎(𝑢ℎ, 𝑢 − 𝑢ℎ)

= 𝑎(𝑢, 𝑢 − 𝑢ℎ) − 𝑎(𝑢ℎ, 𝑢 − 𝑣ℎ) + 𝑎(𝑢ℎ, 𝑢ℎ − 𝑣ℎ). (5.10)

Substituting 𝑣 = 𝑢ℎ − 𝑢 into (3.6) yields

𝑎(𝑢, 𝑢 − 𝑢ℎ) ≤ (𝑢; 𝑢, 𝑢ℎ − 𝑢) + 𝑏(𝑢ℎ − 𝑢, 𝑝) + ∫𝛤
𝜓0([𝑢𝜏 ]; [𝑢ℎ𝜏 − 𝑢𝜏 ]) 𝑑𝑠 − ⟨𝑓, 𝑢ℎ − 𝑢⟩.

By (5.2) with 𝑣ℎ replaced by 𝑣ℎ − 𝑢ℎ,

𝑎(𝑢ℎ, 𝑢ℎ − 𝑣ℎ) ≤ (𝑢ℎ; 𝑢ℎ, 𝑣ℎ − 𝑢ℎ) + 𝑏(𝑣ℎ − 𝑢ℎ, 𝑝ℎ) + ∫𝛤
𝜓0([𝑢ℎ𝜏 ]; [𝑣

ℎ
𝜏 − 𝑢

ℎ
𝜏 ]) 𝑑𝑠 − ⟨𝑓, 𝑣ℎ − 𝑢ℎ⟩.

Also, Substituting 𝑣 = 𝑢 − 𝑣ℎ into (3.6), and in view of
−𝑎(𝑢ℎ, 𝑢 − 𝑣ℎ) = 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝑣ℎ) + 𝑎(𝑢, 𝑣ℎ − 𝑢),

we get

𝑎(𝑢, 𝑣ℎ − 𝑢) ≤ (𝑢; 𝑢, 𝑢 − 𝑣ℎ) + 𝑏(𝑢 − 𝑣ℎ, 𝑝) + ∫𝛤
𝜓0([𝑢𝜏 ]; [𝑢𝜏 − 𝑣ℎ𝜏 ]) 𝑑𝑠 − ⟨𝑓, 𝑢 − 𝑣ℎ⟩.

Inserting these inequalities into (5.10) results 
2𝜇 ‖𝑢 − 𝑢ℎ‖2𝑉 ≤ 𝑎(𝑢 − 𝑢ℎ, 𝑢 − 𝑣ℎ) + 𝐼𝑐 + 𝐼𝑏 + 𝐼𝜓 , (5.11)

where

𝐼𝑐 = (𝑢; 𝑢, 𝑢ℎ − 𝑢) + (𝑢ℎ; 𝑢ℎ, 𝑣ℎ − 𝑢ℎ) + (𝑢; 𝑢, 𝑢 − 𝑣ℎ),

𝐼𝑏 = 𝑏(𝑢ℎ − 𝑢, 𝑝) + 𝑏(𝑣ℎ − 𝑢ℎ, 𝑝ℎ) + 𝑏(𝑢 − 𝑣ℎ, 𝑝),

𝐼𝜓 = ∫𝛤

(

𝜓0([𝑢𝜏 ]; [𝑢ℎ𝜏 − 𝑢𝜏 ]) + 𝜓
0([𝑢ℎ𝜏 ]; [𝑣

ℎ
𝜏 − 𝑢

ℎ
𝜏 ]) + 𝜓

0([𝑢𝜏 ]; [𝑢𝜏 − 𝑣ℎ𝜏 ])
)

𝑑𝑠.

We rewrite 𝐼𝑐 as
𝐼𝑐 = (𝑢; 𝑢, 𝑢ℎ − 𝑣ℎ) + (𝑢ℎ; 𝑢ℎ, 𝑣ℎ − 𝑢ℎ)

= (𝑢; 𝑢 − 𝑢ℎ, 𝑢ℎ − 𝑣ℎ) + (𝑢, 𝑢ℎ; 𝑢ℎ − 𝑣ℎ) + (𝑢ℎ; 𝑢ℎ, 𝑣ℎ − 𝑢ℎ)

= (𝑢; 𝑢 − 𝑢ℎ, 𝑢ℎ − 𝑣ℎ) + (𝑢 − 𝑢ℎ; 𝑢ℎ, 𝑢ℎ − 𝑣ℎ)

= (𝑢; 𝑢 − 𝑢ℎ, 𝑢 − 𝑣ℎ) + (𝑢 − 𝑢ℎ; 𝑢ℎ, 𝑢ℎ − 𝑣ℎ),

where we used 𝑐(𝑢, 𝑢 − 𝑢ℎ, 𝑢ℎ − 𝑢) = 0 in the last step. Then we bound 𝐼𝑐 by
𝐼𝑐 ≤ 𝑁 ‖𝑢‖𝑉 ‖𝑢 − 𝑢ℎ‖𝑉 ‖𝑢 − 𝑣ℎ‖𝑉 +𝑁 ‖𝑢ℎ‖𝑉 ‖𝑢 − 𝑢ℎ‖𝑉 ‖𝑢ℎ − 𝑣ℎ‖𝑉

≤ 𝑁 𝑐𝑓‖𝑢 − 𝑢ℎ‖𝑉
(

‖𝑢 − 𝑣ℎ‖𝑉 + ‖𝑢ℎ − 𝑣ℎ‖𝑉
)

.

Using (3.7) and (5.3) repeatedly, we have
𝐼𝑏 = 𝑏(𝑢ℎ − 𝑢, 𝑝 − 𝑞ℎ) + 𝑏(𝑣ℎ, 𝑝ℎ) − 𝑏(𝑣ℎ, 𝑝)

= 𝑏(𝑢ℎ − 𝑢, 𝑝 − 𝑞ℎ) + 𝑏(𝑣ℎ, 𝑝ℎ − 𝑝)
14
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= 𝑏(𝑢ℎ − 𝑢, 𝑝 − 𝑞ℎ) + 𝑏(𝑣ℎ − 𝑢, 𝑝ℎ − 𝑝).

Thus,

𝐼𝑏 ≤ 𝑐
(

‖𝑢 − 𝑢ℎ‖𝑉 ‖𝑝 − 𝑞ℎ‖𝑄 + ‖𝑢 − 𝑣ℎ‖𝑉 ‖𝑝 − 𝑝ℎ‖𝑄
)

.

By the sub-additivity (iii) in Proposition  2.1,
𝜓0([𝑢ℎ𝜏 ]; [𝑣

ℎ
𝜏 − 𝑢

ℎ
𝜏 ]) ≤ 𝜓0([𝑢ℎ𝜏 ]; [𝑢𝜏 − 𝑢

ℎ
𝜏 ]) + 𝜓

0([𝑢ℎ𝜏 ]; [𝑣
ℎ
𝜏 − 𝑢𝜏 ]).

As a result, 𝐼𝜓  can be bounded by

𝐼𝜓 ≤ ∫𝛤

(

𝜓0([𝑢𝜏 ]; [𝑢ℎ𝜏 − 𝑢𝜏 ]) + 𝜓
0([𝑢ℎ𝜏 ]; [𝑢𝜏 − 𝑢

ℎ
𝜏 ]) + 𝜓

0([𝑢ℎ𝜏 ]; [𝑣
ℎ
𝜏 − 𝑢𝜏 ]) + 𝜓

0([𝑢𝜏 ]; [𝑢𝜏 − 𝑣ℎ𝜏 ])
)

𝑑𝑠

≤ ∫𝛤

(

𝑐𝜓 |[𝑢𝜏 − 𝑢ℎ𝜏 ]|
2 +

(

(𝑐0 + 𝑐1|[𝑢𝜏 ]|) + (𝑐0 + 𝑐1|[𝑢ℎ𝜏 ]|)
)

|[𝑢𝜏 − 𝑣ℎ𝜏 ]|
)

𝑑𝑠

≤ 𝑐𝜓𝜆
−1
0 ‖𝑢 − 𝑢ℎ‖2𝑉 + 𝑐

(

1 + ‖[𝑢𝜏 ]‖𝐿2(𝛤 ;R𝑑 ) + ‖[𝑢ℎ𝜏 ]‖𝐿2(𝛤 ;R𝑑 )
)

‖[𝑢𝜏 − 𝑣ℎ𝜏 ]‖𝐿2(𝛤 ;R𝑑 ).

By (3.13), ‖[𝑢𝜏 ]‖𝐿2(𝛤 ;R𝑑 ) ≤ 𝜆−1∕20 ‖𝑢‖𝑉  and ‖[𝑢ℎ𝜏 ]‖𝐿2(𝛤 ;R𝑑 ) ≤ 𝜆−1∕20 ‖𝑢ℎ‖𝑉 . By (3.20) and (5.5), ‖𝑢‖𝑉  and ‖𝑢ℎ‖𝑉  are bounded by 𝑐𝑓 . 
Hence, from (5.11), we obtain

2𝜇 ‖𝑢 − 𝑢ℎ‖2𝑉 ≤ 𝑐 ‖𝑢 − 𝑢ℎ‖𝑉 ‖𝑢 − 𝑣ℎ‖𝑉 +𝑁 𝑐𝑓‖𝑢 − 𝑢ℎ‖𝑉
(

‖𝑢 − 𝑣ℎ‖𝑉 + ‖𝑢ℎ − 𝑣ℎ‖𝑉
)

+ 𝑐
(

‖𝑢 − 𝑢ℎ‖𝑉 ‖𝑝 − 𝑞ℎ‖𝑄 + ‖𝑢 − 𝑣ℎ‖𝑉 ‖𝑝 − 𝑝ℎ‖𝑄
)

+ 𝑐𝜓 𝜆−10 ‖𝑢 − 𝑢ℎ‖2𝑉 + 𝑐 ‖𝑢𝜏 − 𝑣ℎ𝜏 ‖𝐿2(𝛤 ;R𝑑 ). (5.12)

By the triangle inequality
‖𝑢ℎ − 𝑣ℎ‖𝑉 ≤ ‖𝑢 − 𝑢ℎ‖𝑉 + ‖𝑢 − 𝑣ℎ‖𝑉 .

We apply the modified Cauchy inequality
𝑥 𝑦 ≤ 𝜖 𝑥2 + 𝑦2∕(4 𝜖), ∀ 𝑥, 𝑦 ∈ R, ∀ 𝜖 > 0

to the terms 𝑐 ‖𝑢− 𝑢ℎ‖𝑉 ‖𝑢− 𝑣ℎ‖𝑉 , 𝑐 ‖𝑢− 𝑢ℎ‖𝑉 ‖𝑝− 𝑞ℎ‖𝑄, 𝑐 ‖𝑢− 𝑣ℎ‖𝑉 ‖𝑝− 𝑝ℎ‖𝑄, and derive from (5.12) that for 𝜖 > 0 arbitrarily small,
(

2𝜇 − 𝑐𝜓𝜆−10 −𝑁 𝑐𝑓 − 𝜖
)

‖𝑢 − 𝑢ℎ‖2𝑉
≤ 𝑐

(

‖𝑢 − 𝑣ℎ‖2𝑉 + ‖𝑝 − 𝑞ℎ‖2𝑄 + ‖𝑢𝜏 − 𝑣ℎ𝜏 ‖𝐿2(𝛤 ;R𝑑 )

)

+ 𝜖 ‖𝑝 − 𝑝ℎ‖2𝑄. (5.13)

By choosing 𝜖 > 0 sufficiently small, we can combine (5.13) and (5.9) to get 
‖𝑢 − 𝑢ℎ‖2𝑉 + ‖𝑝 − 𝑝ℎ‖2𝑄 ≤ 𝑐 inf

(𝑣ℎ ,𝑞ℎ)∈𝑉 ℎ×𝑄ℎ

(

‖𝑢 − 𝑣ℎ‖2𝑉 + ‖𝑝 − 𝑞ℎ‖2𝑄 + ‖𝑢𝜏 − 𝑣ℎ𝜏 ‖𝐿2(𝛤 ;R𝑑 )

)

. (5.14)

This Céa’s inequality is the starting point for error estimation of the numerical solution (𝑢ℎ, 𝑝ℎ). In particular, consider a family of 
regular finite element partitions of the domain 𝛺1∪𝛺2, formed as unions of finite element partitions on 𝛺1 and 𝛺2 whose restrictions 
on 𝛤  are identical and such that the partitions are compatible to the boundary splitting 𝜕𝛺𝑖 = 𝛤𝑖 ∪ 𝛤 , 𝑖 = 1, 2. Let us use P1b/P1 
finite elements [65] 

𝑉 ℎ
𝑖 = {𝑣ℎ𝑖 ∈ 𝑉𝑖 ∩ 𝐶0(𝛺𝑖)𝑑 ∶ 𝑣ℎ𝑖 |𝑇 ∈ [𝑃1(𝑇 )]𝑑 ⊕𝐵(𝑇 ) ∀ 𝑇 ∈  ℎ

𝑖 }, (5.15a)

𝑄ℎ𝑖 = {𝑞ℎ𝑖 ∈ 𝑄𝑖 ∩ 𝐶0(𝛺𝑖)∶ 𝑞ℎ𝑖 |𝑇 ∈ 𝑃1(𝑇 ) ∀ 𝑇 ∈  ℎ
𝑖 }, (5.15b)

or P2/P1 finite elements [63] 
𝑉 ℎ
𝑖 = {𝑣ℎ𝑖 ∈ 𝑉𝑖 ∩ 𝐶0(𝛺)𝑑 ∶ 𝑣ℎ𝑖 |𝑇 ∈ [𝑃2(𝑇 )]𝑑 ∀ 𝑇 ∈  ℎ

𝑖 }, (5.16a)

𝑄ℎ𝑖 = {𝑞ℎ𝑖 ∈ 𝑄 ∩ 𝐶0(𝛺𝑖)∶ 𝑞ℎ𝑖 |𝑇 ∈ 𝑃1(𝑇 ) ∀ 𝑇 ∈  ℎ
𝑖 }, (5.16b)

where 𝑃𝑘(𝑇 ) represents the space of polynomials of a total degree less than or equal to 𝑘 in 𝑇 , and 𝐵(𝑇 ) is the space of bubble 
functions on 𝑇 . For these choices, the discrete inf–sup condition (5.1) is satisfied. We can then derive an optimal order error estimate 
for the P1b/P1 element solution from (5.14) and standard finite element interpolation error bounds, under certain solution regularity 
assumptions. We write 𝛤  as the union of a finite number of flat components:

𝛤 = ∪𝑗0𝑗=1𝛾𝑗 ,

where each 𝛾𝑗 is a line segment in 2D or a polygon in 3D.

Theorem 5.1.  Let (𝑢, 𝑝) and (𝑢ℎ, 𝑝ℎ) be the solutions of Problems  3.1 (HVI-NS) and 5.1 (HVI-NSℎ) with the P1b/P1 elements 
(5.15a)–(5.15b). Assume 𝑓 ∈ 𝑉 ∗, 𝐻(𝜓), (3.12), (3.21), and the regularities 𝑢 ∈ 𝐻2(𝛺)𝑑 , 𝑢𝜏 |𝛾𝑗 ∈ 𝐻2(𝛾𝑗 )𝑑 , 1 ≤ 𝑗 ≤ 𝑗0, and 𝑝 ∈ 𝐻1(𝛺), 
there exists a constant 𝑐 depending on 𝑢 and 𝑝 such that 

‖𝑢 − 𝑢ℎ‖𝑉 + ‖𝑝 − 𝑝ℎ‖𝑄 ≤ 𝑐 ℎ. (5.17)
15
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6. Numerical experiments

In the numerical experiments, we take the function 𝜓 in the form

𝜓(𝑧) = ∫

|𝑧|

0
𝜔(𝑡) 𝑑𝑡,

where 𝜔∶ [0,∞) → R is continuous, 𝜔(0) > 0. Then the slip boundary condition −𝜎1,𝜏 ∈ 𝜕𝜓([𝑢𝜏 ]) is equivalent to

|𝜎1,𝜏 | ≤ 𝜔(0) if [𝑢𝜏 ] = 0, −𝜎1,𝜏 = 𝜔(|[𝑢𝜏 ]|)
[𝑢𝜏 ]
|[𝑢𝜏 ]|

if [𝑢𝜏 ] ≠ 0.

Introduce a Lagrange multiplier

𝜆 =
−𝜎1,𝜏

𝜔(|[𝑢𝜏 ]|)

and define a set
𝛬 =

{

𝜂 ∈ 𝐿2(𝛤 ;R𝑑 ) ∶ |𝜂| ≤ 1 a.e. on 𝛤
}

.

Then Problem  3.1 can be restated as follows.

Problem 6.1.  Find (𝑢, 𝑝) ∈ 𝑉 × 𝑄̊ and 𝜆 ∈ 𝛬 such that

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) + (𝑢; 𝑢, 𝑣) + ∫𝛤
𝜔(|[𝑢𝜏 ]|) 𝜆 ⋅ [𝑣𝜏 ] 𝑑𝑠 = ⟨𝑓, 𝑣⟩ ∀ 𝑣 ∈ 𝑉 , (6.1)

𝑏(𝑢, 𝑞) = 0 ∀ 𝑞 ∈ 𝑄̊, (6.2)

𝜆 ⋅ [𝑢𝜏 ] − |𝜆| |[𝑢𝜏 ]| = 0 a.e. on 𝛤 . (6.3)

We adopt a projection-type iterative procedure [27] to solve Problem  6.1. The algorithm is presented below. Choose a constant 
parameter 𝜌 > 0 and an initial guess 𝑢ℎ,(0). Then for 𝑛 = 1, 2,… , find (𝑢ℎ,(𝑛), 𝑝ℎ,(𝑛)) ∈ 𝑉 ℎ ×𝑄ℎ such that for all (𝑣ℎ, 𝑞ℎ) ∈ 𝑉 ℎ ×𝑄ℎ, 

𝑎(𝑢ℎ,(𝑛), 𝑣ℎ) + 𝑏(𝑣ℎ, 𝑝ℎ,(𝑛)) + (𝑢ℎ,(𝑛−1); 𝑢ℎ,(𝑛), 𝑣ℎ) = ⟨𝑓, 𝑣ℎ⟩ − ∫𝛤1
𝜔(|[𝑢ℎ,(𝑛−1)]𝜏 |) 𝜆ℎ,(𝑛) ⋅ [𝑣ℎ𝜏 ] 𝑑𝑠, (6.4a)

𝑏(𝑢ℎ,(𝑛), 𝑞ℎ) = 0, (6.4b)

and update the Lagrange multiplier: 
𝜆ℎ,(𝑛+1) = 𝑃 (𝜆ℎ,(𝑛) + 𝜌 [𝑢ℎ,(𝑛)𝜏 ]), (6.5)

where 𝑃  is the orthogonal projection operator from R𝑑 to the unit closed ball in R𝑑 . To solve (6.4), we again utilize the 
projection-iteration scheme stated as follows.

Choose an initial guess 𝜆ℎ,(𝑛)0 . Then for 𝑙 = 0, 1,… ,

1. find (𝑢ℎ,(𝑛)𝑙 , 𝑝ℎ,(𝑛)𝑙 ) ∈ 𝑉 ℎ ×𝑄ℎ such that, for all (𝑣ℎ, 𝑞ℎ) ∈ 𝑉 ℎ ×𝑄ℎ, 

𝑎(𝑢ℎ,(𝑛)𝑙 , 𝑣ℎ) + 𝑏(𝑣ℎ, 𝑝ℎ,(𝑛)𝑙 ) + (𝑢ℎ,(𝑛−1); 𝑢ℎ,(𝑛)𝑙 , 𝑣ℎ) = ⟨𝑓, 𝑣ℎ⟩ − ∫𝛤1
𝜔(|[𝑢ℎ,(𝑛−1)]𝜏 |) 𝜆

ℎ,(𝑛)
𝑙 ⋅ [𝑣ℎ𝜏 ] 𝑑𝑠, (6.6a)

𝑏(𝑢ℎ,(𝑛)𝑙 , 𝑞ℎ) = 0; (6.6b)

2. update the Lagrange multiplier:
𝜆ℎ,(𝑛)𝑙+1 = 𝑃

(

𝜆ℎ,(𝑛)𝑙 + 𝜌𝜔(|[𝑢ℎ,(𝑛)]𝜏,𝑙|) [𝑢
ℎ,(𝑛)
𝜏,𝑙 ]

)

;

3. iterate (1) and (2) until ‖𝑢ℎ,(𝑛)𝑙 − 𝑢ℎ,(𝑛)𝑙−1 ‖𝐿2(𝛺) < 𝜀2 and at that time, let (𝑢ℎ,(𝑛), 𝑝ℎ,(𝑛), 𝜆ℎ,(𝑛)) be the most recent iterates.

Repeat the above procedure until ‖𝑢ℎ,(𝑛) − 𝑢ℎ,(𝑛−1)‖𝐿2(𝛺) < 𝜀1. In our tests, we take 𝜀1, 𝜀2 = 10−6.
In the examples below, we take 

𝜔(𝑡) = (𝑎 − 𝑏) 𝑒−𝛼𝑡 + 𝑏 (𝑎 > 𝑏). (6.7)

to illustrate performance of the numerical method. Let 𝛺 = (0, 1)×(−1, 1) with the subregions 𝛺1 = (0, 1)×(0, 1) and 𝛺2 = (0, 1)×(−1, 0), 
the interface 𝛤 = (0, 1) × {0}, and the Dirichlet boundary 𝜕𝛺∖𝛤 . Let 𝜇1 = 𝜇2 = 1 and 𝑓𝑖 = −∇ ⋅ 𝜎(𝑢𝑖0, 𝑝𝑖0) in 𝛺𝑖 (𝑖 = 1, 2), where

𝑢10(𝑥, 𝑦) =
(

20𝑥2(𝑥 − 1)2𝑦(𝑦 − 1)(2𝑦 − 1)
−20𝑥(𝑥 − 1)(2𝑥 − 1)𝑦2(𝑦 − 1)2

)

, 𝑝10(𝑥, 𝑦) = 20(2𝑥 − 1)(2𝑦 − 1),

and

𝑢20(𝑥, 𝑦) =
(

20𝑥2(𝑥 − 1)2𝑦(𝑦 + 1)(2𝑦 + 1)
2 2

)

, 𝑝20(𝑥, 𝑦) = 20(2𝑥 − 1)(2𝑦 + 1).
16
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Fig. 2. Tangential traction 𝜎1,𝜏 and tangential velocity 𝑢1,𝜏 on the interface 𝛤 ; |𝑢| and the velocity 𝑢 in 𝛺 of (HVI-NS).

Fig. 3. Convergence behaviors of numerical solutions of (HVI-NS) and (6.8) under the projection iterative procedure.

We adopt a sequence of uniform triangular meshes with the interval [0, 1] being split into ℎ−1 equal sub-intervals, and use the 
P1b/P1 finite elements. Since the exact solution is unknown, we take the numerical solution (𝑢1,ref , 𝑝1,ref , 𝑢2,ref , 𝑝2,ref ) on a fine mesh 
(ℎ = 2−8) as the reference solution, and compare the solutions (𝑢𝑖ℎ, 𝑝𝑖ℎ) on the coarse meshes (ℎ = 2−3, 2−4, 2−5, 2−6) with the reference 
solution. The experimental errors are plotted in Figs.  3 and 4, where the following notation is used in our figures:

D1UL2 ∶= ‖𝑢ℎ − 𝑢‖𝐿2(𝛺1), D2UL2 ∶= ‖𝑢ℎ − 𝑢‖𝐿2(𝛺2), D1UH1 ∶= |𝑢ℎ − 𝑢|𝐻1(𝛺1),

D2UH1 ∶= |𝑢ℎ − 𝑢|𝐻1(𝛺2), D1PL2 ∶= ‖𝑝ℎ − 𝑝‖𝐿2
0(𝛺1)

, D2PL2 ∶= ‖𝑝ℎ − 𝑝‖𝐿2
0(𝛺2)

.

Now we apply the discrete projection-type iterative algorithm (6.6) to solve Problem  3.3 ((3.6)–(3.7)) with 𝑎 = 0.255, 𝑏 = 0.25, 
𝛼 = 10 in (6.7), and with the initial guess 𝜆(0)ℎ = 0 and parameter 𝜌 = 1. We plot the figures of the tangential traction 𝜎1,𝜏 and the 
tangential velocity 𝑢  on the interface 𝛤 , as well as the velocity fields (𝑢 , 𝑢 ) in Fig.  2. The experimental errors are shown in Table 
17
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Fig. 4. Convergence of numerical solutions of (HVI-NS) under the domain decomposition algorithm.

Table 1
Errors of numerical solutions of (HVI-NS) with interface slip boundary condition (1.6).
 ℎ Ω1 Ω2

 D1UL2 D1UH1 D1PL2 D2UL2 D2UH1 D2PL2  
 2−3 7.3704e−03 9.9777e−02 1.8587e−01 7.3857e−03 9.8593e−02 1.9202e−01 
 2−4 1.9469e−03 3.8134e−02 6.5195e−02 1.9429e−03 3.7628e−02 6.6871e−02 
 2−5 4.7749e−04 1.5663e−02 2.2523e−02 4.7664e−04 1.5454e−02 2.2758e−02 
 2−6 1.1203e−04 6.7453e−03 7.7155e−03 1.1205e−04 6.6560e−03 7.5848e−03 
 Order 2.09 1.22 1.55 2.09 1.22 1.59  

Table 2
Errors of numerical solutions of (HVI-NS) under the domain decomposition algorithm.
 ℎ Ω1 Ω2

 D1UL2 D1UH1 D1PL2 D2UL2 D2UH1 D2PL2  
 2−3 7.4826e−03 9.9294e−02 1.8350e−01 7.3857e−03 9.8593e−02 1.8948e−01 
 2−4 1.9926e−03 3.7981e−02 6.4491e−02 1.9429e−03 3.7628e−02 6.6708e−02 
 2−5 4.9984e−04 1.5577e−02 2.2206e−02 4.7664e−04 1.5454e−02 2.2747e−02 
 2−6 1.2255e−04 6.6916e−03 7.5269e−03 1.1205e−04 6.6560e−03 7.5845e−03 
 Order 2.03 1.22 1.56 2.09 1.22 1.58  

1 and Fig.  3(a). We see the (ℎ) convergence of ‖𝑢ℎ − 𝑢‖𝐻1(𝛺); while (ℎ1.5) of the ‖𝑝ℎ − 𝑝‖𝑄 which is commonly observed for the 
P1b/P1 finite elements in numerical tests. Moreover, we observe the (ℎ2)-convergence for ‖𝑢ℎ − 𝑢‖𝐿2(𝛺).

In addition, if we fix the friction function 𝜔(𝑡) in (6.7) as a positive constant, e.g., 𝜔 ≡ 0.255, 𝜓(𝑥, ⋅) in (1.6b) is convex and the 
interface condition degenerates into (1.5), then the variational formulation of (1.1) turns into an inequality: 

⎧

⎪

⎨

⎪

⎩

𝑎(𝑢, 𝑣 − 𝑢) + 𝑏(𝑣 − 𝑢, 𝑝) + (𝑢; 𝑢, 𝑣 − 𝑢) + ∫𝛤
𝜔|[𝑣𝜏 ]| 𝑑𝑠 − ∫𝛤

𝜔|[𝑢𝜏 ]| 𝑑𝑠 ≥ (𝑓, 𝑣 − 𝑢) ∀ 𝑣 ∈ 𝑉 ,

𝑏(𝑢, 𝑞) = 0 ∀ 𝑞 ∈ 𝑄̊.
(6.8)

This inequality can be solved via the projection iteration [25,27,61]. The convergence behaviors are shown in Fig.  3(b). Figures 
of the tangential traction, the tangential velocity and the velocity field are omitted, which are similar to that for the case of the 
hemivariational inequality.

In the following, we examine the applicability of the domain decomposition algorithm. We set the parameter 𝜃 = 0.35 and the 
initial value (𝑢(0)2ℎ , 𝑝

(0)
2ℎ ) = (0, 0), and carry out the simulation with the same nonconstant 𝜔(𝑡) as mentioned above. The experimental 

errors (Table  2) and convergence behavior (Fig.  4(a)) are almost the same as that shown in Table  1 and Fig.  3(a) obtained without 
using domain decomposition method. Figures of velocity, 𝜎1,𝜏 and 𝑢1,𝜏 are similar to those obtained as aforementioned. We only 
plot the iteration errors ‖𝑢(𝑘)ℎ − 𝑢(𝑘−1)ℎ ‖ and ‖𝑝(𝑘)ℎ − 𝑝(𝑘−1)ℎ ‖ in Fig.  4(b), which decreases exponentially fast and coincides with the 
theoretical prediction.

7. Conclusions

In this work, the finite element method is applied to solve model problems of two viscous fluids with the nonlinear slip interface 
condition of friction type. The nonsmooth and nonmonotone property of the slip interface condition leads to a NS/NS hemivariational 
18
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inequality. Well-posedness of the hemivariational inequality is proved, so is the convergence of the domain decomposition algorithm. 
Optimal order error estimates are derived for the mixed finite element method with the P1b/P1 element under appropriate solution 
regularity assumptions and numerical tests are given to illustrate the theoretical result. In a future study, the nonstationary 
hemivariational inequality and efficient decoupling algorithms will be considered.
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