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ARTICLE INFO ABSTRACT
Keywords: The diffusive-viscous wave equation arises in a variety of applications in geophysics, and it plays an important
Diffusive-viscous wave equation role in seismic exploration. In this paper, semi-discrete and fully discrete numerical methods are introduced to

Finite elements solve a general initial-boundary value problem of the diffusive-viscous wave equation. The spatial discretization

is carried out through the finite element method, whereas the time derivatives are approximated by finite
differences. Optimal order error estimates are derived for the numerical methods. Numerical results on a test
problem are reported to illustrate the numerical convergence orders.

Finite difference
Error estimates

1. Introduction

The goal of petroleum exploration is to identify and locate potential oil/gas reservoirs. Engineers need to assess the quantity of hydrocarbon
which might be contained in the reservoirs. To increase the success rate in locating a prospective reservoir and evaluating the expected volume of
petroleum, numerical simulations based on seismic wave equations have become a valuable technique. In order to simulate wave propagation in
practical seismic exploration, an appropriate wave equation should be chosen. Compared with the reflection from the gas-saturated layer, the seismic
response is more complicated in the fluid-saturated layer. From laboratory and field data, it is observed that the reflection from the fluid-saturated
layer causes an increase in amplitude and delayed propagation time at low frequencies, which can be used to detect fluid-saturated layers. The
diffusive-viscous wave equation was introduced to describe this phenomenon ([14,25]). In addition, numerical simulation of the diffusive-viscous
wave equation was applied to address practical issues ([27,7,23,9,10]). In [29-31], the finite difference method was used to solve the diffusive-
viscous wave equation numerically. A finite volume method was studied to simulate seismic wave propagation in a fluid-saturated medium using the
diffusive-viscous wave equation ([26]). It appears that no rigorous numerical analysis can be found in the literature for solving the initial-boundary
value problem of the diffusive-viscous wave equation. In this paper, we fill this gap by developing and rigorously analyzing a numerical method
for a general initial-boundary value problem of the diffusive-viscous wave equation. More precisely, the numerical method is designed so that it
is of second-order accurate with respect to the time-step and the standard finite element method is used to discretize the spatial variable. The
framework developed in this paper can be applied for analysis of other numerical methods with different discretizations in time and in space. A
somewhat related equation is the second-order wave equation, and a rich literature is available on its numerical solution, e.g. [13,5] with finite
element methods, [12,6] on mixed finite element methods, [24,15,16,2,4,28,18,20-22] on discontinuous Galerkin methods, and so on.

The initial-boundary value problem (IBVP) of the diffusive-viscous wave equation will be considered in any spatial dimension d; the cases with
d =2 and 3 are more relevant to applications. A mixture of Dirichlet, Neumann, and Robin boundary conditions is allowed. Assume the spatial
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domain Q c R¥ has a Lipschitz continuous boundary which is split into three parts: 3Q =T, Ty UT such that 'y, T'y, and 'y are relatively open,
and are mutually disjoint. We allow the possibility for one or two of the three subsets I'j, 'y, and 'y to be empty. Since 0Q is Lipschitz continuous,
the unit outward normal vector v is defined a.e. on 0Q. Let [0,T] be the time interval of interest, T > 0. We use the notation Q =Q x (0,T).

The pointwise formulation of the IBVP of the diffusive-viscous wave equation is as follows:

2

‘;T;‘ +y % - %div(nVu) —div(?Vu)=f inQ, 1.1)
u=g; onlpx[0,T], 1.2)
ou =g, onI'yXI[0,T], (1.3)
ov

du

£+Ku:g3 onI'p x[0,T], 1.4
u=uy, %:wo on Qx {0}, (1.5)

where u = u(x,1) is the unknown wave field and f = f(x,7) is the source function. Here, y > 0 is the diffusive attenuation parameter, # > 0 is the
viscous attenuation parameter, { > 0 is the wave propagation speed in the non-dispersive medium, x = x(x) > 0 is the coefficient for the Robin
boundary condition, g, = g,(x,7) is the wave field on the Dirichlet boundary T, g, = g,(x,?) is the outward normal derivative of the wave field on
the Neumann boundary I'y, and g3 = g3(x,7) is the Robin boundary data. In addition, u, = uy(x) is the initial wave field, and w, = wy(x) is the initial
wave field velocity. The expression du/dv denotes the normal derivative of u on dQ. The parameters y, 5, { and k can depend on the spatial variable
x, and they are assumed to be bounded functions of x and are bounded below away from zero.

The rest of the paper is organized as follows. The weak formulation of the IBVP of the diffusive-viscous wave equation is recalled in Section 2.
In Section 3, a semi-discrete numerical method is introduced with the spatial variable discretized by the finite element method; optimal order
error estimates are derived under appropriate solution regularity assumptions. In Section 4, a fully discrete numerical method is studied, where
in addition to the finite element method for the spatial variable, finite differences are used to approximate the time derivatives. Again, optimal
order error estimates are derived under appropriate solution regularity assumptions. In Section 5, simulation results from a numerical example are
reported, illustrating the numerical convergence orders that are in agreement with the theoretical predictions.

2. Weak formulation

We first introduce some function spaces. Given a bounded domain D c R¢ and an integer m > 0, W™(D) is the Sobolev space with the cor-
responding usual norm || - |l m,p, and semi-norm | - |ympp). When p =2, the space W™2(D) is written as H™(D), and the associated norm and
semi-norm are denoted by || - || gm(py and | - | gm(p), respectively. For the Lebesgue space L*(D) = H(D), the norm and inner product are denoted by
[I-llp and (-, -)p. In particular, we set

V={veH'@]|v=00nTp}. 2.1

Furthermore, for the time dependent functions, we introduce the space

W™, T; V)= {ve€ LP(0,T; V) [ 10/0]l Loo.rpy < 00 VI <m}
with the norm
1/p

T
/ ol vlly, dt if 1<p<oo,
lollwmoor:) =2 0<rZm

MaXg</<y €SS SUPg<<T ||6tlu||V if p=o0.

For a function u(x,), we will also use the notation u(f), and will write a(¢) for du(x,)/dt, and ii(r) for 0%u(x,)/dt*>. A standard reference on Sobolev
and Lebesgue spaces is [1].

The weak formulation of the IBVP (1.1)-(1.5) is as follows: Find a function u defined on Q such that for a.e. t € (0,T), u(-,1) € HY(Q), u(x,t) =
g(x,t) onT'p, and

(ii(1), v)q + (y u(t), v)q + (n Vu(t), Vo)g + (&2Vu(), Vo)g + (11 kit + ¢ u(?), U)FR
=(f0.0)0 + (&0 +P&0.0)1 + (g0 +Cgs(0.0) - VeV, (2.2)
u(0) = uy, u(0) = w. (2.3)

To simplify the notation, we use (-,-)q for the inner product also in L?>(Q)?, e.g. (4 Vu(t), Vv)q. Similarly, in the following, the notation || - ||, will
also stand for the L2(Q)¢-norm. Strictly speaking, the first term (ii(t), v)g, in (2.2) should be understood in the sense of a duality pairing, but this will
not have an impact on the development of the numerical method. Well-posedness of this problem is addressed in [17]. This paper is devoted to the
numerical solution of the problem. For simplicity in writing, we will only consider the case where g, = 0. The case of a non-homogeneous Dirichlet
boundary condition can be converted to the one with homogeneous Dirichlet boundary condition through a standard technique (cf. [3, Chapter 8]).
Thus, defining

£(t.0)=(f(0.V)g + (&0 + C.0) + (180 +Pg3(.0)  VvEV, 2.4
we have the continuous level problem.

55



W. Han, C. Song, F. Wang et al. Computers and Mathematics with Applications 102 (2021) 54-64

Problem 2.1. Find u such that for a.e. 1 € (0,T), u(-,1) €V and

(ii(t), V)g + (v u(0), V) + (n Vir(t), Vo)g + (£2Vu(@), Vo)
+ (nKu(t)+§2Ku(t),U)l_R =£¢@tv) YvevV, (2.5)

u(0) = uy, 4(0) = wy. (2.6)

We now introduce assumptions on the problem data. For some positive constants #,,7,.¢;,&, k; and k,, we assume

y€L®(Q), 0<y; <y<y, <o ae.onQ, 2.7)
neL®Q)and ne LTy UlR), 0<n <np<n <ooae onQand 'y Ulg, (2.8)
(eLl®@Qand { € L®[TyUTR), 0<¢ << <ooae.onQand My UT, (2.9)
k€ L®[R), 0<k; <k <ky<ooae. onlp. (2.10)

Moreover, we assume

FELXO,T;V"), geW'(0,T;L*Ty), g € W"(0,T;L*Ty), (2.11)

ug €V, wye LXQ), (2.12)
and

meas(I'p) + meas(I'p) > 0. (2.13)

Here, V* denotes the dual space of V. We comment that under the assumption (2.13), the expression ([|Vo|3 + ||v||§R)1/ 2 defines a norm over the
space V', which is equivalent to the norm |[|v|| 1), i-e., there exist positive constants ¢, and ¢, such that

alivll g < (”VU“?Z + ||U||12"R>l/2 <Hlvlipg VYve H'(Q). (2.14)
The following solution existence and uniqueness result is proved in [17] for Problem 2.1.
Theorem 2.2. Assume (2.7)—(2.13). Then Problem 2.1 has a unique solution u with
u€ L®0,T;V), i€ L*0,T; LX) n L*0,T;V), i€ L*0,T; V™).
We will use the following elementary inequality repeatedly without explicitly mentioning it:

ab<ed+ -1 Ve>0, a,beR.
4e
3. A spatially semi-discrete method
For simplicity, we assume Q is a polygonal/polyhedral domain. Let {7"},., be a regular family of finite element partitions of Q into triangles
(d = 2) or tetrahedrons (d = 3). Corresponding to each finite element partition 7", let V" c V be a finite element space of continuous piecewise
polynomials of a degree less than or equal to p.
Let us introduce a V-orthogonal projection operator IT" : ¥ — V", In the case |I'p| > 0, this projection is defined by the following relation: for

uevV,

Duevh, (VII'u,Vot)g=(Vu, Vol Yo*eVh, (3.1)

and in case |I'p| =0, (3.1) is to be supplemented by the condition

/Hhudx=/udx.
Q Q

We recall the following error bounds ([8,11]):
lu=T"ullq + R |V = TT"W)|lq < ¢ AP lull gpor gy if wE€ HPH(Q). (3.2)
The spatially semi-discrete method for solving Problem 2.1 is the following.
Problem 3.1. Find " such that for a.e. r € (0,T), u”(-,1) € V" and

(@"(0), ") o + (@ (1), 1")q + (g Vi (1), V") + (VU (1), Vol )g + (nc i (@) + P (), u")rk =7(t,0h) Yotevh, (3.3)

ul(0) = g, a(0) = T1"w,. (3.4)
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Similar to Problem 2.1, Problem 3.1 admits a unique solution. The rest of the section is devoted to a derivation of error estimates for the

numerical solution defined by Problem 3.1. We will use the norm equivalence (2.14) repeatedly. We split the error into two parts:

uh () —u(t) = e"(t) + el (),
where

() =u" (1) - 1"u(r),

eh(t) =T1"u(t) — u(t).

Note that we have the error bound (3.2) for eg(t). In addition, similar to (3.2),

llit) = ()l + R (| V(i) = T (@)l < ¢ AP a1y i a(t) € HPHH(Q),
llii(t) = i) + R |V Gi(e) = Tii(0)) | < ¢ AP k(| o1y iF (1) € HPHH(Q).
Thus, in the following, we focus on estimating the error component e”(t).
For any v € V", by subtracting (2.5) with v = v” from (3.3) and by using the splitting (3.5), we have
("), 0") o + (r &"(0), ") + (1 VE" (1), Voo + (Ve (1), Vo' )g + (n ke (1) + L2k P (), u")rk
=— (&, V") o = (r eh), g — (1 VeR@), Vi) — (£2 Vel (1), Vil )g = (nx ) (1) + Lk e (1), vh)rk Vol evh,
e"(0)=0, ¢"0)=0.

Let v" = é"(r) in (3.10) to obtain

1dJ,., . . .
5 4 |1 OIE + 1Vt @I + 18k PR, | + 1y O + I YOI + ' P Pt
== (&0.¢"(0) o = (&, ¢" (D)g = (1 Vg (1), VE" D) = (Ve (). V" 0)q = (nx &) + Cr eg (). ¢" ) . -
Integrate the above equality from 0 to r and make use of the initial conditions (3.11),

t

(1" @13, + e ver @I + g Pl | + / (172 I3 + 10 2 IR + lIn 2k PP s)IE, ] ds
0

1
2
t

t
- / [(€009. ") o + (b0, "D + (1 Vel(5), Ve (5D | ds = / (@Y. Ve g + (nx i) + Ereh().8 ) . |ds.
0 0

By the assumptions on coefficients and the norm equivalence (2.14), we derive from the above inequality that for a constant ¢; > 0,

t

t
IO + e DI, g + / 1M I, 85 < €1 / [(€8052,¢"(5)) g + (7 Eh(). "D + (1 Vel (5), Ve ()| s
0 0
t

- / [(§2Veg(s),Véh(s))Q + (nicég(s)+é’zl<€g(3), éh(S))rR] ds.
0

Let us bound each term on the right side of (3.12). Take the first term as an example,

t

—o [ (@6l o)gds <, [1E@laldolads <a [ 166 aldolads
0 0

0
Thus, for any (small) e > 0, there exists an e-dependent constant ¢ > 0 such that

t t

t
_cl/('e'g(s),e‘h(s))ﬂdsﬁe/||éh(s)||§_11(9)ds+c/||'e'g(s)||§zds.
0 0

0

Similarly, for the other five terms on the right side of (3.12), we have

t t 1
—ar [ e nads <e [1E0601E g ds+e [1eods.
0 0 0
t t t
_cl/(nVég(s),Véh(s))ndSSS/||éh(s)||2Hl(Q)ds+c/||Vég(s)||éds,
0 0 0

t t t
_cl/(§2Veg(s),ve'h(s))gds§€/||e‘h(s)||iﬂ(g)ds+c/||Veg(s)||éds,
0 0 0
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t

_cl/(nkeo(s) e"(s) /||eh(s)|| (Q)ds+c/||e0(s)||r ds,

0
1

—a / (S HONLO) / 1" )12, gy d5 + e / lei(s)I12, ds.
0

0

Here, on the right sides of these inequalities, ||Ve"(s)|| ° and ||e"(s)||2 are to be bounded by a constant multiple of ||e"(s)|| whereas ||Ve(')'(s)||§2

H'(Q)’

and ||e"(s)||2 are to be bounded by a constant multiple of ||e”(s)|| . Using these lower bounds in (3.12) and taking ¢ < 1/6, we obtain

H'(@)'

1O + 1", o + / 1O, g s < / (A + 142 g + 1RO ] 5 (3.13)

Now we use (3.2), (3.8) and (3.9) to bound the right side of (3.13). Under the solution regularity assumptions
ue H'(0,T; H"*(Q)), i€ L*(0,T; H'(Q)), (3.14)
we can derive from (3.13) that

1" ooo.7:220) + Nl o071 @ + 1€* | 20711 ) < € 1 (3.15)

with a constant ¢ depending on the norm of u in H'(0,T; H?*!(Q)) and the norm of ii in L>(0,T; H?(Q)). Combining (3.15) with the bounds on e(’)’
from (3.2), (3.8) and (3.9), we finally obtain the following result.

Theorem 3.2. Assume the solution of the Problem 2.1 has the regularity (3.14). Then we have the optimal order error estimate for the solution u" of
Problem 3.1:

”uh - ullLOO((),T;LZ(Q)) + ”uh - u”Loc(()‘T;Hl(g)) + ”uh - u” LZ(O,T;HI(Q)) S c hp- (316)

4. A fully discrete method
For the fully discrete scheme, in addition to the finite element method for spatial discretization, we use finite differences to approximate the time
derivatives in the equation. For simplicity, we use uniform partitions of the time interval, although all the discussions in the rest of the section can

be extended to finite difference approximations based on general non-uniform partitions. Given a (large) positive integer N, we denote by k=T /N
the time step-size, and 7, =nk, 0 <n < N, the node points. Then the time interval [0, 7] is split into sub-intervals of equal length:

[0,71=UN eyt 1.

Let w =, and rewrite (2.5)-(2.6) as

W), V)g + (y W), V)g + (1 Vw(t), Vo)g + (2 Vu(r), Vol + (1k w(t) + Ek u(t), u)rR =/(t,v) Yvev, (4.1)

u(t) =ugy+ / w(s)ds, (4.2)
0

w(0) = w. (4.3)

For fully discrete numerical method, we use the notation w"* = (w!*),, .y and ¥** = @), ., w*(-) € V" being an approximation of w(-,1,),
and u"*(-) € V" being an approximation of the solution u(-,7,). We define
hk_ hk
0 uhk — un+| Uy
iy =

We approximate (4.1) at r =1, /2 and the numerical method for (4.1)-(4.3) is:

2
(6kw2k,uh)g + (% (wi’il +whk) v )Q ( (th" +thk) Vv )Q + (% (Vusil + Vuf:k),Vuh>

Q

nK €
+ <7(w3§1 + )+ 2= @ ), v )r =ty V") VO EV, 4.9
R
=il kY whk, 4.5)
0<j<n
hk _ o h
wy" = wg, (4.6)
where
Tonk_ Lo nk o nk hk
w] _z(w0 +w*) + Z wik.
0<j<n 1<j<n—1
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By an inductive argument with an application of the Lax-Milgram lemma ([3, Section 8.3]), it can be shown that the discrete problem defined
by (4.4)-(4.6) has a unique solution. In the following, we derive an error bound for the numerical solution. We will use the V -projection operator

defined in (3.1) and express the total errors as

whk —w, = e + ey
ufl'k —u,=ey+ eZVO,
where
ey = w* —hw,,, ey = n'w, —w,,
e =u*t — Mty €y o=1"u, —u,
By (3.2),

1 . 1
lepolla + A lleyoll i) < e Nw,ll gy if w, € HPH(Q),

e ol + A lle ol 1y < €M luyllgoiqy  if 4, € HPFH(Q).

The equation (4.1) att=t,, ; is

(t0na1/2:0) g + O Wiyt /2 Vg + (1 VW, 112, VOIg + (7 Vit 2, V0)g

2
+ (nlcwn+1/2+C Ku,,H/Z,U)FR =l(tyy12:0) YVEV.

Consider the quantity

Lo @)= (0,800 + (L e, +e0.07)_+ (2 Ve

gz h nk ) )
+< (Ve +Ve), Vo Q+ —(e;‘+1+e;‘)+

2 2
By (4.5) and (4.13),

hk h Y hk hky o h n hk
(akwn U )Q+<§(wn+l +wn )’U >Q+(§(an+l

n+1

2
+<€ (Vul +Vu::k),VUh> +(E(whk +wl%) +
Q

b3 2 n+1

= (250"

= (4125 0") o+ 0 W12, + (VW41 2, VO g + (Vi1 10, VO )g + (1K 0,01 ) + E Kty 0, 0")

Then

L1 0@0") = =Ry 21 (0") = Ryyy 1o, (01,

where

hk + u'l':k), l)h>

+Ve;”),Vu”)ﬂ

gzK u i h
2 (en+l + en)’ v
g

k),Vuh)
Q

n+1

Tr

Rn+1/2,1(Uh) = (O, — W1 25 Uh)g + (7 Eppr o), Uh)g + (N VE,41 2(w), VUh)Q

+ (CPVE, 110, V") o + (16 Epyy ) (0) + Pk E g 1o (W), u”)rR ,

Y ) n
RnH/z,z(uh) = (akenW,O’ Uh)ﬂ + (5 (eni10t o) vh)g + (5 V(e

2
nK w g K u u h
+ ( 2 (en+],0 + en,O) + 2 (en+1,0 + en,O)’ v )

and for convenience, for a continuous function v(¢), we denote

Upp1 +0
Eyp1p(0) = = -

h_1 AN
Now take v = 3 <eZ’+l + en"“> in (4.14). We have

w w w

1 1 ) 1
L"‘H/2 (E(83}+1 +e:j)) = ﬁ (en+l € ’en+l +e:’)ﬂ + Z ”71/2(9

T “Ungy1/2: Un = u(t,), Unt12= U(tn+1/2)'

SR

) h h
© o+l Vo )Q+ <7V(eﬂ+170+ezvo),Vv >

>

n+1 n+1

1 ) ) 1
+ 7 ||r]l/21(1/2(e":'_*_l + en“)||12_R + 7 (§2K (e, + eZ),ew +e

Note that

w w W w —_ 1.0 2 w2
(en+l € ’en+l +en )Q - ||€n+1 ”Q - ”en ”Q

From (4.4),

n+1 n+l n)FR'

59

) 1 ) 1
wet F el + 7 In' 2V, +edllg + 7 (Ve

R

Q

u
n+1

w w
+e,). V(e +e)a

“4.7)
(4.8)

(4.9
(4.10)

(4.11)
(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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Uk e _ ko ok hk
n+l_un _E( n+1+wn )’
i.e.,
W 4wl = 2 (uhk — k)
n+l n k n+l n
Similarly,
2 2
1 e ;(n+1 )+k5r',:f+—1/2’
where
Tngl
, k
iy = 1‘["[/ w(s)ds — 5 (Wygy +w,,) ]
Ty
So
2y ",V w 2y v +2 (v 8w
Ve +e). Ve, +ea= (C (€1 ) Ve, — ) % EVE@, T8,
= 2 \% \Y 2 V(e é
=% (I en+1”sz £ Veyli,) + % (4 (€y1 T n+l/2>
Also,

(gzK(elr‘zH +ep), e:)+1 + e:))rk =
Use (4.19), (4.22) and (4.23) in (4.18) to obtain

1 , 1 1
(e 13, = lley lig) + 5 ||y1/2<e;”+l +e g+ 7 "2 Ve, +eDlig

Ln+l/2(;( +e“))_
ZL (Ile Ve, 15 =g Veully) + ||n’/2 ‘/2%1 +eDIIF,
S (e 2e 12, — e kP, ) + 5 (Ve +eb.al, )yt
Now we bound each term in =R,/ ;(t") and in =R, 5,("). As an example,

; h : h H h .
- (akwn ~ Wny1/2:0 )Q Sokw, = wppi pllallv® lla S 10w, — Wiy 2l | g1 )

then for any small number € > 0,

; h
— (0w, = 125 0") <é|ot || (Q)+c||6kw —w"Jrl/zllQ

2 2
= (e 12— ekt 2el? )+ T (EPel, +en.ss, ) .

<‘=V2K(e w1 te) 5n+l/2>
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(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

for some constant ¢ depending on é > 0. Other terms are bounded similarly. As a result, for any e > 0, there exists a constant ¢ > 0 depending on ¢

such that

1/2

Ry 1@ N2, o+ € (1000, = ol + 17 s jp @I + 10 PV, @0l

+ IS VE, 1 0@l + ' P PE, o p@)F + 166 2E, /z(”)||12—R]

<e M2, )+ (10000 = s ol + 1B 2@y ) + 1B g @I g |

and

2 1/2
LY CORT ||H1(m+c[||ake ol + 11772 o +elplig +1In'2V(el, | o + el
HIEVCE, o+ et gl + /K12, o+ el IR, + 18k el + el |

<M, )+ [0k IB + el + €21 )+ e+ €12 |-

We use (4.25) and (4.26) with v" = % ( w1 e ) and combine the inequalities with (4.24) to get

(||ef+,||§—||ef||§) (||cwn+1||g levent) + (e x'2er, 12—l ell? )

1/2 2 1/2 2 k2w Nt
B, + eI+ S I Ve + e+ 5 2 e, + eI,

<eklle®, +e“’||H1<Q) (§2V(en+l+e“)§n+l/2> (gzk(eu +e)5n+1/2)

2
ke (104, = 113+ 1 s oI ) + 1B p @I, |
w12 w
ek [10geltglh + el o+ elol g + ek o+ bl |
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Let us make the following solution regularity assumptions:
we WS ,T; HP' (@) n W>(0,T; H'(Q), (4.28)
i€ LX0,T; HP(Q), u® e L*(0,T; L*(Q)), (4.29)
where u® denotes the fourth time derivative of u. Since w = i, we have the following regularity on w:
w € L®0,T; H*1(Q) n W *(0,T; H (Q)),
we L*0,T; H'(Q)), w® e L*(0,T; LX(Q)).

By [19, Lemma 11.5],

. 3
0w, — Wyrip2llo Sck flt )“Ll(r,,.t,,H;Lz(Q))'

Thus,
2 301 3)
10010, = 1 ol <N (4.30)
By [19, Lemma 11.2], we have
4
1Bt 200 <RI i 31)
4
VBt @1 ) SR (4.32)
From (3.2), (3.8) and (3.9), we have
2 2p 2p
104yl < ¢ AP0, gy < k™ RPN, e (4.33)
and
2p
e oW g <RI s 4.34)
2 2p
e 1,1 g <€ AP0 o (4.35)
2p
e o1y PPN o s (4.36)
2p
e o g AP s 37)
Moreover,
(Ve + et )~ (P, +eat, ,2) <V, +ellalisl,, lla +12%x e, + el 185, i
<clieyy, +ellmolloy Hlme-
Thus, for an arbitrary small ¢ >0,
2 2 ) 1
- (g Ve, |+, 5”1/2) (g k(e +eb, 5;;1/2) ekllet,, +enly o + k18 ol 0 (4.38)
We use the bounds (4.30)—(4.38) for the right side of (4.27) and take e small to get
(et 13 = Nel3) + (I Vel W — e Vetlia) + (e k2, 12, ~ 202, ) + Kl +1, o
i a @
<cekllel,, + el o + kN8N, I, o +ek [llu [N 3 7 HI(Q))]
2p
tch [llulle(t o itniay F R HMQ))] (4.39)

We make a summation on (4.39) over the index n from Oton< N —1,

) 2 2 1/2 )
le, I, + 11¢ Vet I3 +11¢ k12t 12, +k2||e,+1+e“||H1(m

n
2 2 172 -1 )
<Hle I3, + 11 Vel lZ + IE k22, +cek2||e,+1+e||m(m+ck P CHAYA AP
j=

ek [l + lull? |+ e a2 + lull?

L2(0,T;L2(Q)) W3.(0,T;H (Q)) L2(0,T;HP(Q)) W le(0,T; HP+1(Q))]

which implies

n n
w w w ~ u -1
lle ,,+1||g+||en+1||,,l(m+k2)||e,+l+e 11y < (3 + e ||H1(Q))+cekz;)||e,+l+e i +ek Znaﬂ/znmm)
J= j=

4 “4) 2p 2
ek [ + lul? | +en [nunL N 1

L2(0,T;L2(Q)) W3.20(0,T;H! (Q)) W le(0,T; HF+‘(Q))]

By taking ¢ > 0 sufficiently small, we can deduce from the above inequality that

61



W. Han, C. Song, F. Wang et al. Computers and Mathematics with Applications 102 (2021) 54-64

N-1

o e U+ s, el g+ 3 Nl + €5 gy < ¢ (g3 +1legIR g ) + k™! Z 181211
4 4
+ek [”” 20720 1#0ser, H‘(ﬂ))]
2p
teh [”"”Lz(o vy T 140107, HP“(Q))] (4.40)
For the term 5"; 12 defined by (4.21), first notice that
Tnl Tntl
k s—t t —-S

/w(s)ds— 5 (W +10,) =/ [w(s)—wn+1 o, %] ds.

By the Taylor formula,
1
Wy = W(s) + W(S) (Lypy — ) + / (A =7) (s +7 (typy — ) AT (1,4 — ),
w, = w(s) + w(s) (1, — s) + / (1 =) d(s + 7 (1, — 5))dz (1, — 5)°.
Thus,
Tyt 1

8= -1" / / il = )ty = D2 = 1,) + (s +T(t, — ), — )ty — )] dr

From this representation formula and the stability of the projection operator IT" in H'!(Q), we derive the bound
Tngl
I ,,+1/2||H1(Q) ||w(S)||H1(Q)
rIl
Therefore,
5

Z 18,1221 ) S RN 0 1 o 5 (4.41)

Then, we can derive the following inequality from (4.40):
N-1
w w 4 2p
0r<n;1x lle,, I|Q+0miN ||en||H](Q)+kZ ||en+1+e ||H](Q) (k +h ) (4.42)

where the constant ¢ depends on the various norms related to the solution regularities (4.28)—(4.29), but does not depend & and k.
Finally, from (4.7) and (4.8) for the total error decompositions, (4.42) for bounds on ¢! and e, and (3.2) for bounds on (l'lhw,, — wn) and
(IT"u, —u,,), we get the optimal order error estimate.

Theorem 4.1. Assume the solution regularity (4.28) and (4.29). Then we have the following error bound for the numerical solutions of the fully discrete
scheme (4.4)—(4.6):

N-1

_ 2 hi hk _ hk 4, 42
o I =y a1 =y g+ e 3 N0 = ) + (0 = w0y g S € (K4 A57). (4.43)
=

5. Numerical example

In this section, we report numerical results on a test problem (2.5)-(2.6) of the diffusive-viscous wave equation solved by the fully discrete
numerical scheme (4.4)-(4.6). When wf”‘ and uf‘k are known for 0 <i < n, we solve the discrete problem (4.4)-(4.6) by the following procedures:

1. Replace uhk in (4.4) by (4.5), then solve (4.4) to get w +1;
2. Compute u:’i , by formula (4.5).

We use [km] for the length unit. Let Q = (0,1) X (0,1), I', = ({0} X (0,1)) U ((0,1) x {0}), I'y = {1} x(0,1), and ' =(0,1) x {1}. For different
mediums, the parameters are different. In the numerical experiment, we consider three kinds of mediums, with values of the parameters listed in
Table 1 ([29]). The source function f, the boundary conditions, and the initial conditions are chosen so that the exact solution of the test problem is

u(x, y, 1) = 1* sin(zrx) sin(zy).

For the numerical simulation, we use uniform meshes to discretize Q. In computing numerical convergence orders with respect to mesh size 4,
we fix k = 1072 for p=1, and fix k = 10~* for p = 2. The errors and numerical convergence orders at T = 1 are reported in Table 2-10. From Table 2,
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Table 1
Parameters for different mediums.
Medium y [Hz] n [km?*/s] ¢ [km/s]
Water-saturated rock 90 2x 1077 1.470
Dry sandstone 56 5.6x 1078 1.190
Oil-saturated rock 65.4 1.47x1078 1.015
Table 2
Numerical errors of " in H' norm at T = | for water-saturated rock.
h Errors for p=1 Order Errors for p=2 Order
272 8.4261e-1 - 1.7315e-1 -
273 4.3300e-1 0.96050 5.4892e-2 1.6574
274 2.1766e-1 0.99229 1.5585e-2 1.8164
273 1.0898e-1 0.99801 4.1130e-3 1.9219
276 5.4512e-2 0.99942 1.0494e-3 1.9706
Table 3
Numerical errors of w" in L? norm at T = 1 for water-saturated rock.
h Errors for p=1 Order Errors for p=2 Order
272 8.7137e-2 - 2.4716e-2 -
273 2.1128e-2 2.0441 5.2616e-3 2.2319
274 5.1337e-3 2.0411 9.3290e-4 2.4957
273 1.2599e-3 2.0267 1.4732e-4 2.6628
276 3.1235e-4 2.0121 2.1767e-5 2.7587
Table 4

Numerical errors at T = 1 with fixed 2 =1/150 and p = 2 for water-
saturated rock.

k u" in H' norm Order w" in L* norm Order
2-1 1.7812e-2 - 8.1496e-2 -
272 4.4070e-3 2.0150 2.1096e-2 1.9498
2-3 8.9430e-4 2.3010 5.2877e-3 1.9963
274 1.7563e-4 2.3482 1.3288e-3 1.9925
Table 5
Numerical errors of " in H' norm at T =1 for dry sandstone.
h Errors for p=1 Order Errors for p=2 Order
272 8.4151e-1 - 1.7408e-1 -
2-3 4.3285e-1 0.9591 5.5139e-2 1.6586
24 2.1764e-1 0.9919 1.5620e-2 1.8197
273 1.0898e-1 0.9979 4.1169e-3 1.9238
2-6 5.4511e-2 0.9994 1.0497e-3 1.9716
Table 6
Numerical errors of w" in L? norm at T = 1 for dry sandstone.
h Errors for p=1 Order Errors for p=2 Order
22 8.8094e-2 - 2.5216e-2 -
273 2.1404e-2 2.0412 5.3386e-3 2.2398
24 5.2013e-3 2.0409 9.4201e-4 2.5026
23 1.2763e-3 2.0269 1.4833e-4 2.6669
26 3.1642e-3 2.0121 2.1877e-5 2.7613
Table 7
Numerical errors at 7 =1 with fixed A =1/150 and p =2 for dry
sandstone.
k u" in H' norm Order w" in L? norm Order
2-1 1.7812e-2 - 8.1496e-2 -
22 4.4070e-3 2.0150 2.1096e-2 1.9498
273 8.9430e-4 2.3010 5.2877e-3 1.9963
24 1.7563e-4 2.3482 1.3288e-3 1.9925
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Table 8

Numerical errors of " in H' norm at T = 1 for oil-saturated rock.
h Errors for p=1 Order Errors for p=2 Order
22 8.5582e-1 - 1.6523e-1 -
2-3 4.3481e-1 0.97692 5.2656e-2 1.6498
274 2.1789%e-1 0.99679 1.5253e-2 1.7875
273 1.0901e-1 0.99914 4.0770e-3 1.9035
276 5.4516e-2 0.99971 1.0460e-3 1.9626

Table 9

Numerical errors of w” in L? norm at T = 1 for oil-saturated rock.
h Errors for p=1 Order Errors for p=2 Order
272 7.9121e-2 - 2.0916e-2 -
2-3 1.8805e-2 2.0729 4.6687e-3 2.1635
24 4.5663e-3 2.0420 8.6287e-4 2.4358
273 1.219e-3 1.9050 1.3965e-4 2.6273
276 2.7824e-4 2.1313 2.0929e-5 2.7382

Table 10

Numerical errors at T =1 with fixed = 1/150 and p =2 for oil-
saturated rock.

k u" in H' norm Order wh in L? norm Order
2-! 1.2084e-2 - 6.6869e-2 -

22 3.2733e-3 1.8843 1.7496e-2 1.9343
273 7.1354e-4 2.1977 4.4177e-3 1.9857
274 1.5897e-4 2.1662 1.1116e-3 1.9856

Table 5, and Table 8, we observe that the numerical convergence orders for the wave field 4" in H' norm are around p with p = 1,2, which is
consistent with the theoretical prediction from Theorem 4.1. Moreover, from Table 3, Table 6, and Table 9, we see that the numerical convergence
orders for w” in the L? norm are around (p + 1) with p = 1,2, which is one order higher than that from the error bound (4.43). We let p =2 and
h =1/150 for considering the convergence orders with respect to time step k. In Table 4, Table 7, and Table 10, for both errors, the convergence
orders are around 2, which supports the theoretical analysis.
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