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Abstract

We consider a model for quasistatic frictional contact between a viscoelastic body and a foundation. The material
constitutive relation is assumed to be nonlinear. The mechanical damage of the material, caused by excessive stress or
strain, is described by the damage function, the evolution of which is determined by a parabolic inclusion. The contact is
modeled with the normal compliance condition and the associated version of Coulomb’s law of dry friction. We derive
a variational formulation for the problem and prove the existence of its unique weak solution. We then study a fully
discrete scheme for the numerical solutions of the problem and obtain error estimates on the approximate solutions.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

We model and analyze the process of quasistatic contact with friction between a viscoelastic
body and a foundation, and the resulting damage caused by mechanical strain. In many engineering
applications, the forces acting on the system vary periodically and so do the strains and stresses.
This may cause the growth of microcracks which reduces the usefulness of the system. Therefore,
accurate prediction of the damage is of considerable importance for the safe and reliable operation
of mechanical equipment.

Recent models for mechanical damage derived from thermomechanical considerations can be found
in [10,11]. These papers also include numerical simulations of such problems. Mathematical analysis
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of one-dimensional problems with damage appeared in [8,9], and recently, a contact problem with
material damage has been investigated in [26]. The contact in that study was, however, modeled
with a general damped response condition, while here, we consider a similar problem but with the
normal compliance contact condition. Moreover, we also perform a numerical analysis of the model.

We consider a body made of a viscoelastic material with constitutive relation

� = A”(u̇) + G(”(u); �); (1.1)

where u denotes the displacement Held, � and ”(u) are the stress and linearized strain tensor Helds,
respectively, and � is the damage Held. The latter measures the decrease in the load-bearing capacity
of the material; when �=1 the material has its full capacity and when �=0 it is completely damaged.
A and G are nonlinear constitutive functions. Finally, the dot above a variable represents the time
derivative.

Following FrIemond and Nedjar [10,11], the evolution of the microscopic cracks which cause the
damage is governed by the diKerential inclusion

�̇ − �L� + @ K(�) � �(”(u); �); (1.2)

where � is a positive material constant, K = [0; 1];  K is the indicator function of K and @ K

represents its subdiKerential. � is a given constitutive function describing the sources of damage in
the system which results from tension or compression.

We model the contact between the viscoelastic body and the foundation with a normal compli-
ance condition and the associated Coulomb’s law of dry friction. The normal compliance contact
condition was proposed in [22] and has been used extensively since then (see, e.g., [19,20,25] and
the references therein).

The present paper is a continuation of [25]. The results obtained there deal with the existence and
uniqueness of a weak solution for a quasistatic viscoelastic problem with normal compliance, but
neither the mechanical damage to the material nor the numerical analysis were included in [25]. The
novelty of this paper is the inclusion the material damage and the numerical analysis of the model.

We provide variational analysis of the mechanical problem and show the existence of a unique
weak solution for the model. Then we perform numerical analysis of the problem and derive error
estimates for the numerical approximations based on discrete schemes. Literature on the numerical
treatment of variational inequalities is extensive (see, e.g., the monographs [12,13,18]). Of particular
relevance to this paper are the results on numerical analysis of variational inequalities in plasticity
and viscoelasticity (see, e.g., [14–16]).

The paper is organized as follows. In Section 2, we state the mechanical problem and discuss
the contact conditions. In Section 3, we introduce the notation, list the assumptions on the data and
derive the variational form of the model. Then we state the main existence and uniqueness result,
Theorem 3.1, which is proven in Section 4. The proof is based on classical results of elliptic and
parabolic variational inequalities and Banach’s Hxed point theorem. In Section 5, we analyze a fully
discrete scheme for the problem. We use the Hnite element method to discretize the domain and
a backward Euler Hnite diKerence to discretize the time derivative. We obtain error estimates for
this scheme, stated in Theorem 5.2. Finally, under appropriate regularity assumptions on the exact
solution, we obtain an optimal-order error estimate.
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2. The model

We consider a viscoelastic body which occupies a domain 	 of Rd (d = 2; 3 in applications).
The body is acted upon by time-dependent volume forces and surface tractions and may come into
frictional contact with an obstacle, the so-called foundation. We assume that the boundary of 	,
denoted by �, is Lipschitz continuous, and is partitioned into three disjoint measurable parts �1; �2

and �3 with meas(�1)¿ 0. The body is held Hxed on �1 and therefore, the displacement vanishes
there. Volume forces of density f0 act in 	 and surface tractions of density f2 are applied on �2.
We assume that volume forces and tractions vary slowly in time and, therefore, the accelerations
in the system are negligible and the process is quasistatic. A gap g exists between the potential
contact surface �3 and the foundation, measured along the outward normal. We model the contact
with the normal compliance condition and a version of Coulomb’s law of dry friction. We use
(1.1) as the constitutive law and, for the sake of simplicity, we assume a homogeneous Neumann
boundary condition for the damage Held. Then, given T ¿ 0, a classical model for this process is
the following.

Problem P. Find a displacement Held u : 	× [0; T ] → Rd, a stress Held � : 	× [0; T ] → Rd×d
s and

a damage Held � : 	 × [0; T ] → R such that

� = A”(u̇) + G(”(u); �) in 	 × (0; T ); (2.1)

�̇ − �L� + @ K(�) � �(”(u); �) in 	 × (0; T ); (2.2)

Div � + f0 = 0 in 	 × (0; T ); (2.3)

@�
@�

= 0 on � × (0; T ); (2.4)

u = 0 on �1 × (0; T ); (2.5)

�� = f2 on �2 × (0; T ); (2.6)

− �� = p�(u� − g) on �3 × (0; T ); (2.7)

|��|6p�(u� − g) on �3 × (0; T ); (2.8)

|��|¡p�(u� − g)⇒ u̇� = 0;

|��| = p�(u� − g)⇒ �� = −�u̇�; �¿0;

u(0) = u0; �(0) = �0 in 	: (2.9)

Here and below, Rd×d
s denotes the space of second-order symmetric tensors on Rd; � represents

the unit outer normal on � and @�=@� is the normal derivative of � on �. In the equilibrium
equations (2.3) “Div” denotes the divergence operator. (2.4) is the boundary condition for the damage
Held; (2.5) and (2.6) represent the displacement and traction boundary conditions, respectively. The
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functions u0 and �0 in (2.9) are prescribed and represent the initial displacements and the initial
damage Held, respectively.

We now comment on (2.1), (2.2) and the contact conditions (2.7), (2.8). In (2.1) the eKective
elastic coeQcients depend on the damage Held. Now, following FrIemond and Nedjar, � is restricted
to have values between zero and one: when � = 1 there is no damage in the material; when � = 0
the material is completely damaged; when 0¡�¡ 1 there is a partial damage and the material has
a decreased load bearing capacity. The function � in (2.2) is the source of damage and depends on
the damage Held and on the mechanical strain.

In [10,11] the damage source function was chosen as

�Fr(”(u); �) = �D

(
1 − �
�

)
− 1

2
”(u) · ”(u) + �w;

where �D and �w are two positive process parameters. We note that �Fr becomes unbounded when
� → 0, a condition which we do not allow here. Therefore, we may consider the global solutions
which we establish below as local solutions of a problem with the damage source of the type �Fr,
valid as long as 0¡�∗6�, where �∗ depends on the relationship between � and �Fr. We assume
that the material may recover from damage and cracks may close; thus, we do not impose the
restriction �̇60 which was used in [8–11], since there the damage was considered irreversible.

Equality (2.7) represents the normal compliance contact condition where u� is the normal displace-
ment, �� is the normal stress and p� is a prescribed function. When positive, u� − g represents the
penetration of the surface asperities into those of the foundation. An example of a normal compliance
function p� is

p�(r) = c�r+; (2.10)

where c� is a positive constant and r+ = max{0; r}. Formally, Signorini’s nonpenetration condition
is obtained in the limit c� → ∞.

Relations (2.8) are a version of Coulomb’s law of dry friction. Here �� denotes tangential stress,
u̇� represents the tangential velocity and p� is a prescribed nonnegative function, the so-called friction
bound. According to (2.8) the tangential shear cannot exceed the maximal frictional resistance p�(u�−
g). Then, if the strict inequality holds, the surface adheres to the foundation and is in the so-called
stick state, and when equality holds there is relative sliding, the so-called slip state. Therefore, at
each time instant the contact surface �3 is divided into three zones: the stick zone, the slip zone and
the zone of separation, in which u� ¡g and there is no contact. The boundaries of these zones are
unknown a priori and form free boundaries. The choice

p� = �p�; (2.11)

leads to the usual Coulomb’s law, and �¿0 is the coeQcient of friction (see, e.g., [7] or [24]).
Recently, a modiHed version of the Coulomb friction law was derived in [27] from thermodynamic
considerations. It consists of using the friction law (2.8) with

p� = �p�(1 − �p�)+; (2.12)

where � is a small positive material constant related to the wear and hardness of the surface.
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3. Main existence and uniqueness result

In this section, we list the assumptions imposed on the problem data, present a variational formu-
lation of the mechanical problem and state our main existence and uniqueness result.

First, we introduce the following notation. We denote by Rd×d
s the space of second-order symmetric

tensors on Rd, or equivalently, the space of symmetric matrices of order d. We deHne the inner
products and the corresponding norms on Rd and Rd×d

s by

u · C= uivi; ‖C‖ = (C · C)1=2; ∀u; C ∈ Rd;

� · � = �ij�ij; ‖�‖ = (� · �)1=2; ∀�; � ∈ Rd×d
s :

Here and throughout this paper, the indices i and j run between 1 and d; the summation convention
over repeated indices is used, and the index following a comma indicates a partial derivative. Next,
we use the following spaces:

H = {C= (vi) | vi ∈ L2(	)} = L2(	)d;

H1 = {C= (vi) | vi ∈ H 1(	)} = H 1(	)d;

H = {� = (�ij) | �ij = �ji ∈ L2(	)} = L2(	)d×d
s ;

H1 = {� ∈ H | �ij; j ∈ H}:
These are real Hilbert spaces endowed with the inner products

〈u; C〉H =
∫
	
uivi dx; 〈�; �〉H =

∫
	
�ij�ij dx;

〈u; C〉H1 = 〈u; C〉H + 〈”(u); ”(C)〉H; 〈�; �〉H1 = 〈�; �〉H + 〈Div �;Div �〉H
with the associated norms ‖ · ‖H ; ‖ · ‖H; ‖ · ‖H1 and ‖ · ‖H1 , respectively. Here ” :H1 → H and
Div:H1 → H are the deformation and divergence operators, respectively, deHned by

”(u) = (&ij(u)); &ij(u) = 1
2 (ui; j + uj; i); Div � = (�ij; j):

For an element C ∈ H1 we denote by C its trace on � and by v� =C ·� and C� =C−v�� its normal and
tangential components on the boundary. We also denote by �� and �� the normal and tangential
traces of � ∈ H1. If � is a regular function (e.g., C1) then �� = (��) · � and �� = �� − ���. The
following Green formula holds:

〈�; ”(C)〉H + 〈Div �; C〉H =
∫
�
�� · C d� ∀C ∈ H1: (3.1)

Let V be the closed subspace of H1 given by

V = {C ∈ H1 | C= 0 on �1}:
Since meas(�1)¿ 0 and � is Lipschitz, Korn’s inequality (see, e.g., [23]) holds,

‖”(C)‖H¿c‖C‖H1 ∀C ∈ V; (3.2)

where here and below c represents a positive constant which may change its value from place to
place and may depend on the input data. We deHne the inner product 〈·; ·〉V on V by

〈u; C〉V = 〈”(u); ”(C)〉H: (3.3)
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It follows from (3.2) and (3.3) that ‖ · ‖H1 and ‖ · ‖V are equivalent norms on V , thus, (V; ‖ · ‖V ) is
a real Hilbert space.

We note that the assumption that � is Lipschitz continuous is suQcient for our purposes. First, it
ensures that the outer normal � is deHned a.e. on �, and then the normal and tangential components
of various functions make sense. Second, it is suQcient for Korn’s inequality (3.2) to hold true, see,
e.g., [5,23,28] and also [21], where a detailed proof can be found.

Finally, if (X; ‖ · ‖X ) is a real Hilbert space, we use the standard notation for Lp(0; T ;X ) and
Sobolev spaces Hk(0; T ;X ); K ∈ N; 16p6∞. We also denote by C([0; T ];X ) and C1([0; T ];X )
the spaces of continuous and continuously diKerentiable functions from [0; T ] to X , with norms

‖x‖C(0; T ;X ) = max
t∈[0;T ]

‖x(t)‖X ; ‖x‖C1(0; T ;X ) = max
t∈[0;T ]

‖x(t)‖X + max
t∈[0;T ]

‖ẋ(t)‖X ;

respectively. Moreover, if X1 and X2 are real Hilbert spaces then X1 × X2 denotes the product space
endowed with the canonical inner product 〈·; ·〉X1×X2 and norm ‖ · ‖X1×X2 . For further details we refer
the reader to [1,7,17,24].

To study the mechanical problem (2.1)–(2.9) we make the following assumptions on the data.
The viscosity operator A : 	 × Rd×d

s → Rd×d
s satisHes:

(a) there exists LA ¿ 0 such that

‖A(x; ”1) −A(x; ”2)‖6LA‖”1 − ”2‖ ∀”1; ”2 ∈ Rd×d
s ; a:e: x ∈ 	;

(b) there exists m¿ 0 such that

(A(x; ”1) −A(x; ”2)) · (”1 − ”2)¿m‖”1 − ”2‖2 ∀”1; ”2 ∈ Rd×d
s ; a:e: x ∈ 	; (3.4)

(c) x �→ A(x; ”) is Lebesgue measurable on 	 ∀” ∈ Rd×d
s ,

(d) x �→ A(x; 0) ∈ H.

The elasticity operator G : 	 × Rd×d
s × R→ Rd×d

s satisHes:

(a) there exists LG ¿ 0 such that

‖G(x; ”1; �1) − G(x; ”2; �2)‖6LG(‖”1 − ”2‖ + |�1 − �2|)
∀”1; ”2 ∈ Rd×d

s ; �1; �2 ∈ R; a:e: x ∈ 	; (3.5)

(b) x �→ G(x; ”; �) is Lebesgue measurable on 	 ∀” ∈ Rd×d
s ; � ∈ R,

(c) x �→ G(x; 0; 0) ∈ H.

The damage source function � : 	 × Rd×d
s × R→ R satisHes:

(a) there exists L� ¿ 0 such that

|�(x; ”1; �1) − �(x; ”2; �2)|6L�(‖”1 − ”2‖ + |�1 − �2|)
∀”1; ”2 ∈ Rd×d

s ; �1; �2 ∈ R; a:e: x ∈ 	; (3.6)

(b) x �→ �(x; ”; �) is Lebesgue measurable on 	 ∀” ∈ Rd×d
s , � ∈ R,

(c) x �→ �(x; 0; 0) ∈ L2(	).
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The normal compliance function p� and the friction bound p�, where pr : �3 × R → R+ (r = �; �)
satisfy:

(a) there exists Lr ¿ 0 such that

|pr(x; u1) − pr(x; u2)|6Lr|u1 − u2| ∀u1; u2 ∈ R; a:e: x ∈ �3; (3.7)

(b) x �→ pr(x; u) is Lebesgue measurable on �3 ∀u ∈ R,
(c) x �→ pr(x; u) = 0 for u60, a.e. x ∈ �3.

Assumptions (3.4) on the viscosity operator are rather routine, and eKectively follow from the
linearized case. And so are the assumptions (3.5) on G. However, assumptions (3.6) on � are more
delicate. Indeed, the function �Fr, which was derived from Hrst principles, doesn’t satisfy them. The
issue is that once the damage is complete, � = 0, the mechanical system breaks down, and we have
“quenching” of the solution. Therefore, one can consider � as a truncated version of �Fr, valid as
long as 0¡�∗6�. Thus, we may consider the problem below as an approximation of the “real”
problem.

Assumptions (3.7) on p� and p� are fairly general. The main restriction is the requirement that
asymptotically the functions grow at most linearly. Clearly, the function deHned in (2.10) satisHes
this condition. We also observe that if the functions p� and p� are related by (2.11) or (2.12) and
p� satisHes condition (3.7)(a), then p� does too with L� = �L�.

The forces and tractions are assumed to satisfy

f0 ∈ C([0; T ];H); f2 ∈ C([0; T ];L2(�2)d) (3.8)

and the gap function satisHes

g ∈ L2(�3); g¿0 a:e: on �3: (3.9)

The initial data satisfy

u0 ∈ V; �0 ∈ K; (3.10)

where K represents the set of admissible damage functions deHned by

K = {- ∈ H 1(	) | - ∈ K a:e: in 	}:
Next, we deHne f : [0; T ] → V by

〈 f (t); C〉V =
∫
	
f0(t) · C dx +

∫
�2

f2(t) · C d� (3.11)

for all C ∈ V; t ∈ [0; T ]. We note that conditions (3.8) imply

f ∈ C([0; T ];V ): (3.12)

Let a : H 1(	) × H 1(	) → R be the bilinear form

a(-; /) = �
∫
	
�- ·�/ dx (3.13)

and j : V × V → R be the functional

j(C;w) =
∫
�3

(p�(v� − g)w� + p�(v� − g)|w�|) d�: (3.14)

By assumptions on p� and p�, we see that for C ∈ V; p�(v� − g); p�(v� − g) ∈ L2(�3). Thus, the
functional j(·; ·) is well deHned on V × V .
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The variational formulation of the quasistatic problem with normal compliance, friction and damage
is as follows.

Problem PV . Find a displacement Held u : [0; T ] → V , a stress Held � : [0; T ] → H and a damage
Held � : [0; T ] → H 1(	) such that

�(t) = A”(u̇(t)) + G(”(u(t)); �(t)); (3.15)

〈�(t); ”(w) − ”(u̇(t))〉H + j(u(t);w) − j(u(t); u̇(t))¿〈 f (t);w− u̇(t)〉V ∀w ∈ V (3.16)

for all t ∈ [0; T ],

�(t) ∈ K;

〈�̇(t); -− �(t)〉L2(	) + a(�(t); -− �(t))¿〈�(”(u(t)); �(t)); -− �(t)〉L2(	) ∀- ∈ K; (3.17)

for a.e. t ∈ (0; T ), and

u(0) = u0; �(0) = �0: (3.18)

This formulation is obtained by using arguments similar to those in [25,26].
Our main existence and uniqueness result, which we establish in the next section, is:

Theorem 3.1. Assume that (3:4)–(3:10) hold. Then problem PV has a unique solution {u; �; �}.
Moreover; the solution satis>es

u ∈ C1([0; T ];V ); � ∈ C([0; T ];H1); � ∈ H 1(0; T ;L2(	)) ∩ L2(0; T ;H 1(	)):

We conclude that under assumptions (3.4)–(3.10), the mechanical problem (2.1)–(2.9) has a
unique weak solution {u; �; �}. Furthermore, it follows that the problem with an unbounded damage
source function �Fr has a unique local weak solution.

Next, for numerical purposes, we formulate the problem in terms of the velocities instead of
displacements. Let

C= u̇; (3.19)

denote the velocity Held. Then

u(t) = u0 +
∫ t

0
C(s) ds ∀t ∈ [0; T ]; (3.20)

since u(0) = u0. Relations (3.15) and (3.16) can now be combined, thus,

〈A”(C(t)) + G(”(u(t)); �(t)); ”(w) − ”(C(t))〉H + j(u(t);w) − j(u(t); C(t))

¿〈 f (t);w− C(t)〉V ∀w ∈ V; t ∈ [0; T ]: (3.21)

This inequality is used in Section 5 in the numerical analysis of problem PV .
We now list the properties of the solution of PV which are needed in Section 5. Let {u; �; �} be

the solution then, for all t ∈ [0; T ], the following equalities hold:

Div �(t) + f0(t) = 0 a:e: in 	; (3.22)

�(t)� = f2(t) a:e: on �2; (3.23)

− ��(t) = p�(u�(t) − g) a:e: on �3: (3.24)
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Using assumptions (3.7)–(3.9), the proof of (3.22)–(3.24) follow from standard arguments (see,
e.g., [18]).

4. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on classical results for elliptic and parabolic variational in-
equalities and Hxed point arguments, and is similar to those used in [25,26]. It is carried out in
several steps. We assume that (3.4)–(3.10) hold and, to simplify the notation, we do not indicate
explicitly the dependence on t.

Let 
 ∈ C([0; T ];H) and 0 ∈ C([0; T ];L2(	)) be given. In the Hrst step we consider the following
auxiliary problems.

Problem P1
/ . Find a displacement Held u/ : [0; T ] → V and a stress Held �/: [0; T ] → H such that

�/ = A”(u̇/) + 
; (4.1)

〈�/; ”(w) − ”(u̇/)〉H + j(u/;w) − j(u/; u̇/)¿〈 f ;w− u̇/〉V ∀w ∈ V (4.2)

for all t ∈ [0; T ], and

u/(0) = u0: (4.3)

Problem P2
0 . Find a damage Held �0 : [0; T ] → H 1(	) such that

�0 ∈ K; 〈�̇0; -− �0〉L2(	) + a(�0; -− �0)¿〈0; -− �0〉L2(	) ∀- ∈ K (4.4)

for a.e. t ∈ (0; T ), and

�0(0) = �0: (4.5)

To solve problem P1
/ we need the following result.

Proposition 4.1. Let g ∈ C([0; T ];V ). Then there exists a function C/g ∈ C([0; T ];V ) such that for
all t ∈ [0; T ];

〈A”(C/g); ”(w) − ”(C/g)〉H + 〈
; ”(w) − ”(C/g)〉H + j(g;w) − j(g; C/g)¿〈 f ;w− C/g〉V ∀w ∈ V:

(4.6)

Proof. It follows from classical results for elliptic variational inequalities (see, e.g., [3]) that there
exists a unique function C/g : [0; T ] → V which solves (4.6). To establish the regularity claim C/g ∈
C([0; T ];V ), let t1; t2 ∈ [0; T ] and denote by 
i = 
(ti); gi = g(ti); fi = f (ti) and Ci = C/g(ti); i = 1; 2.
Using algebraic manipulations we obtain from (4.6) that

〈A”(C1) −A”(C2); ”(C1) − ”(C2)〉H6〈 f1 − f2; C1 − C2〉V
+ 〈
1 − 
2; ”(C2) − ”(C1)〉H + j(g1; C2) − j(g1; C1) + j(g2; C1) − j(g2; C2): (4.7)

Moreover, it follows from (3.4) and (3.3) that

〈A”(C1) −A”(C2); ”(C1) − ”(C2)〉H¿m‖C1 − C2‖2
V (4.8)
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and (3.7) implies

j(g1; C2) − j(g1; C1) + j(g2; C1) − j(g2; C2)6c‖g1 − g2‖V‖C1 − C2‖V : (4.9)

Using now (4.7)–(4.9) we obtain

‖C1 − C2‖V6c(‖ f1 − f2‖V + ‖
1 − 
2‖H + ‖g1 − g2‖V ): (4.10)

The fact that C/g ∈ C([0; T ];V ) follows from the inequality (4.10) and the regularity assumptions
on f ; 
 and g.

Now, we prove the following existence and uniqueness result for problem P1
/ .

Proposition 4.2. There exists a unique solution of problem P1
/ such that u/ ∈ C1([0; T ];V ); �/ ∈

C([0; T ];H1).

Proof. We consider the operator 1/ :C([0; T ];V ) → C([0; T ];V ) deHned by

1/g(t) = u0 +
∫ t

0
C/g(s) ds ∀g ∈ C([0; T ];V ); t ∈ [0; T ]; (4.11)

where C/g is the solution of (4.6). We show that this operator has a unique Hxed point g/ ∈
C([0; T ];V ). To this end, let g1; g2 ∈ C([0; T ];V ) and denote by Ci = C/gi ; i = 1; 2, the corresponding
solutions of (4.6). Using (4.11) we obtain

‖1/g1(t) − 1/g2(t)‖V6c
∫ t

0
‖C1(s) − C2(s)‖V ds ∀t ∈ [0; T ]: (4.12)

Using estimates similar to those in the proof of Proposition 4.1 (see (4.10)) we have

‖C1(s) − C2(s)‖V6c‖g1(s) − g2(s)‖V ∀s ∈ [0; T ]

and, taking into account (4.12), it follows that

‖1/g1(t) − 1/g2(t)‖V6c
∫ t

0
‖g1(s) − g2(s)‖V ds ∀t ∈ [0; T ]: (4.13)

Reiterating this inequality n times we obtain

‖1n
/g1 − 1n

/g2‖C([0; T ];V )6
cn

n!
‖g1 − g2‖C([0; T ];V ):

This shows that for n large enough the operator 1n
/ is a contraction in C([0; T ]; V ). Thus, there

exists a unique element g/ ∈ C([0; T ]; V ) such that 1n
/g/ = g/ and g/ is also the unique Hxed point

of 1/.
Next, let C/ ∈ C([0; T ];V ); u/ ∈ C1([0; T ];V ) and �/ ∈ C([0; T ];H) be given by

C/ = C/g/ ; (4.14)

u/(t) = u0 +
∫ t

0
C/(s) ds ∀t ∈ [0; T ]; (4.15)

�/ = A”(C/) + 
: (4.16)
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Clearly, {u/; �/} satisHes (4.1) and (4.3). Moreover, by (4.15), (4.14) and (4.11) it follows that
u/ = g/ and u̇/ = C/. Therefore, if we let g = g/ in (4.6) we obtain (4.2). Choosing w= u̇/ ±’ with
’ ∈ C∞

0 (	)d in (4.2) we get

〈�/; ”(’)〉H = 〈 f ;’〉V ∀’ ∈ C∞
0 (	)d on [0; T ]

and using (3.11) we Hnd

Div �/ + f0 = 0 on [0; T ]: (4.17)

Now, assumption (3.8) and Eq. (4.17) imply that � ∈ C([0; T ];H1).
This establishes the existence part in Proposition 4.2. The uniqueness part follows directly from

(4.1)–(4.3), using (3.4), (3.7) and a Gronwall-type inequality.

We prove next the unique solvability of the auxiliary problem P2
0 .

Proposition 4.3. There exists a unique solution for problem P2
0 ; and

�0 ∈ H 1(0; T ;L2(	)) ∩ L2(0; T ;H 1(	)):

Proof. It follows from the coercivity of the form a deHned by (3.13) and standard results for
parabolic variational inequalities (see, e.g., [2, p. 124]).

As a consequence of Propositions 4.2 and 4.3, and assumptions (3.5) and (3.6), we may deHne
an operator 1 :C([0; T ];H× L2(	)) → C([0; T ];H× L2(	)) by

1(
; 0) = (G(”(u/); �0); �(”(u/); �0)) (4.18)

for all (
; 0) ∈ C([0; T ];H× L2(	)).

Proposition 4.4. The operator 1 has a unique >xed point (
∗; 0 ∗) ∈ C([0; T ];H× L2(	)).

Proof. Let (
1; 01); (
2; 02) ∈ C([0; T ];H× L2(	)). Using (4.18), (3.5) and (3.6) we deduce that

‖1(
1; 01)(t) − 1(
2; 02)(t)‖H×L2(	)6c(‖u/1 (t) − u/2 (t)‖V + ‖�01 (t) − �02 (t)‖L2(	)) (4.19)

for all t ∈ [0; T ]. It follows from (4.15) that

‖u/1 (t) − u/2 (t)‖V6c
∫ t

0
‖C/1 (s) − C/2 (s)‖V ds ∀t ∈ [0; T ]: (4.20)

Using (4.1), (4.2) and estimates similar to those in the proof of Proposition 4.1 (see (4.10)) we
Hnd

‖C/1 (s) − C/2 (s)‖V6c(‖
1(s) − 
2(s)‖H + ‖u/1 (s) − u/2 (s)‖V ) ∀s ∈ [0; T ]: (4.21)

Combining (4.20) and (4.21), and using a Gronwall-type inequality we have

‖u/1 (t) − u/2 (t)‖V6c
∫ t

0
‖
1(s) − 
2(s)‖H ds ∀t ∈ [0; T ]: (4.22)

On the other hand, (4.4), (4.5) imply that

‖�01 (t) − �02 (t)‖L2(	)6c
∫ t

0
‖01(s) − 02(s)‖L2(	) ds ∀t ∈ [0; T ]: (4.23)
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Using now (4.19), (4.22) and (4.23) we Hnd

‖1(
1; 01)(t) − 1(
2; 02)(t)‖H×L2(	)6c
∫ t

0
‖(
1; 01)(s) − (
2; 02)(s)‖H×L2(	) ds ∀t ∈ [0; T ]:

(4.24)

Proposition 4.4 follows now from (4.24) and the Banach Hxed-point theorem.

We have now all the ingredients to prove Theorem 3.1.

Proof of Theorem 3.1
Existence: Let {u/∗ ; �/∗} be the solution of (4.1)–(4.3) for 
 = 
∗ and let �0 ∗ be the solution

of (4.4), (4.5) for 0 = 0 ∗. Since 
∗ = G(”(u/∗); �0∗) and 0 ∗ = �(”(u/∗); �0∗), it is straightforward to
see that {u/∗ ; �/∗ ; �0 ∗} is a solution of problem (3.15)–(3.18) such that u/∗ ∈ C1([0; T ];V ); �/∗ ∈
C([0; T ];H1) and �0 ∗ ∈ H 1(0; T ;L2(	)) ∩ L2(0; T ;H 1(	)).
Uniqueness: Let {u/∗ ; �/∗ ; �/∗} be the solution of (3.15)–(3.18) obtained above and let {u; �; �}

be another solution of the problem such that u ∈ C1([0; T ];V ); � ∈ C([0; T ];H1) and � ∈
H 1(0; T ;L2(	)) ∩ L2(0; T ;H 1(	)). We denote by 
 ∈ C([0; T ];H) and 0 ∈ C([0; T ];L2(	)) the
functions


= G(”(u); �); 0 = �(”(u); �): (4.25)

Now, (3.15), (3.16) and (3.18) imply that {u; �} is a solution of the variational problem P1
/ . Us-

ing Proposition 4.2 it follows that this problem has a unique solution u/ ∈ C1([0; T ];V ); � ∈
C([0; T ];H1) and so we conclude that

u = u/; � = �/: (4.26)

Next, (3.17), (3.18) and a similar argument yield

� = �0: (4.27)

Using now (4.18), (4.26), (4.27) and (4.25) we obtain 1(
; 0) = (
; 0) and by the uniqueness of the
Hxed point of the operator 1 we deduce


= 
∗; 0 = 0 ∗: (4.28)

The uniqueness of the solution is now a consequence of (4.26)–(4.28).

5. Discrete approximation

We introduce and analyze a fully discrete approximation scheme for the problem. We discretize
both the space and time variables. Let V h ⊂V be a Hnite-dimensional space and Kh ⊂K be a
nonempty, Hnite-dimensional closed convex set. We discuss below how to construct them. In addition,
we introduce a uniform partition of the time interval [0; T ] with the step-size k =T=N and the nodes
tn = nk; n= 0; 1; : : : ; N . We use the notation zn = z(tn) for a continuous function z(t). For a sequence
{zn}N

n=0 we denote by �zn = (zn − zn−1)=k the divided diKerence. In this section, no summation is
implied over the repeated index n, and the generic constant c does not depend on k; h or n.
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Keeping in mind (3.21), (3.17) and (3.18), we introduce the following fully discretized approxi-
mation of problem PV .

Problem Phk
V . Find uhk = {uhkn }N

n=0 ⊂V h and �hk = {�hk
n }N

n=0 ⊂Kh such that

〈A”(Chkn ); ”(wh) − ”(Chkn )〉H + j(uhkn−1;w
h) − j(uhkn−1; Chkn )

¿〈 fn;wh − Chkn 〉V − 〈G(”(uhkn−1); �hk
n−1); ”(wh) − ”(Chkn )〉H ∀wh ∈ V h; (5.1)

〈��hk
n ; -h − �hk

n 〉L2(	) + a(�hk
n ; -h − �hk

n )¿〈�(”(uhkn−1); �hk
n−1); -h − �hk

n 〉L2(	) ∀-h ∈ Kh (5.2)

for n = 1; : : : ; N , and

uhk0 = uh0 ; �hk
0 = �h

0: (5.3)

Here uh0 ∈ V h and �h
0 ∈ Kh are appropriate approximations of u0 and �0, and {uhkn }N

n=0 and {Chkn }N
n=0

are related by

Chkn = �uhkn (5.4)

and

uhkn = uh0 + k
n∑

j=1

Chkj : (5.5)

A mathematical induction argument shows that the fully discrete approximation problem admits a
unique solution.

We turn now to obtain a bound on the errors {Cn − Chkn } and {�n − �hk
n }. To this end, we make

the following assumptions on the regularity of the solution {u; �; �}, for an integer l¿1:

u0 ∈ Hl+1(	)d; �� ∈ C([0; T ];L2(�)d); (5.6)

C ∈ W 1;1(0; T ;V ) ∩ C([0; T ];Hl+1(	)d); C� ∈ C([0; T ];Hl+1(�3)d); (5.7)

� ∈ C([0; T ];Hl+1(	)) ∩ H 2(0; T ;L2(	)); �̇ ∈ L2(0; T ;Hl(	)): (5.8)

It is not diQcult to see that �̇; �(”(u); �);L� ∈ C([0; T ];L2(	)). We remark that under these as-
sumptions inequality (3.17) holds for all t ∈ [0; T ]. Next, we let w = Chkn in (3.21) at t = tn to
obtain

〈A”(Cn) + G(”(un); �n); ”(Chkn ) − ”(Cn)〉H + j(un; Chkn ) − j(un; Cn)¿〈 fn; Chkn − Cn〉V :
We add this inequality to (5.1) with wh = wh

n ∈ V h. After a rearrangement, we obtain

〈A”(Cn) −A”(Chkn ); ”(Cn) − ”(Chkn )〉H
6〈A”(Cn) −A”(Chkn ); ”(Cn − wh

n)〉H
−〈G(”(un); �n) − G(”(uhkn−1); �hk

n−1); ”(Cn − Chkn ) − ”(Cn − wh
n)〉H

+Rn(wh
n; Cn) + J (un; uhkn−1; Chkn ;wh

n): (5.9)
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Here, the term Rn(wh
n; Cn) is deHned as

Rn(wh
n; Cn) = 〈�n; ”(wh

n) − ”(Cn)〉H + j(un;wh
n) − j(un; Cn) − 〈 fn;wh

n − Cn〉V :
Using relations (3.22)–(3.24) and the boundary condition wh

n − Cn = 0 on �1, we have

Rn(wh
n; Cn) =

∫
�3

[(�n)� · ((wh
n)� − (Cn)�) + p�((un)� − g)(|(wh

n)�| − |(Cn)�|)] d�:

Thus, we obtain the estimate

|Rn(wh
n; Cn)|6c‖(wh

n)� − (Cn)�‖L2(�3)d ; (5.10)

where the constant c depends on the solution. The term J (un; uhkn−1; Chkn ;wh
n) is deHned as

J (un; uhkn−1; Chkn ;wh
n) = j(un; Chkn ) − j(un;wh

n) + j(uhkn−1;w
h
n) − j(uhkn−1; Chkn ):

Using (3.14) and (3.7) we get

J (un; uhkn−1; Chkn ;wh
n)6c‖un − uhkn−1‖V (‖Cn − Chkn ‖V + ‖Cn − wh

n‖V ): (5.11)

By using assumptions (3.4) and (3.5), we Hnd from (5.9) and (5.11) that

‖Cn − Chkn ‖2
V 6 c{‖Cn − Chkn ‖V‖Cn − wh

n‖V

+(‖un − uhkn−1‖V + ‖�n − �hk
n−1‖L2(	))(‖Cn − Chkn ‖V + ‖Cn − wh

n‖V ) + |Rn(wh
n; Cn)|}:

(5.12)

We then obtain

‖Cn − Chkn ‖2
V6c{‖Cn − wh

n‖2
V + ‖un − uhkn−1‖2

V + ‖�n − �hk
n−1‖2

L2(	) + |Rn(wh
n; Cn)|}: (5.13)

We estimate the term ‖un − uhkn−1‖V . Recall that W 1;1(0; T ;V )⊂C([0; T ];V ) and

‖C‖C([0; T ];V )6c‖C‖W 1; 1(0; T ;V ) ∀C ∈ W 1;1(0; T ;V ):

Since

un − uhkn−1 = u0 +
∫ tn

0
C(s) ds− uh0 − k

n−1∑
j=1

Chkj

= k
n−1∑
j=1

(Cj − Chkj ) + u0 − uh0 +
n−1∑
j=1

(∫ tj

tj−1

C(s) ds− Cjk
)

+
∫ tn

tn−1

C(s) ds;

∥∥∥∥∥∥
n−1∑
j=1

(
Cjk −

∫ tj

tj−1

C(s) ds

)∥∥∥∥∥∥
V

=

∥∥∥∥∥∥
n−1∑
j=1

∫ tj

tj−1

(Cj − C(s)) ds

∥∥∥∥∥∥
V

=

∥∥∥∥∥∥
n−1∑
j=1

∫ tj

tj−1

∫ tj

s
Ċ(�) d� ds

∥∥∥∥∥∥
V

6
n−1∑
j=1

∫ tj

tj−1

∫ tj

s
‖Ċ(�)‖V d� ds6ck‖Ċ‖L1(0; T ;V )

and ∥∥∥∥∥
∫ tn

tn−1

C(s) ds

∥∥∥∥∥
2

V

6

(∫ tn

tn−1

‖C(s)‖V ds

)2

6k2‖C‖2
C([0; T ];V );
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we have

‖un − uhkn−1‖V6k
n−1∑
j=1

‖Cj − Chkj ‖V + ‖u0 − uh0‖V + ck‖C‖W 1; 1(0; T ;V ):

Now, 
k

n−1∑
j=1

‖Cj − Chkj ‖V




2

6ck
n−1∑
j=1

‖Cj − Chkj ‖2
V ;

thus,

‖un − uhkn−1‖2
V6c


k

n−1∑
j=1

‖Cj − Chkj ‖2
V + ‖u0 − uh0‖2

V + k2‖C‖2
W 1; 1(0; T ;V )


 : (5.14)

Similarly, we have

‖un − uhkn ‖2
V6c


k

n∑
j=1

‖Cj − Chkj ‖2
V + ‖u0 − uh0‖2

V


 : (5.15)

It follows from (5.8) that �̇ ∈ C([0; T ];L1(	)), therefore,

‖�n − �hk
n−1‖L2(	)6‖�n−1 − �hk

n−1‖L2(	) + k‖�̇‖C([0; T ];L1(	)): (5.16)

We combine (5.13)–(5.16) and obtain

‖Cn − Chkn ‖2
V 6 c


‖Cn − wh

n‖2
V + ‖u0 − uh0‖2

V + k2‖C‖2
W 1; 1(0; T ;V )

+ k2‖�̇‖2
C([0; T ];L1(	)) + |Rn(wh

n; Cn)|

+ k
n∑

j=1

‖Cj − Chkj ‖2
V + ‖�n−1 − �hk

n−1‖2
L2(	)


 : (5.17)

We turn to estimate ‖�n − �hk
n ‖L2(	). We choose - = �hk

n in (3.17) at t = tn:

〈�̇n; �
hk
n − �n〉L2(	) + a(�n; �hk

n − �n)¿〈�(”(un); �n); �hk
n − �n〉L2(	):

Adding this inequality to (5.2), with -h = -h
n ∈ Kh, yields

〈�(�n − �hk
n ); �n − �hk

n 〉L2(	) + a(�n − �hk
n ; �n − �hk

n )

6〈��n − �̇n; �n − �hk
n 〉L2(	) + 〈�(�n − �hk

n ); �n − -h
n〉L2(	)

+ a(�n − �hk
n ; �n − -h

n) − 〈��n; �n − -h
n〉L2(	) − a(�n; �n − -h

n)

+ 〈�(”(un); �n); �n − -h
n〉L2(	) + 〈�(”(un); �n) − �(”(uhkn−1); �hk

n−1); -h
n − �hk

n 〉L2(	): (5.18)

We estimate each term on the right-hand side. For the term

〈�(�n − �hk
n ); �n − �hk

n 〉L2(	) =
1
k

(‖�n − �hk
n ‖2

L2(	) − 〈�n − �hk
n ; �n−1 − �hk

n−1〉L2(	));
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we have

〈�(�n − �hk
n ); �n − �hk

n 〉L2(	)¿
1

2k
(‖�n − �hk

n ‖2
L2(	) − ‖�n−1 − �hk

n−1‖2
L2(	)): (5.19)

We use (5.19), replace n by j in (5.18) and then sum over j = 1; : : : ; n to obtain

‖�n − �hk
n ‖2

L2(	) − ‖�0 − �hk
0 ‖2

L2(	) + k
n∑

j=1

a(�j − �hk
j ; �j − �hk

j )

6k
n∑

j=1

〈��j − �̇j; �j − �hk
j 〉L2(	) + 〈�n − �hk

n ; �n − -h
n〉L2(	)

−
n−1∑
j=1

〈�j − �hk
j ; (�j+1 − -h

j+1) − (�j − -h
j )〉L2(	) − 〈�0 − �hk

0 ; �1 − -h
1〉L2(	)

+ k
n∑

j=1

a(�j − �hk
j ; �j − -h

j )

+ k
n∑

j=1

[〈�(”(uj); �j); �j − -h
j 〉L2(	) − 〈��j; �j − -h

j 〉L2(	) − a(�j; �j − -h
j )]

+ k
n∑

j=1

〈�(”(uj); �j) − �(”(uhkj−1); �hk
j−1); -h

j − �hk
j 〉L2(	):

Then,

‖�n − �hk
n ‖2

L2(	) + k
n∑

j=1

‖�(�j − �hk
j )‖2

L2(	)

6c


‖�0 − �h

0‖2
L2(	) + k

n∑
j=1

‖��j − �̇j‖L2(	)‖�j − �hk
j ‖L2(	)

+ ‖�n − �hk
n ‖L2(	)‖�n − -h

n‖L2(	) + ‖�0 − �hk
0 ‖L2(	)‖�1 − -h

1‖L2(	)

+ k
n−1∑
j=1

‖�j − �hk
j ‖L2(	)‖(�j+1 − -h

j+1) − (�j − -h
j )‖L2(	)

+ k
n∑

j=1

‖�(�j − �hk
j )‖L2(	)‖�(�j − -h

j )‖L2(	)

+ k
n∑

j=1

‖�(”(uj); �j) − ��j + �L�j‖L2(	)‖�j − -h
j‖L2(	)

+ k
n∑

j=1

(‖uj − uhkj−1‖L2(	) + ‖�j − �hk
j ‖L2(	)) (‖�j − �hk

j ‖L2(	) + ‖�j − -h
j‖L2(	))


 :
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Using (5.14) and (5.16) we obtain

‖�n − �hk
n ‖2

L2(	) + k
n∑

j=1

‖�(�j − �hk
j )‖2

L2(	)

6c


‖�0 − �h

0‖2
L2(	) + ‖�1 − -h

1‖2
L2(	) + ‖u0 − uh0‖2

V

+ k2(‖C‖2
W 1; 1(0; T ;V ) + ‖�̇‖2

C([0; T ];L1(	))) + k
n∑

j=1

‖��j − �̇j‖2
L2(	)

+‖�n − -h
n‖2

L2(	) + k
n∑

j=1

‖�(”(uj); �j) − ��j + �L�j‖L2(	)‖�j − -h
j‖L2(	)

+ k
n∑

j=1

‖�(�j − -h
j )‖2

L2(	) + k−1
n∑

j=1

‖(�j+1 − -h
j+1) − (�j − -h

j )‖2
L2(	)

+ k
n∑

j=1

‖�j − �hk
j ‖2

L2(	) + k
n−1∑
j=1

‖Cj − Chkj ‖2
V


 : (5.20)

Now, (5.17) and (5.20) imply

‖Cn − Chkn ‖2
V + ‖�n − �hk

n ‖2
L2(	) + k

n∑
j=1

‖�(�j − �hk
j )‖2

L2(	)

6c


‖�0 − �h

0‖2
L2(	) + ‖�1 − -h

1‖2
L2(	) + ‖u0 − uh0‖2

V

+ k2(‖C‖2
W 1; 1(0; T ;V ) + ‖�̇‖2

C([0; T ];L1(	))) + k
n∑

j=1

‖��j − �̇j‖2
L2(	)

+‖Cn − wh
n‖2

V + ‖�n − -h
n‖2

L2(	)

+ k
n∑

j=1

‖�(”(uj); �j) − ��j + �L�j‖L2(	)‖�j − -h
j‖L2(	)

+ k
n∑

j=1

‖�(�j − -h
j )‖2

L2(	) + k−1
n−1∑
j=1

‖(�j+1 − -h
j+1) − (�j − -h

j )‖2
L2(	)

+ |Rn(wh
n; Cn)| + k

n∑
j=1

‖�j − �hk
j ‖2

L2(	) + k
n∑

j=1

‖Cj − Chkj ‖2
V


 : (5.21)

To proceed, we need the following discrete version of the Gronwall inequality.
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Proposition 5.1. Assume that {gn}N
n=1 and {en}N

n=1 are two sequences of nonnegative numbers; sat-
isfying

en6cgn + ck
n∑

j=1

ej:

Then;

en6c


gn + k

n∑
j=1

gj


 ; n = 1; : : : ; N:

Moreover;

max
16n6N

en6c max
16n6N

gn:

Proof. Let En = k
∑n

j=1 ej. Then,

En − En−1 = ken6ckgn + ckEn

and hence (1 − ck)En − En−16ckgn, which we rewrite as

(1 − ck)nEn − (1 − ck)n−1En−16ck(1 − ck)n−1gn:

By an induction argument we Hnd

(1 − ck)nEn6ck
n∑

j=1

(1 − ck)j−1gj:

Therefore, En6ck
∑n

j=1(1 − ck)j−n−1gj. Now, for k suQciently small, 1 − ck¿e−2ck and thus, for
j6n and n6N ,

(1 − ck)j−n−16e2ck(n+1−j)6e2ckN6c:

Hence, En6ck
∑n

j=1 gj. Then, the inequality en6cgn + cEn completes the proof.

Applying Proposition 5.1 to (5.21) yields

max
n

(‖Cn − Chkn ‖2
V + ‖�n − �hk

n ‖2
L2(	)) + k

N∑
j=1

‖�(�j − �hk
j )‖2

L2(	)

6c


‖�0 − �h

0‖2
L2(	) + ‖�1 − -h

1‖2
L2(	) + ‖u0 − uh0‖2

V + k2(‖C‖2
W 1; 1(0; T ;V ) + ‖�̇‖2

C([0; T ];L1(	)))

+ k
N∑

j=1

‖��j − �̇j‖2
L2(	) + max

n
[‖Cn − wh

n‖2
V + |Rn(wh

n; Cn)|]

+ max
n


‖�n − -h

n‖2
L2(	) + k

n∑
j=1

‖�(�j − -h
j )‖2

L2(	)
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+ k−1
n−1∑
j=1

‖(�j+1 − -h
j+1) − (�j − -h

j )‖2
L2(	)

+ k
n∑

j=1

‖�(”(uj); �j) − ��j + �L�j‖L2(	)‖�j − -h
j‖L2(	)




 (5.22)

for each wh
n ∈ V h; -h

n ∈ Kh; n = 0; 1; : : : ; N .
We use the Hnite element method to construct the sets V h and Kh. We Hrst introduce a Hnite

element space to approximate H 1(	) (see, e.g., [4] for detail). For the sake of simplicity, we assume
that 	 is a polygon. Let Th be a regular Hnite element partition of 	 in such a way that if a side
of an element lies on the boundary, the side belongs entirely to one of the subsets �1; �2 and �3. As
is customary, the symbol h denotes the maximal diameter of the elements. We deHne X h ⊂H 1(	)
to be the Hnite element space consisting of piecewise polynomials of degree less than or equal to l,
corresponding to the partition Th. Then, we use

V h = (X h)d ∩ V and Kh = X h ∩K;

to approximate V and K. We note that the polynomial degrees for the functions in V h and Kh

do not have to be equal. The argument here can be easily extended to the case where diKerent
polynomial degrees are used for V h and Kh. Next, we introduce the Hnite element interpolation
operators <h. When C(t) ∈ C( V	), we use <hC(t) to denote the standard Hnite element interpolant
of C(t) (cf. [4]); while if C(t) �∈ C( V	), we use <hC(t) to denote ClIement’s interpolant introduced in
[6]. Also, we use the same symbol <h for the interpolation of C(t) on �3 and for the interpolation
of �(t) onto Kh. It can be veriHed that �(t) ∈ K implies <h�(t) ∈ Kh and (<h�)t = <h�̇. Under
the regularity conditions (5.6)–(5.8), we have the following interpolation error estimates:

‖u0 −<hu0‖V6chl|u0|Hl+1(	)d ; (5.23)

‖�0 −<h�0‖L2(	)6chl|�0|Hl(	) (5.24)

and for all t ∈ [0; T ],

‖C(t) −<hC(t)‖V6chl|C(t)|Hl+1(	)d ; (5.25)

‖C�(t) −<hC�(t)‖L2(�3)d6chl+1|C�(t)|Hl+1(�3)d ; (5.26)

‖�̇(t) −<h�̇(t)‖L2(	)6chl|�̇(t)|Hl(	); (5.27)

‖�(t) −<h�(t)‖L2(	)6chl+1|�(t)|Hl+1(	); (5.28)

‖�(t) −<h�(t)‖H 1(	)6chl|�(t)|Hl+1(	): (5.29)

Now, we choose the initial values to be

uh0 = <hu0; �h
0 = <h�0: (5.30)
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Next, we choose wh
n = <hCn; -h

n = <h�n; n = 1; : : : ; N in (5.22). We use the regularity of solutions
(5.6)–(5.8) to estimate terms in inequality (5.22). We write

��j − �̇j =
1
k

∫ tj

tj−1

(�̇(t) − �̇(tj)) dt =
1
k

∫ tj

tj−1

∫ t

tj

W�(s) ds dt:

Then, it is easy to see that

k
N∑

j=1

‖��j − �̇j‖2
L2(	)6k2‖ W�‖2

L2(0; T ;L2(	)):

With -h
j = <h�(tj), we have

(�j+1 − -h
j+1) − (�j − -h

j ) = (�j+1 − �j) −<h(�j+1 − �j) = k(��j+1 −<h��j+1):

Now, ��j+1 = 1
k

∫ tj+1

tj
�̇(t) dt, and so

‖��j+1‖2
Hl(	)6

1
k

∫ tj+1

tj
‖�̇(t)‖2

Hl(	) dt:

From the error estimate (5.27) we infer that

‖(�j+1 − -h
j+1) − (�j − -h

j )‖2
L2(	)6ckh2l

∫ tj+1

tj
‖�̇(t)‖2

Hl(	) dt:

Therefore,

k−1
n−1∑
j=1

‖(�j+1 − -h
j+1) − (�j − -h

j )‖2
L2(	)6ch2l‖�̇‖2

L2(0; T ;Hl(	)):

The other terms on the right-hand side of (5.22) can be estimated directly using the interpolation
error estimates (5.23)–(5.29).

Finally, collecting all the estimates above, we obtain the following error estimate from (5.22):

max
n

(‖Cn − Chkn ‖2
V + ‖�n − �hk

n ‖2
L2(	)) + k

N∑
j=1

‖�(�j − �hk
j )‖2

L2(	)6c(k2 + hmin{2l; l+1});

which, using (5.15), can be replaced by

max
n

(‖un − uhkn ‖2
V + ‖�un − �uhkn ‖2

V + ‖�n − �hk
n ‖2

L2(	)) + k
N∑

j=1

‖�(�j − �hk
j )‖2

L2(	)

6c(k2 + hmin{2l; l+1}):

This yields the following estimate. But Hrst, we note that the Hnite-dimensional sets V h and Kh are
constructed from piecewise polynomials of degree less than or equal to l, corresponding to a regular
Hnite element triangulation of the domain. Also, we use (5.30) for the discrete initial values.
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Then, we have the following result for the discrete scheme Phk
V .

Theorem 5.2. The approximate problem Phk
V has a unique solution. Under assumptions (5:6)–(5:8)

the following error estimate holds:

max
n

(‖un − uhkn ‖V + ‖�un − �uhkn ‖V + ‖�n − �hk
n ‖L2(	)) + k


 N∑

j=1

‖�(�j − �hk
j )‖2

L2(	)




1=2

6c(k + hmin{l; (l+1)=2}): (5.31)

The constant c depends on the norms ‖u0‖Hl+1(	)d ; ‖�(”(u); �) − �̇ + �L�‖C([0; T ];L2(	)); ‖C‖W 1; 1(0; T ;V ),
‖C‖C([0; T ];Hl+1(	)d); ‖C‖C([0; T ];Hl+1(�3)d); ‖�‖C([0; T ];Hl+1(	)); ‖�‖H 2(0; T ;L2(	)) and ‖�̇‖L2(0; T ;Hl(	)).

In particular, when l = 1 and (5.6)–(5.8) hold we have the optimal-order error estimate

max
n

(‖un − uhkn ‖V + ‖�un − �uhkn ‖V + ‖�n − �hk
n ‖L2(	)) + k


 N∑

j=1

‖�(�j − �hk
j )‖2

L2(	)




1=2

6c(k + h):

References

[1] R.S. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] V. Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, 1984.
[3] H. Brezis, Equations et inIequations non linIeaires dans les espaces vectoriels en dualitIe, Ann. Inst. Fourier 18 (1968)

115–175.
[4] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[5] P.G. Ciarlet, Mathematical Elasticity, North-Holland, Amsterdam, 1988.
[6] P. ClIement, Approximation by Hnite element functions using local regularization, RAIRO Anal. Numer. 9R2 (1975)

77–84.
[7] G. Duvaut, J.L. Lions, Les InIequations en MIecanique et en Physique, Dunod, Paris, 1972.
[8] M. FrIemond, K.L. Kuttler, B. Nedjar, M. Shillor, One-dimensional models of damage, Adv. Math. Appl. 8 (1998)

541–570.
[9] M. FrIemond, K.L. Kuttler, M. Shillor, Existence and uniqueness of solutions for a one-dimensional damage model,

JMMA 229 (1999) 271–294.
[10] M. FrIemond, B. Nedjar, Damage in concrete: the unilateral phenomenon, Nuclear Engng. Design 156 (1995) 323–

335.
[11] M. FrIemond, B. Nedjar, Damage, gradient of damage and principle of virtual work, Internat. J. Solids Struct.

33 (1996) 1083–1103.
[12] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, New York, 1984.
[13] R. Glowinski, J.-L. Lions, R. TrIemoliYeres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam,

1981.
[14] W. Han, B.D. Reddy, Computational plasticity: the variational basis and numerical analysis, Comput. Mech. Adv. 2

(1995) 283–400.
[15] W. Han, B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Springer, New York, 1999.
[16] W. Han, M. Sofonea, Evolutionary variational inequalities arising in viscoelastic contact problems, SIAM J. Numer.

Anal. 38 (2000) 556–579.
[17] I.R. Ionescu, M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford University Press, Oxford,

1993.



398 W. Han et al. / Journal of Computational and Applied Mathematics 137 (2001) 377–398

[18] N. Kikuchi, J.T. Oden, Contact Problems in Elasticity, SIAM, Philadelphia, PA, 1988.
[19] A. Klarbring, A. MikeliZc, M. Shillor, Frictional contact problems with normal compliance, Internat. J. Engng. Sci.

26 (1988) 811–832.
[20] A. Klarbring, A. MikeliZc, M. Shillor, The rigid punch problem with friction, Internat. J. Engng. Sci. 29 (1991)

751–768.
[21] K.L. Kuttler, private communication.
[22] J.T. Martins, J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and

friction interface laws, Nonlinear Anal. TMA 11 (1987) 407–428.
[23] J. NeZcas, I. HlavaZcek, Mathematical Theory of Elastic and Elastoplastic Bodies: an introduction, Elsevier, Amsterdam,

1981.
[24] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, BirkhWauser, Basel, 1985.
[25] M. Rochdi, M. Shillor, M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction, J. Elasticity

51 (1998) 105–126.
[26] M. Rochdi, M. Shillor, M. Sofonea, Analysis of a quasistatic viscoelastic problem with friction and damage, Adv.

Math. Sci. Appl. 10 (2000) 173–189.
[27] N. StrWomberg, L. Johansson, A. Klarbring, Derivation and analysis of a generalized standard model for contact

friction and wear, Internat. J. Solids Struct. 33 (1996) 1817–1836.
[28] V.V. Zhikov, S.M. Kozlov, O.A. Oleinik, Homogenization of DiKerential Operators and Integral Functionals, Springer,

Berlin, 1994.


