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Abstract. We consider a class of evolutionary variational inequalities arising in various frictional
contact problems for viscoelastic materials. Under the smallness assumption of a certain coefficient,
we prove an existence and uniqueness result using Banach’s fixed point theorem. We then study two
numerical approximation schemes of the problem: a semidiscrete scheme and a fully discrete scheme.
For both schemes, we show the existence of a unique solution and derive error estimates. Finally,
all these results are applied to the analysis and numerical approximations of a viscoelastic frictional
contact problem, with the finite element method used to discretize the spatial domain.
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1. Introduction. This work concerns the study of a class of abstract evolu-
tionary variational inequalities modeling the frictional contact between a viscoelastic
body and a rigid foundation. Situations involving dynamic or quasi-static frictional
contact abound in industry, especially in engines, motors, and transmissions. For
this reason considerable engineering literature exists dealing with frictional contact
problems. Invariably, the engineering papers deal with specific situations, geometries,
or settings and the emphasis is on numerical approaches or experimental results. An
early attempt to study frictional contact problems within the framework of varia-
tional inequalities was made in [7]. An excellent reference on analysis and numerical
approximations of contact problems involving elastic materials with or without fric-
tion is [12]. The mathematical, mechanical, and numerical state of the art can be
found in the proceedings [17].

Quasi-static contact problems arise when the forces applied to a system vary
slowly in time so that acceleration is negligible. Rigorous mathematical treatment of
quasi-static problems is recent. The reason lies in the considerable difficulties that
the process of frictional contact presents in the modeling and the analysis because
of the complicated surface phenomena involved. The variational analysis of some
quasi-static contact problems can be found, for instance, in [1, 5, 13] within linearized
elasticity and in [18, 19, 21] within nonlinear viscoelasticity.

Recently it is shown in [20] that a number of quasi-static frictional contact prob-
lems for viscoelastic materials leads to variational models of the following form: Find
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EVOLUTIONARY VARIATIONAL INEQUALITIES 557

a displacement field u : [0, T ] → V such that for t ∈ [0, T ],

(Au̇(t), v − u̇(t))V + (Bu(t), v − u̇(t))V + j(u̇(t), v)− j(u̇(t), u̇(t))(1.1)

≥ (f(t), v − u̇(t))V ∀ v ∈ V,

and

u(0) = u0.(1.2)

Here, V is a function space of admissible displacements, A and B are nonlinear oper-
ators related to the viscoelastic constitutive law, and the functional j is determined
by contact boundary conditions. The data f is related to the given body forces and
surface tractions, and u0 represents the initial displacement. In this paper, [0, T ] is
the time interval of interest, and the dot above a quantity denotes the derivative of
the quantity with respect to the time variable t.

The aim of this paper is to provide variational and numerical analysis for the
abstract Cauchy problem of the form (1.1)–(1.2) and to apply these results in the
study of some viscoelastic frictional contact problems. The literature is abundant in
numerical treatment of elliptic or evolution variational inequalities; see, for instance,
[8, 10, 11]. Here we follow [10] (see also [9]) to analyze semidiscrete and fully discrete
approximation schemes.

The rest of the paper is structured as follows. In section 2 we show an exis-
tence and uniqueness result to the problem (1.1)–(1.2). The result is proved based on
standard arguments for elliptic variational inequalities followed by applying Banach’s
fixed point theorem twice. In sections 3 and 4 we analyze a semidiscrete scheme and
a fully discrete scheme, respectively. For both schemes, we show the existence of a
unique solution derive error estimates. Under suitable solution regularities, conver-
gence order error estimates can be obtained. Since solution regularity results for the
problem (1.1)–(1.2) are not available and since the solution does not likely enjoy high
degree regularity, it is important to know if the numerical solution converges to the
exact solution without any assumption on the solution regularity. In section 5, we
show the convergence of the two schemes under the basic solution regularity proved
in section 2. In the final section, we apply all the results proved in sections 2–5 to a
concrete example of viscoelastic frictional contact problem modeled by an evolution-
ary variational inequality of the form (1.1)–(1.2). For numerical approximations of
this example we use the finite element method to discretize the spatial domain.

2. An existence and uniqueness result. In this section we list the assump-
tions on the data and present an existence and uniqueness result in the study of the
Cauchy problem (1.1)–(1.2).

We suppose in what follows that V is a real Hilbert space endowed with the inner
product (·, ·)V and the associated norm ‖·‖V . Let T > 0. We will use the space C[0, T ]
of real-valued continuous functions on [0, T ] and denote by C([0, T ];V ) (C1([0, T ];V ))
the space of continuous (respectively, continuously differentiable) functions from [0, T ]
to V , with norms

‖u‖C([0,T ];V ) = max
t∈[0,T ]

‖u(t)‖V

and

‖u‖C1([0,T ];V ) = max
t∈[0,T ]

‖u(t)‖V + max
t∈[0,T ]

‖u̇(t)‖V ,
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558 WEIMIN HAN AND MIRCEA SOFONEA

respectively. For p ∈ [1,∞], we will also use the Sobolev space W 1,p(0, T ;V ) with
the norm

‖u‖W 1,p(0,T ;V ) =

[ ∫ T

0

(‖u(t)‖pV + ‖u̇(t)‖pV ) dt
]1/p

if 1 ≤ p < ∞,

or

‖u‖W 1,∞(0,T ;V ) = max{‖u(t)‖L∞(0,T ;V ), ‖u̇(t)‖L∞(0,T ;V )},
where a dot now represents the weak derivative with respect to the time variable. We
assume that A : V → V is a strongly monotone, Lipschitz continuous operator, i.e.,


(a) ∃M > 0 such that

(Au1 −Au2, u1 − u2)V ≥ M‖u1 − u2‖2
V ∀u1, u2 ∈ V ;

(b) ∃LA > 0 such that
‖Au1 −Au2‖V ≤ LA‖u1 − u2‖V ∀u1, u2 ∈ V.

(2.1)

The nonlinear operator B : V → V is Lipschitz continuous, i.e.,

∃LB > 0 such that ‖B(u1)−B(u2)‖V ≤ LB ‖u1 − u2‖V ∀u1, u2 ∈ V.(2.2)

The functional j : V × V → R satisfies


(a) ∀g ∈ V, j(g, ·) is convex and lower semicontinuous on V ;
(b) ∃m > 0 such that

j(g1, v2)− j(g1, v1) + j(g2, v1)− j(g2, v2)
≤ m ‖g1 − g2‖V ‖v1 − v2‖V ∀ g1, g2, v1, v2 ∈ V.

(2.3)

Finally, we assume that

f ∈ C([0, T ];V )(2.4)

and

u0 ∈ V.(2.5)

The main result of this section is the following.
Theorem 2.1. Let (2.1)–(2.5) hold. Then, if M > m, there exists a unique

solution u ∈ C1([0, T ];V ) to the problem (1.1)–(1.2).
The proof of Theorem 2.1 is based on fixed point arguments similar to those used

in [18] and [21]. It will be established in several steps. We assume in what follows that
(2.1)–(2.5) hold. To simplify the notation, sometimes we will not indicate explicitly
the dependence of various functions on the time variable t.

In the first step let η ∈ C([0, T ];V ) and g ∈ C([0, T ];V ) be given and we consider
the following variational inequality of finding vηg : [0, T ] → V , such that for t ∈ [0, T ],

(Avηg(t), v − vηg(t))V + (η(t), v − vηg(t))V + j(g(t), v)− j(g(t), vηg(t))(2.6)

≥ (f(t), v − vηg(t))V ∀ v ∈ V.

Lemma 2.2. There exists a unique solution vηg ∈ C([0, T ];V ) to the prob-
lem (2.6).

Proof. It follows from classical results for elliptic variational inequalities (see, e.g.,
[2]) that there exists a unique element vηg(t) ∈ V that solves (2.6) for each t ∈ [0, T ].
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EVOLUTIONARY VARIATIONAL INEQUALITIES 559

Let us show that vηg : [0, T ] → V is continuous. Let t1, t2 ∈ [0, T ]. For the sake of
simplicity in writing we denote vηg(ti) = vi, η(ti) = ηi, g(ti) = gi for i = 1, 2. Using
(2.6) we easily derive the relation

(Av1 −Av2, v1 − v2)V ≤ (f1 − f2, v1 − v2)V + (η1 − η2, v2 − v1)V

+ j(g1, v2)− j(g1, v1) + j(g2, v1)− j(g2, v2).

Then we use the conditions (2.1)(a) and (2.3)(b) to obtain

M‖v1 − v2‖V ≤ ‖f1 − f2‖V + ‖η1 − η2‖V +m‖g1 − g2‖V .(2.7)

Therefore, vηg : [0, T ] → V is a continuous function.
For each η ∈ C([0, T ];V ), we now consider the operator Λη : C([0, T ];V ) →

C([0, T ];V ) defined by

Ληg = vηg ∀ g ∈ C([0, T ];V ).(2.8)

We have the following result.
Lemma 2.3. Let M > m. Then, the operator Λη has a unique fixed point gη ∈

C([0, T ];V ).
Proof. Let g1, g2 ∈ C([0, T ];V ), η ∈ C([0, T ];V ), and let vi, i = 1, 2, denote the

solution of (2.6) for g = gi, i.e., vi = vηgi . From the definition (2.8) we have

‖Ληg1 − Ληg2‖V = ‖v1 − v2‖V .(2.9)

An argument similar to that in the proof of Lemma 2.2 shows

M ‖v1 − v2‖V ≤ m ‖g1 − g2‖V .(2.10)

Thus ifM> m, then the operator Λη is a contraction on the Banach space C([0, T ];V ).
The result of the lemma follows from the Banach’s fixed point theorem.

In what follows we suppose that M > m and let η ∈ C([0, T ];V ). We denote
by gη the fixed point given in Lemma 2.3 and let vη ∈ C([0, T ];V ) be the function
defined by

vη = vηgη .(2.11)

We have Ληgη = gη and from (2.8) and (2.11),

vη = gη.(2.12)

Therefore, taking g = gη in (2.6) and using (2.11) and (2.12), we see that vη(t) ∈ V
satisfies

(Avη(t), v − vη(t))V + (η(t), v − vη(t))V + j(vη(t), v)− j(vη(t), vη(t))(2.13)

≥ (f(t), v − vη(t))V ∀ v ∈ V, t ∈ [0, T ].

We now denote by uη ∈ C1([0, T ];V ) the function given by

uη(t) =

∫ t

0

vη(s) ds+ u0, t ∈ [0, T ](2.14)

D
ow

nl
oa

de
d 

01
/1

3/
15

 to
 1

28
.2

55
.4

5.
19

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



560 WEIMIN HAN AND MIRCEA SOFONEA

and define the operator Λ : C([0, T ];V ) → C([0, T ];V ) by

Λη = Buη ∀ η ∈ C([0, T ];V ).(2.15)

We have the next result.
Lemma 2.4. Let M > m. Then the operator Λ has a unique fixed point η∗ ∈

C([0, T ];V ).
Proof. For the proof of this lemma, we will use

‖v‖∗C([0,T ];V ) = max
t∈[0,T ]

e−β t‖v(t)‖V

with β > LB/(M −m) as the norm in the space C([0, T ];V ). This norm is equivalent
to the standard norm ‖v‖C([0,T ];V ). Let η1, η2 ∈ C([0, T ];V ) and let vi = vηi , ui = uηi

for i = 1, 2. Using (2.13) and the estimates in the proof of Lemma 2.2 (see (2.7)) we
deduce that

M ‖v1 − v2‖V ≤ ‖η1 − η2‖V +m ‖v1 − v2‖V ,

which implies

‖v1 − v2‖V ≤ 1

M −m
‖η1 − η2‖V .(2.16)

Now using (2.15), (2.2), and (2.14) we obtain

‖Λη1(t)− Λη2(t)‖V ≤ LB

∫ t

0

‖v1(s)− v2(s)‖V ds ∀ t ∈ [0, T ]

and recalling (2.16) it follows that

‖Λη1(t)− Λη2(t)‖V ≤ LB

M −m

∫ t

0

‖η1(s)− η2(s)‖V ds ∀ t ∈ [0, T ].

We then have

e−β t‖Λη1(t)− Λη2(t)‖V ≤ LB

M −m
e−β t

∫ t

0

eβ se−β s‖η1(s)− η2(s)‖V ds

≤ LB

M −m
e−β t

∫ t

0

eβ s ds ‖η1 − η2‖∗C([0,T ];V )

≤ LB

M −m

1

β
‖η1 − η2‖∗C([0,T ];V ),

and so

‖Λη1 − Λη2‖∗C([0,T ];V ) ≤
LB

M −m

1

β
‖η1 − η2‖∗C([0,T ];V ).

Since β > LB/(M − m), the operator Λ is a contraction on the space C([0, T ];V )
when the equivalent norm ‖ · ‖∗C([0,T ];V ) is used. By the Banach fixed point theorem,

Λ has a unique fixed point η∗ ∈ C([0, T ];V ).
We now have all the ingredients to prove Theorem 2.1.
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EVOLUTIONARY VARIATIONAL INEQUALITIES 561

Proof of Theorem 2.1. Existence. Let η∗ ∈ C([0, T ];V ) be the fixed point of
Λ and let uη∗ ∈ C1([0, T ];V ) be the function given by (2.14) for η = η∗. We have
u̇η∗ = vη∗ and using (2.13) for η = η∗ it follows that for any t ∈ [0, T ],

(Au̇η∗(t), v − u̇η∗(t))V + (η∗(t), v − u̇η∗(t))V + j(u̇η∗(t), v)(2.17)

− j(u̇η∗(t), u̇η∗(t)) ≥ (f(t), v − u̇η∗(t))V ∀ v ∈ V.

The inequality (1.1) now follows from (2.17) and (2.15) since η∗ = Λη∗ = Buη∗ and
(1.2) results from (2.14). We conclude that uη∗ is a solution of (1.1), (1.2).

Uniqueness. To prove the uniqueness of the solution let uη∗ be the solution of
(1.1), (1.2) obtained above and let u be another solution such that u ∈ C1([0, T ];V ).
We denote by η ∈ C([0, T ];V ) the function given by

η = Bu(2.18)

and let

u̇ = w.(2.19)

Using (1.1) we obtain that w is a solution of the variational inequality (2.13) and since
this problem has a unique solution vη ∈ C([0, T ];V ) (see, e.g., (2.16)) we conclude
that

w = vη.(2.20)

Moreover, it follows from (2.19), (1.2), (2.20), and (2.14) that

u = uη.(2.21)

Now using (2.15), (2.18), and (2.21) we obtain that Λη = η and by the uniqueness of
the fixed point of Λ we have

η = η∗.(2.22)

The uniqueness of the solution is a consequence of (2.21) and (2.22). The proof
of Theorem 2.1 is now complete.

In what follows, c will represent a positive constant whose value may change from
place to place.

Corollary 2.5.Under the conditions stated in Theorem 2.1, if f ∈ W 1,p(0, T ;V )
for some p ∈ [1,∞], then u̇ ∈ W 1,p(0, T ;V ) and

‖u̇‖W 1,p(0,T ;V ) ≤ c (‖f‖W 1,p(0,T ;V ) + ‖u‖C1([0,T ];V )).

Proof. For any t1, t2 ∈ [0, T ], we apply the inequality (2.7) to the inequality (1.1)
to obtain

M ‖u̇(t1)− u̇(t2)‖V ≤ ‖f(t1)− f(t2)‖V + ‖Bu(t1)−Bu(t2)‖V +m ‖u̇(t1)− u̇(t2)‖V .
By the assumptions M > m and (2.2), we find that

‖u̇(t1)− u̇(t2)‖V ≤ c (‖f(t1)− f(t2)‖V + ‖u(t1)− u(t2)‖V ),
from which the result of the corollary follows.

In the next three sections, we will assume all the conditions stated in Theorem 2.1
are satisfied.
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562 WEIMIN HAN AND MIRCEA SOFONEA

3. Semidiscrete approximation. In this section we consider an approxima-
tion of the problem (1.1)–(1.2) by discretizing only the space V . Let V h ⊂ V be a
finite-dimensional space which, for example, can be constructed by the finite element
method. Then a semidiscrete scheme can be formed as in the following problem.

Problem Ph. Find uh : [0, T ] → V h such that for t ∈ [0, T ],

(Au̇h(t), vh − u̇h(t))V + (Buh(t), vh − u̇h(t))V + j(u̇h(t), vh)(3.1)

− j(u̇h(t), u̇h(t)) ≥ (f(t), vh − u̇h(t))V ∀ vh ∈ V h,

and

uh(0) = uh0 .(3.2)

Here, uh0 ∈ V h is an appropriate approximation of u0.
Using the arguments presented in the previous section, we see that under the con-

ditions stated in Theorem 2.1, Problem Ph has a unique solution uh ∈ C1([0, T ];V h).
Our main purpose here is to derive an estimate for the error u− uh.

To simplify the writing, we introduce the velocity variable

w(t) = u̇(t).(3.3)

Then by using the initial value condition (1.2), we have the relation

u(t) =

∫ t

0

w(s) ds+ u0.(3.4)

Similarly, we introduce the discrete velocity variable

wh(t) = u̇h(t).(3.5)

With the initial value condition (3.2), we have

uh(t) =

∫ t

0

wh(s) ds+ uh0 .(3.6)

Now the variational inequalities (1.1) and (3.1) can be rewritten as

(Aw(t), v − w(t))V + (Bu(t), v − w(t))V + j(w(t), v)− j(w(t), w(t))(3.7)

≥ (f(t), v − w(t))V ∀ v ∈ V,

and

(Awh(t), vh − wh(t))V + (Buh(t), vh − wh(t))V + j(wh(t), vh)(3.8)

− j(wh(t), wh(t)) ≥ (f(t), vh − wh(t))V ∀ vh ∈ V h.

We take v = wh(t) in (3.7) and add the inequality to (3.8) with vh = vh(t) ∈ V h.
After some manipulations, we have

(Aw(t)−Awh(t), w(t)− wh(t))V

≤ (Awh(t), vh(t)− w(t))V + (Bu(t), wh(t)− w(t))V

+ (Buh(t), vh(t)− wh(t))V + (f(t), w(t)− vh(t))V

+ j(w(t), wh(t))− j(w(t), w(t)) + j(wh(t), vh(t))− j(wh(t), wh(t))

≤ (Awh(t)−Aw(t), vh(t)− w(t))V + (Bu(t)−Buh(t), wh(t)− vh(t))V

+ j(w(t), wh(t))− j(w(t), vh(t)) + j(wh(t), vh(t))− j(wh(t), wh(t))

+R(t; vh(t), w(t)),
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EVOLUTIONARY VARIATIONAL INEQUALITIES 563

where

R(t; vh(t), w(t)) = (Aw(t), vh(t)− w(t))V + (Bu(t), vh(t)− w(t))V(3.9)

+ j(w(t), vh(t))− j(w(t), w(t))− (f(t), vh(t)− w(t))V

represents a residual quantity. Using the assumptions (2.1), (2.2), and (2.3), we have

M ‖w(t)− wh(t)‖2
V ≤ LA‖w(t)− wh(t)‖V ‖w(t)− vh(t)‖V + |R(t; vh(t), w(t))|

+ (LB‖u(t)− uh(t)‖V +m ‖w(t)− wh(t)‖V ) ‖wh(t)− vh(t)‖V
≤ LA‖w(t)− wh(t)‖V ‖w(t)− vh(t)‖V + |R(t; vh(t), w(t))|
+ (LB‖u(t)− uh(t)‖V +m ‖w(t)− wh(t)‖V )
· (‖w(t)− wh(t)‖V + ‖w(t)− vh(t)‖V ).

Thus, under the assumption M > m, we have the inequality

‖w(t)− wh(t)‖2
V ≤ c

(‖w(t)− vh(t)‖2
V + ‖u(t)− uh(t)‖2

V(3.10)

+ |R(t; vh(t), w(t))|).
By (3.4) and (3.6), we have

u(t)− uh(t) =

∫ t

0

(w(s)− wh(s)) ds+ u0 − uh0 ,

and so

‖u(t)− uh(t)‖2
V ≤ c

(∫ t

0

‖w(s)− wh(s)‖2
V ds+ ‖u0 − uh0‖2

V

)
.(3.11)

Then the inequality (3.10) can be rewritten as

‖w(t)− wh(t)‖2
V ≤ c

(
‖w(t)− vh(t)‖2

V +

∫ t

0

‖w(s)− wh(s)‖2
V ds

+ ‖u0 − uh0‖2
V + |R(t; vh(t), w(t))|

)
.

Applying the Gronwall inequality, we have

‖w − wh‖C([0,T ];V )(3.12)

≤ c inf
vh∈C([0,T ];V h)

(
‖w − vh‖C([0,T ];V ) + ‖R(·; vh(·), w(·))‖1/2

C([0,T ])

)
+ c ‖u0 − uh0‖V .

Summarizing, with (3.11) and (3.12), we have proved the following result.
Theorem 3.1. Assume the conditions (2.1)–(2.5) and M > m. Then for the

error of the spatially semidiscrete solution of (3.1)–(3.2), we have the estimate

‖u− uh‖C1([0,T ];V )(3.13)

≤ c inf
vh∈C([0,T ];V h)

(
‖u̇− vh‖C([0,T ];V ) + ‖R(·; vh(·), u̇(·))‖1/2

C([0,T ])

)
+ c ‖u0 − uh0‖V ,

where R(·; vh(·), u̇(·)) is defined in (3.9).
The inequality (3.11) is the basis for a convergence analysis (see section 5) and for

error estimates, as is shown in section 6 in the context of a frictional contact problem.

D
ow

nl
oa

de
d 

01
/1

3/
15

 to
 1

28
.2

55
.4

5.
19

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



564 WEIMIN HAN AND MIRCEA SOFONEA

4. Fully discrete approximation. In this section we consider a fully discrete
approximation of the problem (1.1)–(1.2). In addition to the finite dimensional space
V h introduced in the last section, we need a partition of the time interval [0, T ] :
0 = t0 < t1 < · · · < tN = T . We denote the time step-size kn = tn − tn−1 for
n = 1, . . . , N . We allow nonuniform partition of the time interval, and let k = maxn kn
be the maximal step-size. For a continuous function w(t), we use the notation wn =
w(tn). For a sequence {wn}Nn=0, we denote ∆wn = wn −wn−1 for the difference, and
δwn = ∆wn/kn the corresponding divided difference. No summation is implied over
the repeated index n.

The fully discrete approximation method we will analyze is the following.
Problem Phk. Find {uhkn }Nn=0 ⊂ V h such that for n = 1, . . . , N ,

(Aδuhkn , vh − δuhkn )V + (Buhkn−1, v
h − δuhkn )V + j(δuhkn , vh)− j(δuhkn , δuhkn )(4.1)

≥ (fn, v
h − δuhkn )V ∀ vh ∈ V h,

and

uhk0 = uh0 .(4.2)

Here, uh0 ∈ V h is an appropriate approximation of u0.
To again simplify the notation, we introduce the discrete velocity

whk
n = δuhkn , n = 1, . . . , N.(4.3)

Then using the initial value condition (4.2), we have the relation

uhkn =

n∑
j=1

whk
j kj + uh0 .(4.4)

We can rewrite (4.1) in the form

(Awhk
n , vh − whk

n )V + (Buhkn−1, v
h − whk

n )V + j(whk
n , vh)− j(whk

n , whk
n )(4.5)

≥ (fn, v
h − whk

n )V ∀ vh ∈ V h.

By a discrete analogue of Lemma 2.3, we see that given uhkn−1 ∈ V h, the inequal-
ity (4.5) has a unique solution whk

n ∈ V h. Note that uhk0 = uh0 is given and we have
the relation (4.4) between {uhkn }Nn=1 and {whk

n }Nn=1. A mathematical induction argu-
ment yields the existence and uniqueness of a solution of the problem Phk. Our main
objective of the section is to derive an error estimate for the fully discrete solution.

Take v = whk
n in (3.7) at t = tn,

(Awn, w
hk
n − wn)V + (Bun, w

hk
n − wn) + j(wn, w

hk
n )− j(wn, wn)(4.6)

≥ (fn, w
hk
n − wn)V .

We now add (4.5) with vh = vhn ∈ V h and (4.6) to obtain an error relation

(Awn −Awhk
n , wn − whk

n )V

≤ (Awhk
n , vhn − wn)V + (Buhkn−1, v

h
n − whk

n )V

+ (Bun, w
hk
n − wn)V − (fn, v

h
n − wn)V

+ j(whk
n , vhn)− j(whk

n , whk
n ) + j(wn, w

hk
n )− j(wn, wn)

= (Awhk
n −Awn, v

h
n − wn)V + (Buhkn−1 −Bun, v

h
n − whk

n )V +Rn(v
h
n, wn)

+ j(whk
n , vhn)− j(wn, v

h
n) + j(wn, w

hk
n )− j(whk

n , whk
n ),
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EVOLUTIONARY VARIATIONAL INEQUALITIES 565

where

Rn(v
h
n, wn) = (Awn, v

h
n − wn)V + (Bun, v

h
n − wn)V(4.7)

+ j(wn, v
h
n)− j(wn, wn)− (fn, v

h
n − wn)V .

By the assumptions (2.1), (2.2), and (2.3), we have

M ‖wn − whk
n ‖2

V ≤ LA‖wn − whk
n ‖V ‖wn − vhn‖V + LB‖uhkn−1 − un‖V ‖vhn − whk

n ‖V
+ |Rn(v

h
n, wn)|+m ‖wn − whk

n ‖V ‖vhn − whk
n ‖V .

Here ‖vhn − whk
n ‖V will be bounded as follows:

‖vhn − whk
n ‖V ≤ ‖vhn − wn‖V + ‖wn − whk

n ‖V .
Since M > m, we get the relation

‖wn − whk
n ‖2

V ≤ c

{
‖vhn − wn‖2

V + ‖uhkn−1 − un‖2
V + |Rn(v

h
n, wn)|

}
,

or

‖wn − whk
n ‖V ≤ c

{
‖vhn − wn‖V + |Rn(v

h
n, wn)|1/2 + ‖uhkn−1 − un‖V

}
.(4.8)

Let us bound the term ‖uhkn−1 − un‖V . We have

uhkn−1 − un =

n−1∑
j=1

whk
j kj + uh0 −

∫ tn

0

w(s) ds− u0

=

n−1∑
j=1

(whk
j − wj) kj + uh0 − u0

+

n−1∑
j=1

(
wjkj −

∫ tj

tj−1

w(s) ds

)
−
∫ tn

tn−1

w(s) ds.

Now ∥∥∥∥
n−1∑
j=1

(
wjkj −

∫ tj

tj−1

w(s) ds

)∥∥∥∥
V

=

∥∥∥∥
n−1∑
j=1

∫ tj

tj−1

(wj − w(s)) ds

∥∥∥∥
V

≤
n−1∑
j=1

∫ tj

tj−1

‖wj − w(s)‖V ds,

and also ∥∥∥∥
∫ tn

tn−1

w(s) ds

∥∥∥∥
V

≤
∫ tn

tn−1

‖w(s)‖V ds ≤ k ‖w‖C([0,T ];V ).

Hence,

‖uhkn−1 − un‖V ≤
n−1∑
j=1

‖whk
j − wj‖V kj + ‖uh0 − u0‖V + Ik(w),(4.9)

where

Ik(w) =

N∑
j=1

∫ tj

tj−1

‖wj − w(s)‖V ds.(4.10)

Therefore, from (4.8), we have
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566 WEIMIN HAN AND MIRCEA SOFONEA

‖wn − whk
n ‖V ≤ c

{
‖vhn − wn‖V + |Rn(v

h
n, wn)|1/2 + ‖uh0 − u0‖V(4.11)

+ k ‖u‖C1([0,T ];V ) + Ik(w) +

n−1∑
j=1

‖whk
j − wj‖V kj

}
.

To proceed further, we need the following result.
Lemma 4.1. Assume {gn}Nn=1 and {en}Nn=1 are two sequences of nonnegative

numbers satisfying

en ≤ c gn + c

n−1∑
j=1

kjej .

Then

en ≤ c

(
gn +

n−1∑
j=1

kjgj

)
, n = 1, . . . , N.(4.12)

Therefore,

max
1≤n≤N

en ≤ c max
1≤n≤N

gn.(4.13)

Proof. Denote

En =

n∑
j=1

kjej , 1 ≤ n ≤ N,

and E0 = 0. Then, from the given condition,

en ≤ c gn + cEn−1, n = 1, . . . , N.(4.14)

Now

En − En−1 = knen ≤ c kngn + c knEn−1,

which implies

En − (1 + c kn)En−1 ≤ c kngn.(4.15)

We introduce a sequence of numbers {zn}Nn=0 by z0 = 1 and

zn =

n∏
j=1

(1 + c kj), 1 ≤ n ≤ N.

Using the inequalities

1 ≤ 1 + c kj ≤ ec kj , j = 1, . . . , N,

we have the following bounds:

1 ≤
N∏

i=j+1

(1 + cki) ≤ ec(T−tj), j = 1, . . . , N.(4.16)

With the use of the sequence {zn}Nn=0, the inequality (4.15) can be rewritten as

En

zn
− En−1

zn−1
≤ c kngn

zn
.

A simple induction argument shows
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EVOLUTIONARY VARIATIONAL INEQUALITIES 567

En ≤ c zn

n∑
j=1

kj
gj
zj

= c

n∑
j=1

kj

n∏
i=j+1

(1 + cki)gj ,

which can be combined with (4.14) and (4.16) to yield (4.12). The inequality (4.13)
follows easily from (4.12).

Applying Lemma 4.1 to the inequality (4.11), we obtain the following estimate:

max
n

‖wn − whk
n ‖V ≤ c max

n

{
‖vhn − wn‖V + |Rn(v

h
n, wn)|1/2

}
+ c ‖uh0 − u0‖V

+ c (Ik(w) + k ‖u‖C1([0,T ];V )).

Similar to (4.9), we have

‖uhkn − un‖V ≤
n−1∑
j=1

‖whk
j − wj‖V kj + ‖uh0 − u0‖V + c k ‖u‖C1([0,T ];V ) + Ik(w).

Therefore, we have proved the following result.
Theorem 4.2. Assume the conditions (2.1)–(2.5) and M > m. Then for the

error of the fully discrete solution of (4.1)–(4.2), we have the estimate

max
1≤n≤N

(‖un − uhkn ‖V + ‖u̇n − δuhkn ‖V )(4.17)

≤ c max
1≤n≤N

inf
vh
n∈V h

{
‖vhn − u̇n‖V + |Rn(v

h
n, u̇n)|1/2

}
+ c ‖uh0 − u0‖V

+ c (Ik(u̇) + k ‖u‖C1([0,T ];V )),

where Rn(v
h
n, u̇n) is defined by (4.7), Ik(u̇) = Ik(w) is defined in (4.10).

When the data f is smoother, we can derive a more convenient error bound
from (4.17). For this purpose, we assume additionally f ∈ W 1,1(0, T ;V ). Then by
Corollary 2.5, we have w ∈ W 1,1(0, T ;V ) and

‖w‖W 1,1(0,T ;V ) ≤ c (‖f‖W 1,1(0,T ;V ) + ‖u‖C1([0,T ];V )).

Recall that W 1,1(0, T ;V ) ⊂ C([0, T ];V ) and

‖w‖C([0,T ];V ) ≤ c ‖w‖W 1,1(0,T ;V ).

By writing

wj − w(s) =

∫ tj

s

ẇ(τ) dτ

we easily find the following bound for Ik(w) defined in (4.10):

Ik(w) ≤ c k ‖ẇ‖L1(0,T ;V ) ≤ c k ‖f‖W 1,1(0,T ;V ).

Therefore, under the additional assumption f ∈ W 1,1(0, T ;V ), the estimate (4.17)
can be replaced by

max
1≤n≤N

(‖un − uhkn ‖V + ‖u̇n − δuhkn ‖V )(4.18)

≤ c max
1≤n≤N

inf
vh
n∈V h

{
‖vhn − u̇n‖V + |Rn(v

h
n, u̇n)|1/2

}
+ c ‖uh0 − u0‖V

+ c k (‖f‖W 1,1(0,T ;V ) + ‖u‖C1([0,T ];V )).
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568 WEIMIN HAN AND MIRCEA SOFONEA

5. Convergence under the basic solution regularity. The inequalities (3.13)
and (4.17) (or (4.18)) lead to order error estimates under additional solution regularity
assumptions. Since solution regularity results for the problem (1.1)–(1.2) are not
available, and since the solution does not likely enjoy high degree regularity, it is
important to know if the numerical solution converges to the exact solution without
any assumption on the solution regularity. In this section, we provide a convergence
analysis for the two schemes studied in the previous two sections under the basic
solution regularity u ∈ C1([0, T ];V ). For this purpose, we introduce two hypotheses.

Hypothesis H1. There exists a dense subset V0 ⊂ V and a function α(h) > 0
with the property limh→0+ α(h) = 0 such that

‖v − Phv‖V ≤ α(h) ‖v‖V0 ∀ v ∈ V0.

Here Ph : V → V h is a projection operator defined by

‖v − Phv‖V = inf
vh∈V h

‖v − vh‖V , v ∈ V.

Since V is a Hilbert space and V h is finite-dimensional, the operator Ph is well-defined
and is linear and nonexpansive:

‖Phv1 − Phv2‖V ≤ ‖v1 − v2‖V ∀ v1, v2 ∈ V.

Thus for v ∈ C([0, T ];V ), we have Phv ∈ C([0, T ];V ).
Hypothesis H2. For any bounded set B ⊂ V , the functional j(·, ·) is uniformly

continuous with respect to its second argument in B×V , i.e., ∀ ε > 0, ∃ δ = δ(B) > 0
such that

|j(g, v1)− j(g, v2)| < ε ∀ g ∈ B ∀ v1, v2 ∈ V with ‖v1 − v2‖V < δ.

As preparation for convergence analysis, we first prove some lemmas.
Lemma 5.1. If V0 is dense in V , then C([0, T ];V0) is dense in C([0, T ];V ).
Proof. Let v ∈ C([0, T ];V ). Then v(t) is a uniformly continuous function. Thus,

for any ε > 0, we can find an integer n > 0 such that

‖v(t)− v(s)‖V <
ε

2
if |t− s| ≤ 1

n
.

Denote tj = j T/n, 0 ≤ j ≤ n. For any j, we choose zj ∈ V0 satisfying

‖zj − v(tj)‖V <
ε

2
.

Then we define a function z : [0, T ] → V0 by the formula

z(t) = n (tj − t) zj−1 + n (t− tj−1) zj , tj−1 ≤ t ≤ tj , 1 ≤ j ≤ n.

Obviously, z ∈ C([0, T ];V0). For t ∈ [tj−1, tj ], we have

z(t)− v(t) = n (tj − t) (zj−1 − v(t)) + n (t− tj−1) (zj − v(t)).

Thus

‖z(t)− v(t)‖V ≤ n (tj − t) (‖zj−1 − vj−1‖V + ‖vj−1 − v(t)‖V )
+ n (t− tj−1) (‖zj − vj‖V + ‖vj − v(t)‖V )

< ε.
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EVOLUTIONARY VARIATIONAL INEQUALITIES 569

Therefore,

‖z − v‖C([0,T ];V ) < ε,

and C([0, T ];V0) is dense in C([0, T ];V ).
Lemma 5.2. Assume Hypothesis H1 holds. Then for any v ∈ C([0, T ];V ), we

have the convergence

‖v − Phv‖C([0,T ];V ) → 0 as h → 0.

Proof. For any ε > 0, using Lemma 5.1, we can find a z ∈ C([0, T ];V0) such that

‖z − v‖C([0,T ];V ) <
ε

4
.

By Hypothesis H1,

‖z(t)− Phz(t)‖V ≤ α(h) ‖z(t)‖V0 .

Therefore

‖z − Phz‖C([0,T ];V ) ≤ α(h) ‖z‖C([0,T ];V0).

Since α(h) → 0 as h → 0+, for sufficiently small h, we have

‖z − Phz‖C([0,T ];V ) <
ε

2
.

Then, by the properties of Ph, we have

‖v − Phv‖C([0,T ];V ) = ‖(v − z)− Ph(v − z) + (z − Phz)‖C([0,T ];V )

≤ 2 ‖v − z‖C([0,T ];V ) + ‖z − Phz‖C([0,T ];V )

< ε,

i.e., the result is true.
Concerning the convergence of the semidiscrete solution we have the following

result.
Theorem 5.3. Assume the conditions (2.1)–(2.5), H1, H2 and M > m. Then if

‖u0 − uh0‖V → 0 as h → 0,

the semidiscrete solution of the problem Ph converges:

‖u− uh‖C1([0,T ];V ) → 0 as h → 0.

Proof. Let us apply Theorem 3.1. We first bound the term R(·; vh(·), u̇(·)). From
the definition (3.9) and the properties of A, B, f and the solution u, we obtain

|R(t; vh(t), u̇(t))| ≤ c ‖vh(t)− u̇(t)‖V + |j(u̇(t), vh(t))− j(u̇(t), u̇(t))|,
where the constant c depends on LA, LB , ‖f‖C([0,T ];V ) and ‖u‖C1([0,T ];V ). Taking

vh = Phu̇ ∈ C([0, T ];V h) in (3.13), we then have

‖u− uh‖C1([0,T ];V ) ≤ c
(‖u̇− Phu̇‖C([0,T ];V ) + ‖u̇− Phu̇‖1/2

C([0,T ];V )

+ ‖j(u̇,Phu̇)− j(u̇, u̇)‖1/2
C[0,T ] + ‖u0 − uh0‖V

)
.
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570 WEIMIN HAN AND MIRCEA SOFONEA

By Lemma 5.2,

‖u̇− Phu̇‖C([0,T ];V ) → 0 as h → 0.

By Hypothesis H2 and Lemma 5.2,

‖j(u̇,Phu̇)− j(u̇, u̇)‖C[0,T ] → 0 as h → 0.

Therefore, ‖u− uh‖C1([0,T ];V ) → 0 as h → 0.
Now we consider the convergence of the fully discrete solution. We need one more

lemma.
Lemma 5.4. The quantity Ik(w) defined in (4.10) converges to zero as k → 0.
Proof. Since w ∈ C([0, T ];V ), t �→ w(t) is uniformly continuous on [0, T ]. Thus

for any ε > 0, there exists a k0 > 0 such that if k < k0, we have

‖w(t)− w(s)‖V <
ε

T
∀ s, t ∈ [0, T ], |t− s| < k.

Then, by the definition (4.10), we have

Ik(w) ≤
N∑
j=1

∫ tj

tj−1

ε

T
ds = ε.

Hence, Ik(w) → 0 as k → 0.
Theorem 5.5. Assume the conditions (2.1)–(2.5), H1, H2, and M > m. Then if

‖u0 − uh0‖V → 0 as h → 0,

the fully discrete solution of the problem Phk converges:

max
1≤n≤N

(‖un − uhkn ‖V + ‖u̇n − δuhkn ‖V ) → 0 as h, k → 0.

Proof. We take vhn = Phu̇n in (4.17). Then the convergence result follows from
Lemma 5.4 together with an argument similar to the proof of Theorem 5.3.

6. Applications in frictional contact problems for viscoelastic materi-
als. In this section we apply the abstract results of sections 2–5 in the study of a
frictional contact problem for viscoelastic materials.

6.1. The contact problem. The physical setting is as follows. A viscoelastic
body occupies an open, bounded, connected set Ω ⊂ R

d, d = 2 or 3. The boundary
Γ = ∂Ω is assumed to be Lipschitz continuous and has the decomposition Γ = ∪3

i=1Γi

with mutually disjoint, relatively open sets Γ1, Γ2, and Γ3, with Lipschitz relative
boundaries if d = 3. We assume meas (Γ1) > 0. We are interested in the evolution
process of the mechanical state of the body in the time interval [0, T ] with T > 0.
The body is clamped on Γ1 × (0, T ) and so the displacement field vanishes there.
Surface tractions of density f2 act on Γ2 × (0, T ) and volume forces of density f0

act in Ω × (0, T ). We assume that the forces and tractions change slowly in time so
that the acceleration of the system is negligible. Moreover, the body is in frictional
contact with a rigid foundation on Γ3 × (0, T ). The constitutive law and the contact
conditions on the contact surface are assumed as in [20] and will be discussed below.
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EVOLUTIONARY VARIATIONAL INEQUALITIES 571

Under these conditions, the classical formulation of the mechanical problem of
frictional contact of the viscoelastic body is the following: Find a displacement u :
Ω× [0, T ] → R

d and a stress field σ : Ω× [0, T ] → S
d such that

σ = Aε(u̇) + Bε(u) in Ω× (0, T ),(6.1)

Divσ + f0 = 0 in Ω× (0, T ),(6.2)

u = 0 on Γ1 × (0, T ),(6.3)

σν = f2 on Γ2 × (0, T ),(6.4)

−σν = pν(u̇ν), |στ | ≤ pτ (u̇ν)
|στ | < pτ (u̇ν) ⇒ u̇τ = 0
|στ | = pτ (u̇ν) ⇒ στ = −λ u̇τ , λ ≥ 0


 on Γ3 × (0, T ),(6.5)

u(0) = u0 in Ω.(6.6)

Here S
d represents the space of second order symmetric tensors on R

d. The rela-
tion (6.1) is the viscoelastic constitutive law in which A and B are given nonlinear
operators, called the viscosity operator and elasticity operator, respectively. As usual,
ε(u) is the infinitesimal strain tensor. Relation (6.2) represents the equilibrium equa-
tion, (6.3) and (6.4) are the displacement-traction boundary conditions in which ν
represents the unit outward normal vector to Γ. The function u0 in (6.6) denotes the
initial displacement.

We make some comments on the contact condition (6.5). Here σν denotes the
normal stress, στ represents the tangential traction, uν and uτ are the normal and
tangential components of the displacement, respectively. Properties of the functions
pν and pτ will be listed below. In [19] the following form of the function pν is employed:

pν(r) = β r+ + p0(6.7)

in order to model setting when the foundation is covered with a thin lubricant layer,
say oil. Here β is the damping resistance coefficient, assumed positive, r+ = max{0, r}
and p0 is the oil pressure, which is given and nonnegative. In this case the lubricant
layer presents resistance, or damping, only when the surface moves towards the foun-
dation, but does nothing when it recedes. Another choice of pν is

pν(r) = S,(6.8)

where S is a given positive function. This type of contact conditions in which the
normal stress is prescribed arises in the study of some mechanisms and was considered
by a number of authors (see, e.g., [7, 15]).

The conditions (6.5) represent an appropriate version of Coulomb’s law of fric-
tion. They state that the tangential shear stress cannot exceed the maximal frictional
resistance pτ . When the strict inequality holds the surface adheres to the foundation
and is in the so-called stick state; and when the equality holds then there is relative
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572 WEIMIN HAN AND MIRCEA SOFONEA

sliding between the surface and the foundation; this is the so-called slip state. Taking
in (6.5)

pτ = µ pν(6.9)

with µ ≥ 0, we obtain the classical Coulomb’s law of friction (see, e.g., [7, 12]). We
also remark that a modified version of Coulomb’s law of friction has been recently
derived in [22, 23], and it is in the form

pτ = µpν(1− δpν)+,(6.10)

where δ is a small positive material constant related to the wear and penetration
hardness of the surface, and µ is the coefficient of friction, assumed positive. This
change in Coulomb’s law means that when the magnitude |σν | of the normal stress
exceeds 1/δ the surface disintegrates and offers no resistance to the motion.

We denote in what follows by “ · ” and | · | the inner product and the Euclidean
norm on the spaces R

d and S
d and we introduce the spaces

V = {v = (vi) ∈ (H1(Ω))d : v = 0 on Γ1},
Q = {τ = (τij) ∈ (L2(Ω))d×d : τij = τji, 1 ≤ i, j ≤ d},
Q1 = {τ ∈ Q : Div τ ∈ (L2(Ω))d}.

These are real Hilbert spaces with their canonical inner products. Since meas (Γ1) > 0,
Korn’s inequality holds:

‖v‖(H1(Ω))d ≤ cK ‖ε(v)‖Q ∀v ∈ V.(6.11)

Here cK > 0 is a constant depending only on Ω and Γ1 and ε : H1(Ω)d → Q is the
deformation operator. A proof of Korn’s inequality can be found in, for instance,
[14, p. 79].

Over the space V , we use the inner product

(u,v)V = (ε(u), ε(v))Q ∀u,v ∈ V.(6.12)

It follows from (6.11) that ‖·‖H1(Ω)d and ‖·‖V are equivalent norms on V and therefore
(V, ‖ · ‖V ) is a real Hilbert space.

Finally, ∀v ∈ V we denote by vν and vτ the normal and tangential components
of v on Γ given by

vν = v · ν, vτ = v − vνν.

In the study of the mechanical problem (6.1)–(6.6) we assume that the viscosity
operator A and the elasticity operator B satisfy



(a) A : Ω× S
d → S

d.
(b) There exists LA > 0 such that

|A(x, ε1)−A(x, ε2)| ≤ LA|ε1 − ε2| ∀ ε1, ε1 ∈ S
d,

almost everywhere (a.e.) x ∈ Ω.
(c) There exists M > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ M |ε1 − ε2|2 ∀ ε1, ε1 ∈ S
d,

a.e. x ∈ Ω.
(d) For any ε ∈ S

d, x �→ A(x, ε) is Lebesgue measurable on Ω.
(e) The mapping x �→ A(x,0) ∈ Q.

(6.13)
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EVOLUTIONARY VARIATIONAL INEQUALITIES 573


(a) B : Ω× S
d → S

d.
(b) There exists an LB > 0 such that

|B(x, ε1)− B(x, ε2)| ≤ LB |ε1 − ε2| ∀ ε1, ε2 ∈ S
d a.e. in Ω.

(c) For any ε ∈ S
d, x �→ B(x, ε) is measurable.

(d) The mapping x �→ B(x,0) ∈ Q.

(6.14)

The contact functions pr (r = ν, τ) satisfy


(a) pr : Γ3 × R → R+.
(b) There exists an Lr > 0 such that

|pr(x, u1)− pr(x, u2)| ≤ Lr |u1 − u2| ∀u1, u2 ∈ R a.e. in Ω.
(c) For any u ∈ R, x �→ pr(x, u) is measurable.
(d) The mapping x �→ pr(x, 0) ∈ L2(Γ3).

(6.15)

We observe that the assumptions (6.15) on the functions pν and pτ are pretty
general. The only severe restriction comes from the condition (b), which, roughly
speaking, requires the functions to grow at most linearly. Certainly the functions
defined in (6.7) and (6.8) satisfy the condition (6.15)(b). We also observe that if
the functions pν and pτ are related by (6.9) or (6.10) and pν satisfies the condition
(6.15)(b), then pτ also satisfies the condition (6.15)(b) with Lτ = µLν .

We also assume that the forces and tractions satisfy

f0 ∈ C([0, T ]; (L2(Ω))d), f2 ∈ C([0, T ]; (L2(Γ2))
d),(6.16)

and finally

u0 ∈ V.(6.17)

Next we denote by f(t) the element of V given by

(f(t),v)V =

∫
Ω

f0(t) · v dx+
∫

Γ2

f2(t) · v da(6.18)

∀v ∈ V and t ∈ [0, T ], and we note that conditions (6.16) imply

f ∈ C([0, T ];V ).(6.19)

Let j : V × V → R be the functional

j(v,w) =

∫
Γ3

pν(vν)wν da+

∫
Γ3

pτ (vν) |wτ | da ∀v,w ∈ V.(6.20)

With these notations, it follows from [20] that if {u,σ} are sufficiently regular func-
tions satisfying (6.1)–(6.6), then u(t) ∈ V and ∀ t ∈ [0, T ],

(Aε(u̇(t)), ε(v)− ε(u̇(t)))V + (Bε(u(t)), ε(v)− ε(u̇(t)))V(6.21)

+ j(u̇(t),v)− j(u̇(t), u̇(t)) ≥ (f(t),v − u̇(t))V ∀v ∈ V.

Thus we obtain the following variational formulation of problem (6.1)–(6.6) in terms
of displacements.

Problem P0. Find a displacement u : Ω × [0, T ] → V which satisfies (6.21)
and (6.6).
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574 WEIMIN HAN AND MIRCEA SOFONEA

The well-posedness of the problem P0 follows from an application of Theorem 2.1.
Theorem 6.1. Assume that (6.13)–(6.17) hold. Then there exists L0 > 0 which

depends only on Ω, Γ1, Γ3 and A such that the problem P0 has a unique solution if
Lν + Lτ < L0. Moreover, the solution satisfies u ∈ C1([0, T ];V ).

Proof. Let A : V → V and B : V → V be the operators defined by

(Av,w)V = (Aε(v), ε(w))Q, (Bv,w)V = (Bε(v), ε(w))Q(6.22)

∀v,w ∈ V. Using (6.13) and (6.14) it follows that A and B are Lipschitz continuous
operators. Using again (6.13) and (6.12) we deduce that A is a strongly monotone
operator on V :

(Av1 −Av2,v1 − v2)V ≥ M‖v1 − v2‖2
V ∀v1 v2 ∈ V.(6.23)

Moreover, from (6.15), (6.11), and (6.12) it follows that the function j defined by
(6.20) satisfies (2.3) and

j(g1,v2)− j(g1,v1) + j(g2,v1)− j(g2,v2)(6.24)

≤ c0(Lν + Lτ ) ‖g1 − g2‖V ‖v1 − v2‖V ∀ g1, g2,v1,v2 ∈ V,

where c0 > 0 depends only on Ω, Γ1 and Γ3. Applying Theorem 2.1, we conclude
that if

c0(Lν + Lτ ) < M

then the problem P0 has a unique solution u ∈ C1([0, T ];V ), and we may take
L0 =M/c0.

Now let u ∈ C1([0, T ];V ) be the solution of the problem P0 and let σ be the
stress field given by (6.1). Using (6.21) and (6.16) it can be shown that Divσ ∈
C([0, T ];L2(Ω)d) and therefore σ ∈ C([0, T ];Q1). A pair of functions {u,σ} which
satisfies (6.1), (6.6), and (6.21) is called a weak solution of the problem (6.1)–(6.6).
We conclude that the problem (6.1)–(6.6) has a unique weak solution provided Lν+Lτ

is sufficiently small, which represents a result already obtained in [20]. The critical
value L0 depends only on the viscosity operator and on the geometry of the problem
but does not depend on the elasticity operator, nor on the external forces, nor on the
initial displacement.

We end this section with some mechanical interpretation of the condition Lν +
Lτ < L0 which guarantees the unique solvability of the problemP0. The verification of
this condition as well as its interpretation depends on the specific mechanical problem.
For example, consider the mechanical problem (6.1)–(6.6) in which the function pν
is given by (6.7) and the function pτ is given by (6.9) or by (6.10). It follows that
assumption (6.15)(b) is satisfied with Lν = β and Lτ = µβ and therefore the condition
Lν + Lτ < L0 holds if β ≤ L0/(µ+ 1) which may be interpreted as a smallness
assumption on the damping resistance coefficient. We conclude that the corresponding
mechanical problem has a unique weak solution if the damping resistance coefficient
of the oil layer is small enough. Consider now the mechanical problem (6.1)–(6.6) in
the case when the function pν is given by (6.8) with S ∈ L∞(Γ3) and the function pτ
is given by (6.9) or by (6.10). In this case the assumption (6.15)(b) is satisfied with
Lν = Lτ = 0 and therefore the condition Lν + Lτ < L0 trivially holds. We conclude
that the corresponding mechanical problem has a unique weak solution without any
supplementary restriction on the coefficients µ and δ.
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EVOLUTIONARY VARIATIONAL INEQUALITIES 575

6.2. Numerical approximations. Now we state some sample results on error
estimates for numerical approximations of the problem P0.

We first briefly describe how to construct the finite dimensional space V h via the
finite element method. Details can be found in [3]. For simplicity, we assume Ω is a
polygon or polyhedron. We have Γ3 = ∪I

i=1Γ3,i with each piece Γ3,i represented by an
affine function. Let T h be a regular finite element partition of Ω in such a way that
if a side of an element lies on the boundary, the side belongs entirely to one of the
subsets Γ1, Γ2 and Γ3. Let h be the maximal diameter of the elements. Let V h ⊂ V
be the finite element space consisting of piecewise linear functions, corresponding to
the partition T h. If the solution u has higher regularity, we may use higher order
elements, and the error analysis presented below can be easily extended to such a
situation.

For convergence analysis under the basic solution regularity, we need to verify
Hypotheses H1 and H2. The following density result is proved in [6].

Proposition 6.2. Let Ω ⊂ R
d, d ≥ 1, be an open, bounded, Lipschitz domain,

and let Γ1 ⊂ ∂Ω be a relatively open set with a Lipschitz relative boundary. Then the
space {v ∈ C∞(Ω) : v = 0 in a neighborhood of Γ1} is dense in {v ∈ H1(Ω) : v =
0 a.e. on Γ1}.

From this proposition, we see immediately that the space

V0 = {v ∈ [C∞(Ω)]d : v = 0 in a neighborhood of Γ1}
is dense in V .

Let Πh : V → V h be the piecewise linear interpolation operator. Then

‖v − Phv‖V ≤ ‖v −Πhv‖V ≤ c h ‖v‖H2(Ω) ∀v ∈ V0.

Thus, Hypothesis H1 is valid.
The functional j(g,v) defined in (6.20) is Lipschitz continuous with respect to v.

Then it follows from (6.15) that Hypothesis H2 is valid.
We first consider a spatially semidiscrete approximation of the problem P0.
Problem Ph

0 . Find the displacement field uh : [0, T ] → V h, such that for
t ∈ [0, T ],

(Aε(u̇h(t)), ε(vh)− ε(u̇h(t)))Q + (Bε(uh(t)), ε(vh)− ε(u̇h(t)))Q(6.25)

+ j(u̇h(t),vh)− j(u̇h(t), u̇h(t)) ≥ (f(t),vh − u̇h(t))V ∀vh ∈ V h,

uh(0) = uh
0 ,(6.26)

where uh
0 ∈ V h is a suitable approximation of u0.

From the discussions in section 3, the problem Ph
0 has a unique solution. By

Theorem 5.3, if we choose uh
0 such that ‖u0−uh

0‖V → 0, then we have the convergence

‖u− uh‖C1([0,T ];V ) → 0 as h → 0.

For convergence order error estimates, we have the following estimate from (3.13):

‖u− uh‖C1([0,T ];V )(6.27)

≤ c inf
vh∈C([0,T ];V h)

(
‖u̇− vh‖C([0,T ];V ) + ‖R(·;vh(·), u̇(·))‖1/2

C([0,T ])

)
+ c ‖u0 − uh

0‖V .
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576 WEIMIN HAN AND MIRCEA SOFONEA

Let us present some sample error estimates under additional solution smoothness
assumptions. Assume

σν ∈ C([0, T ]; (L2(Γ))d),(6.28)

then the following equalities hold for t ∈ [0, T ]:

Divσ(t) + f0(t) = 0 a.e. in Ω,(6.29)

σ(t)ν = f2(t) a.e. on Γ2,(6.30)

−σν(t) = pν(u̇ν(t)) a.e. on Γ3.(6.31)

Using assumptions (6.15)–(6.16), the proof of (6.29)–(6.31) follows from standard
arguments (see, e.g., [12]).

By the definition (3.9) and (6.29)–(6.31), we then have

R(t;vh(t), u̇(t)) = (σ(t), ε(vh(t))− ε(u̇(t)))Q + j(u̇(t),vh(t))− j(u̇(t), u̇(t))

− (f(t),vh(t)− u̇(t))V

=

∫
Γ3

(
στ (t) · (vh

τ (t)− u̇τ (t)) + pτ (u̇ν(t)) (|vh
τ (t)| − |u̇τ (t)|)

)
da.

Since pτ (u̇ν) ∈ C([0, T ];L2(Γ3)) from the regularity of u and the properties of pτ , we
have

|R(t;vh(t), u̇(t))| ≤ c ‖vh
τ (t)− u̇τ (t)‖(L2(Γ3))d .(6.32)

Therefore, the estimate (6.27) in this case reduces to

‖u− uh‖C1([0,T ];V )

≤ c inf
vh∈C([0,T ];V h)

(
‖u̇− vh‖C([0,T ];V ) + ‖u̇τ − vh

τ‖1/2

C([0,T ];L2(Γ3)d)

)
+ c ‖u0 − uh

0‖V .
Assume

u̇ ∈ C([0, T ];H2(Ω)d).(6.33)

Then

u̇τ |Γ3,i
∈ C([0, T ];H3/2(Γ3,i)

d), 1 ≤ i ≤ I.

We use Πhu̇(t) to denote the piecewise Lagrange interpolant of u̇(t) (cf. [3]), and use
the same symbol Πh for the interpolation on Γ3. Then we have the interpolation error
estimates for t ∈ [0, T ],

‖u̇(t)−Πhu̇(t)‖V ≤ c h ‖u̇(t)‖H2(Ω)d ,(6.34)

‖u̇τ (t)−Πhu̇τ (t)‖L2(Γ3)d ≤ c h3/2
I∑

i=1

‖u̇τ (t)‖H3/2(Γ3,i)d .(6.35)

Assume the initial value satisfies

u0 ∈ H2(Ω)d.(6.36)
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EVOLUTIONARY VARIATIONAL INEQUALITIES 577

Then

‖u0 −Πhu0‖V ≤ c h |u0|H2(Ω)d .(6.37)

Summarizing under the additional assumptions (6.28), (6.33), and (6.36), if we
take uh

0 = Πhu0, then using the estimates (6.27), (6.32), (6.34), (6.35), and (6.37),
we have the error estimate

‖u− uh‖C1([0,T ];V ) ≤ O(h3/4).(6.38)

If we further assume

u̇τ |Γ3,i
∈ C([0, T ];H2(Γ3,i)

d), 1 ≤ i ≤ I,(6.39)

then the estimate (6.35) can be replaced by

‖u̇τ (t)−Πhu̇τ (t)‖L2(Γ3)d ≤ c h2
I∑

i=1

‖u̇τ (t)‖H2(Γ3,i)d ,

and we have the optimal order error estimate

‖u− uh‖C1([0,T ];V ) ≤ O(h).(6.40)

For fully discrete approximations, we need the partition of the time interval intro-
duced in section 4. Then a fully discrete approximation for the problem P0 is what
follows.

Problem Phk
0 . Find the displacement field uhk = {uhk

n }Nn=0 ⊂ V h such that for
n = 1, . . . , N ,

(Aε(δuhk
n ), ε(vh)− ε(δuhk

n ))Q + (Bε(uhk
n−1), ε(v

h)− ε(δuhk
n ))Q(6.41)

+ j(δuhk
n ,vh)− j(δuhk

n , δuhk
n ) ≥ (f(t),vh − δuhk

n )V ∀vh ∈ V h,

uhk
0 = uh

0 ,(6.42)

where again uh
0 ∈ V h is a suitable approximation of u0.

From the discussions in section 4, the problem Phk
0 has a unique solution. By

Theorem 5.5, if we choose uh
0 such that ‖u0−uh

0‖V → 0, then we have the convergence

max
1≤n≤N

(‖un − uhk
n ‖V + ‖u̇n − δuhk

n ‖V ) → 0 as h, k → 0.

For order error estimate, assuming f ∈ W 1,1(0, T ;V ), we have the following estimate
from (4.17):

max
1≤n≤N

(‖un − uhk
n ‖V + ‖u̇n − δuhk

n ‖V )(6.43)

≤ c max
1≤n≤N

inf
vh
n∈V h

{
‖vh

n − u̇n‖V + |Rn(v
h
n, u̇n)|1/2

}
+ c ‖uh

0 − u0‖V
+ c k (‖f‖W 1,1(0,T ;V ) + ‖u‖C1([0,T ];V )).

The term Rn(v
h
n, u̇n) is defined in (4.7). Similar to (6.32), we have

|Rn(v
h
n, u̇n)| ≤ c ‖(vh

n)τ − (u̇n)τ‖(L2(Γ3))d .
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Then under the additional regularity conditions (6.33) and (6.36), we have the fol-
lowing error estimate for the fully discrete solution:

max
1≤n≤N

(‖un − uhk
n ‖V + ‖u̇n − δuhk

n ‖V ) ≤ O(h3/4 + k).(6.44)

If we further assume (6.39), then we have the optimal order error estimate

max
1≤n≤N

(‖un − uhk
n ‖V + ‖u̇n − δuhk

n ‖V ) ≤ O(h+ k).(6.45)

We emphasize that the error estimates (6.38), (6.40), (6.44), and (6.45) are only
sample results under the stated regularity conditions. If the regularity conditions are
different, the error estimates need to be changed accordingly, but that follows easily
from (6.27) and (6.43). In particular when u̇(t) �∈ C(Ω), we should use Clément’s
interpolation operator (cf. [4]) or projection operator (cf. [16]) to replace the piecewise
Lagrange interpolation operator in the error estimations.
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