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Abstract. In this paper, a hemivariational inequality is studied for the steady Oseen fluid flow
problem in the presence of a nonsmooth slip boundary condition of friction type. Well-posedness
of the Oseen hemivariational inequality is discussed. Mixed finite element methods are introduced
to solve the Oseen hemivariational inequality and error estimates are derived for the mixed finite
element solutions. The error estimates are of optimal order for low-order mixed element pairs
under suitable solution regularity assumptions. Numerical results are reported illustrating the
theoretical prediction of convergence orders.

1. Introduction. The notion of hemivariational inequalities was first introduced by
Panagiotopoulos in early 1980s ([36]). In contrast to variational inequalities in which
the nonsmooth terms have a convex structure, the nonsmooth terms in hemivariational
inequalities are not assumed to be convex. Early comprehensive references on the math-
ematical theory and engineering applications of hemivariational inequalities are [34, 37].
In the last twenty years, there have been steadily more research activities on modeling,
mathematical analysis, numerical computations and applications of hemivariational in-
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equalities. This is reflected by the large number of recent and new publications in the
area, including comprehensive references such as [4, 5, 33, 39] on mathematical theo-
ries of hemivariational inequalities. For applications, numerical methods are needed to
solve hemivariational inequalities. One is referred to [22] for an early comprehensive ref-
erence on the finite element method and solution algorithms for solving hemivariational
inequalities. An optimal order error estimate for the numerical solution of hemivaria-
tional inequalities was first presented in the paper [19]. Afterwards, a number of papers
have been published on the numerical solution and error analysis of numerical solutions of
hemivariational inequalities. The reader is referred to the survey paper [21] for a summary
account of numerical analysis of hemivariational inequalities.

In early 1990s, Fujita ([11, 12]) started the research on viscous incompressible fluid
flows, modeled by the Stokes or Navier-Stokes equations and subject to nonsmooth mono-
tone slip or leak boundary conditions of friction type. The weak formulations of the
problems are variational inequalities. Numerous publications can be found on the the-
ory and numerical solution of variational inequalities arising in fluid mechanics, e.g.,
[8, 23, 25, 26, 27, 28, 29, 38, 41]. When the slip or leak boundary conditions involve non-
monotone relations, the weak formulations of the corresponding problems become hemi-
variational inequalities, cf. [9, 10, 20, 30, 32]. A new class of variational-hemivariational
inequalities is studied in [31], where the existence of weak solutions is proved by applying
a surjectivity result for an operator inclusion problem involving Clarke’s subdifferential.
Then the result is applied to show the solution existence of the steady Oseen model for
a generalized Newtonian incompressible fluid flow problem subject to a variety of differ-
ent boundary conditions. In this paper, we study an Oseen hemivariational inequality,
present an existence and uniqueness result, introduce and analyze mixed finite element
methods for solving the Oseen hemivariational inequality, and report numerical results.

We note that traditionally, the existence of a solution to a hemivariational inequality
is proved through an application of an abstract surjectivity result for pseudomonotone
operators. An alternative and more accessible approach is developed in [13, 14] to prove
the existence of a solution to hemivariational inequalities. This approach starts with
minimization principles for special hemivariational inequalities, and extends the well-
posedness analysis to general hemivariational inequalities via fixed-point arguments. The
idea is further extended in [17, 18] for well-posedness analysis of mixed hemivariational-
variational inequalities. In [16], well-posedness analysis is provided on a new class of mixed
hemivariational-variational inequalities well suited for the study of pressure stabilized
mixed finite element methods for solving a Navier–Stokes hemivariational inequality. In
this paper, we analyze the Oseen hemivariational inequality and consider a mixed finite
element method for its solution. The solution existence and uniqueness for the Oseen
hemivariational inequality and its finite element approximation are shown through an
application of a general result proved in [16].

The rest of the paper is organized as follows. In Section 2, we recall basic notions and
results needed in later sections. In Section 3, we describe the physical setting of the fluid
flow, introduce the Oseen hemivariational inequality and provide a well-posedness result
on the problem. In Section 4, we apply the mixed finite element method to solve the Oseen
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hemivariational inequality, and derive error estimates for the finite element solutions. The
error estimates are of optimal order for low-order mixed element pairs under suitable
solution regularity assumptions. In Section 5, we report numerical simulation results on
the mixed finite element method for solving the Oseen hemivariational inequality.

2. Preliminaries. Studies of hemivariational inequalities rely on the notions of the
generalized directional derivative and the generalized subdifferential in the sense of Clarke
([7]) that we recall next.
Definition 2.1. Assume Ψ: V → R is a locally Lipschitz continuous function defined
on a real Banach space V . The generalized (Clarke) directional derivative of Ψ at u ∈ V

in the direction v ∈ V is defined by

Ψ0(u; v) := lim sup
w→u, λ↓0

Ψ(w + λv) − Ψ(w)
λ

,

and the generalized subdifferential of Ψ at u ∈ V is defined by
∂Ψ(u) :=

{
η ∈ V ∗ | Ψ0(u; v) ≥ ⟨η, v⟩ ∀ v ∈ V

}
.

We summarize some basic properties of the generalized directional derivative and the
generalized subdifferential in the next result. Detailed discussions can be found in [7].
Proposition 2.2. Let Ψ: V → R be locally Lipschitz continuous.

(i) If additionally, Ψ: V → R is convex, then the generalized subdifferential ∂Ψ(u) at
any u ∈ V in the sense of Clarke coincides with the convex subdifferential ∂Ψ(u).

(ii) For all λ ∈ R and all u ∈ V , ∂(λΨ)(u) = λ∂Ψ(u).
(iii) Ψ0 is positively homogeneous and subadditive, i.e.,

Ψ0(u;λ v) = λΨ0(u; v) ∀λ ≥ 0, u, v ∈ V,

Ψ0(u; v1 + v2) ≤ Ψ0(u; v1) + Ψ0(u; v2) ∀u, v1, v2 ∈ V.

(iv) For locally Lipschitz continuous functions Ψ1,Ψ2 : V → R, the inclusion
∂(Ψ1 + Ψ2)(u) ⊆ ∂Ψ1(u) + ∂Ψ2(u) ∀u ∈ V (1)

holds, or equivalently,
(Ψ1 + Ψ2)0(u; v) ≤ Ψ0

1(u; v) + Ψ0
2(u; v) ∀u, v ∈ V. (2)

Because of Proposition 2.2 (i), we use the same symbol ∂ to mean both the convex
subdifferential and the Clarke subbdifferential.

Let V and Q be two real Hilbert spaces. Their dual spaces are denoted by V ∗ and
Q∗. The symbol ⟨·, ·⟩ denotes the duality pairing between V ∗ and V , or between Q∗ and
Q; it should be clear from the context which duality pairing is meant by ⟨·, ·⟩. Let there
be given a : V × V → R, b : V × Q → R, and f ∈ V ∗. Denote by ∆ the spatial domain
of the problem under consideration, or a sub-domain, or the boundary or part of the
boundary of the domain. Let ψ be a real-valued function defined on ∆ × Rm for some
positive integer m, and let γψ be a linear continuous operator from V to L2(∆;Rm). For
applications in mechanics, either the operator γψ is the normal component trace operator
and m = 1, or γψ is the tangential component trace operator and m equals the dimension
of the spatial domain.
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Consider an abstract mixed hemivariational inequality.

Problem 2.3. Find (u, p) ∈ V ×Q such that

a(u, v) − b(v, p) + I∆(ψ0(γψu; γψv)) ≥ ⟨f, v⟩ ∀ v ∈ V, (3)
b(u, q) = 0 ∀ q ∈ Q. (4)

We assume the following properties on the problem data.
H(a) a : V × V → R is bilinear, bounded and V -elliptic.

We will use Ma > 0 for the boundedness constant and ma > 0 for the V -ellipticity
constant:

|a(u, v)| ≤ Ma∥u∥V ∥v∥V ∀u, v ∈ V, (5)
a(v, v) ≥ ma∥v∥2

V ∀ v ∈ V. (6)

H(b) b : V ×Q → R is bilinear, bounded, and there exists a constant αb > 0 such that

sup
v∈V

b(v, q)
∥v∥V

≥ αb∥q∥Q ∀ q ∈ Q. (7)

We will use Mb > 0 for the boundedness constant of b(·, ·):

|b(v, q)| ≤ Mb∥v∥V ∥q∥Q ∀ v ∈ V, q ∈ Q. (8)

The property (7) is usually called the inf-sup condition.
H(ψ) γψ ∈ L(V ;L2(∆;Rm)); ψ : ∆×Rm → R; ψ(·, z) is measurable on ∆ for all z ∈ Rm;
for a function z0 ∈ L2(∆;Rm), ψ(·, z0(·)) ∈ L1(∆); ψ(xxx, ·) is locally Lipschitz continuous
on Rm for a.e. xxx ∈ ∆; and there exist non-negative constants c1, c1 and αψ such that

|∂ψ(z)| ≤ c0 + c1|z|Rm ∀ z ∈ Rm, a.e. on ∆, (9)
ψ0(z1; z2 − z1) + ψ0(z2; z1 − z2) ≤ αψ|z1 − z2|2Rm ∀ z1, z2 ∈ Rm, a.e. on ∆. (10)

Note that to simplify the notation, we usually write ψ(z) by suppressing its first
argument. The relation (9) is a short-hand notation for

|η| ≤ c0 + c1|z|Rm ∀ z ∈ Rm, η ∈ ∂ψ(z), a.e. on ∆,

and it is equivalent to∣∣ψ0(z1; z2)
∣∣ ≤ (c0 + c1|z1|Rm) |z2|Rm ∀ z1, z2 ∈ Rm, a.e. on ∆.

The inequality (10) is equivalent to ([39, p. 124])

⟨η1 − η2, z1 − z2⟩ ≥ −αψ|z1 − z2|2Rm ∀ zi ∈ Rm, ηi ∈ ∂ψ(zi), i = 1, 2, a.e. on ∆.

Let I∆ stand for the integration operator over ∆. Denote by c∆ > 0 the smallest
constant in the inequality

I∆(|γψv|2Rm) ≤ c2
∆∥v∥2

V ∀ v ∈ V. (11)

From the assumptions (9), (10), we can deduce that

ψ0(z; −z) ≤ c0|z|Rm + αψ|z|2Rm ∀ z ∈ Rm, a.e. on ∆. (12)
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Then it is easy to show that

I∆(ψ0(γψv; −γψv)) ≤ c0c∆|∆|1/2∥v∥V + αψc
2
∆∥v∥2

V ∀ v ∈ V, (13)

where |∆| := I∆(1) is the measure of ∆.

H(f) f ∈ V ∗.

The following result is deduced from [16, Theorem 2.6].

Theorem 2.4. Assume H(a), H(b), H(ψ), H(f), and

αψc
2
∆ < ma. (14)

Then Problem 2.3 has a solution (u, p) ∈ V ×Q, u being unique and

∥u∥V ≤ c0c∆|∆|1/2 + ∥f∥V ∗

ma − αψc2
∆

.

Moreover, u depends Lipschitz continuously on f .

We comment that the uniqueness of p ∈ Q can usually be shown in concrete applica-
tion problems.

3. The Oseen hemivariational inequality. We describe the Oseen hemivariational
inequality problem in this section. Consider an incompressible fluid with a viscosity co-
efficient µ > 0. Assume the fluid occupies a domain Ω ⊂ Rd, d ≤ 3. The boundary ∂Ω
of the domain is assumed to be Lipschitz continuous. Consequently, the unit outward
normal vector ν = (ν1, · · · , νd)T is defined a.e. on the boundary. For a vector-valued field
u defined on the boundary, its normal and tangential components are uν = u · ν and
uτ = u − uνν, respectively. With the velocity field u and the pressure p, we define the
deformation rate tensor ε(u) = 1

2 (∇u+(∇u)T ) and the stress tensor σ = −pI +2µε(u),
where I is the identity matrix. We call σν = ν ·σν and στ = σν−σνν the normal and tan-
gential components of σ on the boundary. The boundary ∂Ω is split into two non-trivial
parts where different kind of boundary conditions will be imposed: ∂Ω = Γ0 ∪ Γ1 with
Γ0 and Γ1 relatively open, |Γ0| > 0, |Γ1| > 0, and Γ0 ∩ Γ1 = ∅.

Denote by Sd the space of second order symmetric tensors on Rd. We use the canonical
inner products and norms on Rd and Sd:

u · v =
d∑
i=1

uivi, |v| = (v · v)1/2 ∀ u = (ui), v = (vi) ∈ Rd,

σ : τ =
d∑

i,j=1
σijτij , |σ| = (σ : σ)1/2 ∀ σ = (σij), τ = (τij) ∈ Sd.

Given a velocity field b, the pointwise formulation of the Oseen problem is the follow-
ing.
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Problem 3.1. Find a velocity field u : Ω → Rd and a pressure p : Ω → R such that

− div(2µε(u)) + (b · ∇)u + ∇p = f in Ω, (15)
div u = 0 in Ω, (16)
u = 0 on Γ0, (17)
uν = 0, −στ ∈ ∂ψτ (uτ ) on Γ1. (18)

The equations (15)–(16) are the Oseen equations. Generally, the Oseen equations also
contain a reactive term of the form b0u on the left side of (15). Since the analysis and
numerical approximation of the general Oseen equations can be carried out similarly, to
simplify the exposition, we consider the Oseen equations (15)–(16) without the reactive
term in this paper. The Oseen equations arise as intermediate equations in many methods
to solve the Navier–Stokes equations numerically (cf. [24, Chapter 5]). In (15), f is a
given force density function. The equations (15)–(16) are supplemented by the boundary
conditions (17)–(18). The super-potential ψτ : Rd → R is assumed locally Lipschitz and
∂ψτ is the subdifferential of ψτ in the sense of Clarke. The relation (18) is a non-leak slip
boundary condition. The first part of the boundary condition (18) means that the fluid
can not pass through Γ1 outside the domain, whereas the second part of (18) represents a
friction-type condition for the friction στ in terms of the tangential velocity uτ . As we will
see later, in general, the weak formulation of the problem (15)–(18) is a hemivariational
inequality. If the super-potential ψτ is convex, then the weak formulation is reduced to a
variational inequality.

The function spaces for the velocity variable and the pressure variable are

V =
{

v ∈ H1(Ω;Rd) | v = 0 on Γ0, vν = 0 on Γ1
}
, (19)

Q =
{
q ∈ L2(Ω) | IΩ(q) = 0

}
, (20)

where IΩ(q) is the integral of q over Ω. Since |Γ0| > 0, Korn’s inequality holds (cf. [35,
p. 79]): for a constant c > 0 depending only on Ω and Γ0,

∥v∥H1(Ω;Rd) ≤ c ∥ε(v)∥L2(Ω;Sd) ∀ v ∈ V. (21)

Thus, over the space V , the quantity ∥ε(·)∥L2(Ω;Sd) defines a norm and it is equivalent to
the standard H1(Ω;Rd)-norm. We use the norm ∥ · ∥V = ∥ε(·)∥L2(Ω;Sd) on V . We have
the trace inequality

∥vτ∥L2(Γ1;Rd) ≤ λ
−1/2
0 ∥v∥V ∀ v ∈ V, (22)

where λ0 > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ V,

∫
Ω

ε(u) : ε(v) dx = λ

∫
Γ1

uτ ·vτ ds ∀ v ∈ V. (23)

For the given data in Problem 3.1, we assume

b ∈ L∞(Ω;Rd), div b = 0 in Ω, b · ν ≥ 0 on Γ1, (24)
f ∈ V ∗. (25)

and
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H(ψτ ). ψτ : Rd → R is locally Lipschitz on Rd and there exist non-negative constants
αψ, c0, c1 ≥ 0 such that

ψ0
τ (ξ1; ξ2 − ξ1) + ψ0

τ (ξ2; ξ1 − ξ2) ≤ αψ|ξ1 − ξ2| ∀ ξ1, ξ2 ∈ Rd, (26)
|η| ≤ c0 + c1|ξ| ∀ ξ ∈ Rd,η ∈ ∂ψτ (ξ). (27)

In the weak formulation of Problem 3.1, we need the following bilinear form:

a(u,v) = a0(u,v) + a1(u,v) ∀ u,v ∈ V, (28)

where

a0(u,v) = 2µ
∫

Ω
ε(u) : ε(v) dx ∀ u,v ∈ V, (29)

a1(u,v) =
∫

Ω
(b · ∇)u · v dx ∀ u,v ∈ V. (30)

We also need the bilinear form

b(v, q) = −
∫

Ω
q div v dx ∀ v ∈ V, q ∈ Q. (31)

The divergence-free condition on b stems from the fact that b represents a flow velocity
field. The last condition in (24) means that the flow with the velocity field b can leak
outward on Γ1. We note that in [31], corresponding to our problem, the assumptions on
b are: b ∈ H1(Ω;Rd), div b = 0 in Ω, b = 0 on Γ0, and b · ν = 0 on Γ1. The regularity
condition b ∈ L∞(Ω;Rd) can be replaced by b ∈ H1(Ω;Rd), or weakened to b ∈ Lr(Ω;Rd)
for some r < ∞ for discussions below. Nevertheless, the assumption b ∈ L∞(Ω;Rd) allows
us to avoid some technical details.

Lemma 3.2. Under the conditions (24), the following inequality holds:

a1(v,v) ≥ 0 ∀ v ∈ V. (32)

Proof. For v ∈ V , we have

a1(v,v) = 1
2

∫
∂Ω

b·ν |v|2ds− 1
2

∫
Ω

div b |v|2dx.

Note that v = 0 on Γ0, div b = 0 in Ω, and b · ν ≥ 0 on Γ1. We derive the inequality (32)
from the previous equality.

Through a standard procedure, the following mixed weak formulation can be derived
for the problem (15)–(18).

Problem 3.3. Find (u, p) ∈ V ×Q such that

a(u,v) + b(v, p) +
∫

Γ1

ψ0
τ (uτ ; vτ ) ds ≥ ⟨f ,v⟩ ∀ v ∈ V, (33)

b(u, q) = 0 ∀ q ∈ Q. (34)

If additionally, ψτ is convex, then Problem 3.3 is replaced by the following variational
inequality.
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Problem 3.4. Find (u, p) ∈ V ×Q such that

a(u,v − u) + b(v − u, p) +
∫

Γ1

ψτ (vτ ) ds−
∫

Γ1

ψτ (uτ ) ds ≥ ⟨f ,v − u⟩ ∀ v ∈ V, (35)

b(u, q) = 0 ∀ q ∈ Q. (36)

We can apply Theorem 2.4 for the well-posedness of Problem 3.3.

Theorem 3.5. Assume H(ψτ ) and αψ < 2µλ0. Then for any f ∈ V ∗, Problem 3.3 has
a unique solution (u, p) ∈ V ×Q. Moreover, the solution (u, p) ∈ V ×Q depends Lipschitz
continuously on f ∈ V ∗, and

∥u∥V + ∥p∥Q ≤ c (1 + ∥f∥V ∗) . (37)

Proof. Let us verify the assumptions stated in Theorem 2.4. Since b ∈ L∞(Ω;Rd), it is
obvious that the bilinear form a(·, ·) defined by (28) is bounded. Applying Lemma 3.2,
we know that

a(v,v) ≥ 2µ ∥v∥2
V ∀ v ∈ V.

So H(a) is satisfied with ma = 2µ for the V -ellipticity (6). H(b) is valid and (7) follows
from the inf-sup condition ([40])

sup
v∈V0

b(v, q)
∥v∥V

≥ αb∥q∥Q ∀ q ∈ Q, (38)

where V0 = H1
0 (Ω;Rd). The assumption H(ψτ ) implies H(ψ), and the assumption (25)

implies H(f). The smallness condition (14) takes the form αψ < 2µλ0. Thus, by Theorem
2.4, Problem 3.3 has a solution (u, p) ∈ V ×Q, u is unique and depends on f Lipschitz
continuously, and

∥u∥V ≤ c (1 + ∥f∥V ∗) .

For the uniqueness of p, assume Problem 3.3 has two solutions (u, p1), (u, p2) ∈ V ×Q.
Then,

a(u,v) + b(v, p1) = ⟨f ,v⟩ ∀ v ∈ V0,

a(u,v) + b(v, p2) = ⟨f ,v⟩ ∀ v ∈ V0.

Hence,
b(v, p1 − p2) = 0 ∀ v ∈ V0.

By (38),

αb∥p1 − p2∥Q ≤ sup
v∈V0

b(v, p1 − p2)
∥v∥V

= 0.

Thus, p1 = p2 and the p component of the solution is unique.
For the Lipschitz continuous dependence of p on f , let f1,f2 ∈ V ∗ and denote by

(u1, p1), (u2, p2) ∈ V ×Q the solutions of Problem 3.3 for f = f1,f2. Then,

a(u1,v) + b(v, p1) = ⟨f1,v⟩ ∀ v ∈ V0,

a(u2,v) + b(v, p2) = ⟨f2,v⟩ ∀ v ∈ V0,

and thus,
b(v, p1 − p2) = ⟨f1 − f2,v⟩ − a(u1 − u2,v) ∀ v ∈ V0.
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By the boundedness of the bilinear form a(·, ·), we have

b(v, p1 − p2) ≤ c (∥f1 − f2∥V ∗ + ∥u1 − u2∥V ) ∥v∥V ∀ v ∈ V0.

Applying the inf-sup condition (38), we derive from the above inequality that

∥p1 − p2∥Q ≤ c (∥f1 − f2∥V ∗ + ∥u1 − u2∥V ) .

This inequality implies the Lipschitz continuity of p on f since u depends on f Lipschitz
continuously. Moreover, we have the bound (37).

In the special case where ψτ is convex, αψ = 0 and the smallness condition αψ < 2µλ0
is automatically valid. Then we have the next result on Problem 3.4.

Theorem 3.6. Assume H(ψτ ) and ψτ is convex. Then for any f ∈ V ∗, Problem 3.4 has
a unique solution (u, p) ∈ V ×Q. Moreover, the solution (u, p) ∈ V ×Q depends Lipschitz
continuously on f ∈ V ∗, and

∥u∥V + ∥p∥Q ≤ c (1 + ∥f∥V ∗) . (39)

4. Mixed finite element methods. In this section, we consider the mixed finite ele-
ment method to solve Problem 3.3. For simplicity, we assume Ω is a polygonal/polyhedral
domain. Let {T h}h be a regular family of finite element partitions of Ω that is compatible
with the boundary splitting ∂Ω = Γ0 ∪ Γ1 in the sense that if an element edge (in 2D) or
element surface (in 3D) has a non-trivial overlap with Γ0 or Γ1, then it lies entirely on
Γ0 or Γ1. The parameter h represents the mesh-size of the partition T h. Corresponding
to the finite element partitions, we introduce finite element spaces {(V h, Qh)}h, V h ⊂ V

and Qh ⊂ Q. Define V h0 = V h∩V0. We assume the discrete inf-sup condition, also known
as the Babuška-Brezzi condition: for a constant β > 0 independent of h,

β ∥qh∥Q ≤ sup
vh∈V h

0

b(vh, qh)
∥vh∥V

∀ qh ∈ Q. (40)

The mixed finite element method for Problem 3.3 is the following.

Problem 4.1. Find (uh, ph) ∈ V h ×Qh such that

a(uh,vh) + b(vh, ph) +
∫

Γ1

ψ0
τ (uhτ ; vhτ ) ds ≥ ⟨f ,vh⟩ ∀ vh ∈ V h, (41)

b(uh, qh) = 0 ∀ qh ∈ Qh. (42)

Similar to the results on Problem 3.3, we have the next result on Problem 4.1.

Theorem 4.2. Assume H(ψτ ), αψ < 2µλ0, and the discrete inf-sup condition (40).
Then for any f ∈ V ∗, Problem 4.1 has a unique solution (uh, ph) ∈ V h ×Qh. Moreover,
the solution (uh, ph) depends Lipschitz continuously on f ∈ V ∗, and for a constant c > 0
independent of h,

∥uh∥V + ∥ph∥Q ≤ c (1 + ∥f∥V ∗) . (43)

In the rest of the section, we focus on deriving an error estimate. For this purpose, we
will keep the assumptions stated in Theorem 4.2: H(ψτ ), αψ < 2µλ0, and the discrete
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inf-sup condition (40). We will apply the modified Cauchy-Schwarz inequality several
times:

x y ≤ ϵ x2 + c y2 ∀x, y ∈ R, (44)

where ϵ > 0 is arbitrarily small, and c = c(ϵ) = 1/(4 ϵ) is a constant depending on ϵ.
Frist, we present a Céa’s inequality.

Theorem 4.3. Assume H(ψτ ), αψ < 2µλ0, and the discrete inf-sup condition (40).
Then,

∥u − uh∥2
V + ∥p− ph∥2

Q ≤ c
(
∥u − vh∥2

V + ∥uτ − vhτ∥L2(Γ1;Rd) + ∥p− qh∥2
Q

)
(45)

for any vh ∈ V h, qh ∈ Qh.

Proof. For an arbitrary vh ∈ V h,

2µ ∥u − uh∥2
V = a0(u − uh,u − uh) = a0(u − uh,u − vh) + a0(u − uh,vh − uh),

which is rewritten as

2µ ∥u − uh∥2
V = a0(u − uh,u − vh) + a0(u,vh − uh) + a0(uh,uh − vh). (46)

Take v = uh − vh in (33) to get

a0(u,vh − uh) ≤ a1(u,uh − vh) + b(uh − vh, p) +
∫

Γ1

ψ0
τ (uτ ; uhτ − vhτ ) ds

− ⟨f ,uh − vh⟩.

Replace vh by vh − uh in (41) to get

a0(uh,uh − vh) ≤ a1(uh,vh − uh) + b(vh − uh, ph) +
∫

Γ1

ψ0
τ (uhτ ; vhτ − uhτ ) ds

− ⟨f ,vh − uh⟩.

Use these two inequalities in (46),

2µ ∥u − uh∥2
V ≤ a0(u − uh,u − vh) + Ia1 + Iψ + Ib, (47)

where

Ia1 = a1(u − uh,uh − vh),

Iψ =
∫

Γ1

[
ψ0
τ (uτ ; uhτ − vhτ ) + ψ0

τ (uhτ ; vhτ − uhτ )
]
ds,

Ib = b(uh − vh, p− ph).

Let us bound each of the terms on the right hand side of (47). First, by the bound-
edness of the bilinear form a0 and the modified Cauchy-Schwarz inequality (44), for any
ϵ > 0, there is a constant c > 0 depending on ϵ such that

a0(u − uh,u − vh) ≤ 2µ ∥u − uh∥V ∥u − vh∥V ≤ ϵ ∥u − uh∥2
V + c ∥u − vh∥2

V . (48)

Write
Ia1 = −a1(u − uh,u − uh) + a1(u − uh,u − vh).
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By Lemma 3.2, a1(u − uh,u − uh) ≥ 0. Hence,

Ia1 ≤
∫

Ω
(b·∇)(u − uh) · (u − vh) dx ≤ c ∥u − uh∥V ∥u − vh∥V .

By an application of the modified Cauchy-Schwarz inequality (44),

Ia1 ≤ ϵ ∥u − uh∥2
V + c ∥u − vh∥2

V . (49)

For the integrand of the term Iψ, by the subadditivity of the generalized directional
derivative (cf. Proposition 2.2),

ψ0
τ (uτ ; uhτ − vhτ ) + ψ0

τ (uhτ ; vhτ − uhτ ) ≤
[
ψ0
τ (uτ ; uhτ − uτ ) + ψ0

τ (uhτ ; uτ − uhτ )
]

+
[
ψ0
τ (uτ ; uτ − vhτ ) + ψ0

τ (uhτ ; vhτ − uτ )
]
.

Then by H(ψτ ) and (27),

ψ0
τ (uτ ; uhτ − vhτ ) + ψ0

τ (uhτ ; vhτ − uhτ ) ≤ αψ|uτ − uhτ |2 + c
(
1 + |uτ | + |uhτ |

)
|uτ − vhτ |.

Hence,

Iψ ≤
∫

Γ1

[
αψ|uτ − uhτ |2 + c

(
1 + |uτ | + |uhτ |

)
|uτ − vhτ |

]
ds,

and then

Iψ ≤ αψλ
−1
0 ∥u − uh∥2

V + c
(
1 + ∥uτ∥L2(Γ1;Rd) + ∥uhτ∥L2(Γ1;Rd)

)
∥uτ − vhτ∥L2(Γ1;Rd). (50)

By making use of (34) and (42), we can write, for any qh ∈ Qh,

Ib = b(uh − vh, p− ph)
= b(uh, p) − b(vh, p) + b(vh, ph)
= b(uh − u, p− qh) + b(u − vh, p) + b(vh − u, ph)
= b(uh − u, p− qh) + b(u − vh, p− ph).

Thus,
Ib ≤ c

(
∥u − uh∥V ∥p− qh∥Q + ∥u − vh∥V ∥p− ph∥Q

)
,

and by the modified Cauchy-Schwarz inequality (44),

Ib ≤ ϵ
(
∥u − uh∥2

V + ∥p− ph∥2
Q

)
+ c

(
∥u − vh∥2

V + ∥p− qh∥2
Q

)
. (51)

We use (48)–(51) in (47) to obtain, recalling the assumption αψ < 2µλ0, that for any
sufficiently small ϵ > 0, with a constant c depending on ϵ,

∥u − uh∥2
V ≤ c

(
∥u − vh∥2

V + ∥uτ − vhτ∥L2(Γ1;Rd) + ∥p− qh∥2
Q

)
+ ϵ ∥p− ph∥2

Q. (52)

By the triangle inequality,

∥p− ph∥Q ≤ ∥p− qh∥Q + ∥ph − qh∥Q. (53)

By the discrete inf-sup condition (40),

β ∥ph − qh∥Q ≤ sup
vh∈V h

0

b(vh, ph − qh)
∥vh∥V

. (54)

Write
b(vh, ph − qh) = b(vh, ph − p) + b(vh, p− qh).
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From (33) and (41), we derive that
a(u,vh) + b(vh, p) = ⟨f ,vh⟩ ∀ vh ∈ V0,

a(uh,vh) + b(vh, ph) = ⟨f ,vh⟩ ∀ vh ∈ V h0 .

So
b(vh, ph − p) = a(u − uh,vh).

Note that
a(u − uh,vh) ≤ c ∥u − uh∥V ∥vh∥V .

Hence,
b(vh, ph − p) ≤ c ∥u − uh∥V ∥vh∥V ,

and then
b(vh, ph − qh) ≤ c

(
∥u − uh∥V + ∥p− qh∥Q

)
∥vh∥V ∀ vh ∈ V0.

Use this inequality in (54) to obtain
∥ph − qh∥Q ≤ c

(
∥u − uh∥V + ∥p− qh∥Q

)
.

Summarizing, we can derive from (53) that
∥p− ph∥Q ≤ c

(
∥u − uh∥V + ∥p− qh∥Q

)
. (55)

We combine (52) with a sufficiently small ϵ and (55) to get (45).

Céa’s inequality is the basis for error estimates of the finite element solution (uh, ph).
As an example, we consider the P1b/P1 element ([1]):

V h =
{

vh ∈ V ∩ C0(Ω)d | vh|T ∈ [P1(T ) ⊕B(T )]d ∀T ∈ T h
}
,

Qh =
{
qh ∈ Q ∩ C0(Ω) | q|T ∈ P1(T ) ∀T ∈ T h

}
,

where P1(T ) is the space of polynomials of a degree less than or equal to 1 on T , and B(T )
is the space of bubble functions on T . For this element, the discrete inf-sup condition (40)
holds. To apply (45) to derive an error estimate, we express Γ1 as the union of a finite
number of flat components:

Γ1 =
l0⋃
l=1

Γ1,l,

and assume the following solution regularities:
u ∈ H2(Ω;Rd), uτ |Γ1,l

∈ H2(Γ1,l;Rd), 1 ≤ l ≤ l0, p ∈ H1(Ω).
Then, applying the standard finite element interpolation error estimates ([2, 6, 3]), we
can derive from (45) the following optimal order error estimate:

∥u − uh∥V + ∥p− ph∥Q ≤ c h,

for a constant c depending the solution (u, p).

5. Numerical results. We report some numerical results on a two-dimensional test
problem. The super-potential function is taken to be

ψτ (vτ ) =
∫ |vτ |

0
ω(t) dt, ω(t) = (a− b)e−αt + b.
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The function ψτ : R → R is non-convex and Lipschitz continuous. Its subdifferential is

∂ψτ (0) = ω(0)B1(0), ∂ψτ (vτ ) = ω(|vτ |) vτ/|vτ | if vτ ̸= 0,

where B1(0) is the unit ball centered at the origin in R2.
In solving the hemivariational inequality, we apply an iterative algorithm. For this

purpose, we introduce a Lagrangian multiplier λ = −σ/ω(|uτ |) on Γ1. Then the boundary
condition

−στ ∈ ∂ψτ (uτ ) on Γ1

from (18) implies that λ belongs to the set

ΛΛΛ = {λλλ ∈ LLL∞(Γ1) | |λλλ| ≤ 1 a.e. on Γ1} .

By making use of the Lagrangian multiplier λ, we have another weak formulation for
Problem 3.1:

Problem 5.1. Find u ∈ V , p ∈ Q and λλλ ∈ ΛΛΛ such that
a(u,v) + b(v, p) +

∫
Γ1

λλλ · vτ ds = ⟨f ,v⟩ ∀ v ∈ V, (56a)

b(u, q) = 0 ∀ q ∈ Q, (56b)
λλλ · uτ = |uτ | a.e. on Γ1. (56c)

Similarly, on the discrete level, we have the following variant of Problem 4.1:

Problem 5.2. Find (uh, ph) ∈ V h ×Qh and λλλh ∈ ΛΛΛ such that
a(uh,vh) + b(vh, ph) +

∫
Γ1

λh · vhτ ds = ⟨f ,vh⟩ ∀ vh ∈ V h, (57a)

b(uh, qh) = 0 ∀ qh ∈ Qh, (57b)
λh · uhτ = |uhτ | a.e. on Γ1. (57c)

This form of the finite element system motivates us to introduce the following Uzawa
algorithm.

Algorithm 1 Uzawa algorithm
Initialization. Choose uh0 , λλλh1 , ρ > 0, ϵtol, and set n = 1.
Iteration. For n ≥ 1, with λλλhn ∈ ΛΛΛ known, find (uhn, phn) ∈ V h ×Qh by solving

a(uhn,vh) + b(vh, phn) = ⟨f ,vh⟩ −
∫

Γ1

λhn · vhτ ds ∀ vh ∈ V h,

b(uhn, qh) = 0 ∀ qh ∈ Qh

and compute
λhn+1 = PΛ(λhn + ρuhn,τ ).

Continue the iteration until ∥uhn − uhn−1∥L2(Ω)/∥uhn∥L2(Ω) < ϵtol.

In the iteration step, PΛ denotes the projection onto the unit ball. In the implementa-
tion, the integral on Γ1 is computed by the trapezoid rule corresponding to a partition of
Γ1 induced by the finite element mesh of the domain. Consequently, only the values of λhn
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at the mesh points on Γ1 are involved in the algorithm. In the examples, we choose uh0 = 0,
λλλh1 = 111, ϵtol = 10−6, and test different values of the parameter ρ. To avoid an infinite loop,
in the implementation of the Uzawa algorithm, we stop the iteration when a maximal
iteration number is reached. For the numerical results reported in this section, however,
it is always the case that the iteration stops with ∥uhn − uhn−1∥L2(Ω)/∥uhn∥L2(Ω) < ϵtol.

For the data of the examples, we let Ω = (0, 1) × (0, 1) be the unit square, Γ1 =
(0, 1) × {0} the bottom of the square, and impose the homogeneous Dirichlet boundary
condition along the rest of the boundary. We take µ = 1, and define the source function by

f0 = −div(2µε(u0)) + (b·∇)u0 + ∇p0

with (a generic point in R2 is denoted by (x, y))

u0(x, y) =
(

20x2(1 − x)2y(1 − y)(1 − 2y)
−20x(1 − x)(1 − 2x)y2(1 − y)2

)
,

p0(x, y) = 10(2x− 1)(2y − 1).
We note that a similar source function is used in the context of variational inequali-
ties for the Navier-Stokes equations in [16] and for Stokes equations with leak boundary
conditions in [26].

For the convective coefficient function b, we consider the following two choices, both
satisfying (24):

b1(x, y) =
(

0
−1

)
,

b2(x, y) =
(

x3 + x2y + x2 − 3xy2 − 2xy + x+ 1
−3x2y − xy2 − 2xy + y3 + y2 − y − 1

)
.

For comparison, we also consider the choice
b3 = u.

In this case, the Oseen equations are actually the Navier-Stokes equations, and in the iter-
ation step of the Uzawa algorithm, we replace a(uhn,vh) by a0(uhn,vh)+a1(uhn−1; uhn,v

h).
This problem is approximated by the P1b/P1 finite element pair on triangular meshes.

We partition the domain Ω by a sequence of uniform triangular meshes (cf. Fig. 1 (a))
with the interval [0, 1] being split into h−1 equal sub-intervals for h = 1/4, 1/8, · · · , and
use the P1b/P1 finite element pair ([1]). The discrete inf-sup condition is satisfied. In
computing the numerical solution errors, we take u∗ = u1/256 and p∗ = p1/256 as the
reference solution.

The numerical convergence order of the numerical solution is computed by
Order = log(eh/eh/2)/ log(2),

where eh = ∥uuuh − uuu∗∥L2(Ω) for Eu
L2(h), eh = |uuuh − uuu∗|H1(Ω) for Eu

H1(h), and eh =
∥ph − p∗∥L2(Ω) for EpL2(h).

In the numerical experiments, we let α = 10 and consider three pairs of a and b:
(C1) a = 0.255, b = 0.25; (C2) a = 0.85, b = 0.8; (C3) a = 5.01 b = 5.0. The velocity
field and the pressure counters corresponding to (C1) are drawn in Fig. 1. Numerical
errors and numerical convergence orders of the finite element approximations are shown
in Tables 1–3 and Fig. 2 through Fig. 4. The tangential component of velocity uτ and
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the tangential component of stress tensor στ along the slip boundary Γ1, the value of
velocity in Ω are displayed in Fig. 5. In Fig. 1 (b)–(c) and Fig. 5, the results are obtained
for h = 1/32. The numerical convergence orders match the theoretical convergence orders
predicted in Theorem 4.3 even though it is not clear if the solution regularity assumptions
stated in Theorem 4.3 are satisfied. The slip on boundary is observed to convince us that
the superpotential function directly influences the occurrence of the slippage.

(a) mesh (b) velocity field (c) pressure isobars

Fig. 1. Mesh, velocity field and pressure isobars

Table 1. Numerical errors, b = b1
a = 0.255 b = 0.25 (ρ = 1) a = 0.85 b = 0.8 (ρ = 1) a = 5.01 b = 5.0 (ρ = 1)

h Eu
L2 Eu

H1 EpL2 Eu
L2 Eu

H1 EpL2 Eu
L2 Eu

H1 EpL2

1/4 2.05e-02 2.14e-01 3.75e-01 1.98e-02 2.11e-01 3.76e-01 3.65e-02 3.67e-01 3.89e-01
1/8 7.12e-03 9.06e-02 1.61e-01 6.91e-03 8.94e-02 1.61e-01 1.18e-02 1.94e-01 1.77e-01
1/16 1.88e-03 3.57e-02 5.96e-02 1.82e-03 3.52e-02 5.91e-02 3.05e-03 9.59e-02 6.38e-02
1/32 4.61e-04 1.47e-02 2.09e-02 4.47e-04 1.47e-02 2.056e-02 7.59e-04 4.75e-02 2.21e-02
1/64 1.08e-04 6.45e-03 7.13e-03 1.05e-04 6.39e-03 7.00e-03 1.88e-04 2.36e-02 7.73e-03
order 2.09 1.21 1.55 2.09 1.20 1.56 2.01 1.00 1.52

Table 2. Numerical errors, b = b2
a = 0.255 b = 0.25 (ρ = 1) a = 0.85 b = 0.8 (ρ = 1) a = 5.01 b = 5.0 (ρ = 1)

h Eu
L2 Eu

H1 EpL2 Eu
L2 Eu

H1 EpL2 Eu
L2 Eu

H1 EpL2

1/4 2.04e-02 2.11e-01 3.76e-01 1.98e-02 2.08e-01 3.77e-01 3.65e-02 3.67e-01 3.89e-01
1/8 7.04e-03 8.92e-02 1.62e-01 6.84e-03 8.81e-02 1.62e-01 1.18e-02 1.94e-01 1.77e-01
1/16 1.84e-03 3.53e-02 5.96e-02 1.79e-03 3.49e-02 5.91e-02 3.05e-03 9.59e-02 6.38e-02
1/32 4.52e-04 1.48e-02 2.09e-02 4.38e-04 1.47e-02 2.06e-02 7.59e-04 4.75e-02 2.21e-02
1/64 1.06e-04 6.45e-03 7.13e-03 1.03e-04 6.39e-03 7.00e-03 1.88e-04 2.36e-02 7.73e-03
order 2.09 1.20 1.55 2.09 1.20 1.57 2.01 1.01 1.52

Table 3. Numerical errors, b = b3

a = 0.255 b = 0.25 (ρ = 1) a = 0.85 b = 0.8 (ρ = 1) a = 5.01 b = 5.0 (ρ = 1)
h Eu

L2 Eu
H1 EpL2 Eu

L2 Eu
H1 EpL2 Eu

L2 Eu
H1 EpL2

1/4 2.10e-02 2.19e-01 3.77e-01 2.02e-02 2.15e-01 3.78e-01 3.65e-02 3.67e-01 3.89e-01
1/8 7.31e-03 9.32e-02 1.63e-01 7.05e-03 9.17e-02 1.63e-01 1.18e-02 1.94e-01 1.76e-01
1/16 1.93e-03 3.67e-02 6.10e-02 1.86e-03 3.61e-02 6.03e-02 3.05e-03 9.58e-02 6.37e-02
1/32 4.74e-04 1.53e-02 2.15e-02 4.57e-04 1.51e-02 2.11e-02 7.60e-04 4.75e-02 2.21e-02
1/64 1.12e-04 6.63e-03 7.37e-03 1.07e-04 6.56e-03 7.21e-03 1.89e-04 2.36e-02 7.72e-03
order 2.09 1.21 1.55 2.09 1.20 1.55 2.01 1.00 1.52
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Fig. 2. Numerical convergence orders for velocity and pressure, (C1)

Fig. 3. Numerical convergence orders for velocity and pressure, (C2)

Fig. 4. Numerical convergence orders for velocity and pressure, (C3)
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(a) C1 (b) C2 (c) C3

(d) C1 (e) C2 (f) C3

(g) C1 (h) C2 (i) C3

Fig. 5. Tangential components uτ and σσστ , and |u|
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