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Abstract 

Variational-hemivariational inequalities are an important mathematical framework for 
nonsmooth problems. The framework can be used to study application problems from 
physical sciences and engineering that involve non-smooth and even set-valued rela
tions, monotone or non-monotone, among physical quantities. Since no analytic 
solution formulas are expected for variational-hemivariational inequalities from appli
cations, numerical methods are needed to solve the problems. This paper focuses on 
numerical analysis of variational-hemivariational inequalities, reporting new results as 
well as surveying some recent published results in the area. A general convergence 
result is presented for Galerkin solutions of the inequalities under minimal solution 
regularity conditions available from the well-posedness theory, and Céa’s inequalities 
are derived for error estimation of numerical solutions. The finite element method and 
the virtual element method are taken as examples of numerical methods, optimal order 
error estimates for the linear element solutions are derived when the methods are 
applied to solve three representative contact problems under certain solution regularity 
assumptions. Numerical results are presented to show the performance of both the 
finite element method and the virtual element method, including numerical con
vergence orders of the numerical solutions that match the theoretical predictions.

1. Introduction

Variational-hemivariational inequalities (VHIs) are an important 
mathematical framework for studying nonsmooth problems in applications. 
This framework contains variational inequalities (VIs) and hemivariational 
inequalities (HVIs) as special cases. VIs are inequality problems in which 
non-smooth terms have a convex property, whereas HVIs are those in 
which non-smooth terms are allowed to be non-convex. A VHI has the 
features of both a VI and a HVI, i.e., both convex and non-convex non- 
smooth terms are present in the problem. In the literature, the two terms 
“hemivariational inequalities” and “variational-hemivariational inequal
ities” are used interchangeably. In this paper, we use the term “variational- 
hemivariational inequalities” to also mean hemivariational inequalities.

Rigorous mathematical analysis on VIs began in 1960s (Fichera, 1964). 
By early 1970s, foundations of basic mathematical theory of VIs were 
established in a series of papers (Brézis, 1972; Hartman & Stampacchia, 
1966; Lions & Stampacchia, 1967; Stampacchia, 1964). In (Duvaut & 
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Lions, 1976), many complicated application problems were modeled and 
studied as VIs. Since one does not expect to have solution formulas for VIs 
arising in applications, numerical methods are needed to solve VIs. Early 
comprehensive references on numerical methods for solving VIs are 
(Glowinski, 1984; Glowinski et al., 1981). Modelling, analysis and 
numerical solution of VIs in mechanics are treated in (Han & Reddy, 2013; 
Han & Sofonea, 2002; Haslinger et al., 1996; Hlaváček et al., 1988; 
Kikuchi & Oden, 1988) and in many other references. Even though the 
area of VIs is now pretty mature, it is still an active research area due to 
emerging new applications and the need of developing better numerical 
methods and algorithms for solving VIs (e.g., Caselli et al., 2023; Chouly 
et al., 2023; Jayswal & Antczak, 2023; Ulbrich, 2011; Yousept, 2021).

HVIs, and more generally, VHIs, find their applications in problems 
involving non-smooth, non-monotone and set-valued relations among 
physical quantities. Since the pioneering work of Panagiotopoulos in early 
1980s (Panagiotopoulos, 1983), there has been extensive research on 
modeling, analysis, numerical solution and applications of VHIs. Recent 
years have witnessed an explosive growth in the literature on modeling, 
analysis, numerical approximation and simulations, and applications of 
VHIs. Early comprehensive references on mathematical theory, numerical 
solution and applications of VHIs include (Haslinger et al., 1999; Motreanu 
& Panagiotopoulos, 1999; Naniewicz & Panagiotopoulos, 1995; 
Panagiotopoulos, 1993). More recent monographs covering the mathe
matical theory and applications of VHIs include (Carl & Le, 2021; Carl 
et al., 2007; Goeleven & Motreanu, 2003; Goeleven et al., 2003; Migórski 
et al., 2013; Sofonea & Migórski, 2018). In these references and in the vast 
majority of other publications on well-posedness of VHIs, abstract sur
jectivity results on pseudomonotone operators and a Banach fixed-point 
argument are applied to show the solution existence. An alternative and 
more accessible approach, without the use of abstract theory of pseudo
monotone operators, has been developed for the mathematical theory of 
VHIs. This new approach starts with minimization principles for a special 
family of VHIs, first established in (Han, 2020); the theory is then extended 
in (Han, 2021) to cover general VHIs through fixed-point arguments. The 
book (Han, 2024) is devoted to the mathematical theory of VHIs using the 
new approach.

VHIs are more complicated than VIs, and numerical methods are 
needed to solve them. The finite element method and a variety of solution 
algorithms are discussed in (Haslinger et al., 1999) to solve HVIs. An 
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optimal order error estimate is first presented in (Han et al., 2014) for the 
linear finite element solutions of a VHI. This is followed by a series of 
papers on further analysis of the finite element method to solve VHIs, e.g., 
(Han, 2018; Han et al., 2017, 2018; Han & Zeng, 2019). The reference 
(Han & Sofonea, 2019) provides a recent survey of numerical analysis of 
VHIs, including some time-dependent problems. Other numerical 
methods have been studied for solving VHIs, e.g., (Feng et al., 2019, 
2021a, 2021b, 2022; Ling et al., 2020; Wang et al., 2021; Wu et al., 2022; 
Xiao & Ling, 2023a, 2023b, 2023c) on the use of virtual element methods, 
and (Wang et al., 2023) on the use of discontinuous Galerkin methods. 
Machine learning techniques have been explored recently to solve the 
problems, cf. (Cheng et al., 2023; Huang et al., 2022).

The aim of this paper is to provide a summary account on the numerical 
solution of VHIs. We will only consider stationary/time-independent 
problems. In Section 2, we present preliminary materials needed later in the 
paper. In particular, we review the notions of generalized subdifferentials 
and generalized subgradients, and their properties. In Section 3, we 
introduce three contact problems; their weak formulations are VHIs. In 
Section 4, we provide an analysis of the Galerkin method for an abstract 
VHI, which contains the three VHIs introduced in Section 3 as special 
cases. In Section 5, we apply results presented in Section 4 to study the 
three contact problems, including optimal order error estimates for their 
numerical solutions using the linear finite element method under certain 
solution regularity assumptions. In Section 6, we analyze the virtual ele
ment method for solving an abstract VHI. In Section 7, we apply the VEM 
to solve the three contact problems and derive optimal order error esti
mates under certain solution regularity assumptions. In Section 8, we 
present numerical examples for solving the contact problems, and report 
the numerical convergence orders of the FEM and VEM solutions. The 
paper ends with some concluding remarks in Section 9.

2. Preliminaries

In the study of VHIs, we need the notions of the generalized 
directional derivative and generalized subdifferential for locally Lipschitz 
continuous functions introduced by F. H. Clarke (Clarke, 1975, 1983). In 
this section, we use the symbol V for a Banach space, and U for an open 
subset in V.
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Definition 1. Assume U: is locally Lipschitz continuous. Then 
the generalized (Clarke) directional derivative of Ψ at u ∈ U in the direction 
v ∈ V is defined by 

u v
w v w

( ; ) lim sup
( ) ( )

,
w u

0

, 0

+ (1) 

and the generalized (Clarke) subdifferential of Ψ at u ∈ U is defined by 

u u V u v u v v V( ) { ( ; ) , }.0* * * (2) 

We note that the upper limit in (1) is well-defined for a locally Lipschitz 
continuous functional Ψ. Often, we will use Definition 1 for the particular 
case U = V.

Basic properties of the generalized directional derivative and the general
ized gradient are recorded in the next result (cf. Clarke, 1983; Clarke et al., 
1998; Gasiński & Papageorgiou, 2005 or Migórski et al., 2013, Section 3.2).

Proposition 1. Assume that U: is a locally Lipschitz function. 
Then the following statements are valid.  

(i) Ψ0(u; λ v) = λ Ψ0(u; v) ∀λ ≥ 0, u ∈ U, v ∈ V.
(ii) Ψ0(u; − v) = (−Ψ)0(u; v) ∀u ∈ U, v ∈ V.
(iii) Ψ0(u; v1 + v2) ≤ Ψ0(u; v1) + Ψ0(u; v2) ∀u ∈ U, v1, v2 ∈ V.
(iv) u v u v u u u U v V( ; ) max { , ( )} , .0 * *=
(v) If un → u in V, un, u ∈ U, and vn → v in V, then

u v u vlimsup ( ; ) ( ; ).n n n
0 0

(vi) For every u ∈ U, ∂Ψ(u) is nonempty, convex, and weakly* compact 
in V* .

(vii) If un → u in V, un, u ∈ U, u*n ∈ ∂Ψ(un), and u un weakly* in V* , 
then u* ∈ ∂Ψ(u).

(viii) If U: is convex, then the generalized subdifferential ∂Ψ(u) at 
any u ∈ U coincides with the convex subdifferential ∂Ψ(u).

Because of Proposition 1 (viii), the symbol ∂ is used for both the 
generalized subdifferential of locally Lipschitz continuous functions and the 
convex subdifferential of convex functions. Detailed discussion on convex 
subdifferentials can be found in many references on convex functions, e.g., 
(Ekeland & Temam, 1976).
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One simple consequence of Proposition 1 (iii) is 

u v u v u U v V( ; ) ( ; ) , .0 0 (3) 

This property can also be proved directly from the definition of the gen
eralized directional derivative.

In the description of the next result, we need the concept of regularity 
of a locally Lipschitz continuous function.

Definition 2. A function U: is regular at u ∈ U if Ψ is Lipschitz 

continuous near u and the directional derivative u v( ; ) exists such that 

u v u v v V( ; ) ( ; ) .0=
It is known that a function is regular at any point where the function is 

continuously differentiable. In addition, a l.s.c. function is regular at any 
point in the interior of its effective domain.

Proposition 2. Let U, , :1 2 be locally Lipschitz functions. 
Then: 
(i) (scalar multiples).

u u u U( )( ) ( ) , .= (4) 

(ii) (sum rules).

u u u u U( )( ) ( ) ( ) ,1 2 1 2+ + (5) 

or equivalently,

u v u v u v u U v V( ) ( ; ) ( ; ) ( ; ) , .1 2
0

1
0

2
0+ + (6) 

If Ψ1 and Ψ2 are regular at u, then (5) and (6) hold with equalities.

In the study of VHIs, we will assume a condition of the form 

v v v v v v v v v v U( ; ) ( ; ) ,V
0

1 2 1
0

2 1 2 1 2
2

1 2+ (7) 

for a constant αΨ ≥ 0. This condition characterizes the degree of non- 
convexity of the functional Ψ: the smaller the constant αΨ ≥ 0, the weaker 
the non-convexity of Ψ. For a convex functional Ψ, (7) holds with αΨ = 0. 
The condition (7) is sometimes given as a condition on the generalized 
subdifferential (cf. Sofonea & Migórski, 2018, p. 124).
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Proposition 3. The condition (7) is equivalent to 

v v v v v v v U v v i, , ( ), 1, 2.V i i i1 2 1 2 1 2
2 =

(8) 

The condition (8) is known as a relaxed monotonicity condition in the 
literature. The inequality (8) with αΨ = 0 is the monotonicity of ∂Ψ for a 
convex functional Ψ.

For convenience, we will write (8) as 

v v v v v v v v U( ) ( ), , .V1 2 1 2 1 2
2

1 2 (9) 

The following result is useful for verification of the condition (7); it is 
proved, e.g., in (Han, 2024, p. 26).

Theorem 1. Assume U: is locally Lipschitz continuous and . 

Then (7) holds if and only if the functional v v v( ) ( /2) V
2+ is 

convex on U.

The following chain rule is proved in (Migórski et al., 2010, Lemma 
4.2). More general chain rules for the generalized directional derivative and 
generalized subdifferential can be found in (Clarke, 2013, Chapter 10).

Proposition 4. Let V and W be Banach spaces, let W:0 be locally 
Lipschitz and let T: V → W be given by Tv = Av + w for v ∈ V, where 
A V W( , ) and w ∈ W is fixed. Then the function V: defined 
by Ψ(v) = Ψ0(Tv) is locally Lipschitz and 

u v Tu Av u v V( ; ) ( ; ) , ,0
0
0 (10)  

u A Tu u V( ) ( ) ,0* (11) 

where A W V( , ) is the adjoint operator of A. Moreover, the 
equalities in (10) and (11) hold true if A is surjective.

For detailed discussion of the properties of the Clarke subdifferential, 
we refer the reader to (Clarke, 1975,1983; Clarke et al., 1998; Clarke, 
2013; Denkowski et al., 2003a, 2003b).

In virtually all the applications in mechanics, the locally Lipschitz 
continuous functional Ψ is expressed as an integral of a locally Lipschitz 
continuous function ψ of a real variable or of several real variables. The 
following formula is useful to compute the Clarke subdifferential of a 
function defined over a finite dimensional set (cf. Clarke, 2013, Theorem 
10.7; Migórski et al., 2013, Prop. 3.34).
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Proposition 5. Assume U d is open, U: is locally Lipschitz 

continuous near x ∈ U, N d with ∣N∣ = 0, and N d with ∣Nψ∣ = 0 
such that ψ is Fréchet differentiable on U\Nψ. Then, 

x x x x x N N( ) conv{ lim ( ) , }.k k k=

Next, we show some examples on the generalized subdifferential for 
locally Lipschitz continuous functions by applying Proposition 5.

For the function ψ1(x) = −∣x∣, its generalized subdifferential is 

l
m
ooo
n
ooox

x
x
x

( )
1 if 0,
[ 1, 1] if 0,

1 if 0.
1 =

<
=
>

For 

{x
x

x x
( )

0, 0,
, 0,2 = >

we have 

l
m
ooo
n
ooox

x
x
x

( )
0, 0,
[0, 1], 0,
1, 0.

2 =
<
=
>

Note that ψ2 is a convex function, and ∂ψ2 is also the convex subdifferential 
of ψ2.

Consider 

l
m
oooo
n
ooox

x x
x x
x x

( )
2 3 if 1,

if 1,
2 1 if 1.

3
2

=
+ <

>

For its generalized subdifferential, we have 

l

m

oooooooooooo

n

oooooooooooo

x

x
x

x
x

x
x

x x

( )

2 if 1,
[ 1, 2] if 1,

1 if 1 0,
[ 1, 1] if 0,
1 if 0 1,
[1, 4] if 1,
4 if 1.

3 =

<
=

< <
=
< <
=
>
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On several occasions, we will use the modified Cauchy-Schwarz 
inequality 

ab a c b a b, ,2 2+ (12) 

where ϵ  >  0 is an arbitrary positive number and the constant c  >  0 
depends on ϵ, indeed, we may simply take c = 1/(4 ϵ).

3. Sample problems from contact mechanics

3.1 Notation
We first introduce the notation. We are interested in mathematical 
models which describe the equilibrium of the mechanical state of an 
elastic body subject to the action of external forces and constraints on 
the boundary. We denote by Ω the reference configuration of the body 
and assume Ω is an open, bounded, connected set in d with a Lipschitz 
boundary Γ = ∂Ω. In applications, the dimension d = 2 or 3. The 
Lipschitz regularity assumption on Ω allows us to use most of the basic 
properties of Sobolev spaces, including integration by parts formulas. 
The unit outward normal vector on Γ exists a.e. and we denote it by ν. 
We use boldface letters for vectors and tensors. A typical point in d is 
denoted by x = (xi). The range of indices i, j, k, l is between 1 and d. We 
adopt the summation convention over a repeated index, e.g., aibi stands 
for the summation a1b1 + ⋯ + adbd. The index following a comma 
indicates a partial derivative with respect to the corresponding com
ponent of the spatial variable x. For example, for a function g(x), g,j(x) 
denoted the partial derivative ∂g(x)/∂xj.

We denote by d the space of second order symmetric tensors on d. 
For our purpose, we can simply view d as the space of symmetric matrices 
of order d. Over d and d, we use the canonical inner products and norms 
defined by 

u v v v v u vu v u v, ( ) ( ), ( ) ,i i i i
d1/2= = = = (13)  

: , ( : ) ( ), ( ) .ij ij ij ij
d1/2= = = = (14) 

The primary unknown of the contact problem is the displacement of 
the elastic body, u: d. We consider the contact problems within the 
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framework of the linearized strain theory. Then, for a displacement field u, 
we use the linearized strain tensor 

u u u( )
1
2

( ( ) ).T= +

In componentwise form, 

u u u u i j d( ) ( ( ))
1
2

( ), 1 , ,ij ij i j j i, ,= = +

where ui,j = ∂ui/∂xj. In the description of the contact problems, another 
important mechanical quantity is the stress tensor : d. Both ε(u) 
and σ are symmetric matrix valued functions on Ω.

We will use Sobolev and Lebesgue spaces on Ω, Γ, or their subsets, such as 
L ( ; )d2 , L L H( ; ), ( ; ), ( ; )N

d
C

d d2 2 1 , and H ( ; )d1 , endowed 
with their canonical inner products and associated norms. For a function 
v H ( ; )d1 we write v for its trace v L ( ; )d2 on Γ. A standard 
reference on Sobolev spaces is (Adams & Fournier, 2003). One may also 
consult (Brézis, 2011; Evans, 2010) and many other books on Sobolev spaces.

To describe the contact problems, we split the boundary of Γ into three 
non-overlapping measurable parts: Γ = ΓD ∪ ΓN ∪ ΓC. We will specify a 
displacement boundary condition on ΓD, a traction boundary condition on 
ΓN, and contact boundary conditions on ΓC. We assume ΓD and ΓC have 
positive measures, ∣ΓD∣  >  0, ∣ΓC∣  >  0. The space for the unknown dis
placement field is 

V v vH 0{ ( ; ) on }.d
D

1 = (15) 

For some contact problems, the displacement will be sought in a subspace 
or a subset of V. The space for the stress field is 

L L i j d( ; ) { ( ) ( ), 1 , }.d
ij ij ji

2 2= = = (16) 

The space is a real Hilbert space endowed with the inner product 

dx( , ) : , , .=

The corresponding norm is denoted by . Due to the assumption 
∣ΓD∣  >  0, there is a constant c  >  0, depending on Ω and ΓD, such that 

v v v Vc ( ) .H ( ; )d1 (17) 
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This is known as a Korn inequality, and its proof can be found in numerous 
publications, e.g. (Nečas & Hlavaček, 1981, p. 79). Consequently, V is a 
real Hilbert space under the inner product 

u v u v( , ) ( ( ), ( )) .V = (18) 

The induced norm is 

v v( ) .V = (19) 

It follows from Korn’s inequality (17) that H ( ; )d1 and ∥⋅∥V are 
equivalent norms on V. We will use ∥⋅∥V as the norm on V.

Denote by V* the dual of the space V and by 〈⋅, ⋅〉 the corresponding 
duality pairing. For any element v ∈ V, denote by vν and vτ its normal and 
tangential components on Γ given by vν = v ⋅ ν and vτ = v − vνν, 
respectively. For a function : d, we denote by σν and στ its normal 
and tangential components on Γ, defined by the relations 

( ) , .= =

It is straightforward to show that 

u v u vu v ,= + (20)  

v vv .= + (21) 

For a differentiable field : d, its divergence is a vector-valued 
function div : with components 

i d(div ) , 1 .i ij j,=

For H ( ; )d1 and v H ( ; )d1 , we have Green’s formula 

v v vdx dx ds: ( ) div .+ =
(22) 

From the trace inequality 

v v v Vc ,VL ( ; ) 0d2 (23) 

we can derive similar trace inequalities for the normal component and 
tangential component: 

v v Vv ,VL ( )
1/2

C
2 (24)  

v v v V ,VL ( ; )
1/2

C
d2 (25) 
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where λν >  0 and λτ >  0 are the smallest eigenvalues of the eigenvalue 
problems 

u V u v v Vdx u v ds, ( ): ( ) ,
C

=

and 

u V u v u v v Vdx ds, ( ): ( ) ,
C

=

respectively.
In the study of Problem 2 below, we need a subspace of the space V: 

V v V v{ 0 on }.C1 = = (26) 

We use the norm ∥⋅∥V over the subspace V1. Similar to (24) and (25), we 
have the trace inequalities 

v v Vv ,VL ( ) ,1
1/2

1C
2 (27)  

v v v V ,VL ( ; ) ,1
1/2

1C
d2 (28) 

where λν,1 >  0 and λτ,1 >  0 are the smallest eigenvalues of the eigenvalue 
problems 

u V u v v Vdx u v ds, ( ): ( ) ,1 1
C

=

and 

u V u v u v v Vdx ds, ( ): ( ) ,1 1
C

=

respectively. We have λν,1 ≥ λν and λτ,1 ≥ λτ.

3.2 Three contact problems
In this subsection, we present mathematical models of three representative 
contact problems between an elastic body and a rigid foundation. A variety 
of mathematical models of contact problems can be found in many pub
lications, cf. e.g., the comprehensive references (Han & Sofonea, 2002; 
Kikuchi & Oden, 1988; Migórski et al., 2013). In all contact problems, we 
have the following pointwise relations: 

fdiv in ,0= (29)  

u( ) in ,= (30)  
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u u u( )
1
2

[ ( ) ] in ,T= +
(31)  

u 0 on ,D= (32)  

f on .N2= (33) 

We comment that (29) is the equilibrium equation, (30) is the elastic 
constitutive law, (31) defines the linearized strain tensor, (32) represents the 
homogeneous boundary condition on ΓD whereas (33) describes the 
traction boundary conditions.

On the elasticity operator : d d× in the constitutive law (30), 
we assume the following properties: 

l

m

oooooooooooooo

n

oooooooooooooo

L

L
m

m

0 0

(a) There exists a constant 0 such that a.e. in ,

( , ) ( , ) , ;
(b) there exists a constant 0 such that a.e. in ,

( ( , ) ( , )): ( )

, ;
(c) ( , ) is measurable on for all ;
(d) ( , ) a.e. in .

d

d

d

1 2 1 2 1 2

1 2 1 2 1 2
2

1 2

>

>

=

(34) 

For the force densities, we assume 

f fL L( ; ), ( ; ).d
N

d
0

2
2

2 (35) 

To complete the description of the contact problems, we need to 
specify contact conditions on ΓC. In the first contact problem, we use the 
normal compliance contact condition with Tresca’s friction law 

u

u
uu f f 0( ), , if on .b b C=

(36) 

Here, the function : is locally Lipschitz continuous and is not 
necessarily convex, fb ≥ 0 is a constant upper bound of the friction force. In 
particular, when fb = 0, the last two relations in (36) degenerate to the 
frictionless condition 

0 on .C=
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We assume the following properties on the function : : 

l

m

oooooooooo

n

ooooooooo

c c
z c c z z

z z z z z z z z z z

(a) ( ) is locally Lipschitz on ;
(b) there exist constants ¯ , ¯ 0 such that

( ) ¯ ¯ ;
(c) there exists a constant 0 such that

( ; ) ( ; ) , .

0 1

0 1

0
1 2 1

0
2 1 2 1 2

2
1 2

+

+
(37) 

One can find derivations of weak formulations of contact problems in 
many references, e.g., (Migórski et al., 2013), Han (2024, Chapter 4). We 
skip the derivations of weak formulations in this paper. The weak for
mulation of the contact problem of (29)–(33) and (36) is the following. For 
convenience, we use I f( )C to denote the integral of a function f over ΓC.

Problem 1. Find a displacement field u ∈ V such that 

u v u v u

f v u v V

I f I f I u v u( ( ( )), ( ) ( )) ( ) ( ) ( ( ; ))

, .
b b

0
C C C+ +

(38) 

In the second problem, we use the bilateral contact condition with a 
general friction law: 

uu 0, ( ) on .C= (39) 

Here, the function : d is locally Lipschitz continuous and is not 
necessarily convex. We assume the following properties on the function 

: d : 

l

m
oooooooo

n

oooooooo

z z z

z z z z z z z z

z z

c c c c

(a) ( ) is locally Lipschitz on ;

(b) ( ) ¯ ¯ , with constants ¯ , ¯ 0;

(d) ( ; ) ( ; )

for all , , with a constant 0.

d

d

d

0 1 0 1
0

1 2 1
0

2 1 2 1 2
2

1 2

+
+

(40) 

Recall the space V1 defined in (26). The weak formulation of the 
contact problem of (29)–(33) and (39) is the following.

Problem 2. Find a displacement field u ∈ V1 such that 

u v u v f v v VI( ( ( )), ( )) ( ( ; )) , .0
1C+ (41) 
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In the third problem, we consider a frictional unilateral contact problem 
characterized by the following boundary conditions: 

u g u g u, 0, ( )( ) 0, ( ) on ,C+ + =
(42)  

u

u
uf f 0, if on .b b C= (43) 

These conditions model the frictional contact between an elastic body and a 
rigid foundation covered by a layer of elastic material. The constraint uν ≤ g 
limits the penetration of the body, where g represents the thickness of the elastic 
layer. In cases where penetration occurs and the normal displacement does not 
reach the limit g, the contact is governed by a multivalued normal compliance 
condition: − σν = ξν ∈ ∂ψν(uν). We assume (37) on the function ψν.

To treat the constraint uν ≤ g on ΓC, we define a subset of the space V: 

U v V v g{ on }.C (44) 

The weak formulation of the contact problem for (29)–(33) and (42)–(43)
is as follows:

Problem 3. Find a displacement field u ∈ U such that 

u v u v u

f v u v U

I f I f I u v u( ( ( )), ( ) ( )) ( ) ( ) ( ( ; ))

, .
b b

0
C C C+ +

(45)   

4. Numerical analysis of an abstract variational- 
hemivariational inequality

In this section, we study the Galerkin method for an abstract varia
tional-hemivariational inequality (VHI). Any result on the abstract VHI 
applies to Problem 1 and Problem 2. In the abstract VHI, we denote by Δ 
the physical domain or its sub-domain, or its boundary or part of the 
boundary, and denote by IΔ the integration over Δ, 

I v vdx I v vds( ) if , ( ) if .= =

We consider a function ψ which generally depends on the spatial variable 
x ∈ Δ. Usually, we simply use the notation ψ(⋅) to stand for ψ(x, ⋅). For a 
positive integer m, we let 

V L ( ; ).m2= (46) 
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For application in the study of Problems 1 and 3, we take m = 1, whereas 
for Problem 2, m = d.

4.1 The abstract variational-hemivariational inequality
The abstract VHI assumes the following form.

Problem 4. Find u ∈ K such that 

Au v u v u I u v u f v u v K, ( ) ( ) ( ( ; )) , .0+ +
(47) 

In (Han, 2024), this problem is called a VHI of rank (1, 1) to reflect the 
fact that in the VHI (47), the convex function Φ depends on one argument 
and the locally Lipschitz continuous function ψ depends on one argument. 
In the general case K V , Problem 4 can be viewed as a constrained VHI 
of rank (1, 1).

When K = V is the entire space, Problem 4 becomes an unconstrained 
VHI of rank (1, 1): Find u ∈ V such that 

Au v u v u I u v u f v u

v V

, ( ) ( ) ( ( ; )) ,

.

0+ +

(48) 

In the study of Problem 4 and its numerical approximation, we will 
make some assumptions on the data.

H V V( ) is a real Hilbert space.
H K K( ) is a non-empty, closed and convex set in V.
H A A V V( ) : * is LA-Lipschitz continuous and mA-strongly 

monotone.
H V( ) : is convex and continuous on V.
Note that an operator A: V → V* is said to be LA-Lipschitz continuous 

if 

Av Av L v v v v V, ,V A V1 2 1 2 1 2 (49) 

and it is said to be mA-strongly monotone if 

Av Av v v m v v v v V, , .A V1 2 1 2 1 2
2

1 2 (50) 

A consequence of the assumption H(Φ) is that for some constants c3 and c4, 
not necessarily positive, 

v c c v v V( ) ,V3 4+ (51) 

cf. e.g., (Atkinson & Han, 2009, Lemma 11.3.5).
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Generally, we can consider the situation where ψ = ψ(x, z) is a function 
defined for x ∈ Δ and z m. To simplify the exposition, we will only 
consider the case where ψ = ψ(z) does not depend on x ∈ Δ. We introduce 
the following assumption.

H V V( ) ( ; ); : m is locally Lipschitz continuous and 
for some non-negative constants cψ and αψ, 

z c z z( ) (1 ) ,mm m+ (52)  

z z z z z z z z z z( ; ) ( ; ) , .m0
1 2 1

0
2 1 2 1 2

2
1 2m+

(53) 

H f f V( ) *.
Note that (53) is equivalent to the following inequality: 

v v v v v v v v v i, , ( ), 1, 2.i
m

i i1 2 1 2 1 2
2

m =
(54) 

As consequences of the assumptions on ψ, we have the next result.

Lemma 1. Under the assumption H(ψ), 

I u v c u v u v V( ( ; )) (1 ) , .V V
0 + (55) 

Proof. By the assumption (52), we have 

u v c u v( ; ) (1 ) .0 m m+

Then by an application of the Cauchy-Schwarz inequality, 

I u v c u v( ( ; )) (1 ) .V V
0 +

Since V V( ; ), we deduce (55) from the above inequality.      □

Introduce an auxiliary functional 

v I v v V( ) ( ( )), .= (56) 

Denote by cΔ >  0 the smallest constant in the inequality 

I v c v v V( ) .V
2 2 2

m (57) 

We have the next result on properties of Ψ (Migórski et al., 2013, Section 3.3).

Lemma 2. Assume H(ψ). Then V: is well defined by (56), is 
locally Lipschitz continuous on V, and 

u v I u v u v V( ; ) ( ( ; )), , .0 0
(58) 
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Moreover, there exists a constant c ≥ 0 such that 

v c v v V( ) (1 )V V+ (59) 

and 

v v v v v v v v v v V( ; ) ( ; ) ( ) , .V
0

1 2 1
0

2 1 2 1 2
2

1 2+
(60) 

A well-posedness result on Problem 4 is stated next; its proof can be 
found in, e.g., (Han, 2024, Section 5.4).

Theorem 2. Assume H(V), H(K), H(A), H(Φ), H(ψ), H( f ), and 

c mA
2 < . Then Problem 4 has a unique solution u ∈ K. Moreover, 

the solution u ∈ K depends Lipschitz continuously on f ∈ V* .

4.2 Galerkin method for the abstract VHI
Since there is no analytic solution formula for a variational-hemivariational 
inequality (VHI) arising in applications, numerical methods are needed to 
solve the inequality problem. In this section, we provide a detailed dis
cussion for the numerical solution of Problem 4. The numerical method is 
of Galerkin type. We prove convergence of the numerical solutions in 
Subsection 4.3, and derive a Céa-type inequality for error estimation of the 
numerical solutions in Subsection 4.4. In the rest of this section, for 
Problem 4, we assume H(V), H(K), H(A), H(Φ), H(ψ), H( f ) and 

c mA
2 < , so that by Theorem 2, the problem has a unique solution. Let 

Vh be a finite dimensional subspace of V, h > 0 being a spatial discretization 
parameter. Let Kh be a non-empty, closed and convex subset of Vh. Then, 
a Galerkin approximation of Problem 4 is the following.

Problem 5. Find an element uh ∈ Kh such that 

Au v u v u I u v u

f v u v K

, ( ) ( ) ( ( ; ))

, .

h h h h h h h h

h h h h

0+ +
(61) 

For the well-posedness of Problem 5, we can apply Theorem 2 which is 
valid in the setting of finite-dimensional spaces as well. For completeness, 
we state the result formally as a theorem.

Theorem 3. Assume H(V), H(K), H(A), H(Φ), H(ψ), H( f ), and c mA
2 < . 

Let V h be a finite-dimensional subspace of V and let Kh be a non-empty, 
closed and convex subset of V h. Then Problem 5 has a unique solution.
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The approximation is called external if Kh ⊄ K, and is internal if Kh 

⊂ K. In (Han et al., 2018), the internal approximation with the choice Kh 

= Vh ∩ K is considered for Problem 4.

4.3 Convergence under basic solution regularity
In this section, we provide a general discussion of convergence for the 
numerical solution defined by Problem 5. The key point is that the con
vergence is shown under the minimal solution regularity u ∈ K that is 
available from Theorem 2. For convergence analysis, we will need K{ }h h to 
approximate K in the sense of Mosco (cf. Glowinski et al., 1981; Mosco, 
1968): 

v K v v V v Kand in imply ;h h h (62)  

v K v K v v V h, such that in as 0.h h h

(63) 

The following uniform boundedness property will be useful for con
vergence analysis of the numerical solutions. 

Proposition 6. Keep the assumptions stated in Theorem 3. In addition, 
assume (63). The discrete solution uh of Problem 5 is uniformly bounded 
with respect to h, i.e., there exists a constant M  >  0 independent of h such 
that ∥uh∥V ≤ M.

Proof. Since K is non-empty, there is an element u0 ∈ K. We fix one such 

element. Then by (63), there exists u Kh h
0 such that 

u u V hin as 0.h
0 0

By the strong monotonicity of A from H(A), 

m u u Au Au u u

Au u u Au u u

,

, , .
A

h h
V

h h h h

h h h h h h
0

2
0 0

0 0 0

(64) 

Let v uh h
0= in (61) to get 

Au u u u u I u u u

f u u

, ( ) ( ) ( ( ; ))

, ,

h h h h h h h h

h h

0 0
0

0

0

+ +
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which is rewritten as 

Au u u u u I u u u

f u u

, ( ) ( ) ( ( ; ))

, .

h h h h h h h h

h h

0 0
0

0

0

+

+

Then, we have from (64) that 

m u u u u I u u u

f u u Au u u

( ) ( ) ( ( ; ))

, , .

A
h h

V
h h h h h

h h h h h

0
2

0
0

0

0 0 0

+
+

(65) 

From (51), 

u c c u( ) .h h
V3 4 (66) 

Take z1 = γψuh and z u h
2 0= in (53) to obtain 

u u u u u u u u( ; ) ( ) ( ; ).h h h h h h h h0
0 0

2 0
0 0m

It follows from (52) that 

u u u c c u u u( ; ) ( ) ( ) .h h h h h h0
0 0 0 1 0 0m m+

Then, 

u u u c c u u u

u u

( ; ) ( ) ( )

( ) ,

h h h h h h

h h

0
0 0 1 0 0

0
2

m m

m

+ +

and 

I u u u I c c u u u

I u u

( ( ; )) (( ) ( ) )

( ( ) ).

h h h h h h

h h

0
0 0 1 0 0

0
2

m m

m

+
+

Consequently, we apply the Cauchy-Schwarz inequality and the 
assumption V V( ; ) in H(ψ), 

I u u u c u u u c

u u

( ( ; )) (1 )

.

h h h h
V

h h
V

h h
V

0
0 0 0

2

0
2

+ +

(67) 

Use (66) and (67) in (65) to obtain 

m u u u c c u c u u u

c u u f Au u u

( ) (1 )

, ,
A

h h
V

h h
V

h
V

h h
V

h h
V

h h h
0

2
0 3 4 0 0

2
0

2
0 0

+ +
+ +
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which is rewritten as 

m c u u c u u u

u c c u

f Au u u

( ) (1 )

( )

, .

A
h h

V
h

V
h

V

h h
V

h h h

2
0

2
0 0

0 3 4

0 0

+
+
+

The convergence of u{ }h
h0 in V implies that u{ }h

V0 and Au{ }h
V0 are 

uniformly bounded with respect to h. By the smallness condition, 

m c 0A
2 > , we can conclude from the above inequality that 

u uh h
V0 is uniformly bounded in h, so is ∥uh∥V.                       □

By Aubin-Clarke’s Theorem (cf. Carl & Le, 2021, Theorem 2.61), we 
have the next result:

Lemma 3. Assume H(ψ). Then, for any z ∈ Vψ and any z* ∈ ∂(IΔ(ψ(z))), 
we have ζz ∈ Vψ such that 〈z*, v〉 = IΔ(ζzv) for all v ∈ Vψ, and ζz ∈ ∂ψ(z) 
a.e. on Δ.

We now prove the convergence of the numerical solutions under the 
minimal solution regularity u ∈ K. The next result and its proof follow 
(Han & Zeng, 2019).

Theorem 4. Keep the assumptions made in Theorem 2. Moreover, 
assume Vh is a finite-dimensional subspace of V, Kh is a non-empty, closed 
and convex subset of Vh, and (62)–(63) hold. Let u and uh be the solutions 
of Problems 4 and 5, respectively. Then, 

u u V hin as 0.h (68) 

Proof. We split the proof into three main steps. In the first step, we 
discuss the weak convergence of the numerical solutions. In the second 
step, we prove that the weak convergence of the numerical solutions 
can be strengthened to strong convergence. In the third step, we show 
that the limit of the numerical solutions is the solution u of Problem 4. 

Step 1. By Proposition 6, {uh} is bounded in V. Since V is reflexive and 

V V( , ), there exist a subsequence u u{ } { }h h and an element 

w ∈ V such that 

u w V u w Vin , in .h h
(69) 

As a consequence of the assumption (62), w ∈ K. 
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Step 2. Next, we show that the weak convergence (69) can be 
strengthened to the strong convergence: 

u w Vin .h (70) 

By the assumption (63) and the continuity of the operator γψ, we have a 

sequence w V{ }h with the properties that w Kh h and 

w w V w w Vin , in .h h
(71) 

Since A is mA-strongly monotone, 

m w u Aw Au w u, ,A
h

V
h h2

or 

m w u Aw w u Au w u Au w w, , , .A
h

V
h h h h h h2

(72) 

We take v wh h= in (61) with h h= to obtain 

Au w u w u I u w u

f w u

, ( ) ( ) ( ( ; ))

, .

h h h h h h h h

h h

0+

(73) 

By the triangle inequality of the norm, 

u w u w w w .h h
V

h
V

h
V+

Apply the sub-additivity property of the generalized directional derivative 
(Proposition 1 (iii)), 

u w u u w u u w w

u w u w u w

u w w w u w

( ; ) ( ; ) ( ; )

[ ( ; ) ( ; ) ]

[ ( ; ) ( ; )].

h h h h h h h

h h h

h h h

0 0 0

0 0

0 0

+
= +

+
(74) 

By the assumption (53), 

u w u w u w w u( ; ) ( ; ) ( ) .h h h h0 0 2
m+

Then, recalling (57), we have 

I u w u w u w c w u( ( ; ) ( ; )) .h h h h
V

0 0 2 2+
(75) 
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We use the bounds (73), (74) and (75) in (72) to obtain 

m c w u Aw w u Au w w

f w u w u

I u w w

w u w

( ) , ,

, ( ) ( )

( ( ; )

( ; )).

A
h

V
h h h

h h h h

h h

h

2 2

0

0

+
+

(76) 

Now consider the limits of the terms on the right side of (76) as h 0. 
From the weak convergence (69), 

Aw w u, 0.h

Since u{ }h is bounded and A is continuous, Au{ }h is bounded. Thus, from 
the strong convergence (71), 

Au w w, 0.h h

Write 

f w u f w w f w u, , , .h h h h= +

From (71), 

f w w, 0.h

From (69), 

f w u, 0.h

Hence, 

f w u, 0.h h

Since Φ is continuous, from the convergence (71), 

w w( ) ( ).h

The convexity and continuity of Φ imply that Φ is weakly sequentially 
lower semicontinuous. Thus, due to the weak convergence (69), 

u u wlim sup[ ( )] lim inf ( ) ( ).
h

h

h

h

0 0
=

By H(ψ), 

I u w w I c u w w( ( ; )) ( (1 ) ).h h h h0 m m+
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Since u{ }h is bounded in Vψ, by (71)), 

I u w w c u w wlim sup ( ( ; )) lim sup (1 ) 0.
h

h h

h

h
V

h
V

0

0

0
+ =

Apply Lemma 3 with ξw(x) ∈ ∂ψ(γψw(x)) for a.e. x ∈ Δ, and note that 
ξw ∈ Vψ. From the definition of the generalized directional derivative, 

x x x x x xw u w u w( ( ); ( ) ( )) ( ), ( ) ( )h
w

h0

for a.e. x ∈ Δ. Then, 

I w u w u w( ( ; )) , .h
w

h0

Note that as h 0, 

u w, 0.w
h

Hence, 

I w u wlim sup[ ( ( ; ))] 0.
h

h

0

0

Summarizing, we take the upper limit of both sides of (76) as h 0 to 
conclude that 

w ulim sup 0.
h

h
V

0

2

In other words, we have the strong convergence (70). 
Step 3. In the last step, we show that the limit w is the unique solution of 

Problem 4. Fix an arbitrary element v ∈ K. By (63), we can find a sequence 

v V{ }h , v Kh h , such that v vh in V and v vh in Vψ. By 

(61) with h h= , 

Au v u v u I u v u

f v u

, ( ) ( ) ( ( ; ))

, .

h h h h h h h h

h h

0+ +

(77) 

As h 0, 

Au v u Aw v w f v u f v w, , , , , ,h h h h h

(78) 

where the continuity of A is used. Moreover, by the continuity of Φ, 

v v u w( ) ( ), ( ) ( ).h h (79) 
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Note that u wh and v vh a.e. in Δ. So 

I w v w I u v u( ( ; )) lim sup ( ( ; )).
h

h h h0

0

0
(80) 

Taking the upper limit h 0 in (77) and making use of the relations 
(78)–(80), we obtain 

Aw v w v w I w v w f v u, ( ) ( ) ( ( ; )) , .0+ +

Note that the element v ∈ K is arbitrary. This shows that w is a solution of 
Problem 4. Due to the uniqueness of a solution of Problem 4, w = u. 
Furthermore, since the limit u does not depend on the subsequence, the 
entire family of the numerical solutions converges, i.e., (68) holds.     □

The convergence result in Theorem 4 is rather general, and here we 
consider two special cases.

First, we consider the case of a hemivariational inequality with the 
choice Φ ≡ 0 in Problem 4.

Problem 6. Find an element u ∈ K such that 

Au v u I u v u f v u v K, ( ( ; )) , .0+ (81) 

The corresponding numerical method Problem 5 takes the following 
form.

Problem 7. Find an element uh ∈ Kh such that 

Au v u I u v u f v u v K, ( ( ; )) , .h h h h h h h h h h0+
(82) 

Theorem 5. Assume H(V), H(K), H(A), H(ψ), H( f ), and c mA
2 < . 

Moreover, assume V h is a finite-dimensional subspace of V, Kh is a non- 
empty, closed and convex subset of V h, and (62)–(63) hold. Let u and uh be 
the solutions of Problem 6 and Problem 7, respectively. Then we have the 
convergence: 

u u V hin as 0.h

As another particular case, we consider a variational inequality, obtained 
from Problem 4 by setting ψ ≡ 0.
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Problem 8. Find an element u ∈ K such that 

Au v u v u f v u v K, ( ) ( ) , .+ (83) 

The numerical method is the following.

Problem 9. Find an element uh ∈ Kh such that 

Au v u v u f v u v K, ( ) ( ) , .h h h h h h h h h+
(84) 

Theorem 6. Assume H(V), H(K), H(A), H(Φ), and H(f). Moreover, 
assume Vh is a finite-dimensional subspace of V, Kh is a non-empty, closed 
and convex subset of Vh, and (62)–(63) hold. Let u and uh be the solutions 
of Problem 8 and Problem 9, respectively. Then we have the convergence: 

u u V hin as 0.h

We comment that this result is Theorem 11.4.1 in (Atkinson & Han, 
2009).

4.4 Error estimation
We now turn to the derivation of error estimates for the numerical solution 
defined by Problem 5 for the approximation of the solution of Problem 4. 
For this purpose, we do not assume (62) and (63). Recall that we use LA 

and mA for the Lipschitz constant and the strong monotonicity constant of 
the operator A: V → V*.

Let v ∈ K and vh ∈ Kh be arbitrary. By the strong monotonicity of A, 

m u u Au Au u u, ,A
h

V
h h2

which is rewritten as 

m u u Au Au u v Au v u Au v u

Au u v Au u v

, , ,

, , .
A

h
V

h h h h

h h h

2 + +
+ +

(85) 

Applying (47), 

Au u v v u I u v u f v u, ( ) ( ) ( ( ; )) , .0+
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Applying (61), 

Au u v v u I u v u f v u, ( ) ( ) ( ( ; )) , .h h h h h h h h h h0+

Using these inequalities in (85), after some rearrangement of the terms, we 
have 

m u u Au Au u v R v u R v u

I v v

, ( , ) ( , )

( , ),

A
h

V
h h

u
h

u
h

h

2 + +
+ (86) 

where 

R v w Au v w v w I u v w

f v w

( , ) , ( ) ( ) ( ( ; ))

, ,

u
0+ +

(87)  

I v v I u v u u v u

I u v u u v u

( , ) ( ( ; ) ( ; ))

( ( ; ) ( ; )).

h h h h

h h

0 0

0 0

+
+

(88) 

Let us bound the first and the last two terms on the right hand side of (86). 
First, 

Au Au u v L u u u v, .h h
A

h
V

h
V

By the modified Cauchy-Schwarz inequality (12), for any ϵ  >  0 arbitrarily 
small, 

Au Au u v u u c u v,h h h
V

h
V

2 2+ (89) 

for some constant c depending on ϵ. Applying the subadditivity of the 
generalized directional derivative, 

z z z z z z z z z z( ; ) ( ; ) ( ; ) , , ,m0
1 2

0
1

0
2 1 2+ +

we have 

u v u u v u u u u

u v u u v u u u u

( ; ) ( ; ) ( ; ),

( ; ) ( ; ) ( ; ).

h h

h h h h h h h

0 0 0

0 0 0

+
+

Thus, 

I v v I u v u u v u

I u u u u u u

( , ) ( ( ; ) ( ; ))

( ( ; ) ( ; )).

h h h h

h h h

0 0

0 0+ +
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By (53) and (57), 

I u u u u u u I u u

c u u

( ( ; ) ( ; )) ( )

.

h h h h

h
V

0 0 2

2 2

+

Moreover, by (55), 

I u v u c u v u

I u v u c u v u

( ( ; )) (1 ) ,

( ( ; )) (1 ) .

h h h
V

h
V

h
V

h
V

0

0

+
+

Combining the above four inequalities and using the fact that {∥uh∥V} is 
bounded independent of h (cf. Proposition 6), we find that 

I v v u u c u v( , )h h
V

h
V

2 + (90) 

for some constant c  >  0 independent of h. Using (89) and (90) in (86), we 
have 

m c u u c u v c u v

R v u R v u

( )

( , ) ( , ).

A
h

V
h

V
h

V

u
h

u
h

2 2 2 +

+ +

Recall the smallness assumption c mA
2 < . We can choose 

m c( )/2 0A
2= > and get the inequality 

u u c u v u v R v u c

R v u

inf [ ( ) ( , )] inf

( , ).

h
V

v K

h
V

h
V u

h

v K

u
h

2 2
h h

+ + +

We summarize the result in the form of a theorem.

Theorem 7. Assume H(K), H(A), H(Φ), H(ψ), H( f ), and c mA
2 < . 

Then for the solution u of Problem 4 and the solution uh of Problem 5, we 
have the Céa-type inequality 

u u c u v u v R v u c

R v u

inf [ ( ) ( , )] inf

( , ).

h
V

v K

h
V

h
V u

h

v K

u
h

2 2
h h

+ + +

(91) 

For internal approximations, Kh ⊂ K and then 

R v uinf ( , ) 0.
v K

u
h =
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So for internal approximations, the Céa-type inequality (91) simplifies to 

u u c u v u v R v uinf [ ( ) ( , )].h
V

v K

h
V

h
V u

h2 2
h h

+ + (92) 

We also remark that in the literature on error analysis of numerical 
solutions of variational inequalities, it is standard that the Céa-type 
inequalities involve square root of approximation error of the solution in 
certain norms due to the inequality form of the problems; cf. (Falk, 1974; 
Han & Sofonea, 2002; Kikuchi & Oden, 1988).

To proceed further, we need to bound the residual term (87) and this 
depends on the problem to be solved.

5. Studies of the contact problems

In this section, we take Problem 1 as an example for detailed theo
retical studies. We first explore the solution existence and uniqueness, then 
introduce a linear finite element method to solve the problem and derive 
an optimal order error estimate under certain solution regularity assump
tions. Finally, we present numerical simulation results for solving some 
contact problems.

5.1 Studies of Problem 1
We start with an existence and uniqueness result for Problem 1.

Theorem 8. Assume (34), (35), (37), fb ≥ 0, and 

m .1 < (93) 

Then Problem 1 has a unique solution.

Proof. We apply Theorem 2 by placing Problem 1 in the framework of 
Problem 4 with the following choices of the data: the space V and the set K 
are both the space V defined in (15), Δ = ΓC, the space Vψ of (46) is 
Vψ = L2(ΓC), γψ: V → Vψ is the normal component trace operator, ψ = ψν, 
and V V V fA f: , : ,* = are defined by 

u v u v u v VA dx, ( ): ( ) , , ,=
(94)  

v v v Vf ds( ) , ,b
C

=
(95)  
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f v f v f v v Vdx ds, , .0 2
N

= + (96) 

Let us examine the assumptions stated in Theorem 2. The assumptions 
H(V) and H(K) are the same and they are obviously true. For the operator 
A defined by (94), we claim that H(A) holds true with L LA = and 
m mA = . Indeed, for u, v, w ∈ V, by assumption (34)(a), we have 

u v w u v w u v wA A L, ( ( ) ( ), ( )) .V V

Thus, 

u v u v u v VA A L , .V V

This shows that A is Lipschitz continuous. Moreover, 

u v u v u v u vA A , ( ( ) ( ), ( ) ( )) .=

Then, assumption (34)(b) yields 

u v u v u v u v VA A m, , .V
2 (97) 

This shows that the monotonicity condition (50) is satisfied with m mA = . 
Next, for Φ defined by (95), it is easy to see that V: is con

tinuous and convex. The potential function : is assumed to 
satisfy H(ψν) with m = 1. For f, assumption (35) implies H( f ). Considering 

the above relationships among constants and noting that c 1/2= , we see 

that assumption (93) implies the smallness condition c mA
2 < in 

Theorem 2. 
Therefore, we can apply Theorem 2 to conclude that there exists a 

unique element u ∈ V such that (38) is satisfied.                           □

Theorem 8 provides the unique weak solvability of the contact pro
blem, in terms of the displacement. Once the displacement field is obtained 
by solving the contact problem, the stress field σ is uniquely determined by 
using the constitutive law (30).

We proceed with the discretization of Problem 1 using the finite ele
ment method. For simplicity, assume Ω is a polygonal/polyhedral domain 
and express the three parts of the boundary, as unions of closed flat 
components with disjoint interiors: 

Z D N C, , , .Z i
i

Z i1 ,
Z= ==

Let { }h be a regular family of partitions of into triangles/tetrahedrons 
that are compatible with the partition of the boundary ∂Ω into 
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ΓZ,i, 1 ≤ i ≤ iZ, Z = D, N, C, in the sense that if the intersection of one side/ 
face of an element with one set ΓZ,i has a positive measure with respect to 
ΓZ,i, then the side/face lies entirely in ΓZ,i. Then construct a linear element 
space corresponding to h, 

V v v vC T T 0{ ( ) ( ) for , on }.h h d h
T

d h h
D1= =

(98) 

For any function w ∈ H2(Ω)d, by the Sobolev embedding 
H C( ) ( )2 valid for d≤ 3, we know that w C ( )d and so its finite 
element interpolant Πhw ∈ V h is well defined. Moreover, the following 
error estimate holds (cf. any of the references Atkinson & Han, 2009; 
Brenner & Scott, 2008; Ciarlet, 1978): for some constant c  >  0 inde
pendent of h, 

w w w w w wh c H ( ) .h
L

h
H H

d
( ) ( ) ( )

2d d d2 1 2+
(99) 

The finite element approximation of Problem 1 is the following.

Problem 10. Find a displacement field uh ∈ V h such that 

u v u v u

f v u v V

dx f ds

u v u ds

( ): ( ( ) ( )) ( )

( ; ) , .

h h h
b

h h

h h h h h h h0

C

C

+

+

(100) 

Similar to Problem 1, we can apply a discrete analog of the arguments in 
the proof of Theorem 8 to conclude that Problem 10 admits a unique 
solution uh ∈ Vh.

For an error analysis, we notice that by Theorem 7, 

u u u v v uc u v Rinf [ ( , )],V
v V

V u
h h h

L
h2 2

( )
h h C

2+ +

(101) 

where the residual-type term from (87) is 

v u u v u v u

f v u

R f ds

u v u ds

( , ) ( ( ( )), ( )) ( )

( ; ) , .

u
h h

b
h

h h0

C

C

= +

+

(102) 
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To proceed further, we make the following solution regularity 
assumptions: 

u uH H( ; ), ( ( )) ( ; ).d d2 1= (103) 

In many application problems, H ( ; )d1 follows from 

u H ( ; )d2 , e.g., if the material is linearly elastic with suitably smooth 
coefficients, or if the elasticity operator depends on x smoothly. In the 
latter case, we recall that x( , ) is a Lipschitz function of ε, and the 
composition of a Lipschitz continuous function and an H1(Ω) function is an 
H1(Ω) function. Note that H ( ; )d1 implies 

L ( ; ).d2 (104) 

For an appropriate upper bound on Ru(v
h, u) defined in (102), we need to 

derive some point-wise relations for the weak solution u of Problem 1. We 
follow a procedure found in (Han & Sofonea, 2002, Section 8.2). Intro

duce a subspace Ṽ of V by 

V w wC 0˜ { ( ; ) on }.d
D C= (105) 

We take v = u + w with w Ṽ in (38) to get 

u w f w f wdx dx ds( ( )): ( ) .0 2
N

+

By replacing w Ṽ with w Ṽ in the above inequality, we find the 
equality 

u w f w f w w Vdx dx ds( ( )): ( ) ˜ .0 2
N

= +

(106) 

Thus, 

u w f w wdx dx C( ( )): ( ) ( ; ),d
0 0=

and so in the distributional sense, 

u f 0div ( ( )) .0+ =

Since u H( ( )) ( ; )d1 and f L ( ; )d
0

2 , the above equality holds 
pointwise: 

u f 0div ( ( )) a.e. in .0+ = (107) 
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Performing integration by parts in (106) and using the relation (107), we 
have 

w f w w Vds ds ˜ .2
N N

=

Since L ( ; )d2 (cf. (104)) and w Ṽ is arbitrary, we derive from 
the above equality that 

f a.e. on .N2= (108) 

Now multiply (107) by v − u with v ∈ V, integrate over Ω, and integrate 
by parts to get 

v u u v u f v uds dx dx( ) ( ( )): ( ) ( ) 0,0+ =

i.e., 

u v u f v u v u v Vdx ds( ( )): ( ) , ( ) .
C

= +

(109) 

Thus, 

v u v u v uR f u v u ds( , ) [ ( ) ( ) ( ; )] ,u
h h

b
h h0

C

= + +

and then, 

v u u vR c( , ) .u
h h

L ( )C
d2 (110) 

Finally, from (101), we have the inequality 

u u u v u vc inf [ ].V
v V

V
h h h

L ( )
1/2

h h C
d2+

(111) 

Under additional solution regularity assumption 

u H i i( ; ), 1 ,C i
d

C
2

,C i, (112) 

for the finite element interpolant Πhu, we have 

u u c h .h
L ( )

2
C

d2 (113) 

Then we derive from (111) the following optimal order error bound 

u u u u u uc c h[ ] ,V V
h h h

L ( )
1/2

C
d2+

(114) 
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where the constant c depends on the quantities u H ( ; )d2 , L ( ; )C
d2 and 

u H ( ; )C i
d2

,
for 1 ≤ i ≤ iC.

We comment that similar results hold for the frictionless version of the 
model, i.e., where the friction condition (36) is replaced by 

0 on .C= (115) 

Then the problem is to solve the inequality (38) without the term 

v uf ds( ) ,b
C

i.e., to find a displacement field u ∈ V such that 

u v f v v Vdx u v ds( ): ( ) ( ; ) , .0

C

+

(116) 

The inequality (111) and the error bound (114) still hold for the linear finite 
element solutions under the solution regularity conditions (103) and (112).

5.2 Studies of Problem 2
Problem 2 is simpler to analyze than Problem 1 in the sense that the 
inequality (41) does not include the non-smooth convex terms vI f( )bC

and uI f( )bC . Similar to Theorem 8, we have the next result result, 
derived from Theorem 2.

Theorem 9. Assume (34), (35), (40), and 

m .,1
1 <

Then Problem 2 has a unique solution.

For the finite element solution of Problem 2, we keep the setting on the 
finite element partitions of in Subsection 5.2. Then we introduce a 
subspace of Vh of (98): 

V v V v{ 0 on }.h h h h
C1 = = (117) 

Note that the constraint “v 0h = on C ” is equivalent to “v 0h = at all nodes 

on C ”. The finite element method for solving Problem 2 is the following.

Problem 11. Find a displacement field u Vh h
1 such that 

u v u v f v v VI( ( ( )), ( )) ( ( ; )) , .h h h h h h h0
1C+ (118) 
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Under the assumptions stated in Theorem 9, Problem 11 has a unique 
solution uh. Moreover, by (92), 

u u u v u v v uc Rinf [ ( )],V
v V

V u
h h h

L
h2 2

( )
h h C

d

1

2+ +

(119) 

where 

w u w u w f wR ds( ) ( ( ( )), ( )) ( ; ) , .u
0

C

= + (120) 

Similar to (111), under the solution regularity condition (103), 

u u u v u vc inf [ ].V
v V

V
h h h

L ( )
1/2

h h C
d

1

2+ (121) 

Then, under the solution regularity conditions (103) and (112), similar to 
(114), we can show that 

u u c h.V
h

5.3 Studies of Problem 3
For a study of Problem 3, we apply Theorem 2 to get the following result. 

Theorem 10. Assume (34), (35), (37), fb ≥ 0, g ∈ L2(ΓC), g ≥ 0, and 

m .1 <

Then Problem 3 has a unique solution.

For the finite element approximation of Problem 3, define 

U v V v g{ at all nodes on }.h h h h
C= (122) 

Then the finite element method for solving Problem 3 is the following.

Problem 12. Find a displacement field uh ∈ Uh such that 

u v u v u

f v u v U

I f I f

I u v u

( ( ( )), ( ) ( )) ( ) ( )

( ( ; ))

, .

h h h
b

h
b

h

h h h

h h h h

0

C C

C

+

+
(123) 
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Under the assumptions stated in Theorem 10, Problem 12 has a unique 
solution uh. For the error estimation, for simplicity, we assume g is a 
concave function. Then, Uh ⊂ U, and similar to (101), 

u u u v v uc u v Rinf [ ( , )].V
v U

V u
h h h

L
h2 2

( )
h h C

2+ +

(124) 

where 

v u u v u v u

f v u

R I f I f

I u v u

( , ) ( ( ( )), ( ) ( )) ( ) ( )

( ( ; )) , .

u
h h

b
h

b
h h0

C C

C

= +
+

(125) 

Similar to (111), under the solution regularity condition (103), we can 
derive from (124) that 

u u u v u vc inf [ ].V
v U

V
h h h

L ( )
1/2

h h C
d2+

Again, assuming both (103) and (112), we have the optimal order error 
estimate 

u u c h.V
h

6. Virtual element method for variational- 
hemivariational inequality

In the previous sections, we studied the FEM to solve the contact 
problems. Other numerical methods can be applied for the contact pro
blems as well. In this section, we take the virtual element method (VEM) as 
an example. The VEM was first proposed and analyzed in (Beirão da Veiga 
et al., 2013a, 2013b). The method has since been applied to a wide variety 
of mathematical models from applications in science and engineering 
thanks to its strengths in handling complex geometries and problems 
requiring high-regularity solutions. The VEM was first applied to solve 
contact problems in (Wriggers et al., 2016). Further applications of the 
VEM can be found in a number of publications, e.g., (Aldakheel et al., 
2020; Cihan et al., 2022; Wang & Zhao, 2021; Wu et al., 2024). The 
presentation on the VEM here follows (Feng et al., 2019, 2021a; Wang 
et al., 2021).
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6.1 An abstract framework
We reconsider Problem 4, yet for the case where the operator A: V → V* is 
generated by a bilinear form a V V( , ): × through the relation 

a u v Au v u v V( , ) , , .=

In other words, the abstract problem for the study of VEM is the fol
lowing.

Problem 13. Find u ∈ K such that 

a u v u v u I u v u f v u v K( , ) ( ) ( ) ( ( ; )) , .0+ +
(126) 

We will assume H(V), H(K), H(Φ), H(ψ), H( f ) from Subsection 4.1. 
Corresponding to H(A), the bilinear form a(⋅, ⋅) is assumed to be bounded 
with a boundedness constant La and V-elliptic with an ellipticity constant 
ma. By Theorem 2, if we further assume the smallness condition 

c ma
2 < . We will also assume a is symmetric.
H a( ) The bilinear form a V V: × is symmetric, bounded with the 

boundedness constant La and V-elliptic with the ellipticity constant ma: 

a u v L u v u v V( , ) , ,a V V (127)  

a v v m v v V( , ) .a V
2 (128) 

To develop a general framework for the VEM, let Ω be the spatial 
domain of Problem 13. We assume Ω is a bounded polygonal domain, and 
denote by h a partition of into polygonal elements {T}. Define 
hT = diam(T) for each element T, and define h h Tmax{ : }T

h= for 
the mesh-size of the partition h. As the bilinear form a(u, v) is typically an 
integral over the domain Ω, we can split it element-wise as 

a u v a u v( , ) ( , ),
T

T
h

=
(129) 

where aT(u, v) denotes the restriction of a(u, v) to T, which is an integral over T. 
Let VT be the restriction of V to T, which is a function space over T.

For the setting of the VEM, we make the following assumptions.
H h( ) For each partition h, there is a virtual element space Vh ⊂ V. For 

a positive integer k V T, ( )T
h

k , where V VT
h h

T is the restriction of Vh 

on T.
Related to local function spaces VT = V∣T on elements T h, 

we have the decomposition (129) in which, for each element 
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T a V V, :T T T× is symmetric, non-negative and bounded with the 
boundedness constant La: 

a u v L u v u v V( , ) , ,T a V T V T T, , (130)  

a v v v V( , ) 0 .T T (131) 

The discrete bilinear form a V V:h h h× can be split into the sum
mation of local contributions 

a u v a u v( , ) ( , ),h h h
T T

h h h
h= (132) 

where a ( , )T
h is a symmetric bilinear form on VT

h such that 

a v p a v p v V p T( , ) ( , ) , ( );T
h h

T
h h

T
h

k= (133) 

and for two positive constants α* and α* , independent of h and T, 

a v v a v v a v v v V( , ) ( , ) ( , ) .T
h h

T
h h h

T
h h h

T
h*

(134) 

The discrete linear functional f h ∈ (V h)* is uniformly bounded: for a 
constant c independent of h, 

f
f v

v
csup

,
.h

V
v V

h h

h
V

( )h

h h

=

In the literature, the property (133) is called the k-consistency, and 
(134) is known as the stability.

We comment that for simplicity in writing, we are using La for the 
boundedness constants of a(⋅, ⋅) and aT(⋅, ⋅) for T h.

It follows from H(h) that 

a u v L u v u v V( , ) , .T
h h h

a
h

V T
h

V T
h h

T
h

, ,*
(135) 

This inequality is proved as follows. First, we notice that a consequence of 
(134) and (131) is 

a v v v V( , ) 0 .T
h h h h

T
h

The above property and the symmetry of a ( , )T
h imply 

a u v a u u a v v( , ) ( , ) ( , ) .T
h h h

T
h h h

T
h h h1/2 1/2
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By (134), 

a u v a u u a v v( , ) ( , ) ( , ) .T
h h h

T
h h

T
h h1/2 1/2*

Finally, applying (130), we derive (135).
By combining (132), (134), and (135), we obtain 

a v v a v v a v v v V( , ) ( , ) ( , ) ,h h h h h h h h h
* * (136)  

a u v L u v u v V( , ) , ,h h h
a

h
V h

h
V h

h h h
, ,* (137) 

where ( )V h T V T, ,
2 1/2

h= .

6.2 Virtual element method for variational-hemivariational 
inequality

We define Kh ≔ Vh ∩ K as the approximation of the convex set K. The 
virtual element method for solving Problem 4 is formulated as follows:

Problem 14. Find uh ∈ Kh such that 

a u v u v u I u v u

f v u v K

( , ) ( ) ( ) ( ( ; ))

, .

h h h h h h h h h

h h h h h

0+ +

(138) 

The analog of Theorem 3 is the next result for Problem 14.

Theorem 11. Assume the conditions H(V), H(K), H(a), H(Φ), H(ψ), H 

( f ), H(h), and m ca
2

* > . Then, Problem 14 has a unique solution uh 

∈ Kh.

In the following theorem, we establish a generalized form of Céa’s 
inequality, for deriving error estimates for the virtual element method (138)
used to solve Problem 4. In the theorem, we assume {uh} is bounded 
independent of h. The boundedness of {uh} is valid if (63) holds for the 
VEM sets {Kh}, as in Proposition 6. As a simpler situation, the bound
edness of {uh} is valid if we assume K and {Kh} contain a common 
element, say 0, by an argument shown in (Han et al., 2017).

Theorem 12. Keep the assumptions stated in Theorem 11, and 

m ca
2> . Let u and uh be the solutions of Problem 4 and Problem 14, 

respectively. Assume {uh} is bounded independent of h. Then there exist 
two positive constants c1 and c2, depending only on α, M, α* and α* , such 
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that for any approximation uI ∈ Kh of u and any piecewise polynomial 
approximation uπ of u with u T( )T k for all T h, we have 

u u c u u u u f f u u

c R u u

( ( ) )

( , ),

h
V

I
V V h

h
V

I
V

u
I h

2
1

2
,

2
( )
2

2

h *
+ + +

+
(139) 

where 

f f
f v f v

v
sup

, ,
,h

V
v V

h h h

h
V

( )h

h h*

and 

R u u a u u u u u I

u u u f u u

( , ) ( , ) ( ) ( )

( ( ; )) , .

u
I h I h I h

h I I h0

+

Proof. We begin by decomposing the error e = u − uh into two parts: 

e e e ,I h= +

where 

e u u e u u, .I I h I h

From (136) and the assumption H(a), we obtain 

m e a e e a e e a u e a u e( , ) ( , ) ( , ) ( , ).a
h

V
h h h h h h I h h h h2

* * =

Using (138) with vh = uI for an upper bound on the term − ah(uh, eh), we 
find from the above inequality that 

m e a u e f e u u I

u u u

( , ) , ( ) ( )

( ( ; )).

a
h

V
h I h h h I h

h I h

2

0
* + +

(140) 

Write 

a u e a u e a u u e a u e( , ) ( , ) [ ( , ) ( , )].h I h

T
T
h I h

T
T
h I h

T
h h= = +

By (133) and the symmetry of a ( , )T
h , 

a u e a u e( , ) ( , ).T
h h

T
h=
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Hence, 

a u e a u e

a u u e a u e

( , ) ( , )

( , ) ( , ).
T

T
h h

T

T
h

T

T
h h

=

= +

So from (140), 

m e a u u e a u u e a u e f e

u u I u u u

( ( , ) ( , )) ( , ) ,

( ) ( ) ( ( ; )),

a
h

V
T

T
h I h

T
h h h h

I h h I h

2

0

* + +

+ +

which is rewritten as 

m e R R R R u u( , ),a
h

V u
I h2

1 2 3+ + + (141) 

where 

R a u u e a u u e

R f e f e

R I u u u I u u u

R u u a u e u u I u u u

f e

( ( , ) ( , )),

, , ,

( ( ; )) ( ( ; )),

( , ) ( , ) ( ) ( ) ( ( ; ))

, .

T
T
h I h

T
h

h h h

h I h h I

u
I h h I h h I

h

1

2

3
0 0

0

= +

=
= +

= +

Next, we bound the first three terms on the right side of (141). By (127)
and (135), we get 

R L u u e L u u e .A
I

V h
h

V A V h
h

V1 , ,* +
(142) 

In addition, 

R f f e .h
V

h
V2 ( )h * (143) 

To bound R3, we first apply Proposition 1 (iii) on the subadditivity of the 
generalized directional derivative, 

u u u u u u u u u

u u u u u u u u u

( ; ) ( ; ) ( ; ),

( ; ) ( ; ) ( ; ).

h I h h I h h

I h I h

0 0 0

0 0 0

+
+
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By (53) and (57), 

I u u u I u u u c u u( ( ; )) ( ( ; )) .h h h h
V

0 0 2 2+

Thus, 

R c u u I u u u I

u u u

( ( ; ))

( ( ; )).

h
V

h I

I

3
2 2 0

0

+ +

By (52), 

u u u c u u u

u u u c u u u

( ; ) (1 ) ,

( ; ) (1 ) .

h I h I

I I

0

0

m m

m m

+
+

Then, 

I u u u I u u u

c u u u u

( ( ; )) ( ( ; ))

(1 ) .

h I I

h
V V

I
V

0 0+
+ +

Since ∥uh∥V is bounded independent of h, we conclude that 

R c u u c u u( ) .h
V

I
V3

2 2 + (144) 

Combining (141)–(144), we have a constant c  >  0 such that 

e c u u u u f f e

c

m
u u c u u

m
R u u

( )

( )
1

( , ).

h
V

I
V h V h

h
V

h
V

a

h
V

I
V

a
u

I h

2
, , ( )

2
2

h *

* *

+ +

+ + +

Applying the modified Cauchy-Schwarz inequality (12), for any small 
ϵ  >  0, we have a constant c depending on ϵ such that 

e c u u u u f f

u u

c

m
u u

m
R u u

(1 ) (

( ) )

1
( , ).

h
V

I
V h V h

h
V

I
V

a

h
V

a
u

I h

2
,

2
,

2
( )
2

2
2

h *

* *

+ +

+

+ +

(145) 

From the triangle inequality 

u u u u eh
V

I
V

h
V+ (146) 
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and the modified Cauchy-Schwarz inequality, we have 

u u c u u e(1 ) .h
V

I
V

h
V

2 2 2+ + (147) 

Hence, from (145), 

i
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c u u u u u u f f

u u
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R u u

1 (1 )

(

( ) )
1

( , ).

a

h
V

I
V

I
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Since c ma
2

*< , we can choose ϵ  >  0 small enough and deduce from 
the above inequality that 

e c u u u u u u f f

u u
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I
V h V h
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*

+ + +

+ +

Finally, the bound (139) follows from an application of (147).           □

7. Virtual element method for contact problems

We now apply the VEM to solve the contact problems. For this 
purpose, we construct the virtual element space V h ⊂ V, along with the 
corresponding bilinear form ah and right-hand side f h satisfying H(h). The 
discussion in this section is restricted to the spatial dimension d = 2.

Consider a family of partitions { }h of the closure into elements T. 
Let hT = diam(T) and h h Tmax{ : }T

h= . Define E h
0 as the set of edges 

that do not lie on ΓD and Ph
0 as the set of vertices not on ΓD.

Following (Beirão da Veiga et al., 2013a, 2013b, 2017), we make the 
following assumption:

Assumption 1. There exists a constant δ  >  0 such that for each h and 
every T h. 

• T is star-shaped with respect to a ball of radius δhT;.

• The distance between any two vertices of T is at least δhT.
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7.1 Construction of the virtual element space
Let T be a polygon with n edges. For k ≥ 1, we define the local finite 
dimensional space WT

h on the element T as 

W v v v

v

H T T C T

e e T

{ ( ; ) ( ) ( ; ), ( ),

( ; ) }

T
h

k T

e k

1 2
2

2 0

2 (148) 

with the convention that T( ) {0}1 = . For each v WT
h , we define the 

following degrees of freedom: 

v a a T•the values of ( ) vertex , (149)  

q v qds e e T k•the moments ( ; ) edge , 2,
e

k 2
2

(150)  

q v qdx T k•the moments ( ; ), 2.
T

k 2
2

(151) 

For any partition h and k ≥ 1, we define the global virtual element 
space 

W v W v W T{ },h
T T

h h (152) 

with global degrees of freedom for v ∈ Wh given by: 

v a a P• the values of ( ) vertex ,h
0 (153)  

q v qds e e E k• the moments ( ; ) edge , 2,
e

k
h

2
2

0

(154)  

q v qdx T T k• the moments ( ; ) element , 2.
T

k
h

2
2

(155) 

It is shown in (Beirão da Veiga et al., 2013b) that the degrees of freedom 
(153)–(155) are unisolvent for Wh.

Let χi represent the i-th degree of freedom for Wh, where 
i = 1, 2, …, Ndof. Due to the unisolvence of the degrees of freedom for 
Wh, for any sufficiently smooth function w, there exists a unique element 
wI ∈ Wh such that 

w w i N( ) 0, 1, 2, , .i
I

dof= = …
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By a scaling argument and the Bramble-Hilbert lemma, the following 
approximation property holds (Beirão da Veiga et al., 2013b): 

w w wc h j l k, 0, 1, 2 1.I
H

l j
H( ) ( )j l = + (156) 

Moreover, for each T h and w H T( ; )l 2 , there exists w T( ; )k
2

such that (Brenner & Scott, 2008; Beirão da Veiga et al., 2013b) 

w w wc h j l k, 0, 1, 1 1.H T T
l j

H T( ) ( )j l = + (157) 

7.2 Construction of ah and f h

Using the approaches in (Beirão da Veiga et al., 2013b; Wriggers et al., 
2016), we construct a symmetric and computable discrete bilinear form ah 

and discrete linear form f h so that H(h) is valid.
For any element T, denote by nV

T the number of vertices and by NT
dof the 

number of degrees of freedom. Also, let aT(⋅, ⋅) be the restriction of a(⋅, ⋅) on 
T. Following (Wriggers et al., 2016), we first introduce a projection operator 

W T: ( ; )k
T

T
h

k
2 defined by 

v q v q qa a T( , ) ( , ) ( ; ),T k
T h

T
h

k
2= (158)  
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(159)  

x v x x v x
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1
( )

1
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V
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i k
T h

i
V
T

i

n

i
h

i

1 1

V
T

V
T

× = ×
= =

(160) 

where xi denotes the coordinates of the vertices of T. Here, “×” denotes the 
cross product of two vectors.

We then define the local bilinear form 

u v u v u v u v Wa a S I I( , ) ( , ) (( ) , ( ) ) , ,T
h h h

T k
T h

k
T h

T k
T h

k
T h h h

T
h+

(161) 

where 

u v u vS ( , ) ( ) ( )T
h h

i

N

i
h

i
h

1

T
dof

=
=
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is the stabilization term. The bilinear form 

u v u va a( , ) ( , )h h h

T
T
h h h

h

=

ensures properties (133) and (134). Other constructions of ah that meet 
these criteria can also be applied, such as the bilinear form proposed in 
(Artioli et al., 2017) and used in (Feng et al., 2019).

The term f v( , )L0 ( ; )2 2 in (118 is not computable for v ∈ Wh, and we 
approximate f0 by f h

0 constructed as follows. For k ≥ 2, we define f h
0 such that 

f f fP TT
h h

T k
T h

0 0 2 0=

is the L2(T)-projection of f0 onto the space of polynomials of order k − 2 on 
each element T. Then we define 

f v f v v Wdx, .h h

T
T

T
h h h h

0 0
h

=

For k = 1, we choose 

f f fP TT
h h

T
T h

0 0 0 0=

to be the mean value of f0 on T, and define 

f v f v v Wdx, ¯ ,h h

T
T

T
h h h h

0 0
h

=

where v̄h represents the average value of vh over all vertices of T.
To approximate the right-hand side term 〈f, v〉W*×W, we set 

f v f v f v v W, , ( , ) .h h h h h
L

h
0 2 ( ; )2

2
2= +

This setup ensures the optimal order error bound (Beirão da Veiga et al., 2013b): 

f f fch .h
W

k
H( ) ( )h k 1* (162) 

7.3 Error analysis for contact problems
We apply the framework developed in Section 6 to perform error esti
mation for virtual element solutions of the three static contact problems.

7.3.1 VEM for Problem 1
The function space associated with the virtual element method is defined as: 

V v W v 0{ on }.h h h h
D= = (163) 

The virtual element scheme for Problem 1 is formulated as follows:
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Problem 15. Find a displacement field uh ∈ Vh such that 

u v u v u

f v u v V

a f ds u v u ds( , ) ( ) ( ; )

, .

h h h h
b

h h h h h

h h h h h

0

C C

+ +

(164) 

To apply Theorem 12, we estimate the residual term 

u u u u u u u

f u u

R dx f ds

u u u ds

( , ) ( ( )): ( ) ( )

( ; ) , .

u
I h I h

b
I h

h I I h0

C

C

= +

Using relations (107) and (108), similar to (109), we derive 

u u u f u u u udx ds( ( )): ( ) , ( ) .I h I h I h

C

= + (165) 

Thus, 

u u u u u u

u u

u u

R ds f ds

u u u ds

u u ds ds

f ds u u u ds
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( ) ( )
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I h I h

b
I h

h I

I h I h

b
I h h I

0

0

C C

C

C C

C C

= +

= +

+

(166) 

To proceed further, we continue the arguments presented in Subsection 5.1
to derive pointwise relations for the weak solution. We assume the solution 
regularities (103). Recalling (107) and (108), we can derive from (38) that 

v u v u

v V

I v u u v u f( ( ) ( ; ) ( ) ( )) 0

.

b
0

C
+ + +

(167) 

By the independence of the normal component and the tangential component 
of an arbitrary vector field v ∈ V and the densities of {vν∣v ∈ V} in L2(ΓC) and 
of {vτ∣v ∈ V} in L ( )C

2 2, we conclude from (167) that a.e. on ΓC, 

z u u z u z L( ) ( ; ) 0 ( ),C
0 2+ (168)  

z u z u zf L( ) ( ) 0 ( ) .b C
2 2+ (169) 
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Taking z = 0 and 2 uτ in (169), we see that (169) is equivalent to 

u u z z zf f L0, 0 ( ) .b b C
2 2+ = +

(170) 

Then, 

u u u u

u u u u u u

u u u u u u

u u u u

ds f ds

ds ds f ds

f ds f ds f ds

f ds f

( ) ( )

( ) ( ) ( )

( ) ( )

2 2 .

I h
b

I h

I h
b

I h

b
I

b
h

b
I h

b
I

b L
I

L( ) ( )

C C

C C C

C C C

C
C C

2 2 2

+

= + +

+ +

(171) 

Furthermore, we derive from (168) that 

z u z z( ; ) 0 , a.e. on .C
0+ (172) 

Hence, 

u u ds u u u ds u u u ds

u u u ds

( ) ( ; ) ( ; )

( ; ) 0.

h I h I h I

h I

0 0

0

C C C

C

=

Thus, applying Theorem 12, we obtain 

u u u u u u f f

u u

c (

).

V V V V
h I

h
h

I
L

, ( )

( )
1/2

h

C
2 2

+ +

+ (173) 

Let k = 1 and assume solution regularities (103) and (112). Recall the 
approximation properties (156), (157), and (162). In addition, we have the 
analog of (113) in the setting of VEM: 

u u c h .I
L ( )

2
C

2 2

Thus, we conclude that for k = 1, the optimal order error bound is valid under 
solution regularities (103) and (112)

u u ch.V
h (174) 
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7.3.2 VEM for Problem 2
The function space associated with the virtual element method is: 

V v W v v0{ on , 0 on }.h h h h
D

h
C1 = = = (175) 

The virtual element scheme for Problem 2 is formulated as follows:

Problem 16. Find a displacement field u Vh h
1 such that 

u v u u v u f v u v Va ds( , ) ( ; ) , .h h h h h h h h h h h h0
1

C

+

(176) 

Following a similar approach as for Problem 15, we can show that Ru 

(uI, uh) ≤ 0. Consequently, the optimal order error bound for k = 1 is 

u u chV
h

under the regularity assumptions (103).

7.3.3 VEM for Problem 3
To approximate the admissible set U, we define 

U v V v g{ at node points on }.h h h h
C= (177) 

Assuming that g is a concave function, we have Uh ⊂ U. The following 
numerical method is proposed for Problem 3.

Problem 17. Find a displacement field uh ∈ Uh such that 

u v u v u

f v u v U

a f ds u v u ds( , ) ( ) ( ; )

, .

h h h h
b

h h h h h

h h h h

0

C C

+ +

(178) 

We apply Theorem 12 to derive an error estimate. The key step is to 
bound the residual term 

u u u u u u u

f u u

R dx f ds

u u u ds

( , ) ( ( )): ( ) ( )

( ; ) , .

u
I h I h

b
I h

h I I h0

C

C

= +
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By a similar argument, we can derive the relation (165) as well, so 

u u u u u u

u u

u u

R ds f ds

u u u ds

u u ds ds

f ds u u u ds
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+

Using an argument similar to (171), we can deduce that 

u u u u u uds f ds f( ) ( ) 2 .I h
b

I h
b L

I
L( ) ( )

C C
C C

2 2 2+

Furthermore, we consider 

u u u u u u

u u u g
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I h I
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= + + +

+ +
+ +

Here, we use the fact that (σν + ξν)(uν − g) = 0 and u gh , given that uh 

∈ Uh ⊂ U. Since ξν ∈ ∂ψν(uν), we get 

u u ds u u u ds u u ds

u u ds

u u u ds

c u u

( ) ˜ ( ; ) ( )( )

( )

( ; )

.

I h h I I

h I

h I

I
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0

0
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C C C

C

C

C
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+

Finally, the optimal order error bound for k = 1 is 

u u c h,V
h

under the regularity assumptions (103) and (112).

Remark 1. In the above analysis, we assumed g to be a concave function. 
However, this assumption can be removed by applying the argument in 
(Feng et al., 2021a). For simplicity, we retain this assumption here.
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8. Numerical examples

In this section, we report numerical simulation results on sample 
contact problems, by applying both the finite element method and the 
virtual element method. In all the examples, we let Ω be the unit square: 

(0, 1) (0, 1) 2= × , and split the boundary into three parts: 

[0, 1] {1}, ({0} (0, 1)) ({1} (0, 1)),

[0, 1] {0}.

D N

C

= × = × ×
= ×

The domain Ω is the initial configuration of an elastic body. We adopt the 
linear elasticity constitutive law 

u( ) in ,= (179) 

where 

E E
i j( )

(1 )(1 2 )
( )

1
, 1 , 2,

.

ij ij ij11 22

2

=
+

+ +
+

A volume force of density f0 is applied to the elastic body and the equi
librium equation is 

f 0Div in .0+ = (180) 

The ΓD part of the boundary is fixed, 

u 0 on ,D= (181) 

and the ΓN part of the boundary is subject to the action of a traction force 
of the density f2: 

f on .N2= (182) 

Different boundary conditions will be considered on the contact boundary 
ΓC. The physical setting of the problem is as depicted in Fig. 1.

In the numerical experiments, uniform triangulations of the domain Ω 
are used for the linear triangular finite elements (FEM). The uniform square 
partitions of the domain Ω are used for the lowest-order (i.e., k = 1) virtual 
element method (VEM). The boundary of the spatial domain is divided into 
1/h equal parts, and h is used as the discretization parameter. In order to 
illustrate that the VEM can be applied to polygonal meshes, we present the 
deformed meshes on the Voronoi meshes, which are generated by the 
MATLAB toolbox - PolyMesher introduced in (Talischi et al., 2012). 
The corresponding deformed meshes are presented in (Figs. 3, 7 and 11). 
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In the following numerical examples, we choose fb = 0 in the friction 
conditions, i.e., we consider the frictionless contact.

The relative errors of the numerical solutions in the H1-norm, i.e., 

u u

u
V

V

h
ref

ref

will be used to compute the numerical convergence orders of the 
numerical solutions for the linear FEM and the lowest order VEM on the 
square meshes. For both FEM and VEM, we take the numerical solution 
with h = 1/512 as the “reference” solution in computing the errors of 
numerical solutions on coarse meshes.

Example 1. In this example, we consider a bilateral contact problem with 
friction. Let the contact conditions on Γ3 be 

uu 0, ( ),=

where 

z t dt r a b e b( ) ( ) , ( ) ( ) .
z

r

0
= = +

Note that the contact condition − στ ∈ ∂ψ(uτ) is equivalent to 

u u
u

u
u0 0(0) if , ( ) if .= =

Fig. 1 Physical setting. 
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The parameters are given as follows: 

lmoo
noo

f

f

E kg cm

a b
kg cm

kg cm
kg cm

2000 / , 0.3,

3 10 , 2.5 10 , 2 10 ,
(0, 0.05) / ,

(800, 0) / on {0} [0.5, 1),
( 800, 0) / on {1} [0.5, 1).

2

3 3 3

0
2

2

= =
= × = × = ×
=

= ×
×

We illustrate the numerical performance of both the virtual element 
method and the linear finite element method. In the VEM, we present the 
numerical solution on square mesh for different values of mesh numbers N 
in (Fig. 2). In (Fig. 3), we present the initial and deformed Voronoi meshes 
corresponding to N = 8000 for the VEM. Numerical solutions obtained by 
linear FEM on uniform triangulation and lowest order VEM on the square 
grid along the tangential direction on the boundary [0,1] × {0} are shown 
in (Fig. 4). In Table 1 and Table 2, we report the numerical convergence 
orders of the FEM and VEM solutions. The numerical convergence orders 
approach 1, matching the theoretical error bounds. See also Fig. 5.

Fig. 2 Example 1: numerical solutions with N elements: N = 256 (upper left), N = 1024 
(upper right), N = 4096 (bottom left) and N = 16,384 (bottom right). 
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Example 2. In this example, we consider a frictionless normal compliance 
contact problem. On ΓC, let 

l

m

oooooooo

n

oooooooo

u
u
u

u u
u u

0

0 if 0,
[0, 2] if 0,
2 if (0, 0.04],
4 50 if (0.04, 0.06],
20 0.2 if 0.06,
.

=

<
=

>
=

Fig. 3 Example 1: (A) Initial mesh with N = 8000; (B) deformed meshes with N = 8000.  

Fig. 4 Example 1: tangential displacement on Γ3 for (A) FEM solution; (B) VEM solution 
on square mesh.  
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The parameters are given as follows: 

lmoo
noo

f

f

E kg cm

kg cm

kg cm
kg cm

2000 / , 0.3,

(0, 0.05) / ,

(800, 0) / on {0} [0.5, 1),
( 800, 0) / on {1} [0.5, 1).

2

0
2

2

= =
=

= ×
×

In the VEM,we present the numerical solution on square mesh for 
different values of mesh numbers N in (Fig. 6). In (Fig. 7), we present the 
initial and deformed meshes on voronoi meshes corresponding to 

Table 2 Example 1: relative errors of the displacements on the square mesh for the 
VEM. 
h 1/8 1/16 1/32 1/64 1/128

Error 10.06 % 5.84 % 3.39 % 1.94 % 1.07 %

Order — 0.7846 0.7847 0.8052 0.8584

Fig. 5 Example 1: numerical convergence orders for (A) FEM; (B) VEM on the square 
mesh. 

Table 1 Example 1: relative errors of the displacements for the linear FEM. 
h 1/8 1/16 1/32 1/64 1/128

Error 20.51 % 11.47 % 6.53 % 3.7 % 1.96 %

Order — 0.8385 0.8127 0.8196 0.9167
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N = 8000 for the VEM. The numerical solution obtained by linear FEM 
and lowest order VEM on the square grid along the normal direction on 
the boundary [0,1] × {0} is shown in (Fig. 8). The relative errors and 
numerical convergence orders are reported in Tables 3, 4 and (Fig. 9).

Example 3. The contact boundary conditions on ΓC are characterized by a 
frictionless multivalued normal compliance contact in which the 
penetration is restricted by unilateral constraint. For simulations, we let 

l

m

oooooooo

n

oooooooo

u g u g

u
u
u

u u
u u

0

, 0, ( )( ) 0

0 if 0,
[0, 2] if 0,
2 if (0, 0.04],
4 50 if (0.04, 0.06],
20 0.2 if 0.06,
.

+ + =

=

<
=

>
=

This time, we choose g = 0.06.

Fig. 6 Example 2: numerical solutions with N elements: N = 300 (upper left), N = 1000 
(upper right), N = 4000 (bottom left) and N = 8000 (bottom right).  
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Fig. 7 Example 2: (A) Initial mesh with N = 8000; (B) deformed meshes with N = 8000. 

Fig. 8 Example 2: normal displacement on Γ3 for (A) FEM; (B) VEM on square mesh. 

Table 3 Example 2: relative errors of the displacements for FEM. 
h 1/8 1/16 1/32 1/64 1/128

Error 20.54 % 11.62 % 6.68 % 3.85 % 2.12 %

Order — 0.8218 0.7987 0.7950 0.8608

Table 4 Example 2: relative errors of the displacements on the square mesh for VEM. 
h 1/8 1/16 1/32 1/64 1/128

Error 10.10 % 5.9 % 3.44 % 1.98 % 1.11 %

Order — 0.7756 0.7783 0.7969 0.8480
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In the VEM, we present the numerical solution on square mesh for 
different values of mesh numbers N in (Fig. 10). In (Fig. 11), we present 
the initial and deformed meshes on Voronoi meshes corresponding to 
N = 8000 for the VEM. The numerical solution obtained by linear FEM 

Fig. 9 Example 2: numerical convergence orders for (A) FEM; (B) VEM on the square 
mesh. 

Fig. 10 Example 3: numerical solutions with N elements: N = 256 (upper left), N = 1024 
(upper right), N = 4096 (bottom left) and N = 16,384 (bottom right).  

170                                                                                              Weimin Han et al. 



and lowest order VEM on the square grid along the normal direction on 
the boundary [0,1] × {0} is shown in (Fig. 12). The relative errors and 
numerical convergence orders are reported in (Tables 5, 6 and Fig. 13).

Fig. 11 Example 3: (A) Initial mesh with N = 8000; (B) deformed meshes with N = 8000. 

Fig. 12 Example 3: normal displacement on Γ3 for (A) FEM; (B) VEM on square mesh. 

Table 5 Example 3: relative errors of the displacements for FEM. 
h 1/8 1/16 1/32 1/64 1/128

Error 20.43 % 11.57 % 6.63 % 3.79 % 2.04 %

Order — 0.8203 0.8033 0.8068 0.8936
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9. Concluding remarks

This paper is devoted to numerical analysis of variational-hemi
variational inequalities, especially those arising in contact mechanics. 
Abstract frameworks are presented for the finite element method and the 
virtual element method to solve the variational-hemivariational inequal
ities, and the results are applied to the numerical solution of three repre
sentative contact problems. In particular, a general convergence result is 
shown for Galerkin solutions of abstract variational-hemivariational 
inequalities under minimal solution regularity conditions available from the 
well-posedness theory, and optimal order error estimates are derived for the 
lowest order (linear) finite element solutions and virtual element solutions 
under certain solution regularity assumptions. Numerical examples are 
reported on the performance of both the finite element method and the 
virtual element method.

Other numerical methods can be employed to solve the contact pro
blems as well. For instance, similar to the virtual element method, a 
polytopal method, called hybrid high-order method (HHO), has been 

Table 6 Example 3: relative errors of the displacements on the square mesh for VEM. 
h 1/8 1/16 1/32 1/64 1/128

Error 10.09 % 5.91 % 3.45 % 2.01 % 1.15 %

Order — 0.7717 0.7766 0.7794 0.8056

Fig. 13 Example 3: numerical convergence orders of (A) FEM solutions; (B) VEM 
solutions on the square mesh.  
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applied to solve contact problems, cf. (Bayat et al., 2022; Cascavita et al., 
2020; Chouly et al., 2020). It will be interesting to study HHO to solve 
general variational-hemivariational inequalities.

For practical use of numerical methods, one important issue is the 
assessment of the reliability of numerical solutions, which is accomplished 
by a posteriori error estimates of numerical solution errors after the 
numerical solutions are found. The interest in a posteriori error estimation 
for the finite element method began in the late 1970s (Babuška & 
Rheinboldt, 1978a,b). Since then, a large number of papers and books have 
been published on this subject. Historically, two of the influential books on 
a posteriori error analysis are (Ainsworth & Oden, 2000; Verfurth, 1996). 
Note that most of the publications on a posteriori error analysis deal with 
variational equation problems. In (Han, 2005), a systematic approach was 
developed for a posteriori error analysis and adaptive solutions of variational 
inequalities, by employing the duality theory in convex analysis (Ekeland & 
Temam, 1976). Another approach was employed in deriving a posteriori 
error estimators for variational inequalities of the second kind in (Wang & 
Han, 2013). Similar approaches were extended to perform a posteriori 
error analysis in the virtual element method for simplified friction pro
blems. Specifically, a residual-based error estimator for VEM was proposed 
in (Deng et al., 2020), while a gradient recovery-type a posteriori error 
estimator was introduced in (Wei et al., 2023). In (Porwal & Singla, 2025), 
a posteriori error analysis of the elliptic obstacle problem was addressed 
using hybrid high-order methods. A posteriori error analysis for C0 interior 
penalty methods was performed for a fourth-order variational inequality of 
the second kind in (Gudi & Porwal, 2016) and that for the obstacle pro
blem of clamped Kirchhoff plates in (Brenner et al., 2017). It will be an 
interesting and important topic to establish a posteriori error estimates for 
numerical solutions of variational-hemivariational inequalities, and to apply 
the a posteriori error estimates to develop adaptive algorithms to solve 
contact problems in the form of variational-hemivariational inequalities.
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