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Abstract

Variational-hemivariational inequalities are an important mathematical framework for
nonsmooth problems. The framework can be used to study application problems from
physical sciences and engineering that involve non-smooth and even set-valued rela-
tions, monotone or non-monotone, among physical quantities. Since no analytic
solution formulas are expected for variational-hemivariational inequalities from appli-
cations, numerical methods are needed to solve the problems. This paper focuses on
numerical analysis of variational-hemivariational inequalities, reporting new results as
well as surveying some recent published results in the area. A general convergence
result is presented for Galerkin solutions of the inequalities under minimal solution
regularity conditions available from the well-posedness theory, and Céa’s inequalities
are derived for error estimation of numerical solutions. The finite element method and
the virtual element method are taken as examples of numerical methods, optimal order
error estimates for the linear element solutions are derived when the methods are
applied to solve three representative contact problems under certain solution regularity
assumptions. Numerical results are presented to show the performance of both the
finite element method and the virtual element method, including numerical con-
vergence orders of the numerical solutions that match the theoretical predictions.

1. Introduction

Variational-hemivariational inequalities (VHIs) are an important
mathematical framework for studying nonsmooth problems in applications.
This framework contains variational inequalities (VIs) and hemivariational
inequalities (HVIs) as special cases. VIs are inequality problems in which
non-smooth terms have a convex property, whereas HVIs are those in
which non-smooth terms are allowed to be non-convex. A VHI has the
features of both a VI and a HVI, i.e., both convex and non-convex non-
smooth terms are present in the problem. In the literature, the two terms
“hemivariational inequalities” and ‘“‘variational-hemivariational inequal-
ities” are used interchangeably. In this paper, we use the term “variational-
hemivariational inequalities” to also mean hemivariational inequalities.

Rigorous mathematical analysis on VIs began in 1960s (Fichera, 1964).
By early 1970s, foundations of basic mathematical theory of VIs were
established in a series of papers (Brézis, 1972; Hartman & Stampacchia,
1966; Lions & Stampacchia, 1967; Stampacchia, 1964). In (Duvaut &
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Lions, 1976), many complicated application problems were modeled and
studied as VIs. Since one does not expect to have solution formulas for VIs
arising in applications, numerical methods are needed to solve VIs. Early
comprehensive references on numerical methods for solving VIs are
(Glowinski, 1984; Glowinski et al., 1981). Modelling, analysis and
numerical solution of VIs in mechanics are treated in (Han & Reddy, 2013;
Han & Sofonea, 2002; Haslinger et al., 1996; Hlavacek et al., 1988;
Kikuchi & Oden, 1988) and in many other references. Even though the
area of VIs is now pretty mature, it is still an active research area due to
emerging new applications and the need of developing better numerical
methods and algorithms for solving VIs (e.g., Caselli et al., 2023; Chouly
et al., 2023; Jayswal & Antczak, 2023; Ulbrich, 2011; Yousept, 2021).

HVIs, and more generally, VHIs, find their applications in problems
involving non-smooth, non-monotone and set-valued relations among
physical quantities. Since the pioneering work of Panagiotopoulos in early
1980s (Panagiotopoulos, 1983), there has been extensive research on
modeling, analysis, numerical solution and applications of VHIs. Recent
years have witnessed an explosive growth in the literature on modeling,
analysis, numerical approximation and simulations, and applications of
VHIs. Early comprehensive references on mathematical theory, numerical
solution and applications of VHIs include (Haslinger et al., 1999; Motreanu
& Panagiotopoulos, 1999; Naniewicz & Panagiotopoulos, 1995;
Panagiotopoulos, 1993). More recent monographs covering the mathe-
matical theory and applications of VHIs include (Carl & Le, 2021; Carl
et al., 2007; Goeleven & Motreanu, 2003; Goeleven et al., 2003; Migbrski
et al., 2013; Sofonea & Migodrski, 2018). In these references and in the vast
majority of other publications on well-posedness of VHIs, abstract sur-
jectivity results on pseudomonotone operators and a Banach fixed-point
argument are applied to show the solution existence. An alternative and
more accessible approach, without the use of abstract theory of pseudo-
monotone operators, has been developed for the mathematical theory of
VHIs. This new approach starts with minimization principles for a special
family of VHISs, first established in (Han, 2020); the theory is then extended
in (Han, 2021) to cover general VHIs through fixed-point arguments. The
book (Han, 2024) is devoted to the mathematical theory of VHIs using the
new approach.

VHIs are more complicated than VIs, and numerical methods are
needed to solve them. The finite element method and a variety of solution
algorithms are discussed in (Haslinger et al., 1999) to solve HVIs. An



116 Weimin Han et al.

optimal order error estimate is first presented in (Han et al., 2014) for the
linear finite element solutions of a VHI. This is followed by a series of
papers on further analysis of the finite element method to solve VHIs, e.g.,
(Han, 2018; Han et al., 2017, 2018; Han & Zeng, 2019). The reference
(Han & Sofonea, 2019) provides a recent survey of numerical analysis of
VHIs, including some time-dependent problems. Other numerical
methods have been studied for solving VHIs, e.g., (Feng et al., 2019,
2021a, 2021b, 2022; Ling et al., 2020; Wang et al., 2021; Wu et al., 2022;
Xiao & Ling, 2023a, 2023b, 2023¢) on the use of virtual element methods,
and (Wang et al., 2023) on the use of discontinuous Galerkin methods.
Machine learning techniques have been explored recently to solve the
problems, cf. (Cheng et al., 2023; Huang et al., 2022).

The aim of this paper is to provide a summary account on the numerical
solution of VHIs. We will only consider stationary/time-independent
problems. In Section 2, we present preliminary materials needed later in the
paper. In particular, we review the notions of generalized subdifferentials
and generalized subgradients, and their properties. In Section 3, we
introduce three contact problems; their weak formulations are VHIs. In
Section 4, we provide an analysis of the Galerkin method for an abstract
VHI, which contains the three VHIs introduced in Section 3 as special
cases. In Section 5, we apply results presented in Section 4 to study the
three contact problems, including optimal order error estimates for their
numerical solutions using the linear finite element method under certain
solution regularity assumptions. In Section 6, we analyze the virtual ele-
ment method for solving an abstract VHI. In Section 7, we apply the VEM
to solve the three contact problems and derive optimal order error esti-
mates under certain solution regularity assumptions. In Section 8, we
present numerical examples for solving the contact problems, and report
the numerical convergence orders of the FEM and VEM solutions. The
paper ends with some concluding remarks in Section 9.

2. Preliminaries

In the study of VHIs, we need the notions of the generalized
directional derivative and generalized subdifferential for locally Lipschitz
continuous functions introduced by F. H. Clarke (Clarke, 1975, 1983). In
this section, we use the symbol IV for a Banach space, and U for an open
subset in V.
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Definition 1. Assume W: U — R is locally Lipschitz continuous. Then
the generalized (Clarke) directional derivative of W at u € U in the direction
v € IVis defined by
b 4 ) =¥
WO (u; v) = lim sup w+ 4v) w) , (1)
w—u,Al0 A

and the generalized (Clarke) subdifferential of ¥ at u € U is defined by
oY (u) = {u* € V*¥°u; v) > (u*, v) W € IV}, (2)

We note that the upper limit in (1) is well-defined for a locally Lipschitz
continuous functional ¥. Often, we will use Definition 1 for the particular
case U =T.

Basic properties of the generalized directional derivative and the general-
ized gradient are recorded in the next result (cf. Clarke, 1983; Clarke et al.,
1998; Gasiniski & Papageorgiou, 2005 or Migorski et al., 2013, Section 3.2).

Proposition 1. Assume that W: U — R is a locally Lipschitz function.
Then the following statements are valid.

G) Yu; Av) =249 ) VA20, u e U, v e V.

(i) You; —v) = (- )"(u WYu€e U, ve V.

(i) PO%u; vy + o) <P vy) +PO(u; o) Yu € U, vy, v, € V.
(iv) ¥ (u; v) = max {{u*, v)|u* € ¥ ()} Yu e U, vE V.
) Ifu, > uin V, u,, u € U, and v, = v in I, then

limsup, | V" (u,; 1) < PO (u; v).

(vi) For every u € U, 0¥ (u) is nonempty, convex, and weakly* compact
in ¥,
(vii) Ifu, - win V, u,, u € U, u*, € 0¥(u,), and u; - u* weakly* in I*,
then u* € ¥ (u).
(viii) If ¥: U — R is convex, then the generalized subdifferential 0¥ (u) at
any u € U coincides with the convex subdifferential 0¥ (u).

Because of Proposition 1 (viii), the symbol 0 is used for both the
generalized subdifferential of locally Lipschitz continuous functions and the
convex subdifferential of convex functions. Detailed discussion on convex
subdifferentials can be found in many references on convex functions, e.g.,
(Ekeland & Temam, 1976).
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One simple consequence of Proposition 1 (iii) is
You; —v) > —WY'u; v) VueU, veT. (3)

This property can also be proved directly from the definition of the gen-
eralized directional derivative.

In the description of the next result, we need the concept of regularity
of a locally Lipschitz continuous function.

Definition 2. A function ¥: U — R is regular at u € U if ¥ is Lipschitz
continuous near # and the directional derivative lP/(M; v) exists such that
Y v) =V v) Vve V.

It is known that a function is regular at any point where the function is
continuously differentiable. In addition, a Ls.c. function is regular at any
point in the interior of its effective domain.

Proposition 2. Let ¥, ¥, ¥>: U - R be locally Lipschitz functions.
Then:
(i) (scalar multiples).

AW () =A0¥wu) VYIER, ueU. @)

(i) (sum rules).

O + W) (u) C OV, (u) + 0P () Yu € U, G)

or equivalently,
P+ ) (u; v) <P (u; v) + Po(u; v) Yue U, ve V. (6)

If ¥, and ¥, are regular at u, then (5) and (6) hold with equalities.
In the study of VHIs, we will assume a condition of the form

POy va — v7) + POy 1 — o) S agllyy— wmllp ¥V o, meU  (7)

for a constant oy >0. This condition characterizes the degree of non-
convexity of the functional W: the smaller the constant oy > 0, the weaker
the non-convexity of ¥. For a convex functional ¥, (7) holds with oy = 0.
The condition (7) is sometimes given as a condition on the generalized
subdifferential (cf. Sofonea & Migorski, 2018, p. 124).
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Proposition 3. The condition (7) is equivalent to

(vF — v5, v) — 1p) > —awl|lvy — |l Yy € U, vy €d¥®w),i=1,2.
®)
The condition (8) is known as a relaxed monotonicity condition in the
literature. The inequality (8) with ay =0 is the monotonicity of 0¥ for a
convex functional .
For convenience, we will write (8) as

(0¥ () — 0¥ (1), vy — o) > —ayllvy — »ollp Yo, 1€ U. 9

The following result is useful for verification of the condition (7); it is
proved, e.g., in (Han, 2024, p. 26).

Theorem 1. Assume ¥: U — R is locally Lipschitz continuous and ay € R.
Then (7) holds if and only if the functional v = W (1) + (ay/2) ||v|[> is

convex on U.

The following chain rule is proved in (Migorski et al., 2010, Lemma
4.2). More general chain rules for the generalized directional derivative and
generalized subdifferential can be found in (Clarke, 2013, Chapter 10).

Proposition 4. Let IVand W be Banach spaces, let ¥): W — R be locally
Lipschitz and let T: V' — W be given by Tv = Av + w for v € I/, where
A€ LV, W)and w € Wis fixed. Then the function ¥: IV - R defined
by W(v) = Wy(Tv) is locally Lipschitz and

WO (u; v) < WO(Tu; Av)  Yu,v € V, (10)
oW (u) CA*0¥(Tu) Vuel, (11)

where A*e€ L(W*, I*) is the adjoint operator of A. Moreover, the
equalities in (10) and (11) hold true if A is surjective.

For detailed discussion of the properties of the Clarke subdifferential,
we refer the reader to (Clarke, 1975,1983; Clarke et al., 1998; Clarke,
2013; Denkowski et al., 2003a, 2003b).

In virtually all the applications in mechanics, the locally Lipschitz
continuous functional ¥ is expressed as an integral of a locally Lipschitz
continuous function  of a real variable or of several real variables. The
following formula is useful to compute the Clarke subdifferential of a
function defined over a finite dimensional set (cf. Clarke, 2013, Theorem
10.7; Migorski et al., 2013, Prop. 3.34).
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Proposition 5. Assume U C R? is open, y: U — R is locally Lipschitz
continuous near x € U, N C R? with [N| =0, and N, C R? with [N, =0
such that y is Fréchet differentiable on U\N,,. Then,

Oy (x) = conv{limy’ (xp)|x, = x, x. € N U N, }.

Next, we show some examples on the generalized subdifferential for
locally Lipschitz continuous functions by applying Proposition 5.

For the function y(x) = —|x]|, its generalized subdifferential is
1 ifx <0,
oy, (x) = {[—1, 1] ifx=0,
-1 ifx > 0.
For

0, x<0,
Y, (x) = {

x, x>0,
we have
0, x <0,
o, (x) = 1[0, 1], x=0,
1, x> 0.

Note that y, is a convex function, and dy is also the convex subdifferential
of yp».
Consider
2x+3 ifx<-—1,
p) =k <1,
2x2—1 ifx > 1.

For its generalized subdifterential, we have

2 ifx < —1,
[—1, 2] ifx =—1,

-1 if =1 <x<0,
oy (x) = q[—1, 1] ifx =0,

1 fo<x<1,
[1, 4] ifx=1,

4 x ifx > 1.
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On several occasions, we will use the modified Cauchy-Schwarz
inequality

ab<ea®>+cb*> Va b€eR, (12)

where € > 0 is an arbitrary positive number and the constant ¢ > 0
depends on €, indeed, we may simply take ¢ = 1/(4 €).

3. Sample problems from contact mechanics
3.1 Notation

We first introduce the notation. We are interested in mathematical
models which describe the equilibrium of the mechanical state of an
elastic body subject to the action of external forces and constraints on
the boundary. We denote by € the reference configuration of the body
and assume Q is an open, bounded, connected set in R? with a Lipschitz
boundary I' =0Q. In applications, the dimension d =2 or 3. The
Lipschitz regularity assumption on € allows us to use most of the basic
properties of Sobolev spaces, including integration by parts formulas.
The unit outward normal vector on I" exists a.e. and we denote it by v.
We use boldface letters for vectors and tensors. A typical point in R is
denoted by x = (x;). The range of indices i, j, k, [ is between 1 and d. We
adopt the summation convention over a repeated index, e.g., a;b; stands
for the summation a;b; + -+ +asby. The index following a comma
indicates a partial derivative with respect to the corresponding com-
ponent of the spatial variable x. For example, for a function g(x), g ;(x)
denoted the partial derivative dg(x)/0x;.

We denote by S$¢ the space of second order symmetric tensors on R,
For our purpose, we can simply view S? as the space of symmetric matrices
of order d. Over R? and $¢, we use the canonical inner products and norms

defined by

wev=um, ll=@-0)2 Yu=(u),v=(@) €R,  (13)

c:t=o0;7;, |tl=@@1)? Vo= (), 7=(1) €S (14

The primary unknown of the contact problem is the displacement of
the elastic body, #: O — R?. We consider the contact problems within the
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framework of the linearized strain theory. Then, for a displacement field #,
we use the linearized strain tensor

1
e(u) = E(Vu + (Va)h).
In componentwise form,
1 .
gj(m) = (€M) = 5 (wij+up), 1<i,j<d,

where u;; = du;/dx;. In the description of the contact problems, another
important mechanical quantity is the stress tensor 6: ) — S, Both &(u)
and o are symmetric matrix valued functions on €.

We will use Sobolev and Lebesgue spaces on €, I, or their subsets, such as
L?(Q; RY, I>(Tn; RY), [2(T; RY, H'(Q; RY, and H'(Q; $7), endowed
with their canonical inner products and associated norms. For a function
v € H'(Q; RY we write » for its trace yv € L>(I'; RY on I'. A standard
reference on Sobolev spaces is (Adams & Fournier, 2003). One may also
consult (Brézis, 2011; Evans, 2010) and many other books on Sobolev spaces.

To describe the contact problems, we split the boundary of I" into three
non-overlapping measurable parts: I' =I'p, U I'ny U I'e. We will specify a
displacement boundary condition on I'p, a traction boundary condition on
I'n, and contact boundary conditions on I'c. We assume I'p and ' have
positive measures, [['p| > 0, |[I'c] > 0. The space for the unknown dis-
placement field is

Vi={ve H(Q;RYv=0onIp. (15)

For some contact problems, the displacement will be sought in a subspace
or a subset of V. The space for the stress field is

Q=12 S) = {6 = (o)loy = 0 € 2(Q), 1 < i, j < d}. (16)

The space Q is a real Hilbert space endowed with the inner product
(6, 7)g =/0':1'dx, o, T€Q.
o

The corresponding norm is denoted by |[|-|lg. Due to the assumption

|II'p| > 0, there is a constant ¢ > 0, depending on € and I'p, such that

vl ory < clle@llq Vre V. (17)
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This is known as a Korn inequality, and its proof can be found in numerous
publications, e.g. (NecCas & Hlavacek, 1981, p. 79). Consequently, Vis a
real Hilbert space under the inner product

(u, v)y = (e(u), e(v))g.- (18)
The induced norm is
vl = lle@)llq- (19)
It follows from Korn’s inequality (17) that |||l r4 and |||y are
equivalent norms on V. We will use |||/} as the norm on V.

Denote by V* the dual of the space ¥ and by (-, -) the corresponding
duality pairing. For any element v € V, denote by v, and v, its normal and
tangential components on I' given by v, =v - v and v, =v — 2,
respectively. For a function 6: Q — $%, we denote by 6, and 6, its normal
and tangential components on I, defined by the relations

o,=(ov) v, o,=o0Vv—o,V.
It is straightforward to show that
u-v=u,v,+ u; v, (20)
ov-v=o,u,+ 06, v, (21

For a differentiable field 6: O — $¢, its divergence is a vector-valued
function dive: O — R with components

(le O-)z' = (51],], 1 S i S d.

For 6 € H'(Q; $%) and v € H'(Q; R, we have Green’s formula

o e(v dx+/ diva-vdx=/o1/-vds.
Jyoewis [ r 2)
From the trace inequality

Ivllzrry < collvlly Vv eV, (23)

we can derive similar trace inequalities for the normal component and
tangential component:

oz <27 lvly Vo e v, (24)

I llawy < 47l Vv eV, (25)
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where 4,> 0 and 4,> 0 are the smallest eigenvalues of the eigenvalue
problems

uebv, /e(u):e(v) dx=/1f uv,ds Vv eV,
Q e

and
uevy, /8(u):8(v)dx=/1/u1-v,ds VveVl,
Q Ie
respectively.
In the study of Problem 2 below, we need a subspace of the space V-

Vi={veVy=0onl:} (26)

We use the norm |[|-]|y- over the subspace V. Similar to (24) and (25), we
have the trace inequalities

lwlle@y < 402l Vo€ W, (27)
el ary < 4012 Mwlly Vv € W, (28)

where 4,1 > 0 and 4,1 > 0 are the smallest eigenvalues of the eigenvalue
problems

uevm, /e(u):e(v) dx=ﬂf uv,ds Vv € W,
Q Ie
and

u eV, fe(u):e(v)dx=/1/u,-vfds Vv el

Q ol

respectively. We have 4, 24, and 4, 2 4,.

3.2 Three contact problems

In this subsection, we present mathematical models of three representative
contact problems between an elastic body and a rigid foundation. A variety
of mathematical models of contact problems can be found in many pub-
lications, cf. e.g., the comprehensive references (Han & Sofonea, 2002;
Kikuchi & Oden, 1988; Migorski et al., 2013). In all contact problems, we
have the following pointwise relations:

—dive =f, inQ, (29)

6==8m) inQ, (30)
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e(m) = %[Vu + (Va)] inQ,

(31)
u=0 onlp, (32)
ov =_f2 on FN- (33)

We comment that (29) is the equilibrium equation, (30) is the elastic
constitutive law, (31) defines the linearized strain tensor, (32) represents the
homogeneous boundary condition on I'p whereas (33) describes the
traction boundary conditions.

On the elasticity operator &: Q X 87 — $7 in the constitutive law (30),
we assume the following properties:

(a) There exists a constant Lg > 0 such that a.e. in Q,
1EC, &) — EC, &) < Lgles — &2 Ve, & € S

(b) there exists a constant mg > 0 such that a.e. in (,
EC, &) — E(, £)): (&1 — &) 2 mgle — &

(34)
Ve, & € Sd;
(c) &(-, €) is measurable on Q for all € € $%;
(d) E(,0)=0a.e.in Q.
For the force densities, we assume
f, € P(Q;RY, f, € [(Ix; RY. (35)

To complete the description of the contact problems, we need to
specify contact conditions on I'c. In the first contact problem, we use the
normal compliance contact condition with Tresca’s friction law

-0, € 0y, (u,), o | <f,, —o0.=1 |u_1| if u;, #0 onlg.
Ur
(36)
Here, the function y,: R = R is locally Lipschitz continuous and is not

necessarily convex, f, >0 is a constant upper bound of the friction force. In
particular, when f, =0, the last two relations in (36) degenerate to the
frictionless condition

—0,=0 onlg.



126 Weimin Han et al.

We assume the following properties on the function y,: R — R:

(@) w, () is locally Lipschitz on R;

(b) there exist constants ¢y, ¢ = 0 such that
oy, ()| <7+l VreER;

(c) there exists a constant a,, > 0 such that

W) (25 20— 21) + . (2 21— ) S ay |21 — 2P Va, 2 €R.
(37)
One can find derivations of weak formulations of contact problems in
many references, e.g., (Migorski et al., 2013), Han (2024, Chapter 4). We
skip the derivations of weak formulations in this paper. The weak for-
mulation of the contact problem of (29)—(33) and (36) 1s the following. For
convenience, we use I, (f) to denote the integral of a function f over I'c.

Problem 1. Find a displacement field w € V such that
Ee®)). £w) = )q + I, lvel) = I (f lnc) + I (o) (s v = )
>{(f,v—u)y VvevV.
(38)

In the second problem, we use the bilateral contact condition with a
general friction law:

u, =0, —o0, €0y (u;) on Ig. (39)
Here, the function y: R? = R is locally Lipschitz continuous and is not
necessarily convex. We assume the following properties on the function
w: RY > R:
(a) y, () is locally Lipschitz on R%
(b) |0y, (2)| < & + alz| Yz € R, with constants &, g > 0;
(@) vy (215 22 = 21) + (225 21— 20) Sl — 2f
for all 2, 2z, € R?, with a constant ay, = 0.
(40)
Recall the space V) defined in (26). The weak formulation of the
contact problem of (29)—(33) and (39) 1s the following.

Problem 2. Find a displacement field u € V7 such that
EEm), eW)g + I (v, (s ) 2 (f,v) VveW.  (41)
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In the third problem, we consider a frictional unilateral contact problem
characterized by the following boundary conditions:

Uy Sg’ o, + éu < 0’ (“1/ _g)(av + 51/) = 0’ 51/ € a%(“u) OHFC,
(42)

lo.| < f,. -6, =, IZ_I ifu, #0 onlp. (43)

T

These conditions model the frictional contact between an elastic body and a
rigid foundation covered by a layer of elastic material. The constraint u, < ¢
limits the penetration of the body, where ¢ represents the thickness of the elastic
layer. In cases where penetration occurs and the normal displacement does not
reach the limit g, the contact is governed by a multivalued normal compliance
condition: — 6, =&, € dy,(14,). We assume (37) on the function y,.

To treat the constraint u, < ¢ on ', we define a subset of the space V:

U:={veVygonlg}. (44)
The weak formulation of the contact problem for (29)—(33) and (42)—(43)

1s as follows:

Problem 3. Find a displacement field w € U such that

EEem), e(v) —e@)g + I, (f lve]) = I (fy lue]) + I (@) (w5 v, = w,))
>{f,v—u)VveU. (45)

§ 4. Numerical analysis of an abstract variational-
hemivariational inequality

In this section, we study the Galerkin method for an abstract varia-
tional-hemivariational inequality (VHI). Any result on the abstract VHI
applies to Problem 1 and Problem 2. In the abstract VHI, we denote by A
the physical domain or its sub-domain, or its boundary or part of the
boundary, and denote by I the integration over A,

IA(V)=dex ifA C Q, IA(V)=/VdS ifA CT.
A A

We consider a function y which generally depends on the spatial variable
x € A. Usually, we simply use the notation y(-) to stand for y(x, -). For a
positive integer m, we let

Vy = L*(A; R™). (46)
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For application in the study of Problems 1 and 3, we take m = 1, whereas
for Problem 2, m =d.

4.1 The abstract variational-hemivariational inequality
The abstract VHI assumes the following form.

Problem 4. Find u € K such that
(Au, v —u) + @) — @) + Ix (u/“(yl/,u; Tyv = hw) 2 (f,v—u) VveK.
(47)
In (Han, 2024), this problem is called a VHI of rank (1, 1) to reflect the
fact that in the VHI (47), the convex function @ depends on one argument
and the locally Lipschitz continuous function y depends on one argument.
In the general case K # 1/, Problem 4 can be viewed as a constrained VHI
of rank (1, 1).
When K = Vis the entire space, Problem 4 becomes an unconstrained
VHI of rank (1, 1): Find u € IV such that

(Au, v — u)y + ©@Ww) — @) + I (l//o(ywu; Yyv = %yw) 2 Af, v —u)
Vve V. (48)

In the study of Problem 4 and its numerical approximation, we will
make some assumptions on the data.

H (V) V is a real Hilbert space.

H (K) K is a non-empty, closed and convex set in .

H(A) A: V- I'* is Ly-Lipschitz continuous and m4-strongly

monotone.
H(®) ®: IV - R is convex and continuous on V.

Note that an operator A: IV — 1" is said to be L4-Lipschitz continuous
if
|Avy — Avallys < Lallvy — v2lly - Vo, 1 €V, (49)
and it is said to be m4-strongly monotone if

<AV1 - AVz, " — V2> > VHA”V1 - V2||12/ VV1, vy € V. (50)

A consequence of the assumption H(®) is that for some constants ¢z and ¢,
not necessarily positive,

OWv) 2o+ alvlly Vvev, (51)

cf. e.g., (Atkinson & Han, 2009, Lemma 11.3.5).
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Generally, we can consider the situation where y = y(x, z) is a function
defined for x € A and z € R™. To simplify the exposition, we will only
consider the case where y = w(z) does not depend on x € A. We introduce
the following assumption.

HWw)r, € LV; V,); y: R" — R is locally Lipschitz continuous and
for some non-negative constants ¢, and a,

|al// (Z) |[R'” < Cyr (1 + |Z|[R”') Vz e R"™, (52)
W' (2 20— 2) + ' (2 21— ) < aylz — 2 hﬁ Vz, zo € R™
(53)
H()fe I~
Note that (53) is equivalent to the following inequality:
(vf = v§, v = vp) 2 —awly — nlge Yy €R", v E W), i=1,2.
(54)

As consequences of the assumptions on y, we have the next result.
Lemma 1. Under the assumption H(y),
s " (i 7, )] < U+ ulb) g v, Y, ve V. (55)

Proof. By the assumption (52), we have
"’ (15 7, 0)] < c(1+ Iy, ulr) |7, vire-
Then by an application of the Cauchy-Schwarz inequality,
I W (g5 7, v < (1 A+ I, ully, ) Nl vl -
Since 7, € L(V; 1V,,), we deduce (55) from the above inequality. O
Introduce an auxiliary functional
Yw) =1y k), vel. (56)
Denote by ca > 0 the smallest constant in the inequality
Ia(y, vk < &IVIlF - Yve Vv, (57)
We have the next result on properties of ¥ (Migorski et al., 2013, Section 3.3).

Lemma 2. Assume H(p). Then ¥: V= R is well defined by (56), is
locally Lipschitz continuous on V, and

PO(u; v) < W' @, u5 %,0), w,vEV. (58)
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Moreover, there exists a constant ¢> 0 such that

0¥ @) ly+ <c(1 + lvlly) VveV (59)
and

WO (vy; va — v1) + PO(va; v1 — 12) < ayly, (1 — 1/2)||12/, Yo, v € V.
v W
(60)

A well-posedness result on Problem 4 is stated next; its proof can be
found in, e.g., (Han, 2024, Section 5.4).

Theorem 2. Assume H(}), H(K), H(A), H®), H(), H(f), and
a,,,cﬁ < my. Then Problem 4 has a unique solution u € K. Moreover,
the solution # € K depends Lipschitz continuously on f € 17*.

4.2 Galerkin method for the abstract VHI

Since there is no analytic solution formula for a variational-hemivariational
inequality (VHI) arising in applications, numerical methods are needed to
solve the inequality problem. In this section, we provide a detailed dis-
cussion for the numerical solution of Problem 4. The numerical method is
of Galerkin type. We prove convergence of the numerical solutions in
Subsection 4.3, and derive a Céa-type inequality for error estimation of the
numerical solutions in Subsection 4.4. In the rest of this section, for
Problem 4, we assume H(V), H(K), H(A), H(®), H(y), H(f) and
a,/,cﬁ < my, so that by Theorem 2, the problem has a unique solution. Let
1" be a finite dimensional subspace of V, h> 0 being a spatial discretization
parameter. Let K" be a non-empty, closed and convex subset of 1. Then,
a Galerkin approximation of Problem 4 is the following.

Problem 5. Find an element u" € K" such that
(Auh, o — ul7> + q)(vh) _ q)<ul7) + I (V/O (},W uh; Y, o — Y uh))
> (f, =ty Vol e KN (61)

For the well-posedness of Problem 5, we can apply Theorem 2 which is
valid in the setting of finite-dimensional spaces as well. For completeness,
we state the result formally as a theorem.

Theorem 3. Assume H(I), H(K), H(A), H®), Hy), H(f), and a, 3 < my.
Let 17" be a finite-dimensional subspace of 7 and let K" be a non-empty,
closed and convex subset of 1", Then Problem 5 has a unique solution.
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The approximation is called external if K" ¢ K, and is internal if K"
C K. In (Han et al., 2018), the internal approximation with the choice K"
= I N K is considered for Problem 4.

4.3 Convergence under basic solution regularity

In this section, we provide a general discussion of convergence for the
numerical solution defined by Problem 5. The key point is that the con-
vergence is shown under the minimal solution regularity # € K that is
available from Theorem 2. For convergence analysis, we will need { K"}, to
approximate K in the sense of Mosco (cf. Glowinski et al., 1981; Mosco,
1968):

vhe Kb and  vh = vin IV imply v € K; (62)

Vve K, 3Jvhe K" suchthat v - vin Vash — 0.
(63)
The following uniform boundedness property will be useful for con-

vergence analysis of the numerical solutions.

Proposition 6. Keep the assumptions stated in Theorem 3. In addition,
assume (63). The discrete solution 1" of Problem 5 is uniformly bounded
with respect to h, i.e., there exists a constant M > 0 independent of h such
that ||u"||, < M.

Proof. Since K is non-empty, there is an element u, € K. We fix one such
element. Then by (63), there exists 4] € K" such that

ul = ugin Vash — 0.

By the strong monotonicity of A from H(A),

]
my ||” _“0 ||V < (A”h A”o, b Uy

< (At = uly — (Aull, uh = uly.
(64)

Let v = ull in (61) to get
(Aul, g — ") + @) — @) + I (g, " 10 = 1, ")

> (f, ul — uh,
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which is rewritten as
(Aul, ul — ug) < ®(ug) — @ + Iy " "y u"; %,,“(1)1 — Yy u"))
+{f, ul — ulty.
Then, we have from (64) that
ma |l = ug |l < @) — @) + I " (s 7, u0 — x,4")
+ (f, ul = uly = (Aul, ' = ul).
(65)
From (51),
— @) <~ — allully. (66)
Take z; = }/,,,uh and 2, =y, ul in (53) to obtain
', uts 1m0 = 1,11 < @y ly, (g = u" R = w0 (40 v, 0" = 1, ).
It follows from (52) that
' (r, 105 it = 1, u8) < (co + a Iy, ud )|y, (@ = ug) .
Then,
w0 (g, s 0 = wut) < o+ a lnul ) by, 6 = ul) ke + @y
1%, (g = ") e,
and
I (g s g = 1) < Ia((eo + a By ud ) 7, (0 = ) )
+ Ia (@ I, (u = ") fge)-

Consequently, we apply the Cauchy-Schwarz inequality and the
assumption y, € L(V; 1},) in H(y),

I (g, s 3y = 1, 0") < (U4 Nug ) llug = u'lly + a3
lug = w1l (67)
Use (66) and (67) in (65) to obtain

h h
ma lu" = ug Il < @) = 6 = cllu’lly + (14 llug ) lu" = ug Il

2 I
+aya lu" = gl + (f— Aug, u" = ug),
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which is rewritten as

2 h12 I
(mq = ay )l = ug I < et Nug )l = uolly

+ @) — i — allutlly
+(f— Au(/;, ul — u(/f)

The convergence of {ul'};, in 1V implies that { |[u ||, } and {|| Aul ||+ } are
uniformly bounded with respect to h. By the smallness condition,

my — av,ci >0, we can conclude from the above inequality that
llu" — ul|l, is uniformly bounded in h, so is "o O

By Aubin-Clarke’s Theorem (cf. Carl & Le, 2021, Theorem 2.61), we
have the next result:

Lemma 3. Assume H(y). Then, for any z € V, and any 2* € d(Ia(y(2))),
we have {. € V, such that (z*, v) = Ix({.v) for all v € V,, and {. € dy(z)
a.e. on A.

We now prove the convergence of the numerical solutions under the
minimal solution regularity 1 € K. The next result and its proof follow
(Han & Zeng, 2019).

Theorem 4. Keep the assumptions made in Theorem 2. Moreover,
assume 1" is a finite-dimensional subspace of I/, K” is a non-empty, closed
and convex subset of I, and (62)—(63) hold. Let u and u" be the solutions
of Problems 4 and 5, respectively. Then,

W > u inVash—o 0. (68)

Proof. We split the proof into three main steps. In the first step, we
discuss the weak convergence of the numerical solutions. In the second
step, we prove that the weak convergence of the numerical solutions
can be strengthened to strong convergence. In the third step, we show
that the limit of the numerical solutions is the solution u of Problem 4.

Step 1. By Proposition 6, {u"} is bounded in V. Since V is reflexive and

Yy € LV, V), there exist a subsequence {uh,} C {u"} and an element
w € 1/ such that

N . s :
u —winl, Yy = Y%,win V- (69)

As a consequence of the assumption (62), w € K.
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Step 2. Next, we show that the weak convergence (69) can be
strengthened to the strong convergence:

W = win V. (70)

By the assumption (63) and the continuity of the operator y,,, we have a

sequence {wh} C V with the properties that w" e K" and
W : W :
wh = wml,  ypw = ywinl,. 71)
Since A is m4-strongly monotone,
mallw — u" I < (Aw — A w - uh),
or

myllw — o7 < (Aw, w— u") - A", " = d"y = (A w = W),
(72)
We take v" = w" in (61) with h = I’ to obtain
— (A", " ="y @) — D) + L @iy, " = y,u")

W
—{f, w"

By the triangle inequality of the norm,

’

— ). (73)

y Iy y W
" = willy < llu” = wlly + llw—w"ly.

Apply the sub-additivity property of the generalized directional derivative
(Proposition 1 (1i1)),

’

v, e K,/Wh, 7, Wy < o ", W B =7, Wy + 0 , i K,/Wh, — W)

[y G, s 3w = 7, u") + w0 (w5 g, " = g, w)]

+ w0 G, s " = gw) — w0 G ws i = )]
(74)

By the assumption (53),
, W . ,
w0 sy w = ") + w0 G ws " =y, w) < @y, (w = ") e
Then, recalling (57), we have

W W W W
IA (VIO (}/1// u; }’l//w - yy/ u ) + l//() (}’1// w; yy/ u = yy/ W)) S al[l Cﬁ IIW —u ”12/ N
(75)
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We use the bounds (73), (74) and (75) in (72) to obtain
(a4 — o cx) ||lw — W17 < (Aw, w— "y — (A — "
—{f, " ="y + W) — dW")
S N AR AT

76)
- VIO (}/y/W; }/1// M] - }/y/w))'

Now consider the limits of the terms on the right side of (76) as h" — 0.
From the weak convergence (69),

(Aw, w — u"y > 0.

Since {uh,} is bounded and A is continuous, {Auh,} is bounded. Thus, from
the strong convergence (71),

(A", w ="y > 0.
Write
O, w" ="y = (f, " = wy + (f, w—u").
From (71),
(f, w" —wy > 0.
From (69),
(f,w—u"y > 0.
Hence,
(., w" ="y = 0.
Since @ is continuous, from the convergence (71),
O W'y - O w).

The convexity and continuity of @ imply that @ is weakly sequentially
lower semicontinuous. Thus, due to the weak convergence (69),

lim sup[-® (u")] = —lim inf® (") < —D (w).

W =0 h =0

By H(y),

n n n W
I (g, s " = g,w)) < Ia(c (1 + Iy, " lje) Iy, " = 7, wlre).
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Since {, uh/} is bounded in V/,, by (71)),

- W W : w w
lim sup In (p* (r, 4" v, w" — x,w)) < limsup c(1 + [lu”|lp) [[w" = wlly = 0.
W—0 =0

Apply Lemma 3 with &,(x) € dy(y,w(x)) for a.e. x € A, and note that
¢, € V,,. From the definition of the generalized directional derivative,

WOy, w (x): 1, 0" (%) = 7,w (%) = (&, (), p,u" (¥) — p,w(x))
for a.e. x € A. Then,
— LW O, ws " = g,w)) < =&y " =y, w).
Note that as i’ — 0,
(o " =y, w) > 0.
Hence,

lim sup [~ 15 (9" (7, ws 31" =, w))] < 0.
h—=0
Summarizing, we take the upper limit of both sides of (76) as b’ — 0 to
conclude that
lim sup||w — uh||l2/ <0.
=0

In other words, we have the strong convergence (70).
Step 3. In the last step, we show that the limit w is the unique solution of
Problem 4. Fix an arbitrary element v € K. By (63), we can find a sequence

("} c v, " € K", such that v" = v in IV and yv/"h, = nvin V. By
(61) with h = It

[ h ' h n h I
(Au”, v" ="y + D" — O@W") + IA(l//O(}/Wu A )]

> (f, " = u"). (77)
Ash — 0,
(Auh/, o — uh’> - (Aw, v —w), (f, o — uh/) - (f, v — w),
(78)

where the continuity of A is used. Moreover, by the continuity of ®,

oW - dW), OU") > dw). (79)
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Note that y,, " — %, w and ywvh/ — %, v a.e. in A. So
- WoooW
In @ (r,w; 7, v = ¥, w)) = lim suply @ (y, u"; 3, v"

n
= Yyt)).
W0 v (80)

Taking the upper limit /' — 0 in (77) and making use of the relations
(78)—(80), we obtain

(Aw, v — w) + ®(v) — O (w) + Ir (l//o(yww; YV = Yyw)) 2 (f, v — u).

Note that the element v € K is arbitrary. This shows that w is a solution of
Problem 4. Due to the uniqueness of a solution of Problem 4, w =u.
Furthermore, since the limit # does not depend on the subsequence, the
entire family of the numerical solutions converges, i.e., (68) holds. [l

The convergence result in Theorem 4 is rather general, and here we
consider two special cases.

First, we consider the case of a hemivariational inequality with the
choice @ = 0 in Problem 4.

Problem 6. Find an element u € K such that
(Au, v — u) + In (" Wyt Yyv = 1,w) 2 {fLv—u)y VveK (8

The corresponding numerical method Problem 5 takes the following
form.

Problem 7. Find an element u" € K" such that
(Aixlh, Vh _ I/lh> + IA (WO (yq/”h; K//Vh _ }/y/”h)) > <f’ 1//7 _ 1/lh> Vvh = Kh.
(82)

Theorem 5. Assume H(V), H(K), H(A), Hy), H(f), and a,/,ci < my.
Moreover, assume 17" is a finite-dimensional subspace of 1/, K" is a non-
empty, closed and convex subset of 1" and (62)=(63) hold. Let u and 1" be
the solutions of Problem 6 and Problem 7, respectively. Then we have the
convergence:

W > u inVash o 0.

As another particular case, we consider a variational inequality, obtained
from Problem 4 by setting yw = 0.
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Problem 8. Find an element u € K such that
(Au, v —u)y + @) = ®u) > {f,v—u) VveK. (83)

The numerical method is the following.

Problem 9. Find an element u" € K" such that

(Au, v" — u"y + ") — d W) > (f, v" — u"y V" e K"
(84)

Theorem 6. Assume H(V), H(K), H(A), H®), and H(f). Moreover,
assume 1" is a finite-dimensional subspace of V, K" is a non-empty, closed
and convex subset of I, and (62)—(63) hold. Let u and u" be the solutions
of Problem 8 and Problem 9, respectively. Then we have the convergence:

WS> u inVash > 0.

We comment that this result is Theorem 11.4.1 in (Atkinson & Han,
2009).

4.4 Error estimation

We now turn to the derivation of error estimates for the numerical solution
defined by Problem 5 for the approximation of the solution of Problem 4.
For this purpose, we do not assume (62) and (63). Recall that we use Ly
and m 4 for the Lipschitz constant and the strong monotonicity constant of
the operator A: IV — ¥,

Let v € K and v" € K" be arbitrary. By the strong monotonicity of A,

mallu — u"|[> < (Au — Au", u — u"),
which is rewritten as
mallu — > < (Au — Aul, u — o'y + (Au, v — u) + (Au, v — u")
+ (Au, u — v) + (Au", u" — o).
(85)
Applying (47),
(Au, u = v) S @) = @) + Ia @’ O, u5 %,v = x,u) = {f, v—u).
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Applying (61),
<A“h7 ”h - Vh> < q)(Vh) - (I)(”h) + IA (VIO (%//Mh; K//Vh - }/l//”h» - (f’ Vh - ”h>-

Using these inequalities in (85), after some rearrangement of the terms, we
have

mallu — u"|lF < (Au — Aul, u — o'y + R, (0", u) + R, (v, u")
+ I, (v, v"), (86)
where
R, (v, w) = (Au, v — w) + @) — @w) + " 4,1 1,v — ¥,w))
—{fiv—w), (87)

L, ") = D@ (s 1 = vw) + 0 (s " =y, u)
= @ @ us 0" =y ) + w0, s g0 = g,u").
(88)

Let us bound the first and the last two terms on the right hand side of (86).
First,

(Au = Au', u = ") < Lallu = ully Nl = o'l
By the modified Cauchy-Schwarz inequality (12), for any € > 0 arbitrarily
small,

(Au — Au, u— vy < ellu—u"|> + ¢ |lu— " (89)
for some constant ¢ depending on €. Applying the subadditivity of the
generalized directional derivative,

1//O (z; 21+ 2) < 1//O (z; z) + l//O (z; ) Vz, 2z, z»€R™
we have

WO (s vy = 1w < w0 (s g, — 1,0t + w0 (s gt = g0,

wO (s v, v =y, < WOyt g, o = )+ w0 (s e =y, uh).
Thus,
Il// (V’ Vh) < IA (l//o (yz// Mh; 7/1//1/17 - yx//“) - WO (}/1//”; %//Vl7 - }/1//“))
+ In @ (s " =y, u) + w0 (il u = g,ul).
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By (53) and (57),

IA

In " (r,us 7, u" = g,u) + @O @, s v u = 7,u") < ayda(ly,u — v, u"P)

2 2
ayexllu = ulli.

IA

Moreover, by (55),
s @° (g, s 7, 0" = )| < (U ) 10" = ully
s @° (g5 7, 0" = 1)1 < (U Hlully) 10" = ully.

Combining the above four inequalities and using the fact that {||u"||}} is
bounded independent of h (cf. Proposition 6), we find that

L (v, v") < @y lly, u = 7,47, +c lly,u—7,"l, (90)

for some constant ¢ > 0 independent of h. Using (89) and (90) in (86), we
have

2 2 2
(s — @y = O llu — Wl < ¢ llu = o+ Ny, — 7, 0"l
+ R, (", u) + R, (v, u").
Recall the smallness assumption awcﬁ <my. We can choose
€= (my — a,,,cﬁ) /2 > 0 and get the inequality

2 : 2 :
= uhli> < ¢ inf [llu = oM + g, 0 = oMy, + Ry @" )] + cinf
v"eK" veK

RU (V’ uh)'
We summarize the result in the form of a theorem.
Theorem 7. Assume H(K), H(A), H(®), H(y), H(f), and al,,ci < my.

Then for the solution u of Problem 4 and the solution " of Problem 5, we
have the Céa-type inequality

llu = bl < ¢ inf [llu = vIB + lly, (s = o™ Iy, + R, (", u)] + cinf
sheKh veEK

R, (v, u"). (91)

For internal approximations, K" C K and then

inf R, (v, u") = 0.

veK
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So for internal approximations, the Céa-type inequality (91) simplifies to

1 2 1 1 2
= Wl < c inf [l = o1 + llg, (0= D)l + Ry 0% ] o

We also remark that in the literature on error analysis of numerical
solutions of variational inequalities, it is standard that the Céa-type
inequalities involve square root of approximation error of the solution in
certain norms due to the inequality form of the problems; cf. (Falk, 1974;
Han & Sofonea, 2002; Kikuchi & Oden, 1988).

To proceed further, we need to bound the residual term (87) and this
depends on the problem to be solved.

E 5. Studies of the contact problems

In this section, we take Problem 1 as an example for detailed theo-
retical studies. We first explore the solution existence and uniqueness, then
introduce a linear finite element method to solve the problem and derive
an optimal order error estimate under certain solution regularity assump-
tions. Finally, we present numerical simulation results for solving some
contact problems.

5.1 Studies of Problem 1

We start with an existence and uniqueness result for Problem 1.

Theorem 8. Assume (34), (35), (37), f,20, and
a,,,vly_l < mg. (93)
Then Problem 1 has a unique solution.

Proof. We apply Theorem 2 by placing Problem 1 in the framework of
Problem 4 with the following choices of the data: the space 17 and the set K
are both the space V defined in (15), A=1I'¢, the space I}, of (46) is
V,= L*(To), Yy: V = V), is the normal component trace operator, ¥ = y,,
and A: V- V* &: V- R, f=f are defined by

(Au, v) = fQ Eeu): ew)dx, wu,veV, o4)

o (v) = ‘/F Sy lelds, veV, 95)
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<f’v>:,/9f0.vdx+/p,f2.vds’ veVvl. (96)

Let us examine the assumptions stated in Theorem 2. The assumptions
H(V) and H(K) are the same and they are obviously true. For the operator
A defined by (94), we claim that H(A) holds true with Ly = Lg and
my = mg. Indeed, for u, v, w € V, by assumption (34)(a), we have

(Au — Av, w) < (Ee () — Ee(v), € w))q < Lellu — vlly llwlly .

Thus,
[|Au — Av|lp+ < Lg|lu — v|ly Vu,ve V.

This shows that A is Lipschitz continuous. Moreover,
(Au — Av, u — v) = (Ee(u) — Ee(v), €e(u) — €(v))q.
Then, assumption (34)(b) yields
(Au — Av, u — v) > mgllu —v|} VYu,ve V. (97)

This shows that the monotonicity condition (50) is satisfied with my = mg.

Next, for @ defined by (95), it is easy to see that ®: V' — R is con-
tinuous and convex. The potential function y,: R — R is assumed to
satisty H(y,) with m = 1. For f, assumption (35) implies H(f). Considering

the above relationships among constants and noting that ca = 4,72, we see

that assumption (93) implies the smallness condition av,ci <my in
Theorem 2.

Therefore, we can apply Theorem 2 to conclude that there exists a
unique element # € V such that (38) is satisfied. [l

Theorem 8 provides the unique weak solvability of the contact pro-
blem, in terms of the displacement. Once the displacement field is obtained
by solving the contact problem, the stress field o is uniquely determined by
using the constitutive law (30).

We proceed with the discretization of Problem 1 using the finite ele-
ment method. For simplicity, assume € is a polygonal/polyhedral domain
and express the three parts of the boundary, as unions of closed flat
components with disjoint interiors:

I;=uzl,, Z=D,N,C.

Let {7} be a regular family of partitions of Q into triangles/tetrahedrons
that are compatible with the partition of the boundary 9dQ into
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'y, 1<i<iy Z= D, N, C, in the sense that if the intersection of one side/
face of an element with one set I';;; has a positive measure with respect to
I',;, then the side/face lies entirely in I' ;. Then construct a linear element

space corresponding to 7",

Vh={vhe CQI vy e P(T)Y for T€T" v'=00nTlp}.

(98)

For any function w € H(Q)", by the Sobolev embedding

H?(Q) ¢ C(Q) valid for d<3, we know that w € C ()¢ and so its finite

element interpolant IT"w € V" is well defined. Moreover, the following

error estimate holds (cf. any of the references Atkinson & Han, 2009;

Brenner & Scott, 2008; Ciarlet, 1978): for some constant ¢ > 0 inde-
pendent of A,

lw — 'wll2qp + hllw — wllop < ¢ Wy Vw € H*(Q).

(99)
The finite element approximation of Problem 1 is the following.
Problem 10. Find a displacement field u" € V" such that
.L&wWwwrwWww+ﬁJUM—wm&
q/ whs ol —uly ds > (f, v — uhy Vol e V.
(100)

Similar to Problem 1, we can apply a discrete analog of the arguments in
the proof of Theorem 8 to conclude that Problem 10 admits a unique
solution " € V.

For an error analysis, we notice that by Theorem 7,

= 'l < ¢ inf [l = o1+ i, = oy + R0l w),
v

(101)
where the residual-type term from (87) is

R,(v", ) = (Eem), e —u))o + frf;, (o}l = |mel)ds

/ 1// (uy; v — w)) ds — (f, v" — u).
(102)



144 Weimin Han et al.

To proceed further, we make the following solution regularity
assumptions:

ue H(;RY, o6=8@Em)e H(Q;S). (103)
In many application problems, ¢ € H'(Q; S follows from
u € H*(Q; R%, e.g., if the material is linearly elastic with suitably smooth
coeflicients, or if the elasticity operator & depends on x smoothly. In the

latter case, we recall that &(x, €) is a Lipschitz function of €, and the
composition of a Lipschitz continuous function and an H'(Q) function is an

H'(Q) function. Note that 6 € H'(Q; $7) implies
ov € [*[; RY. (104)

For an appropriate upper bound on R,(#", #) defined in (102), we need to
derive some point-wise relations for the weak solution # of Problem 1. We
follow a procedure found in (Han & Sofonea, 2002, Section 8.2). Intro-

duce a subspace V' of V by
Vi={we C®Q;RYw=0onTIyuI:}. (105)

We take v =u + w with w € V in (38) to get
/S(E(u)):e(w)dxzfﬁ) -wdx+/f2 “w ds.
Q Q Iy
By replacing w € V with — w € V in the above inequality, we find the
equality

/()8(6(u)):£(w)dx=/ﬂﬁ)-wdx+/r;f2-wds Vi e V.
(106)
Thus,

fa(e(u)): & w) dx = fﬁ) wdx  Vwe C®(Q; RY,
Q Q
and so in the distributional sense,

div E(e ) +f, = 0.

Since E(e (1)) € H'(Q; $Y) and f, € I2(Q; RY, the above equality holds

pointwise:

divEEm)) +f, =0 ae. in Q. (107)
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Performing integration by parts in (1060) and using the relation (107), we
have

fﬂl/~wds=ff2~wds YweV.
Iy Iy

Since ov € L2(["; RY (cf. (104)) and w € V is arbitrary, we derive from
the above equality that

ov=f ae onljy. (108)

Now multiply (107) by v — u with » € V, integrate over €, and integrate
by parts to get

/61/ (v—u)ds—/(c) )ev—u)dx+fj;) W) dx = 0,

1le.,
fs e ()): e(v—u)dx_(fv—u>+f w—wds Vvev.
e
(109)
Thus,

Ru@ )= [ foww = ) 4 ol = D)+ (s ol = ) ),

and then,
|R, (0", )| < cllmw — "]l (110)

Finally, from (101), we have the inequality

lw = wlly < c inf [llw—=v"lly + llu = v"l[27. ]
vieph
(111)
Under additional solution regularity assumption
ul,, € H*(Ie,; RY), 1<i<ic, (112)
for the finite element interpolant IT"u, we have
= ul2 e < c W2 (113)

Then we derive from (111) the following optimal order error bound
lw = u'lly < clllw = Wally + llu - w25 ] < ch,
(114)
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where the constant ¢ depends on the quantities ||#|2 .4, lo¥||;> .r% and
”u”sz"cJ;Rf’) for 1<i< iC'

We comment that similar results hold for the frictionless version of the
model, i.e., where the friction condition (30) is replaced by

6,=0 onlt. (115)

0]

Then the problem is to solve the inequality (38) without the term
[ vl = el s,
Ic
i.e., to find a displacement field # € V such that

/Se(u): £ (v) dx + / W (s v)ds > (f,v) VveEV.
Q Ie
(116)

The inequality (111) and the error bound (114) still hold for the linear finite
element solutions under the solution regularity conditions (103) and (112).

5.2 Studies of Problem 2

Problem 2 is simpler to analyze than Problem 1 in the sense that the
inequality (41) does not include the non-smooth convex terms I (f, |v; )
and I (f, [u;|). Similar to Theorem 8, we have the next result result,
derived from Theorem 2.

Theorem 9. Assume (34), (35), (40), and
oy, /17_11 < mg.
Then Problem 2 has a unique solution.

For the finite element solution of Problem 2, we keep the setting on the
finite element partitions of Q in Subsection 5.2. Then we introduce a
subspace of V" of (98):

V= (v € V' = 00on T} (117)

Note that the constraint “v" = 0 on It,” is equivalent to “v" = 0 at all nodes

on I”. The finite element method for solving Problem 2 is the following.

Problem 11. Find a displacement field u" € V' such that
EE @), e@")q + Ir. ) w)s vl)) > (f, v") Vol € V] (118)
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Under the assumptions stated in Theorem 9, Problem 11 has a unique
solution #". Moreover, by (92),

2 : e h !
= 'l < e inf (lln = o1 + llng = of ey + Ra(0F = w),
v 1
(119)

where

Ru(w) = (E). e@)o + [ v w) ds = fow). (1)

Similar to (111), under the solution regularity condition (103),

o . o _ ,h/2
lw =l < ¢ inf [l = "l llw = o' 00 (o)

Then, under the solution regularity conditions (103) and (112), similar to
(114), we can show that

| — u"|ly < ch.

5.3 Studies of Problem 3
For a study of Problem 3, we apply Theorem 2 to get the following result.

Theorem 10. Assume (34), (35), (37), 20, g € L*(T¢), ¢=0, and
ay, ly_l < mg.
Then Problem 3 has a unique solution.

For the finite element approximation of Problem 3, define
U' = {v" € V"|y! < ¢ atall nodes on I}, (122)

Then the finite element method for solving Problem 3 is the following.

Problem 12. Find a displacement field u" € U" such that

EE W), e@w") —e@")q + Ir. (f, Iv!) — Ir. (f, |ull)

+ I, () (u)'s v} = )
>(f, v —u"y Vol e U (123)
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Under the assumptions stated in Theorem 10, Problem 12 has a unique
solution u". For the error estimation, for simplicity, we assume g is a
concave function. Then, U" € U, and similar to (101),

h|2 ; hy2 I I
I =l < ¢ inf [l = o + i, = oy + Ra G w)]
v'ey"

(124)

where

R, (W', u) = E€m), e@" —em)q + Ir. (f 1/1) = I (f, lnc])
+ I (l//]/() (uy; Vzil —u)) — <f7 v — ).
(125)
Similar to (111), under the solution regularity condition (103), we can

derive from (124) that

1/2 ]

_gh < 1 — ph — vl
I = wlly < ¢ inf [lln = o"lly + lu = o122

Again, assuming both (103) and (112), we have the optimal order error
estimate

lw = u"|ly <ch.

E 6. Virtual element method for variational-
hemivariational inequality

In the previous sections, we studied the FEM to solve the contact
problems. Other numerical methods can be applied for the contact pro-
blems as well. In this section, we take the virtual element method (VEM) as
an example. The VEM was first proposed and analyzed in (Beirio da Veiga
et al., 2013a, 2013b). The method has since been applied to a wide variety
of mathematical models from applications in science and engineering
thanks to its strengths in handling complex geometries and problems
requiring high-regularity solutions. The VEM was first applied to solve
contact problems in (Wriggers et al., 2016). Further applications of the
VEM can be found in a number of publications, e.g., (Aldakheel et al.,
2020; Cihan et al., 2022; Wang & Zhao, 2021; Wu et al., 2024). The
presentation on the VEM here follows (Feng et al., 2019, 2021a; Wang
et al., 2021).
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6.1 An abstract framework

We reconsider Problem 4, yet for the case where the operator A: V' — I is
generated by a bilinear form a(-, -): VX IV = R through the relation

a(u, v) = (Au, v) VYu,ve V.

In other words, the abstract problem for the study of VEM is the fol-
lowing.

Problem 13. Find u € K such that

a(u, v—u) + dWw) — ®u) + IA(I//O(]/WM; Yyv = Kyw) = (f,v—u) Vv €EK.
(126)
We will assume H(V), H(K), H(®), Hy), H(f) from Subsection 4.1.
Corresponding to H(A), the bilinear form a(-, -) is assumed to be bounded
with a boundedness constant L, and I-elliptic with an ellipticity constant
m,. By Theorem 2, if we further assume the smallness condition
ay 2 < m,. We will also assume a is symmetric.
H (a) The bilinear forma: V' X IV = R is symmetric, bounded with the
boundedness constant L, and I-elliptic with the ellipticity constant m,:

la(u, )] < Lollully lvlly Yu, v eV, (127)
a, v) > mllv|>  VveE V. (128)

To develop a general framework for the VEM, let € be the spatial
domain of Problem 13. We assume £ is a bounded polygonal domain, and
denote by 77" a partition of Q into polygonal elements {T}. Define
hy = diam(T) for each element T, and define h = max{hy: T € T"} for
the mesh-size of the partition 7". As the bilinear form a(u, v) is typically an
integral over the domain Q, we can split it element-wise as

a(u, v) = ar (u, v),
T§'" ! (129)

where ar{u, v) denotes the restriction of a(u, v) to T, which is an integral over T.
Let 171 be the restriction of 1V to T, which is a function space over T.

For the setting of the VEM, we make the following assumptions.

H (h) For each partition 77, there is a virtual element space 1 C V. For
a positive integer k, Vi D P (T), where I} := V"] is the restriction of 1"
on T.

Related to local function spaces V4 = V| on elements T € T,
we have the decomposition (129) in which, for each element
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T, ar: Vi X Vo = R is symmetric, non-negative and bounded with the
boundedness constant L,

lar (u, V)| < Lollully, v lvlly,r Yu, ve 7, (130)
ar(v,v) 20 VveE 7. (131)

The discrete bilinear form a”: " X V" - R can be split into the sum-
mation of local contributions

au, vhy = ZTGT” a,f (uh, v, (132)

where af- (-, -) is a symmetric bilinear form on I/} such that

af ", p) = ar " p) V"€ V], p € Py(T); (133)

and for two positive constants a= and o , independent of h and T,
aar (W1, V1) < al@wh vh) < a*ap 8, 0h) WOt e VI
(134)

The discrete linear functional f" € (I7")*is uniformly bounded: for a
constant ¢ independent of A,

hoh
14

|W “(V”)* = sup L ,’1 ) <S¢
werr vl

In the literature, the property (133) is called the k-consistency, and
(134) is known as the stability.

We comment that for simplicity in writing, we are using L, for the
boundedness constants of a(-, -) and ay(-, -) for T € T".

It follows from H(h) that

af (', o) < a*Lolllly 7 W'l Vo', ot € V.
(135)

This inequality is proved as follows. First, we notice that a consequence of

(134) and (131) is

ap@wh, oM >0 Vol e Vi
The above property and the symmetry of a/. (-, -) imply

a# (”h’ Vh) < a# (Mh, “11)1/2617@ (Vh, Vh)l/Z'
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By (134),
ajlz (Mh, Vh) < a*aT (uh, uh)l/ZaT (Vh, Vh)l/Z.

Finally, applying (130), we derive (135).
By combining (132), (134), and (135), we obtain

aga (W, v < "W " < ata (W, VM) Vo' e 1V (136)
a @, ") < a*Lllutlly g 0"l Vb, ot e VR (137)
1/2
where || v = (Zper IR 1)
6.2 Virtual element method for variational-hemivariational
inequality

We define K" :== 1" N K as the approximation of the convex set K. The
virtual element method for solving Problem 4 is formulated as follows:

Problem 14. Find u" € K" such that
ah (I/lh, Vh _ Mh) + CD(Vh) _ q)(uh) + IA (WO (71// l/th; wah _ yl// uh))
> (ff, v —uhy Vo' e K (138)

The analog of Theorem 3 is the next result for Problem 14.

Theorem 11. Assume the conditions H(V), H(K), H(a), H(®), H(y), H
(f), H(h), and aym, > a,,,ci. Then, Problem 14 has a unique solution u'

e K"

In the following theorem, we establish a generalized form of Céa’s
inequality, for deriving error estimates for the virtual element method (138)
used to solve Problem 4. In the theorem, we assume {u"} is bounded
independent of h. The boundedness of {u"} is valid if (63) holds for the
VEM sets {K"}, as in Proposition 6. As a simpler situation, the bound-
edness of {u"} is valid if we assume K and {K"} contain a common
element, say 0, by an argument shown in (Han et al., 2017).

Theorem 12. Keep the assumptions stated in Theorem 11, and
m, > a,,,cﬁ. Let u and u" be the solutions of Problem 4 and Problem 14,

respectively. Assume {u"} is bounded independent of h. Then there exist
two positive constants ¢; and ¢, depending only on a, M, a= and a* , such
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that for any approximation u’ € K" of u and any piecewise polynomial
approximation " of u with u|; € Py (T) for all T € 7", we have
T N ( T A il A o T A e o A O] 79

+ CZRM (”I’ uh)’
(139)

where

(f, ") = (", v
f = " Nty = sup

vheh ”Vh”V

k]

and
R, ', u") == a(, u" — u") + @) — Ou") — I

(WO (7/1//”; yl//uh _ 71//”1» _ (f’ ul — ”h>.

Proof. We begin by decomposing the error ¢ =u — u" into two parts:
e=c¢l + eh,
where
ele=u—ul, o=ul —u
From (136) and the assumption H(a), we obtain
agm, ||e"|[F < agaleh, e < d(eh, e = a" (ul, ") — a" (u", e").

I

Using (138) with V" = u' for an upper bound on the term — d'", M, we

find from the above inequality that

agin, ||l < a" (', &) = (", &) + D) — @) + I

0 h. h
W’ O, u"s pu =y, u"). (140)
Write
a(u', e = Z at(ul, e = Z [al (! = w", ") 4 al (™, e)].
T T

By (133) and the symmetry of alt (-, -,

a# (u”, eh) = ar (", eh).



Numerical analysis of variational-hemivariational inequalities 153

Hence,
D A ey = ) ar @, e
= =

Za,(u —u, e+ a(u, .

T

So from (140),

awmgllef < Y (af (! = w, €M)+ ap (7 = u, ) + a(u, ) = (F, e
T

+ q)(ul) - (I)(“h) + Ia (l//o (KI/ “h; yx// “I - yl// Mh))’

which is rewritten as

asm, ||e"|> < Ry + Ry + Ry + R, (u”, uh), (141)
where
Ry = Z(a%(u—u " + ar (u" — u, ")
T

Ry = (f, M)y = (f", ),
Ry = L', u"; p,u' = n,u")) + Ia @' (r, 15 1, 4" = x,u")),
Ru (”Ia uh) = d(l/l, eh) + (D(MI) - (I)(Mh) - IA (l//o (}/1//“; 7/1// uh - }/y/ MI))
—{f, ".

Next, we bound the first three terms on the right side of (141). By (127)
and (135), we get

Ry < a*Lallu’ = wlly plle"lly + Lallu — ully el
(142)

In addition,
< =" Ny el (143)

To bound Rj, we first apply Proposition 1 (iii) on the subadditivity of the
generalized directional derivative,

W' (s gt =yt < wl s gt =) w0, it e =y,
V/O (%//1/[; K//ul - K//uh) S WO (K//H; K//MI l// ) + l// (1//“ yl// yl// Mh)'
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By (53) and (57),

In (' (r, u"s 7, =y, u") + In (@O (05 7, 0" = y,u) < @y g llu — u"ll7.

Thus,
Ry < aycpllu— uM|p + Ia ' O, v g0 — 7, w) + Ia
W' (g, us ¥, m = 1,u").
By (52),
w' (s v ut = y,m) < (U + Iy, " lve) [y, v = 7, ke,
W (s pyu = vu) < (U + g, ulre) ln,u =y, 0l
Then,

I Gy s 1y = 2, 00) I (0 5 7,0 = 1y 1)
<c(t+ Nl + Nulb) g, v = x,u"lly, -
Since ||u"]] ;- is bounded independent of h, we conclude that
Rs < ay G llu — uM'llp + ¢ Ny, (= ") Il - (144)
Combining (141)—(144), we have a constant ¢ > 0 such that

2
el < clllu! = wlly s + 1™ = ulln + 1= £ Ny el

2
al// CA 1

2
= "l + ¢ Iy, (0 — u")llyy, + R, (u', u").

a*md a*md

Applying the modified Cauchy-Schwarz inequality (12), for any small
€ > 0, we have a constant ¢ depending on € such that

2 2 2
(= olle"le < clllu’ = wlF ) + ™ = ullp + 1= I,

+ lly, (u = ) lly)

2
aWCA 2 1
+ ”1/! - ”h”V + R, (”[7 uh)'
a*ma a*ma

(145)
From the triangle inequality

e = 'l < fluw = 'l + Nl (146)
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and the modified Cauchy-Schwarz inequality, we have
= Wl < e flu = w4 (1 Ol (147)

Hence, from (145),

2
a,,, CA

lT—e- (1 +€) |lle"li

Aty

2 2 2
A e T T P T A

1
+ ”7/1// (” - ”1) ”VW) + - RH (”I’ uh)
a*ma

Since a,, Cﬁ < aym,, we can choose € > 0 small enough and deduce from

the above inequality that

2 2 2 2
el < el — 'l + ' =I5, + ™ = ulli ), + U= "1

(V"%
I 2 I h
+ ”KI/(” —u )”Vw)+ - Ru(u , U )
Finally, the bound (139) follows from an application of (147). O

g 7. Virtual element method for contact problems

We now apply the VEM to solve the contact problems. For this
purpose, we construct the virtual element space V" C 1, along with the
corresponding bilinear form " and right-hand side f" satisfying H(h). The
discussion in this section is restricted to the spatial dimension d = 2.

Consider a family of partitions {7} of the closure Q into elements T.
Let iy = diam(T) and h = max {hy: T € T"}. Define E! as the set of edges
that do not lie on ', and P! as the set of vertices not on I'p.

Following (Beirdo da Veiga et al., 2013a, 2013b, 2017), we make the
following assumption:

Assumption 1. There exists a constant 6 > 0 such that for each h and
every T € 7.

o T is star-shaped with respect to a ball of radius dh ;.

o The distance between any two vertices of T is at least dhr-
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7.1 Construction of the virtual element space

Let T be a polygon with n edges. For k>1, we define the local finite
dimensional space Wj: on the element T as

Wi = {v € H(T; R?)|V-E&(v) € P_»(T; R?), vlor € C°(OT),

v|, € Pe(e; R Ve C oT} (148)
with the convention that P_;(T) = {0}. For each v € W1, we define the
following degrees of freedom:

sthe values of v(a) V vertexa € T, (149)

*the moments fq cvds Vg EPr_s(e; R?) V edgee C T, k>2,
(150)

*the moments / q-vdx Vq €P,_»(T;R?, k>2.
T
(151)

For any partition 7" and k> 1, we define the global virtual element
space

Whi=(ve Wy € Wt vTeT"}, (152)
with global degrees of freedom for v € W" given by:

o the values of v(a) V vertexa € P!, (153)

* the moments / qgvds ¥V qEP,_5(e;RY) Vedgeee El, k> 2,
(154)

* the moments / qvdx VYV q€P._»(T;R») V element TET", k> 2.
T
(155)
It is shown in (Beirdo da Veiga et al., 2013b) that the degrees of freedom
(153)—=(155) are unisolvent for W".
Let y; represent the i-th degree of freedom for W", where
i=1, 2, ..., Ngor. Due to the unisolvence of the degrees of freedom for

W', for any sufficiently smooth function w, there exists a unique element
w' € W" such that

)(i(w—wl)=(), i=1,2, ---aNdof-
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By a scaling argument and the Bramble-Hilbert lemma, the following
approximation property holds (Beirdo da Veiga et al., 2013b):

”W - WI”HJ(Q) <c hl_jltVlH’(Q), ] = O, 1, 2 < ZS k+ 1. (156)

Moreover, for each T € 7" andw € H' (T; R?), there exists w™ € P, (T; R?)
such that (Brenner & Scott, 2008; Beirdo da Veiga et al., 2013b)

||w - wﬂ”H7 < c hT leHI(T) _]= O, 1, 1 < ZS k+ 1. (157)

7.2 Construction of a" and f"

Using the approaches in (Beirio da Veiga et al., 2013b; Wriggers et al.,
2016), we construct a symmetric and computable discrete bilinear form a”
and discrete linear form fh so that H(h) is valid.

For any element T, denote by n;> the number of vertices and by Nof the
number of degrees of freedom. Also, let a (-, -) be the restriction of a(:, -) on
T. Following (Wriggers et al., 2016), we first introduce a projection operator

I} W) — P,(T; R? defined by

ar (I v", q) = ar (v, q)  Vq € Pi(T; R?), (158)
— Z 7ok (x) = — Z (x,), (159)
ty i=1 nV i=1
n; Z x; X Il vh (x) = T Z xi X v (x;), (160)
i=1

where x; denotes the coordinates of the vertices of T. Here, “X” denotes the
cross product of two vectors.
We then define the local bilinear form
af- (", v") = ar (M{u", T + Sp (1= T)w", (1= TI)v") Vu', v" € W7y,
(161)

where
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is the stabilization term. The bilinear form

a(ul, vy = Z a% (uh, vh)
TeT"

'v

ensures properties (133) and (134). Other constructions of d" that meet
these criteria can also be applied, such as the bilinear form proposed in
(Artioli et al., 2017) and used in (Feng et al., 2019).

The term (f;, L2 @R? n (118 1s not computable for v € ", and we
approximate f; by f() constructed as follows. For k> 2, we define f() such that

()T '_fo =P ofy VTET!

is the L*(T)-projection of f onto the space of polynomials of order k— 2 on
each element T. Then we define

(f(l;, vy = Z ffélT vlhdx Vo e wh,
rert * T
For k=1, we choose
thT = él b =D, h VTe T
to be the mean value of f on T, and define

(o, v" Z f hooohdx Vel e W,
TeT™"

where »" represents the average value of v over all vertices of T.
To approximate the right-hand side term (f, v) <y, We set

(fh , ”h> — /1 h) + (fz , 2 (13R?) Vv € wh.
This setup ensures the optimal order error bound (Beirdo da Veiga et al., 2013b):
I = f" Nty < Al ) (162)

7.3 Error analysis for contact problems

We apply the framework developed in Section 6 to perform error esti-
mation for virtual element solutions of the three static contact problems.

7.3.1 VEM for Problem 1

The function space associated with the virtual element method is defined as:
Vh={v" € W"p" = 0onlp}. (163)

The virtual element scheme for Problem 1 is formulated as follows:
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Problem 15. Find a displacement field u" € V" such that

a"wh, v" — ul) /ﬂ(lvh|—|u"|)ds f l//O y, D’—ulf’) ds

> (ft v —uhy Ve Vi (164)

To apply Theorem 12, we estimate the residual term
R, (u', u" /8 em)): e — uh dx+/j27(|u1|—|uh|)
- f 1//y (uy; u,fl - ub) ds — {f, u' — u").
Ic

Using relations (107) and (108), similar to (109), we derive

/8 em): e —u")dx=(f, u —u") + ov- ! —u) ds. (165)
lﬁc
Thus,
Ry ) = [ @)l —utyds+ [ f (ull = ul)ds
FC l—‘C

h _

W (”ua uy ”z{) ds

/ o, (ul — uly ds + f o.-(u! — ul') ds
I Ie

Al = s = [l sl =l ds
Ie Ic

(166)

To proceed further, we continue the arguments presented in Subsection 5.1
to derive pointwise relations for the weak solution. We assume the solution
regularities (103). Recalling (107) and (108), we can derive from (38) that

Irc (611 (v, — ’/‘u) + l//o (”y; W — ”y) + 6, (v, — u‘r) +fb (l”‘rl - |ur|)) >0
YVve V. (167)

By the independence of the normal component and the tangential component
of an arbitrary vector field v € ¥ and the densities of {v,|v € V} in L*(T'¢) and

of {vJv € V} in [?(I)?, we conclude from (167) that a.e. on ',

Oy (Z - ”V) + l//o (”u; < - ”u) 20 Vz € 2 (FC), (168)

6, (z—u;)+f(zl —|u[) 20 Vze 12 (). (169)
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Taking z =0 and 2 u, in (169), we see that (169) is equivalent to
o, u+ flu | =0, o,-2+f1z2120 Vze *Ip7°.
(170)
Then,
[ ol =utyas+ [ g ull = lhds
I Ic

= f ()'T‘(uTI—uT) ds+f O'T'(ur—urh) ds+/-ﬁ,(|url|—|urh|)ds
e e I

< [ gt = wdds+ [t = nbds + [ g ull =
< 2 [l = s < 208 D o = el
(171)
Furthermore, we derive from (168) that
o,z +y'(u,;2) >0 VzeR, ae onlg. (172)

Hence,
[ ool = udyds = [yl =l s < [y ns ol = ) ds
I I e

- l//yo (uy; ul — ul) ds = 0.
Ic

Thus, applying Theorem 12, we obtain

e — 'l < el = a'lly + llw = wlly s + IF = f" s,

—_ a2
+ ”u‘l’ u; ”LZ(]"C)?)' (173)

Let k=1 and assume solution regularities (103) and (112). Recall the
approximation properties (156), (157), and (162). In addition, we have the
analog of (113) in the setting of VEM:

lu — w2y < ch’

Thus, we conclude that for k= 1, the optimal order error bound is valid under
solution regularities (103) and (112)

lu — ully < ch. (174)
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7.3.2 VEM for Problem 2
The function space associated with the virtual element method is:

Vi = (v e W' = 0 on T, Vf = 0 on I[}. (175)
The virtual element scheme for Problem 2 is formulated as follows:
Problem 16. Find a displacement field u" € V' such that
a' @, v" — u + l// " (u) Yds > (f", vh —uh) Vol e V)
(176)

Following a similar approach as for Problem 15, we can show that R,
', u") <0. Consequently, the optimal order error bound for k=1 is

llu — u'lly < ch

under the regularity assumptions (103).

7.3.3 VEM for Problem 3

To approximate the admissible set U, we define
U' = {v' € V'"|v} < g at node points on T.}. (177)

Assuming that g is a concave function, we have U" C U. The following
numerical method is proposed for Problem 3.

Problem 17. Find a displacement field u" € U" such that
o (uh, ot — uh ffb(lvhl—luhl)ds+/l// o=l ds
> (f" vt —u"y  Vee U (178)

We apply Theorem 12 to derive an error estimate. The key step is to
bound the residual term

R, (u!, u" /8 em)): e —uh dx+ffb(|ull lul]) ds
—f wv(uv;ul/f—uu)ds—(f,u —ul).
Ic



162 Weimin Han et al.

By a similar argument, we can derive the relation (165) as well, so
Ro@ ) = [ @)l =y ds+ [ (ull = iy
Ic Ic
i
e

f R — ds+/ o, (] — uhy ds

e Ic

il = s = [ sl =l ds
I Ie

Using an argument similar to (171), we can deduce that

h h
A o; - ("11 —u;)ds + A JZ (|”TI| — |u/])ds < 2|lf;, ||1_2(r(;) ||"¢I - ”rlle(F(;)2~
C

C

Furthermore, we consider

o, () —ul) = (0, + &), —ul) — & W —u]
= (o, + &) —w) + (0, + &) (u, — g)
+ (o, + &)@ —u) — &) — u)
< (oy+ &) —w) + & () — u)).

Here, we use the fact that (6, + &)(u, — ¢) =0 and u/" < g, given that "
€ U" C U. Since &, € oy, (1), we get

/ o, (u) — ulyds — [ g (usul —ul)ds < f (0 + &) (u) — ) ds
Ic Ic I
I I
+ 61/ (”y - ”y) ds
Ic
0
— [y s wl = uly ds
Ic
I
< oy = w2y -

Finally, the optimal order error bound for k=1 is
llu = ully < ch,

under the regularity assumptions (103) and (112).

Remark 1. In the above analysis, we assumed ¢ to be a concave function.
However, this assumption can be removed by applying the argument in
(Feng et al., 2021a). For simplicity, we retain this assumption here.
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5 8. Numerical examples

In this section, we report numerical simulation results on sample
contact problems, by applying both the finite element method and the
virtual element method. In all the examples, we let © be the unit square:
Q= (0, 1) X (0, 1) € R?, and split the boundary into three parts:

Ip =10, 1] x {1}, Iy= ({0} x(0, D) v ({1} x (O, 1),
Iz =10, 1] x {0}.

The domain € is the initial configuration of an elastic body. We adopt the
linear elasticity constitutive law

6=8®m) inQ, (179)
where
Ex E
81:]“: 11+ T 5i'+—Ti', 1S1,S2,
(E7); (1+K)(1_2K)(11 22) i T+ J
vVt e $2.

A volume force of density f; is applied to the elastic body and the equi-
librium equation is

Dive +f, =0 inQ. (180)

The I'p part of the boundary is fixed,
u=0 onlp, (181)

and the I'y part of the boundary is subject to the action of a traction force
of the density f>:

ov=f only. (182)

Difterent boundary conditions will be considered on the contact boundary
I'c. The physical setting of the problem is as depicted in Fig. 1.

In the numerical experiments, uniform triangulations of the domain €
are used for the linear triangular finite elements (FEM). The uniform square
partitions of the domain Q are used for the lowest-order (i.e., k= 1) virtual
element method (VEM). The boundary of the spatial domain is divided into
1/h equal parts, and h is used as the discretization parameter. In order to
illustrate that the VEM can be applied to polygonal meshes, we present the
deformed meshes on the Voronoi meshes, which are generated by the
MATLAB toolbox - PolyMesher introduced in (Talischi et al., 2012).
The corresponding deformed meshes are presented in (Figs. 3, 7 and 11).
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\VAR VARV

f2 f2

il
Il

Iy I

Te

Fig. 1 Physical setting.

In the following numerical examples, we choose f, =0 in the friction
conditions, i.e., we consider the frictionless contact.
The relative errors of the numerical solutions in the H'-norm, i.e.,

”uref - uh”V
”uref ”V
will be used to compute the numerical convergence orders of the
numerical solutions for the linear FEM and the lowest order VEM on the
square meshes. For both FEM and VEM, we take the numerical solution

with i =1/512 as the “reference” solution in computing the errors of
numerical solutions on coarse meshes.

Example 1. In this example, we consider a bilateral contact problem with
friction. Let the contact conditions on I'; be

u, =0, —0; € 0y (u,),
where

=]

w(z) = p(eyde, p(r)=(a—>bye’ +b.
0
Note that the contact condition — 6, € dy(u,) is equivalent to

|6, < u(0) ifu, =0, —of=u<|u,|>ﬁ ifu, # 0.
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The parameters are given as follows:

E 2000 kg/cm?, k= 0.3,
a 3x 1073, b=25x%x107°, p=2x10%
£, = (0, =0.05) kg/cm?,
(800, 0) kg/cm on {0} X [0.5, 1),
ho= {(—800, 0) kg/cm on {1} x [0.5, 1).

We illustrate the numerical performance of both the virtual element
method and the linear finite element method. In the VEM, we present the
numerical solution on square mesh for different values of mesh numbers N
in (Fig. 2). In (Fig. 3), we present the initial and deformed Voronoi meshes
corresponding to N = 8000 for the VEM. Numerical solutions obtained by
linear FEM on uniform triangulation and lowest order VEM on the square
grid along the tangential direction on the boundary [0,1] X {0} are shown
in (Fig. 4). In Table 1 and Table 2, we report the numerical convergence
orders of the FEM and VEM solutions. The numerical convergence orders
approach 1, matching the theoretical error bounds. See also Fig. 5.

Numerical solution u1 Numerical solution u1

0 0.2 0.4 06 0.8 1 0 0.2 04 0.6 0.8 1
x x

Numerical solution u1 Numerical solution u1

041 i 0.1
0.05 H 0.05
0 .5 H 0
-0.05 .3 ] -0.05
0.1 t 0.1
0 L8 . . !
0 06 0.8 1

0.2 04
x

0 0.2 04 06 0.8 1
x

Fig. 2 Example 1: numerical solutions with N elements: N =256 (upper left), N=1024
(upper right), N=4096 (bottom left) and N = 16,384 (bottom right).
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(A) (B)

Fig. 3 Example 1: (A) Initial mesh with N =8000; (B) deformed meshes with N = 8000.

——h=1/16
h=1/32
h=1/64
h=1/128
h=1/256
h=1/512

(A) - (B)

Fig. 4 Example 1: tangential displacement on I'; for (A) FEM solution; (B) VEM solution
on square mesh.

Example 2. In this example, we consider a frictionless normal compliance
contact problem. On I'¢, let

0 ifu, <0,
[07 2] lfuy = 0’
-0, = 42 ifu, € (0, 0.04],

4 = 50u, if u, € (0.04, 0.06],
20u, — 0.2 ifu, > 0.06,
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Table 1 Example 1: relative errors of the displacements for the linear FEM.

h 1/8 1/16 1/32 1/64 1/128
Error 20.51% 11.47 % 6.53 % 3.7% 1.96 %
Order — 0.8385 0.8127 0.8196 0.9167

Table 2 Example 1: relative errors of the displacements on the square mesh for the
VEM.

h 1/8 1/16 1/32 1/64 1/128
Error 10.06 % 5.84 % 3.39% 1.94% 1.07 %
Order — 0.7846 0.7847 0.8052 0.8584

15 ] 2

s’ &
2 ,.,/ /.’ -
o - ’/ . 4 /'/
/‘/ /, .

35 L’ 4 .’

-4 ./ 5

-5 4.5 4 IO;;) 3 2.5 2 -5 45 4 ‘u;(i) 3 2.5 2

(A) (B)

Fig. 5 Example 1: numerical convergence orders for (A) FEM; (B) VEM on the square
mesh.

The parameters are given as follows:

vy
I

2000 kg/cmz, k= 0.3,
fi = (0, =0.05) kg/cm?,

(800, 0) kg/cm on {0} X [0.5, 1),
{(—800, 0) kg/em on {1} X [0.5, 1).

In the VEM,we present the numerical solution on square mesh for
different values of mesh numbers N in (Fig. 6). In (Fig. 7), we present the
initial and deformed meshes on voronoi meshes corresponding to
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Numerical solution u2 Numerical solution u2

El P i H

Numerical solution u2 Numerical solution u2

-0.07

Fig. 6 Example 2: numerical solutions with N elements: N =300 (upper left), N=1000
(upper right), N=4000 (bottom left) and N =8000 (bottom right).

N=28000 for the VEM. The numerical solution obtained by linear FEM
and lowest order VEM on the square grid along the normal direction on
the boundary [0,1] X {0} is shown in (Fig. 8). The relative errors and
numerical convergence orders are reported in Tables 3, 4 and (Fig. 9).

Example 3. The contact boundary conditions on I' ¢ are characterized by a
frictionless multivalued normal compliance contact in which the
penetration is restricted by unilateral constraint. For simulations, we let

Uy < g, O-I/+§I/SO? (My—g)(O'V'i‘fy):O

0 ifu, <0,
[O, 2] 1fuy = O’
& =432 ifu, € (0, 0.04],

4 — 50u, ifu, € (0.04, 0.06],
20u, — 0.2 if u, > 0.06,
o, = 0.

This time, we choose ¢ = 0.06.



Numerical analysis of variational-hemivariational inequalities 169

(A) (B)
Fig. 7 Example 2: (A) Initial mesh with N =8000; (B) deformed meshes with N =8000.

(A)
Fig. 8 Example 2: normal displacement on T for (A) FEM; (B) VEM on square mesh.

Table 3 Example 2: relative errors of the displacements for FEM.

h 1/8 1/16 1/32 1/64 1/128
Error 20.54 % 11.62% 6.68 % 3.85% 2.12%
Order — 0.8218 0.7987 0.7950 0.8608

Table 4 Example 2: relative errors of the displacements on the square mesh for VEM.
h 1/8 1/16 1/32 1/64 1/128

Error 10.10 % 5.9% 3.44% 1.98 % 1.11%

Order — 0.7756 0.7783 0.7969 0.8480
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log(Error)

a
35+ -
-
-
-
4 s
.
-
-
-
45+ B
5 . .
5 45 -4 35
log(h)

Fig. 9 Example 2: numerical convergence orders for (A) FEM; (B) VEM on the square

a
7
-
>
-2 »
-
.
.
~-25 W
5
& ¢
=3 L d
g .
< a3 .
P
o
'
35 .
-
4 : . s
. 45 -4 35 3 25 2
log(h)
mesh.
Numerical solution u2
0
kI IJ

Fig. 10 Example 3: numerical solutions with N elements: N = 256 (upper left),

Numerical solution u2

Numerical solution u2

FFH

Numerical solution u2

0
-0.01
-0.02
-0.03
0.04
-0.05
-0.06

(upper right), N=4096 (bottom left) and N = 16,384 (bottom right).

=1024

In the VEM, we present the numerical solution on square mesh for
different values of mesh numbers N in (Fig. 10). In (Fig. 11), we present
the initial and deformed meshes on Voronoi meshes corresponding to
N=8000 for the VEM. The numerical solution obtained by linear FEM
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(A) (B)
Fig. 11 Example 3: (A) Initial mesh with N = 8000; (B) deformed meshes with N = 8000.

h=1/16 |8 - h=1116
Vi N h=1/32
/ h=1/64
V4 \

——h=1/32
h=1/128
h=1/256
h=1/512

h=1/64

h=1/128]

h=1/256
h=1/512]

0.2 04

(A)

Fig. 12 Example 3: normal displacement on I'; for (A) FEM; (B) VEM on square mesh.

Table 5 Example 3: relative errors of the displacements for FEM.
h 1/8

1/16 1/32 1/64 1/128
Error 20.43 % 11.57 % 6.63 % 3.79% 2.04%
Order 0.8203 0.8033 0.8068 0.8936

and lowest order VEM on the square grid along the normal direction on
the boundary [0,1] X {0} is shown in (Fig. 12). The relative errors and

numerical convergence orders are reported in (Tables 5, 6 and Fig. 13).
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Table 6 Example 3: relative errors of the displacements on the square mesh for VEM.

h 1/8 1/16 1/32 1/64 1/128
Error 10.09 % 5.91% 3.45 % 2.01% 1.15%
Order — 0.7717 0.7766 0.7794 0.8056
157 . 2
t/ - .
2 /./’ /./’
k=] 3 /’/ o ) /.’ [~
/" /,,
3.5 ,// 45 .r
o ./ L 5 L L " "
-5 4.5 -4 ‘O»;f” -3 25 -2 -5 4.5 -4 b;(:) -3 25 -2
(A) (B)

Fig. 13 Example 3: numerical convergence orders of (A) FEM solutions; (B) VEM
solutions on the square mesh.

9. Concluding remarks

This paper is devoted to numerical analysis of variational-hemi-
variational inequalities, especially those arising in contact mechanics.
Abstract frameworks are presented for the finite element method and the
virtual element method to solve the variational-hemivariational inequal-
ities, and the results are applied to the numerical solution of three repre-
sentative contact problems. In particular, a general convergence result is
shown for Galerkin solutions of abstract variational-hemivariational
inequalities under minimal solution regularity conditions available from the
well-posedness theory, and optimal order error estimates are derived for the
lowest order (linear) finite element solutions and virtual element solutions
under certain solution regularity assumptions. Numerical examples are
reported on the performance of both the finite element method and the
virtual element method.

Other numerical methods can be employed to solve the contact pro-
blems as well. For instance, similar to the virtual element method, a
polytopal method, called hybrid high-order method (HHO), has been
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applied to solve contact problems, cf. (Bayat et al., 2022; Cascavita et al.,
2020; Chouly et al., 2020). It will be interesting to study HHO to solve
general variational-hemivariational inequalities.

For practical use of numerical methods, one important issue is the
assessment of the reliability of numerical solutions, which is accomplished
by a posteriori error estimates of numerical solution errors after the
numerical solutions are found. The interest in a posteriori error estimation
for the finite element method began in the late 1970s (Babuska &
Rheinboldt, 1978a,b). Since then, a large number of papers and books have
been published on this subject. Historically, two of the influential books on
a posteriori error analysis are (Ainsworth & Oden, 2000; Verfurth, 1996).
Note that most of the publications on a posteriori error analysis deal with
variational equation problems. In (Han, 2005), a systematic approach was
developed for a posteriori error analysis and adaptive solutions of variational
inequalities, by employing the duality theory in convex analysis (Ekeland &
Temam, 1976). Another approach was employed in deriving a posteriori
error estimators for variational inequalities of the second kind in (Wang &
Han, 2013). Similar approaches were extended to perform a posteriori
error analysis in the virtual element method for simplified friction pro-
blems. Specifically, a residual-based error estimator for VEM was proposed
in (Deng et al., 2020), while a gradient recovery-type a posteriori error
estimator was introduced in (Wei et al., 2023). In (Porwal & Singla, 2025),
a posteriori error analysis of the elliptic obstacle problem was addressed
using hybrid high-order methods. A posteriori error analysis for C” interior
penalty methods was performed for a fourth-order variational inequality of
the second kind in (Gudi & Porwal, 2016) and that for the obstacle pro-
blem of clamped Kirchhoft plates in (Brenner et al., 2017). It will be an
interesting and important topic to establish a posteriori error estimates for
numerical solutions of variational-hemivariational inequalities, and to apply
the a posteriori error estimates to develop adaptive algorithms to solve
contact problems in the form of variational-hemivariational inequalities.
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