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ARTICLE INFO ABSTRACT
Keywords: In this paper, we first consider the numerical solution of an abstract quasistatic variational in-
Quasistatic contact problem equality arising in the study of quasistatic physical processes. The temporal discretization is car-

Virtual element method
Finite difference method
Optimal order error estimate

ried out by the backward Euler difference scheme, while the spatial discretization is based on
the virtual element method. A general framework is provided for the spatially semidiscrete and
the fully discrete approximations of the quasistatic variational inequality. Then, as an applica-
tion of the theoretical results on the abstract problem, a quasistatic contact problem is studied
and optimal order error estimates are derived for the lowest-order VEM, under appropriate solu-
tion regularity assumptions. Numerical examples are presented to show the performance of the
proposed methods.

1. Introduction

Frictional contact phenomena for deformable bodies abound in industry and daily life [1-5]. Much research has been done on
modeling, analysis and numerical simulations of contact processes. In particular, comprehensive presentations of studies of contact
models for the quasistatic processes can be found in Han and Sofonea [1], Shillor et al. [4]. A unified approach, which can be applied
to various quasistatic problems, including unilateral and bilateral contact with nonlocal friction, or normal compliance conditions, is
given in Badea and Cocou [6], and quasistatic problems with Coulomb friction are analyzed in Cocou [7]. Quasistatic contact problems
are naturally studied in the form of quasistatic variational inequalities. Such quasistatic variational inequalities also arise in the study
of other applications in sciences and engineering, e.g., in elastoplasticity [8]. To solve the quasistatic variational inequalities, the finite
element method and the discontinuous Galerkin (DG) method have been commonly applied, cf. Barboteu et al. [9], Han et al. [10]
and Wang et al. [11], respectively. In this paper, we study the virtual element method (VEM) for the numerical solution of quasistatic
variational inequalities.
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\begin {equation*}{\|v\|}_{C^m([0,T],V)}=\sum _{k=0}^{m}\max _{0\le t\le T}{\|v^{(k)}(t)\|}_V.\end {equation*}


$1\le p<\infty $
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$V$


\begin {equation*}{\|v\|}_{L^p(0,T;V)}={\Big (\int _{0}^{T}{\|v(t)\|}_V^pdt\Big )}^{1/p}<\infty .\end {equation*}


$p=\infty $


$L^{\infty }(0,T;V)$


\begin {equation*}{\|v\|}_{L^{\infty }(0,T;V)}={\rm ess\,sup}_{0\le t\le T}{\|v(t)\|}_V.\end {equation*}
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$1\le i\le m$
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$\ell \in W^{1,\infty }(0,T;V')$


$u_0\in V$


\begin {equation}a(u_0,v)+j(v)\ge \langle \ell (0),v\rangle \quad \forall \,v\in V. \label {u_0}\end {equation}


$u:[0,T]\rightarrow V$


\begin {equation}u(0)=u_0 \label {eq:2.1a}\end {equation}


$t\in (0,T)$


$\dot {u}(t)\in V$


\begin {equation}\label {Eq:variation} a(u(t),v-\dot {u}(t))+j(v)-j(\dot {u}(t))\ge \langle \ell (t),v-\dot {u}(t)\rangle \quad \forall \,v\in V.\end {equation}


$u\in W^{1,\infty }(0,T;V)$


$\Omega \subset \mathbb {R}^2$


$\{{\mathcal T}_h\}_h$


${\mathcal T}_h:=\{K\}_{K\in {\mathcal T}_h}$
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$h_K:=\mbox {diam}(K)$


${\mathcal T}_h$


$h:=\max _{K\in {\mathcal T}_h} h_K$
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$V^h$
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$\mathbb {P}_k(D)$


$D$


$k$


$a(\cdot ,\cdot )$


\begin {equation}a(v,w):=\sum _{K\in {\mathcal T}_h} a_K(v,w),\quad \forall \, v,w\in V, \label {eq:2.3a}\end {equation}


$a_K(\cdot ,\cdot )$


$V_K:=V{|}_K$


$V$


$K$


$V_K$


$V_K$


${\|\cdot \|}_{V_K}$


\begin {equation*}\label {norm-summation} \|v\|_V^2=\sum _{K\in {\mathcal T}_h} \|v\|_{V_K}^2\quad \forall \, v\in V,\end {equation*}


$K\in {\mathcal T}_h$


\begin {equation}\label {bilinear-bounded} a_K( v, v)\lesssim {\|v\|}_{V_K}^2\quad \forall \, v\in V_K,\end {equation}
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$b$


$``a\lesssim b"$


$``a\le C b"$


$C$


$h_K$


$h$


$\ell ^h\in W^{1,\infty }{(0,T;(V^h)}^\prime )$


$\ell $


\begin {equation}\langle \ell ^h(0),v^h\rangle = \langle \ell (0),v^h\rangle \quad \forall \,v^h\in V^h. \label {ell_0}\end {equation}


$V^h$


$a(\cdot ,\cdot )$


$a^h(\cdot ,\cdot )$


\begin {equation}\label {sum1} a^h( u,v):=\sum _{K\in {\mathcal T}_h}a^h_{K}( u, v),\end {equation}


$a^h_{K}(\cdot ,\cdot )$


$a_{K}(\cdot ,\cdot )$


$a^h_{K}(\cdot ,\cdot )$


$K$


$k$


$k$


$k$


\begin {equation}\label {consistency} a^h_K( p, v)=a_K( p, v)\quad \forall \,p\in \mathbb {P}_k(K),\,v \in V^h_K:=V^h{|}_K.\end {equation}


$\alpha _{\star }$


$\alpha ^{\star }$


$h_K$


$K$


\begin {equation}\label {stability} \alpha _{\star }a_K(v, v)\leq a^h_K(v,v)\le \alpha ^{\star } a_K(v,v)\quad \forall \,v\in V^h_K.\end {equation}


${\|v^h\|}_{a^h} := a^h{(v^h,v^h)}^{1/2}$


$v^h\in V^h$


$a(\cdot ,\cdot )$


${\|\cdot \|}_{a^h}$


$V^h$


${\|\cdot \|}_V$


$V^h$


$h$


\begin {equation}\label {elem} x,a,b\geq 0~ {\rm and}~ x^2\leq ax+b\Rightarrow x\leq a+b^{\frac {1}{2}}.\end {equation}


$\mathcal {P}^h:V\rightarrow V^h$


\begin {equation}\label {relation1} \mathcal {P}^hu\in V^h,\quad a^h(\mathcal {P}^hu,v^h)=a(u,v^h)\quad \forall \, v^h\in V^h.\end {equation}


$a^h$


$a^h(\cdot ,\cdot )$


$V^h$


$v^h\mapsto a(u,v^h)$


$V^h$


$\mathcal {P}^hu\in V^h$


$v^h=\mathcal {P}^hu$


$a^h$


$a$


\begin {equation}{\|\mathcal {P}^hu\|}_V \lesssim {\|u\|}_V. \label {eq:2.10a}\end {equation}


$u^h_0=\mathcal { P}^h u_0$


\begin {equation*}a^h(\mathcal { P}^hu_0,v^h)=a(u_0,v^h)\quad \forall \, v^h\in V^h.\end {equation*}


\begin {equation}a^h(\mathcal {P}^hu_0,v^h)+j(v^h)\ge \langle \ell ^h(0),v^h\rangle \quad \forall \,v^h\in V^h. \label {u^h_0}\end {equation}


$a$


$\ell $


$u_0$


$a^h$


$\ell ^h$


$u^h :[0,T]\rightarrow V^h$


\begin {equation}\label {eq:2.8a} u^h_0=\mathcal {P}^hu_0\end {equation}


$t\in (0,T)$


$\dot {u}^h(t)\in V^h$


\begin {equation}\label {discrete} a^h(u^h(t),v^h-\dot {u}^h(t))+j(v^h)-j(\dot {u}^h(t))\ge \langle \ell ^h(t),v^h-\dot {u}^h(t)\rangle \quad \forall \, v^h\in V^h.\end {equation}


$u^h\in W^{1,\infty }(0,T;V^h)$


$L^1(0,T;V^h)$


$v^h$


$L^1(0,T;V)$


$v^h(t)\in V^h$


$t\in (0,T)$


${\|v^h(\cdot )\|}_V\in L^1(0,T)$


$u$


$u^h$


$v^{h} \in L^{1}(0,T;V^{h})$


\begin {align}\label {aim} {\|u-u^{h} \|}_{L^{\infty }(0,T;V)} & \lesssim {\|u-\mathcal P^{h} u\|}_{L^{\infty }(0,T;V)}+{\|\mathcal P^{h} {\dot {u}}- {\dot {u}}\|}_{L^{1}(0,T;V)} + {\|{\dot {u}}-v^{h} \|}_{L^{1}(0,T;V)}\nonumber \\ & \quad +{\|R(v^{h} ; {\cdot } )\|}_{L^{1}(0,T)}^{1/2} +{\| \ell -\ell ^{h} \|}_{W^{1,1}(0,T;(V^{h})^{\prime } )},\end {align}


$t\in (0,T)$


\begin {align}& {\|\ell (t)-\ell ^h(t)\|}_{(V^h)'} :=\sup _{v^h\in V^h}\frac {\langle \ell (t)-\ell ^h(t),v^h\rangle }{{\|v^h\|}_V},\nonumber \\ & R(v^h;t):=a( u(t), v^h-\dot {u}(t))+j( v^h)-j(\dot {u}(t))- \langle \ell (t), v^h-\dot {u}(t)\rangle .\label {second}\end {align}


${\|\cdot \|}_{a^h}$


${\|\cdot \|}_V$


$V^h$


$v^h\in L^1(0,T;V^h)$


\begin {equation}\label {Eq2:14} \frac {1}{2}\frac {d}{dt}{\|\mathcal {P}^hu(t)-u^h(t)\|}^2_{{a^h}} = a^h(\mathcal P^h u(t)-u^h(t),\mathcal P^h\dot {u}(t)-\dot {u}^h(t))=T_1+T_2+T_3,\end {equation}


\begin {align*}T_1&:=a^h(\mathcal P^h u(t)-u^h(t),\mathcal P^h\dot {u}(t)-\dot {u}(t)),\\ T_2&:=a^h(\mathcal P^hu(t)-u^h(t),\dot {u}(t)- v^h(t)),\\ T_3&:=a^h(\mathcal P^hu(t)-u^h(t),v^h(t)-\dot {u}^h(t)).\end {align*}


\begin {align}T_1& \lesssim {\|\mathcal { P}^hu(t)-u^h(t)\|}_{{a^h}} {\|\mathcal {P}^h\dot {u}(t)-\dot {u}(t)\|}_V,\label {Eq2:15}\\ T_2&\lesssim {\|\mathcal {P}^hu(t)-u^h(t)\|}_{{a^h}} {\|\dot {u}(t)-v^h(t)\|}_V.\label {Eq2:16}\end {align}


\begin {equation}\label {T3} T_3 = a^h(\mathcal P^hu(t),v^h-\dot {u}^h(t))-a^h(u^h(t), v^h(t)-\dot {u}^h(t)).\end {equation}


\begin {align}a^h(\mathcal P^h u(t),v^h(t)-\dot {u}^h(t)) & =a(u(t),v^h(t)-\dot {u}^h(t)) \nonumber \\ &=a(u(t),v^h(t)-\dot {u}(t))+a(u(t),\dot {u}(t)-\dot {u}^h(t)). \label {eq:2.19}\end {align}


$v=\dot {u}^h(t)$


\begin {equation}a(u(t),\dot {u}^h(t)-\dot {u}(t))+j(\dot {u}^h(t))-j(\dot {u}(t))\ge \langle \ell (t),\dot {u}^h(t)-\dot {u}(t)\rangle _V. \label {eq:def1}\end {equation}


\begin {equation}\label {eq:mid} -a^h(u^h(t),v^h(t)-\dot {u}^h(t))\leq j(v^h(t))-j(\dot {u}^h(t))- \langle \ell ^h(t), v^h(t)-\dot {u}^h(t)\rangle .\end {equation}


\begin {align}\label {Eq2:17} T_3&\le a(u(t),v^h(t)-\dot {u}(t))+j(v^h(t))-j(\dot {u}(t))- \langle \ell (t),\dot {u}^h(t)-\dot {u}(t)\rangle -\langle \ell ^h(t),v^h(t)-\dot { u}^h(t)\rangle \nonumber \\ &\le R(v^h(t);t)+\langle \ell (t)-\ell ^h(t),v^h(t)-\dot { u}^h(t)\rangle ,\end {align}


$R(v^h(t);t)$


\begin {align*}\frac {1}{2}\frac {d}{dt}{\|\mathcal { P}^hu(t)-u^h(t)\|}_{{a^h}}^2& \lesssim {\|\mathcal {P}^hu(t)-u^h(t)\|}_{{a^h}}{\|\mathcal {P}^h\dot {u}(t)-\dot {u}(t)\|}_V \\ &\quad {} +{\|\mathcal {P}^hu(t)-u^h(t)\|}_{{a^h}}{\|\dot {u}(t)-v^h(t)\|}_V+R(v^h(t);t)\\ &\quad {} +\langle \ell (t)-\ell ^h(t),v^h(t)-\mathcal { P}^h\dot {u}(t)\rangle +\langle \ell (t)-\ell ^h(t),\mathcal {P}^h\dot {u}(t)-\dot {u}^h(t)\rangle .\end {align*}


$s\in [0,T]$


$t=0$


$s$


$\mathcal {P}^hu_0=u^h_0$


\begin {align*}{\|\mathcal P^h u(s)- u^h(s)\|}_{{a^h}}^2&\lesssim \int _0^s{\|\mathcal P^hu(t)-u^h(t)\|}_{{a^h}}\big ({\|\mathcal P^h\dot {u}(t)-\dot {u}(t)\|}_{V}+{\|\dot {u}(t)-v^h(t)\|}_{V}\big )dt\\ &\quad {} +\int _0^s R(v^h(t);t)\,dt+\int _0^s \langle \ell (t)-\ell ^h(t),v^h(t)-\mathcal P^h\dot {u}(t)\rangle \,dt\\ &\quad {}+\int _0^s\langle \ell (t)-\ell ^h(t),\mathcal P^h\dot {u}(t)-\dot {u}^h(t)\rangle dt.\end {align*}


${\|\cdot \|}_{a^h}$


${\|\cdot \|}_V$


\begin {align}\label {eq2.23} {\|\mathcal P^h u(s)- u^h(s)\|}_{V}^2&\lesssim \int _0^s{\|\mathcal P^hu(t)-u^h(t)\|}_{V}\big ({\|\mathcal P^h\dot {u}(t)-\dot {u}(t)\|}_{V}+{\|\dot {u}(t)-v^h(t)\|}_{V}\big )dt\nonumber \\ &\quad {} +\int _0^s R(v^h(t);t)\,dt+\int _0^s \langle \ell (t)-\ell ^h(t),v^h(t)-\mathcal P^h\dot {u}(t)\rangle \,dt\nonumber \\ &\quad {}+\int _0^s\langle \ell (t)-\ell ^h(t),\mathcal P^h\dot {u}(t)-\dot {u}^h(t)\rangle dt.\end {align}


\begin {align}\label {eq2.24} \int _0^s\langle \ell (t)-\ell ^h(t),\mathcal P^h\dot {u}(t)-\dot {u}^h(t)\rangle dt&=\langle \ell (s)-\ell ^h(s),\mathcal P^h u(s)-u^h(s)\rangle \nonumber \\ &\quad {} -\int _0^s\langle \dot {\ell }(t)-\dot {\ell }^h(t), \mathcal P^h u(t)- u^h(t)\rangle dt.\end {align}


\begin {equation}W^{1,1}(0,T; (V^h)')\hookrightarrow C([0,T];(V^h)'). \label {embed}\end {equation}


\begin {align}\label {eq228} \int _0^s\langle \ell (t)-\ell ^h(t),v^h(t)-\mathcal P^h\dot {u}(t)\rangle dt&\lesssim {\|\ell -\ell ^h\|}_{L^{\infty }(0,T;(V^h)')}{\|v^h-\mathcal P^h\dot {u}\|}_{L^{1}(0,T;V)}\nonumber \\ &\lesssim {\|\ell -\ell ^h\|}_{W^{1,1}(0,T;(V^h)')}{\|v^h-\mathcal P^h\dot {u}\|}_{L^{1}(0,T;V)}.\end {align}


\begin {align*}{\|\mathcal P^h u- u^h\|}_{L^{\infty }(0,T; V)}^2&\lesssim {\|\mathcal P^hu- u^h\|}_{L^{\infty }(0,T;V)}\big ( {\|\mathcal P^h\dot {u}-\dot {u}\|}_{L^{1}(0,T;V)}+{\|\dot {u}-v^h\|}_{L^{1}(0,T;V)}\\ &\quad {}+{\|\ell -\ell ^h\|}_{W^{1,1}(0,T;(V^h)')}\big )+{\|R(v^h)\|}_{L^1(0,T)}\\ &\quad {}+{\|\ell -\ell ^h\|}_{W^{1,1}(0,T;(V^h)')}{\|v^h-\mathcal P^h\dot {u}\|}_{L^{1}(0,T;V)},\end {align*}


${\|R(v^h)\|}_{L^1(0,T)}$


${\|R(v^h;\cdot )\|}_{L^1(0,T)}$


\begin {equation*}{\|v^h-\mathcal P^h\dot {u}\|}_{L^{1}(0,T;V)}\le {\|\mathcal P^h\dot {u}-\dot {u}\|}_{L^{1}(0,T;V)}+{\|\dot {u}-v^h\|}_{L^{1}(0,T;V)},\end {equation*}


\begin {align}{\|\mathcal P^hu- u^h\|}_{L^{\infty }(0,T;V)}&\lesssim {\|\mathcal P^h\dot {u}-\dot {u}\|}_{L^{1}(0,T;V)}+{\|\dot {u}-v^h\|}_{L^{1}(0,T;V)}\nonumber \\ &\quad {}+{\|R(v^h)\|}_{L^{1}(0,T)}^{1/2}+{\|\ell -\ell ^h\|}_{W^{1,1}(0,T;(V^h)')}. \label {eq:2.28a}\end {align}


\begin {equation*}{\|u-u^h\|}_{L^{\infty }(0,T;V)} \le {\|u-\mathcal P^hu\|}_{L^{\infty }(0,T;V)} + {\|\mathcal P^hu-u^h\|}_{L^{\infty }(0,T;V)},\end {equation*}
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$V$


$[0,T]=\bigcup \limits _{n=1}^N[t_{n-1},t_n]$


$0=t_0<t_1<\ldots <t_N=T$


$k_n=t_n-t_{n-1}$


$1\le n\le N$


$k=\max _nk_n$


$u_n=u(t_n)$


$u(t)$


$\Delta u_n=u_n-u_{n-1}$


$\delta _n u_n=\Delta u_n/k_n$


$u^{hk}=\{u_n^{hk}\}_{n=0}^{N}\subset V^h$


\begin {equation}u^{hk}_0=\mathcal {P}^hu_0 \label {eq:2.24a}\end {equation}


$n=1,\dots ,N$


\begin {equation}\label {pro:fully-discrete} a^h\left (u_n^{hk},v^h-\delta _n u_n^{hk}\right )+j\left (v^h\right )-j\left (\delta _nu_n^{hk}\right )\geq \langle \ell _n^h, v^h-\delta _n u_n^{hk}\rangle _{V}\quad \forall \, v^h \in V^h.\end {equation}


$\ell ^h_n\approx \ell ^h(t_n)$


$0\le n\le N$


$\ell ^h$


$\ell $


$[0,T]$


$u_0$


$\ell ^h$


$\ell _1^h,\ell _2^h\in W^{1,1}(0,T;(V^h)')$


$\mathcal { P}^hu_{1,0}, \mathcal { P}^hu_{2,0}\in V^h$


$\{u_{1,n}^{hk}\}_{n=0}^N$


$\{u_{2,n}^{hk}\}_{n=0}^N$


\begin {equation}\max _{0\leq n\leq N}{\|u_{1,n}^{hk}-u_{2,n}^{hk}\|}_{V}\lesssim {\|\mathcal P ^hu_{1,0}-\mathcal P^h u_{2,0}\|}_{V}+{\| \ell _1^h-\ell _2^h\|}_{W^{1,1}(0,T;(V^h)')}. \label {eq:2.30a}\end {equation}


$\{u_{1,n}^{hk}\}_{n=0}^N$


$\{u_{2,n}^{hk}\}_{n=0}^N$


\begin {flalign}\label {1} &a^h(u_{1,n}^{hk},v^h-\delta _n u_{1,n}^{hk})+j(v^h)-j(\delta _n u_{1,n}^{hk})\geq \langle \ell _{1,n}^h, v^h-\delta _n u_{1,n}^{hk}\rangle \quad \forall \, v^h\in V^h,\\ \label {2} &a^h(u_{2,n}^{hk},v^h-\delta _n u_{2,n}^{hk})+j(v^h)-j(\delta _nu_{2,n}^{hk})\geq \langle \ell _{2,n}^h, v^h-\delta _nu_{2,n}^{hk}\rangle \quad \forall \,v^h\in V^h.\end {flalign}


$e_n= u_{1,n}^{hk}- u_{2,n}^{hk}$


$v^h=\delta _n u_{2,n}^{hk}$


$v^h=\delta _n u_{1,n}^{hk}$


\begin {equation*}A_n^h:=a^h(e_n,\delta _ne_n)\leq \langle \ell _{1,n}^h- \ell _{2,n}^h,\delta _n e_n\rangle .\end {equation*}


\begin {equation*}A_n^h=\frac {1}{k_n}\big (a^h(e_n,e_n)-a^h(e_n, e_{n-1})\big ).\end {equation*}


\begin {equation*}a^h(e_n, e_{n-1}) \le \frac {1}{2} \left ( {\|e_n\|}_{a^h}^2 + {\|e_{n-1}\|}_{a^h}^2 \right ).\end {equation*}


\begin {equation}\label {lower} A_n^h\ge \frac {1}{2k_n}\big ({\| e_n\|}_{a^h}^2-{\| e_{n-1}\|}_{a^h}^2\big ).\end {equation}


$1\leq n\leq N$


\begin {equation*}{\| e_n\|}_{a^h}^2-{\|e_{n-1}\|}_{a^h}^2\leq 2\langle \ell _{1,n}^h- \ell _{2,n}^h, e_n-e_{n-1}\rangle .\end {equation*}


\begin {align*}{\|e_n\|}_{a^h}^2&\leq {\| e_0\|}_{a^h}^2+2\sum _{i=1}^{n}\langle \ell _{1,i}^h-\ell _{2,i}^h, e_i- e_{i-1}\rangle \\ &={\| e_0\|}_{a^h}^2+2\langle \ell _{1,n}^h- \ell _{2,n}^h, e_n\rangle -2\langle \ell _{1,1}^h- \ell _{2,1}^h,e_0\rangle \\ &\quad {} +2\sum _{i=1}^{n-1}\big \langle (\ell _{1,i}^h-\ell _{1,i+1}^h)-( \ell _{2,i}^h- \ell _{2,i+1}^h), e_i\big \rangle .\end {align*}


${\|\cdot \|}_{a^h}$


${\|\cdot \|}_V$


\begin {align*}{\|e_n\|}_V^2 & \lesssim {\|e_0\|}_V^2+\langle \ell _{1,n}^h- \ell _{2,n}^h, e_n\rangle -\langle \ell _{1,1}^h- \ell _{2,1}^h,e_0\rangle \\ &\quad {} +\sum _{i=1}^{n-1}\big \langle (\ell _{1,i}^h-\ell _{1,i+1}^h)-( \ell _{2,i}^h- \ell _{2,i+1}^h), e_i\big \rangle .\end {align*}


$M=\max \limits _{0\leq n\leq N}{\| e_n\|}_{ V}$


$n$


$N$


\begin {align*}M^2 & \lesssim {\|e_0\|}_{ V}^2+M\big ({\|\ell _{1,n}^h-\ell _{2,n}^h\|}_{(V^h)'}+{\| \ell _{1,1}^h- \ell _{2,1}^h\|}_{ (V^h)'}\\ &\quad {} +\sum _{i=1}^{n-1}{\|(\ell _{1,i}^h-\ell _{1,i+1}^h)-(\ell _{2,i}^h-\ell _{2,i+1}^h)\|}_{(V^h)'}\big ).\end {align*}


\begin {equation*}{\|e_n\|}_{V}\lesssim {\|\mathcal P ^hu_{1,0}-\mathcal P^h u_{2,0}\|}_{ V}+{\|\ell _1^h- \ell _2^h\|}_{W^{1,1}(0,T;(V^h)')}.\end {equation*}


$u$


$u_n^{hk}$


$\{v^h_n\}_{n=1}^N \subset V^h$


\begin {align}\max _{1\le n\le N}{\|u_n-u_n^{hk}\|}_V & \lesssim \max _{1\le n\le N} {\|u_n-\mathcal { P}^hu_n\|}_V+\sum \limits _{n=1}^{N}k_n{\|\delta _n\mathcal {P}^h u_n-\dot {u}_n\|}_{V}+\sum \limits _{n=1}^{N}k_n{\|\dot {u}_n-v^h_n\|}_V\nonumber \\ &\quad {} + \max _{1\le n\le N}{\|\ell _n-\ell ^h_n\|}_{(V^h)'} + \sum _{n=1}^{N-1} {\|(\ell _{n+1}-\ell _n)-(\ell _{n+1}^h-\ell _n^h)\|}_{(V^h)'} \nonumber \\ &\quad {} +{\Big (\sum _{n=1}^{N} k_n R_n(v^h_n)\Big )}^{1/2}, \label {err_bd}\end {align}


\begin {align*}& {\|\ell _n-\ell ^h_n\|}_{(V^h)'}:=\sup _{v^h\in V^h} \frac {\langle \ell _n-\ell _n^h,v^h\rangle }{{\|v^h\|}_V},\\ & R_n(v^h):=a(u_n,v^h-\dot {u}_n)+j(v^h)-j(\dot {u}_n)-\langle \ell _n, v^h-\dot {u}_n\rangle .\end {align*}


$e_n=u_n- u_n^{hk}$


\begin {equation*}e_n=u_n-\mathcal {P}^hu_n+\mathcal {P}^hu_n- u_n^{hk}.\end {equation*}


\begin {equation}\label {use} {\|e_n\|}_V\le {\|u_n-\mathcal {P}^hu_n\|}_V + {\|\mathcal {P}^hu_n- u_n^{hk}\|}_V.\end {equation}


$e_n^h=\mathcal {P}^hu_n- u_n^{hk}$


$A_n^h=a^h(e_n^h,\delta _n e_n^h)$


\begin {equation}A_n^h\ge \frac {1}{2k_n}\big ({\| e_n^h\|}_{a^h}^2-{\| e_{n-1}^h\|}_{a^h}^2). \label {eq:2.36a}\end {equation}


\begin {equation*}\delta _n e_n^h = \delta _n\mathcal {P}^h u_n-\delta _nu_n^{hk} = \left (\delta _n\mathcal {P}^hu_n-\dot {u}_n\right ) + \left (\dot {u}_n- v^h\right )+ \left (v^h-\delta _n u_n^{hk}\right ).\end {equation*}


\begin {equation}\label {upper} A_n^h=a^h\left (e_n^h,\delta _n\mathcal {P}^hu_n-\dot {u}_n\right )+a^h\left (e_n^h,\dot {u}_n-v^h\right )+a^h\left (\mathcal {P}^h u_n-u_n^{hk},v^h-\delta _n u_n^{hk}\right ).\end {equation}


$\mathcal {P}^h$


\begin {equation*}a^h(\mathcal {P}^hu_n-u_n^{hk},v^h-\delta _nu_n^{hk})=a(u_n,v^h-\delta _nu_n^{hk})-a^h( u_n^{hk},v^h-\delta _n u_n^{hk}).\end {equation*}


$v=\delta _nu_n^{hk}$


\begin {equation}\label {tran1s} a(u_n,\delta _nu_n^{hk}-\dot {u}_n)+j(\delta _n u_n^{hk})-j(\dot {u}_n)\geq \langle \ell _n,\delta _nu_n^{hk}-\dot {u}_n\rangle .\end {equation}


$v^h=v^h_n$


\begin {align*}-a^h(u_n^{hk},v^h_n-\delta _nu_n^{hk}) & \leq a(u_n,\delta _nu_n^{hk}-\dot {u}_n)+j(v^h_n)- j(\dot {u}_n) \\ &\quad {} - \langle \ell _n,\delta _nu_n^{hk}-\dot {u}_n\rangle -\langle \ell _n^h,v^h_n-\delta _nu_n^{hk}\rangle .\end {align*}


\begin {align}\label {ph} a^h(\mathcal {P}^hu_n-u_n^{hk},v^h_n-\delta _nu_n^{hk}) &\leq a(u_n,v^h_n-\delta _nu_n^{hk})+a(u_n,\delta _nu_n^{hk}-\dot {u}_n)+j(v^h_n)\nonumber \\ &\quad {}-j(\dot {u}_n)-\langle \ell _n,\delta _nu_n^{hk}-\dot {u}_n\rangle -\langle \ell _n^h,v^h_n-\delta _n u_n^{hk}\rangle \nonumber \\ &= R_n(v^h_n)+\langle \ell _n-\ell _n^h,v^h_n-\delta _nu_n^{hk}\rangle .\end {align}


\begin {align}\label {eq239} \frac {1}{2k_n}\big ({\|e_n^h\|}_{a^h}^2-{\|e_{n-1}^h\|}_{a^h}^2\big ) & \le a^h(e_n^h,\delta _n\mathcal {P}^h u_n-\dot {u}_n)+a^h(e_n^h,\dot {u}_n-v_n^h)+R_n(v^h_n)\nonumber \\ &\quad {} +\langle \ell _n-\ell _n^h,v_n^h-\delta _n\mathcal {P}^hu_n\rangle +\frac {1}{k_n}\langle \ell _n-\ell _n^h,e_n^h-e_{n-1}^h\rangle .\end {align}


$n$


$i$


$k_i$


$i=1$


$n$


\begin {align*}{\|e_n^h\|}_{a^h}^2 & \le 2 \sum _{i=1}^n k_i a^h(e_i^h,\delta _i\mathcal {P}^h u_i-\dot {u}_i) +2 \sum _{i=1}^n k_i a^h(e_i^h,\dot {u}_i-v^h_i)+2 \sum _{i=1}^n k_i R_i(v^h_i)\\ &\quad {} +2 \sum _{i=1}^n k_i\langle \ell _i-\ell _i^h,v^h_i-\delta _i\mathcal {P}^hu_i\rangle +2 \sum _{i=1}^n\langle \ell _i-\ell _i^h,e_i^h- e_{i-1}^h\rangle ,\end {align*}


\begin {equation*}e_0^h=\mathcal {P}^hu_0- u^h_0=0.\end {equation*}


\begin {equation*}\sum _{i=1}^n\langle \ell _i-\ell _i^h,e_i^h- e_{i-1}^h\rangle = \langle \ell _n-\ell _n^h,e_n^h\rangle - \sum _{i=1}^{n-1}\langle (\ell _{i+1}-\ell _i)-(\ell _{i+1}^h-\ell _i^h),e_i^h\rangle .\end {equation*}


$M=\max \limits _{1\le n\le N}{\|e_n^h\|}_{a^h}$


\begin {align*}M^2 & \lesssim M\Big ( \sum _{n=1}^Nk_n{\|\delta _n\mathcal {P}^hu_n-\dot {u}_n\|}_V+\sum \limits _{n=1}^N k_n{\|\dot {u}_n-v^h_n\|}_V\\ &\quad {} +\max _{1\le n\le N}{\|\ell _n-\ell ^h_n\|}_{(V^h)'} + \sum _{n=1}^{N-1} {\|(\ell _{n+1}-\ell _n)-(\ell _{n+1}^h-\ell _n^h)\|}_{(V^h)'} \Big )\\ &\quad {} +\sum _{n=1}^Nk_nR_n(v^h_n)+\sum _{n=1}^Nk_n{\|\ell _n-\ell _n^h\|}_{(V^h)'}{\|v^h_n-\delta _n\mathcal { P}^hu_n\|}_V.\end {align*}


${\|\cdot \|}_{a^h}$


${\|\cdot \|}_V$


$V^h$


\begin {align}\max _{1\le n\le N}{\|\mathcal {P}^hu_n-u_n^{hk}\|}_V & \lesssim \sum \limits _{n=1}^{N}k_n{\|\delta _n\mathcal {P}^h u_n-\dot {u}_n\|}_V+\sum \limits _{n=1}^{N}k_n{\|\dot {u}_n-v^h_n\|}_V + \max _{1\le n\le N}{\|\ell _n-\ell ^h_n\|}_{(V^h)'}\nonumber \\ &\quad {} +\sum _{n=1}^{N-1} {\|(\ell _{n+1}-\ell _n)-(\ell _{n+1}^h-\ell _n^h)\|}_{(V^h)'} +{\Big (\sum _{n=1}^{N}k_nR_n(v^h_n)\Big )}^{\frac {1}{2}}\nonumber \\ &\quad {}+{\Big (\sum _{n=1}^{N}k_n{\| v^h_n-\delta _n\mathcal { P}^hu_n\|}_{V}{\|\ell _n-\ell _n^h\|}_{(V^h)'}\Big )}^{\frac {1}{2}}. \label {eq:temp}\end {align}


\begin {align*}& {\Big (\sum _{n=1}^{N}k_n{\| v^h_n-\delta _n\mathcal { P}^hu_n\|}_{V}{\|\ell _n-\ell _n^h\|}_{(V^h)'}\Big )}^{\frac {1}{2}}\\ &\qquad \le \max _{1\le n\le N}{\|\ell _n-\ell ^h_n\|}_{(V^h)'}^{1/2} {\Big (\sum _{n=1}^{N}k_n{\| v^h_n-\delta _n\mathcal { P}^hu_n\|}_{V}\Big )}^{\frac {1}{2}}\\ &\qquad \lesssim \max _{1\le n\le N}{\|\ell _n-\ell ^h_n\|}_{(V^h)'} + \sum \limits _{n=1}^{N}k_n{\|\delta _n\mathcal {P}^h u_n-\dot {u}_n\|}_V+\sum \limits _{n=1}^{N}k_n{\|\dot {u}_n-v^h_n\|}_V.\end {align*}


$\Omega \subset \mathbb {R}^2$


$\Gamma $


$\Gamma _D$


$\Gamma _N$


$\Gamma _C$


${\rm {meas}}(\Gamma _D)>0$


$T>0$


$t\in [0,T]$


$\bm \varepsilon (\bm u)=\frac {1}{2}(\nabla \bm u+{(\nabla \bm u)}^T)$


$\bm v$


$v_{\nu }=\bm v\cdot \bm \nu $


$\bm v_{\bm \tau }=\bm v-v_{\nu }\bm \nu $


$\mathbb {C}:\mathbb {S}^2\rightarrow \mathbb {S}^2$


$\mathbb {S}^2$


$\mathbb {R}^2$


\begin {equation*}\mathbb {C}\bm {\varepsilon }:=2\mu \bm {\varepsilon }+\lambda {\rm tr}(\bm {\varepsilon })\bm I,\end {equation*}


$\lambda $


$\mu $


$\bm I$


$\sigma _{\nu }=(\bm \sigma \bm \nu )\cdot \bm \nu $


$\bm \sigma _{\bm \tau }=\bm \sigma \bm \nu -\sigma _{\nu }\bm \nu $


$\bm u: \Omega \times [0,T]\rightarrow \mathbb {R}^2$


\begin {flalign}\label {elastic} & \bm \sigma =\mathbb {C}\bm \varepsilon (\bm u)\quad {\rm in}\ \Omega \times (0,T),\\ \label {equilibrium} & -{\rm div} \bm \sigma =\bm f_1\quad {\rm in}\ \Omega \times (0,T),\\ \label {boundary1} & \bm u=\bm 0\quad {\rm on}\ \Gamma _{D}\times (0,T),\\ \label {traction} & \bm \sigma \bm \nu =\bm f_2\quad {\rm on}\ \Gamma _{N}\times (0,T),\\ & \bm u(0)=\bm u_0\quad {\rm in}\ \Omega \\ &\left . \begin {aligned}\label {Tresca} &u_{\nu }=0,~~|\bm \sigma _{\bm \tau }|\leq g\\ &|\bm {\sigma _{\tau }}|<g\Rightarrow ~\dot {\bm u}_{\bm \tau }=\bm 0\\ &|\bm {\sigma _{\tau }}|=g\Rightarrow \exists \lambda \geq 0\ s.t.\ \bm \sigma _{\bm \tau }=-\lambda \dot {\bm u}_{\bm \tau } \end {aligned} \right \}\quad {\rm on}\ \Gamma _{C}\times (0,T).\end {flalign}


$\bm f_1$


$\Gamma _{D}$


$\bm f_2$


$\Gamma _{N}\times (0,T)$


$g\geq 0$


\begin {equation*}\label {space} {\bm V}=\{{\bm v}\in H^1(\Omega ;\mathbb {R}^2)\,|\,{\bm v}|_{\Gamma _{D}}={\bm 0},\ v_{\nu }|_{\Gamma _{C}}=0\},\end {equation*}


\begin {equation*}(\bm u,\bm v)_{\bm V}=\int _{\Omega }\bm \varepsilon (\bm u):\bm \varepsilon (\bm v)\,dx,~~~{\|\bm v\|}_{\bm V}=(\bm v, \bm v)_{\bm V}^{1/2}.\end {equation*}


$(\Gamma _{D})>0$


${\|\cdot \|}_{\bm V}$


$\bm V$


$H^1(\Omega ;\mathbb {R}^2)$


$\bm V$


${(H^1(\Omega ))}^2$


$H^1(\Omega ;\mathbb {R}^2)$


${(L^2(\Omega ))}^2$


$L^2(\Omega ;\mathbb {R}^2)$


\begin {equation}\label {eq:rhs} {\bm f}_1\in W^{1,\infty }(0,T;{(L^2(\Omega ))}^2),\quad {\bm f}_2\in W^{1,\infty }(0,T;{(L^2(\Gamma _{N}))}^2),\end {equation}


\begin {equation*}\label {eq:bound} g\in L^{\infty }(\Gamma _{C}),\quad g\geq 0\ {\rm a.e.}\ {\rm on}\ \Gamma _{C}.\end {equation*}


$a(\cdot ,\cdot )$


$\bm V$


\begin {equation*}a(\bm u,\bm v)=\int _{\Omega }\mathbb {C}\bm \varepsilon (\bm u):\bm \varepsilon (\bm v)\,dx =2\mu (\bm \varepsilon (\bm u),\bm \varepsilon (\bm v))+\lambda ({\rm div}\bm u,{\rm div}\bm v)\quad \forall \,\bm u,\bm v\in \bm V.\end {equation*}


$\bm \ell (t)\in W^{1,\infty }(0,T;\bm V^\prime )$


$\bm u:[0,T]\rightarrow \bm V$


\begin {equation}\bm u(0)=\bm u_0 \label {eq:3.7a}\end {equation}


$t\in (0,T)$


\begin {equation}a(\bm u(t),\bm v-\dot {\bm u}(t))+j(\bm v)-j(\dot {\bm u}(t))\ge \langle \bm \ell (t),{\bm v}-\dot {\bm u}\rangle \quad \forall \, \bm v\in \bm V.\label {prodis}\end {equation}


\begin {equation}\bm u_0\in \bm V,\,\, a(\bm u_0,\bm v)+j(\bm v)\ge \langle \bm \ell (0),\bm v\rangle \quad \forall \,\bm v\in \bm V. \label {eq:3.6a}\end {equation}


$\bm u\in W^{1,\infty }(0,T;\bm V)$


$\bm u_0=\bm 0$


$\bm \ell (0)=\bm 0$


$\bm u_0$


$\bm \ell (0)$


\begin {equation*}a(\bm u_0,\bm v)=\langle \bm \ell (0),\bm v\rangle \quad \forall \,\bm v\in \bm V,\end {equation*}


$\mathcal {T}_h$


$\Gamma _{C}$


\begin {equation*}\Gamma _C=\cup _{i=1}^{i_0}\Gamma _{C,i},\end {equation*}


$1\le i\le i_0$


$\Gamma _{C,i}$


$d=2$


$d=3$


$K \in \mathcal {T}_h$


$\mathcal {T}_K$


$K$


$\mathcal {T}_K$


$\mathcal {T}_K$


$h_K$


$K$


$\mathcal {T}_K$


$K$


\begin {equation*}W^h_K:=\{ v\in H^1(K):\Delta v=0, v{|}_{\partial K}\in C^0(\partial K), v{|}_e\in \mathbb {P}_1(e)\,\,\forall \,e\subset \partial K\},\end {equation*}


$K$


\begin {equation}\label {local-space} \bm W^h_K:={(W^h_K)}^2.\end {equation}


$\bm V^h$


\begin {equation*}\bm V^h:=\{\bm v\in \bm V:\bm v|_K\in \bm W^h_K\quad \forall \,K\in \mathcal {T}_h\}.\end {equation*}


$\bm V^h_K=\bm V^h|_K$


$K$


$\bm V^h$


$\bm v$


$\bm I^h \bm v$


$\bm I_K\bm v$


$K$


$\bm I_K: {(H^2(K))}^2\to \bm V^h_K$


\begin {equation}\label {lem:interperror} {\|\bm v-\bm I_K\bm v\|}_{{(L^2(K))}^2}+h_K{\|\bm v- \bm I_K\bm v\|}_{\bm V_K}\lesssim h_K^2|\bm v|_{{(H^2(K))}^2},\quad \bm v\in {(H^2(K))}^2\cap \bm V_K.\end {equation}


$a^h(\cdot ,\cdot )$


$\Pi _K:\bm W_K^h\rightarrow {(\mathbb {P}_1(K))}^2$


\begin {equation*}\left \{\begin {array}{@{}l} \displaystyle ({\bm \varepsilon }(\Pi _K {\bm v}),{\bm \varepsilon }({\bm q}))_K=({\bm \varepsilon }({\bm v}),{\bm \varepsilon }({\bm q}))_K\quad \forall \, {\bm q}\in (\mathbb {P}_1(K))^2, \\ \displaystyle \int _{\partial K} \Pi _K{\bm v}\,ds=\int _{\partial K}{\bm v}\,ds,\,\\ \displaystyle \int _{K}\nabla \times \Pi _K{\bm v}\,dx=\int _K\nabla \times {\bm v}\,dx. \end {array}\right . \label {pi}\end {equation*}


$a^h_K(\cdot ,\cdot )$


$K\in \mathcal {T}_h$


\begin {align}\label {discretebilinear} a^h_K({\bm u}^h,{\bm v}^h)& =2\mu \,({\bm \varepsilon }({\bm \Pi }_K {\bm u}^h), {\bm \varepsilon }({\bm \Pi }_K {\bm v}^h))_K+\lambda \left (\Pi ^0_{0}{\rm div} {\bm u}^h,\Pi ^0_{0}{\rm div} {\bm v}^h\right )_K\nonumber \\ &\quad +S_K({\bm u}^h-{\bm \Pi }_K {\bm u}^h,{\bm v}^h-{\bm \Pi }_K{\bm v}^h)\quad \forall \,{\bm u}^h,{\bm v}^h\in {\bm V}^h_K,\end {align}


$\Pi ^0_{0}$


$L^2$


$K$


$\mathbb {P}_{0}(K)$


$S_K(\bm v,\bm w)=\sum \limits _{i=1}^{N_K}\chi _i(\bm v)\chi _i(\bm w)$


$\chi _i$


$i$


$K$


$1\le i \le N_K:={\rm dim}\bm V^h_K$


$\bm \ell (t)$


\begin {equation*}\langle \bm \ell ^h(t),\bm v^h\rangle :=\sum _{K\in \mathcal {T}_h}\int _K\bm \Pi _0^0\bm f_1(t)\cdot \widehat { \bm v}^h\,dx+\int _{\Gamma _{N}}\bm f_2(t)\cdot \bm v^h\,ds\quad \forall \, \bm v^h\in \bm V^h,\end {equation*}


$\bm \Pi _0^0$


${(L^2(K))}^2$


${(\mathbb {P}_0(K))}^2$


$\widehat { \bm v}^h$


$\bm v^h$


$K$


$t\in [0,T]$


\begin {equation*}(\bm \ell (t),\bm v^h)-\langle \bm \ell ^h(t),\bm v^h\rangle \lesssim h\|\bm f_1(t)\|_{{(L^2(\Omega ))}^2}\|\bm v^h\|_{\bm V},\end {equation*}


\begin {equation}\label {rhs} \|\bm \ell (t)-\bm \ell ^h(t)\|_{(\bm V^h)'}\lesssim h\|\bm f_1(t)\|_{{(L^2(\Omega ))}^2}.\end {equation}


$\bm u^h\colon [0,T]\mapsto \bm V^h$


\begin {equation}\bm u^h(0)={\cal P}^h \bm u_0 \label {3.11a}\end {equation}


$t\in (0,T)$


$\dot {\bm u}^h(t)\in \bm V^h$


\begin {equation}a^h(\bm u^h(t),\bm v^h-\dot { \bm u}^h(t))+j(\bm v^h)-j(\dot {\bm u}^h(t))\ge \langle \bm \ell ^h(t),\bm v^h-\dot { \bm u}^h(t)\rangle \quad \forall \,\bm v^h \in \bm V^h.\label {semipro}\end {equation}


$\bm u^h\in W^{1,\infty }(0,T; \bm V^h)$


$a^h_K(\cdot ,\cdot )$


$k=1$


$\bm V|_K$


$\bm V_K$


$\bm v\in {(H^2(K))}^2$


$\bm v_\pi \in {(\mathbb P_1(K))}^2$


\begin {equation}\label {lem:projerror} \|\bm v-\bm v_\pi \|_{{(L^2(K))}^2}+h_K\|\bm v-\bm v_\pi \|_{\bm V_K}\lesssim h_K^2|\bm v|_{{(H^2(K))}^2}.\end {equation}


$\mathcal {P}^h:\bm V\rightarrow \bm V^h$


$\bm u\in \bm V\cap {(H^2(\Omega ))}^2$


\begin {equation}\label {esti} \|\mathcal {P}^h\bm u-\bm u\|_{\bm V}\lesssim h\,|\bm u|_{{(H^2(\Omega ))}^2}.\end {equation}


${\rm meas}(\Gamma _{D})>$


\begin {equation}\label {result2} \|\mathcal {P}^h\bm u-\bm u\|_{{(L^2(\Omega ))}^2}\lesssim |\mathcal {P}^h\bm u-\bm u|_{\bm V}.\end {equation}


$\bm w_h:=\mathcal {P}^h\bm u-\bm u_I$


\begin {align}\alpha _{\star }|\bm w_h|_{\bm V}^2\leq a^h(\bm w_h,\bm w_h)=a^h(\mathcal {P}^h\bm u,\bm w_h)-a^h(\bm u_I,\bm w_h). \label {eq:3.18}\end {align}


\begin {equation*}a^h(\mathcal {P}^h\bm u,\bm w_h) = a^h(\bm u,\bm w_h).\end {equation*}


\begin {equation*}a^h(\bm u_I,\bm w_h) = \sum _{K\in {\mathcal T}_h} a^h_K(\bm u_I,\bm w_h) = \sum _{K\in {\mathcal T}_h} \left [ a^h_K(\bm u_I-\bm u_{\pi },\bm w_h) + a^h_K(\bm u_{\pi },\bm w_h)\right ] .\end {equation*}


\begin {equation*}a^h_K(\bm u_{\pi },\bm w_h) = a_K(\bm u_{\pi },\bm w_h).\end {equation*}


\begin {equation*}a^h(\bm u_I,\bm w_h) =\sum _{K\in {\mathcal T}_h}\left [ a^h_K(\bm u_I-\bm u_{\pi },\bm w_h)+a_K(\bm u_{\pi }-\bm u,\bm w_h)\right ]+a(\bm u,\bm w_h).\end {equation*}


\begin {equation*}\alpha _{\star }|\bm w_h|_{\bm V}^2\leq -\sum _{K\in {\mathcal T}_h}\Big [a^h_K(\bm u_I-\bm u_{\pi },\bm w_h)+a_K(\bm u_{\pi }-\bm u,\bm w_h)\Big ].\end {equation*}


\begin {equation*}|\bm w_h|_{\bm V}\lesssim {\Big [\sum _{K\in \mathcal {T}_h}\left (|\bm u-\bm u_{\pi }|_{\bm V_K}^2+|\bm u-\bm u_I|_{\bm V_K}^2\right )\Big ]}^{1/2}.\end {equation*}


\begin {equation}\label {estm} |\bm w_h|_{\bm V}\lesssim h\,|\bm u|_{{(H^2(\Omega ))}^2}.\end {equation}


\begin {equation}\label {result1} |\mathcal {P}^h\bm u-\bm u|_{\bm V}\lesssim h\,|\bm u|_{{(H^2(\Omega ))}^2}.\end {equation}


$\bm u\in W^{1,\infty }(0,T; \bm V)$


$\bm u^h\in W^{1,\infty }(0,T; \bm V^h)$


$\bm u\in L^{\infty }(0,T;{(H^2(\Omega ))}^2)$


$\dot {\bm u}\in L^1(0,T;{(H^2(\Omega ))}^2)$


$\dot {\bm u}|_{\Gamma _{C,i}}\in L^1(0,T;{(H^2(\Gamma _{C,i}))}^2)$


$1\le i\le i_0$


\begin {equation*}\|\bm u-\bm u^h\|_{L^{\infty }(0,T;\bm V)}\lesssim h.\end {equation*}


$\bm I^h \dot {\bm u}$


$\dot {\bm u}$


$\bm v^h=\bm I^h \dot {\bm u}$


\begin {align}\|\bm u-\bm u^h\|_{L^{\infty }(0,T;\bm V)} & \lesssim \|\bm u-\mathcal { P}^h\bm u\|_{L^{\infty }(0,T;\bm V)} + \|\mathcal { P}^h \dot {\bm u}-\dot {\bm u}\|_{L^{1}(0,T;\bm V)} + \|\dot {\bm u} - \bm I^h\dot {\bm u}\|_{L^1(0,T;V)}\nonumber \\ &\quad {} + \|R(\bm I^h\dot {\bm u})\|_{L^1(0,T)}^{1/2} + \|\bm \ell -\bm \ell ^h\|_{W^{1,1}(0,T;(\bm V^h)')}, \label {eq:3.17a}\end {align}


\begin {equation}R(\bm I^h\dot {\bm u}(t);t)=a(\bm u(t),\bm I^h\dot {\bm u}(t)-\dot {\bm u}(t))+j(\bm I^h\dot {\bm u}(t))-j(\dot {\bm u}(t))-\langle \bm \ell (t),\bm I^h\dot {\bm u}(t)-\dot {\bm u}(t)\rangle \label {eq:3.21a}\end {equation}


\begin {equation*}\|\dot {\bm u}-\bm I^h\dot {\bm u}\|_{L^{1}(0,T;\bm V)}\lesssim h\|\dot {\bm u}\|_{L^{1}(0,T;{{(H^2(\Omega ))}^2})}.\end {equation*}


\begin {align*}& \|\bm u-\mathcal { P}^h\bm u\|_{L^{\infty }(0,T;\bm V)}\lesssim h\|\bm u\|_{L^{\infty }(0,T;{{(H^2(\Omega ))}^2})},\\ & \|\mathcal { P}^h \dot {\bm u}-\dot {\bm u}\|_{L^{1}(0,T;\bm V)}\lesssim h\|\dot {\bm u}\|_{L^{1}(0,T;{{(H^2(\Omega ))}^2})}.\end {align*}


\begin {equation*}\|\bm \ell -\bm \ell ^h\|_{W^{1,1}(0,T;(\bm V^h)')}\lesssim h\|\bm f_1\|_{W^{1,\infty }(0,T;{(L^2(\Omega ))}^2)}.\end {equation*}


$\|R(\bm I^h\dot {\bm u})\|_{L^1(0,T)}^{1/2}$


$\bm u$


$\Omega \times (0,T)$


$\Gamma _N\times (0,T)$


$\bm v\in \bm V$


$t\in [0,T]$


\begin {align*}a(\bm u(t),\bm v)&=\int _{\Gamma }(\bm \sigma (t)\bm \nu ){\cdot } \bm v\,ds-\int _{\Omega }{\rm div} \bm \sigma (t)\cdot \bm v\,dx\nonumber \\ &=\int _{\Gamma _{C}}\bm \sigma _{\bm \tau }(t){\cdot }\bm v_{\bm \tau }ds+\int _{\Gamma _{N}}\bm f_2(t){\cdot }\bm v\,ds +\int _{\Omega }\bm f_1(t){\cdot }\bm v\, dx.\end {align*}


\begin {equation*}R(\bm I^h\dot {\bm u}(t);t)=\int _{\Gamma _{C}}\left [\bm \sigma _{\bm \tau }(t){\cdot }(\bm I^h\dot {\bm u}_{\bm \tau }(t)-\dot {\bm u}_{\bm \tau }(t))+g\left (|\bm I^h \dot {\bm u}_{\bm \tau }(t)|-|\dot {\bm u}_{\bm \tau }(t)|\right )\right ]ds.\end {equation*}


$\Gamma _{C}$


$\bm I^h{\dot {\bm u}}$


${(\mathbb {P}_1)}^2$


$\dot {\bm u}$


\begin {equation}\|R(\bm I^h\dot {\bm u})\|_{L^1(0,T)} \lesssim \|\bm I^h\dot {\bm u}-\dot {\bm u}\|_{L^1(0,T;{(L^2(\Gamma _{C}))}^2)}\lesssim h^2{\Big (\sum _{i=1}^{i_0}|\dot { \bm u}|_{L^1(0,T;{(H^2(\Gamma _{C,i}))}^2)}^2\Big )}^{1/2}.\label {imp}\end {equation}


$\bm u^{hk}=\{ \bm u_n^{hk}\}_{n=0}^N\subset \bm V^h$


\begin {equation}\bm u^{hk}_0=\mathcal {P}^h\bm u_0 \label {eq:3.19a}\end {equation}


$n=1,\dots ,N$


\begin {equation}a^h(\bm u_n^{hk},\bm v^h-\delta _n \bm u_n^{kh})+j(\bm v^h)-j(\delta _n\bm u_n^{hk})\geq \langle \bm \ell _n^h, \bm v^h-\delta _n \bm u_n^{hk}\rangle \quad \forall \, \bm v^h \in \bm V^h.\label {semipro1}\end {equation}


$\bm u\in W^{1,\infty }(0,T; \bm V)$


$\bm u^{hk}\subset \bm V^h$


$\bm u\in C^1([0,T];{(H^2(\Omega ))}^2)$


$\ddot {\bm u}\in L^1(0,T;\bm V)$


$\dot {\bm u}|_{\Gamma _{C,i}}\in C([0,T];{(H^2(\Gamma _{C,i}))}^2)$


$1\le i\le i_0$


\begin {equation}\label {result} \max _{1\le n\le N} \|\bm u_n-\bm u_n^{hk}\|_{\bm V}\lesssim h+k.\end {equation}


$\bm v^h_n=\bm I^h\dot {\bm u}_{n}$


$\dot {\bm u}_{n}$


$1\le n\le N$


\begin {align}\max _{1\le n\le N}\|\bm u_n-\bm u_n^{hk}\|_{\bm V} & \lesssim \max _{1\le n\le N} \|\bm u_n-\mathcal {P}^h \bm u_n\|_{\bm V}+\sum \limits _{n=1}^{N}k_n\|\delta _n\mathcal {P}^h \bm u_n-\dot {\bm u}_n\|_{\bm V}+\sum \limits _{n=1}^{N}k_n\|\dot {\bm u}_n-\bm I^h\dot {\bm u}_{n}\|_{\bm V}\nonumber \\ &\quad {} + \max _{1\le n\le N}\|\bm \ell _n-\bm \ell ^h_n\|_{(V^h)'} + \sum _{n=1}^{N-1} \|(\bm \ell _{n+1}-\bm \ell _n)-(\bm \ell _{n+1}^h-\bm \ell _n^h)\|_{(V^h)'} \nonumber \\ &\quad {} +{\Big (\sum _{n=1}^{N} k_n R_n(\bm I^h\dot {\bm u}_{n})\Big )}^{1/2}, \label {err_bd1}\end {align}


\begin {equation*}R_n(\bm I^h\dot {\bm u}_n):=a(\bm u_n,\bm I^h\dot {\bm u}_n-\dot {\bm u}_n)+j(\bm I^h\dot {\bm u}_n)-j(\dot {\bm u}_n)-\langle \bm \ell _n,\bm I^h\dot {\bm u}_n-\dot {\bm u}_n\rangle .\end {equation*}


\begin {equation*}\|\bm u_n-\mathcal {P}^h \bm u_n\|_{\bm V}\lesssim h\|\bm u_n\|_{H^2{(\Omega )}^2}\lesssim h\|\bm u\|_{C(0,T;H^2{(\Omega )}^2)}.\end {equation*}


\begin {equation*}\sum _{n=1}^{N}k_n \|\delta _n\mathcal {P}^h\bm u_n-\dot {\bm u}_n\|_{\bm V}\le \sum _{n=1}^{N}k_n \|\delta _n\mathcal {P}^h\bm u_n-\mathcal {P}^h\dot {\bm u}_n\|_{\bm V}+\sum _{n=1}^{N}k_n \|\mathcal {P}^h\dot {\bm u}_n-\dot {\bm u}_n\|_{\bm V}.\end {equation*}


\begin {align*}& \|\dot {\bm u}_n-\mathcal { P}^h \dot {\bm u}_n\|_{\bm V}\lesssim h\|\dot {\bm u}_n\|_{H^2{(\Omega )}^2}\lesssim h\|\dot {\bm u}\|_{C(0,T;H^2{(\Omega )}^2)},\nonumber \\ & \sum _{n=1}^{N}k_n \|\mathcal {P}^h\dot {\bm u}_n-\dot {\bm u}_n\|_{\bm V}\lesssim h\|\dot {\bm u}\|_{C(0,T;H^2{(\Omega )}^2)}.\end {align*}


$\bm u_{n-1}$


$t_n$


\begin {equation*}\bm u_{n-1} = \bm u_n-k_n \dot {\bm u}_n+ \int _{t_n}^{t_{n-1}}(t_{n-1}-s)\ddot {\bm u}(s)\,ds.\end {equation*}


\begin {equation*}\delta _n\mathcal {P}^h\bm u_n-\mathcal {P}^h\dot {\bm u}_n =k_n^{-1}(\mathcal { P}^h\bm u_n-\mathcal { P}^h\bm u_{n-1})-\mathcal { P}^h\dot { \bm u}_n =k_n^{-1}\int _{t_{n-1}}^{t_n}(t_{n-1}-s)\mathcal { P}^h\ddot {\bm u}(s)\,ds.\end {equation*}


\begin {align*}\sum _{n=1}^{N}k_n \|\delta _n\mathcal {P}^h\bm u_n-\mathcal {P}^h\dot {\bm u}_n\|_{\bm V} &\lesssim k\sum _{n=1}^N\|k_n^{-1}\int _{t_{n-1}}^{t_n}(t_{n-1}-s)\mathcal { P}^h\ddot {\bm u}(s)\,ds\|_{\bm V}\\ &\lesssim k\int _{0}^T\|\mathcal { P}^h\ddot {\bm u}(s)\|_{\bm V}\,ds.\end {align*}


\begin {equation*}\sum _{n=1}^{N}k_n \|\delta _n\mathcal {P}^h\bm u_n-\mathcal {P}^h\dot {\bm u}_n\|_{\bm V} \lesssim k\,\|\ddot {\bm u}\|_{L^1(0,T;{\bm V})}.\end {equation*}


\begin {equation*}\sum \limits _{n=1}^{N}k_n\|\dot {\bm u}_n-\bm I^h\dot {\bm u}_n\|_{\bm V}\lesssim h\|\dot {\bm u}\|_{C([0,T];{(H^2(\Omega ))}^2)}.\end {equation*}


\begin {equation*}\|\bm \ell _n-\bm \ell _n^h\|_{\bm V'_h}\lesssim h\|\bm f_1\|_{C([0,T];{(L^2(\Omega ))}^2)}.\end {equation*}


\begin {equation*}\|(\bm \ell _{n+1}-\bm \ell _n)-(\bm \ell _{n+1}^h-\bm \ell _n^h)\|_{\bm V'_h}\lesssim h\|\bm f_{1,n+1}-\bm f_{1,n}\|_{{(L^2(\Omega ))}^2}.\end {equation*}


\begin {align*}\sum _{n=1}^{N-1}\|(\bm \ell _{n+1}-\bm \ell _n)-(\bm \ell _{n+1}^h-\bm \ell _n^h)\|_{\bm V'_h} &\lesssim h \sum _{n=1}^{N-1} \|\bm f_{1,n+1}-\bm f_{1,n}\|_{{(L^2(\Omega ))}^2} \\ &\lesssim h \|\dot {\bm f}_1\|_{L^{\infty }(0,T;{(L^2(\Omega ))}^2)}.\end {align*}


\begin {align*}\sum _{n=1}^{N}k_nR_n(\bm I^h \dot {\bm u}_{n})&\lesssim \sum \limits _{n=1}^{N}k_n\|\bm I^h\dot {\bm u}_n-\dot {\bm u}_n\|_{{(L^2(\Gamma _{C}))}^2} \\ &\lesssim \sum _{n=1}^{N}k_nh^2\sum _{i=1}^{i_0}\|\dot {\bm u}_n\|_{{(H^2(\Gamma _{C,i}))}^2}\lesssim h^2\|\dot { \bm u}\|_{C([0,T];{(H^2(\Gamma _{C,i}))}^2)}.\end {align*}


$\Omega =(0,1)\times (0,1)$


$\partial \Omega $


$\Gamma _{D}$


$\Gamma _{C}$


$\Gamma _{F}$


$\Gamma _{D}=\{1\}\times (0,1)$


$\Gamma _{C}=(0,1)\times \{0\}$


$\Gamma _{F}$


$\bm f_2$


$(0,1)\times \{1\}$


$\Omega $


\begin {align*}& E=200\,{\rm daN/mm^2},\quad \kappa =0.3,\quad g = 4\; {\rm daN/mm^2},\\ & \bm {f}_1={(0,0)}^T\,{\rm daN/mm^2},\quad \bm {f}_2(x_1,x_2,t)=(8(1.25-x_2)t,-0.01t){\rm daN/mm^2},\\ &\bm u_0=\bm 0,~~T=1s.\end {align*}


$E$


$\kappa $


\begin {equation*}\lambda =\frac {E\kappa }{(1+\kappa )(1-2\kappa )},~~~\mu =\frac {E}{2(1+\kappa )}.\end {equation*}


$t=1$


$\|\bm u_{\rm ref}-\bm u_h\|_E/\|\bm u_{\rm ref}\|_E$


\begin {equation*}{\|\bm v\|}_E:=\frac {1}{\sqrt {2}}(\mathcal {C}\bm \varepsilon (\bm v),\bm \varepsilon (\bm v))_Q^{1/2}.\end {equation*}


$h$


$k$


$\bm u$


$\Omega $


$\bm u_{\rm ref}$


$h = 1/256$


$k= 1/256$


$\bm u_{\rm ref}$


$W_K^h$


$n_e$


$n_e=50$


$n_e=200$


$n_e=800$


$n_e=5000$


$n_e=5000$
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The VEM was first proposed and analyzed in Ahmad et al. [12], Beirao Da Veiga et al. [13,14]. It has been applied successfully to a
wide variety of scientific and engineering problems because of its favorable features in handling problems with complex geometries or
problems requiring high-regularity solutions. In recent years, this method has been applied to solve variational inequalities [15-23].

In this paper, we consider the numerical solution of a quasistatic variational inequality by the virtual element method for spatial
discretization and the backward Euler difference scheme for temporal discretization. Optimal order error estimates are derived for
both semi-discrete solutions and fully discrete solutions under appropriate solution regularity assumptions. The fully discrete problem
can be converted into a convex programming and an adaptive semi-smooth Newton method [24] can be applied to solve the fully
discrete variational inequality. Numerical results are reported to illustrate computational performance of the method in this paper.

The rest of this paper is organized as follows. Error analysis is given for both the spatially semidiscrete and the fully discrete
schemes of the abstract quasistatic variational inequality in Section 2. We apply the virtual element method in spatial discretization
and backward difference method in time discretization of a quasistatic contact problem. Then, optimal order error estimates are
derived for both schemes under appropriate solution regularity assumptions in Section 3. In Section 4, we present numerical simulation
results on a numerical example to illustrate the theoretically predicted convergence order.

2. A general framework for numerical solution of the quasistatic problem

Let V be a Hilbert space, which is equipped with the norm || - ||,,. The dual space of V is denoted by V'’ and the duality pairing
between V' and V is denoted by (-, -). Let T be a positive number and let m be a non-negative integer. We denote by C™([0,T]; V) the
space of continuous functions u : [0,7] — V that have continuous derivatives of an order less than or equal to m, which is a Banach
space endowed with the norm

m
[lollemo.ryyy = zofgégir lo® @l .
k=0"==

For 1 < p < o0, the space L?(0,T; V) consists of all measurable functions v from [0, 7] to V for which
T 1/p
lell o = ( /0 ool dr) < oo.

For the case p = o0, we denote the space by L*(0,T; V) with the norm

||U||Lw(0,T;V) = esssupp<r vy -
For an integer m > 0 and a real p > 1, we denote by W"?(0,T; V) the space of functions f € L?(0,T;V) such that f® e LP(0,T:V),
1 <i £ m, with the norm
1/p
P
LP(O,T;V)} :

m
WA lwmoo, i) = {Z ”f(i)
i=0

When p = 2, we write H"(0,T;V) for W™?(0,T;V).
Let a : VXV - R be a symmetric, bounded, and V-elliptic bilinear form, j : ¥ - R a continuous seminorm, and ¢ €
W0, T;V"). Let uy, € V such that

a(ug, v) + j(v) =2 (£(0),v) YveV. (2.1)

We consider the following abstract problem.
Problem 2.1. Find u : [0,T] — V such that
u(0) = ug (2.2)
and for almost all ¢ € (0,T), u(r) € V and
a(u(®), v —u(®)) + j(v) — j@®) 2 (€O, v —ut)) YoeV. (2.3)

By Han and Sofonea [1, Theorem 4.16], under the stated assumptions on the data, there exists a unique solution u € W (0,T; V)
to Problem 2.1.

Suppose the spatial domain associated with Problem 2.1 is a bounded polygon Q c R2. Let {7;,},, 7, := {K} Ker,» e a sequence
of decompositions of Q into polygons. A generic element in 7, is denoted by K whose diameter is denoted by sy := diam(K). The
mesh-size of 7, is h := maxgey, hg. Corresponding to the mesh 7}, we construct a finite dimensional subspace V" of V. For a non-
negative integer k and a bounded domain D in R or R?, denote by P, (D) the set of all polynomials on D with a total degree no more
than k. Assume the bilinear form a(., -) allows for the decomposition

a(v,w) := z ag(v,w), Yo,weV, 2.4)
KeTy,

where ag(-,-) is a symmetric bilinear form over the space Vi := V. For a function in V, we naturally view its restriction to K as a
function in V. We equip the space Vx with a norm or semi-norm || - lly, such that

2 2
ol = ) llolly, Veev,
KeT),
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and assume for all K € 7,
ag(v.0) S llolly, Ve Vg, (2.5)

where and in what follows, for two quantities a and b, }}a < be means } Ja < Cbe, C being a generic constant independent of iy or h,
which may take different values at different occurrences. Assume 7" € W*(0,T; (V")') is an approximation of # such that

(M0, 0"y = (£0), ") Vo' eV (2.6)

Over the given finite dimensional space V", we approximate the bilinear form a(-, -) by a modified bilinear form a”(-, -) constructed
as follows:

a'w,v) 1= 2 a',’((u, ), 2.7

KeT),

where a’l‘<(-, -) is an approximation of ag(-,-). We assume aﬁ(~, -) is a symmetric bilinear form on K such that it is k-consistent and
stable, for some given natural number k. The k-consistency refers to the property that

al (p,v) = ag(p.,v) VpePK), veEV] =V, (2.8)
The stability means that there exist two positive constants «, and «*, independent of hx and K, such that
ayag(v,0) < a’;((v, v) < a*ag(v,v) Vv e VI?. (2.9

Denote [[v"|| s := a"(V", u”)l/2 for v € V. By (2.7), (2.9), (2.4) and the assumptions on a(-, -), we can verify that || - || » defines a

norm on V" and it is uniformly equivalent to | - ||;, on V%, i.e., the equivalence coefficients are independent of .
For later use, we recall the following elementary implication:

1
x,a,b>0and x> <ax+b=>x<a+b2. (2.10)
We define the energy projection operator P* : V — V" by
Phuevh o@Phu o) =aw ) votevh (2.11)

By the stability of a” in (2.9), we observe that a”(-, ) is continuous and coercive on V. Since the functional v ~ a(u, v") is continuous
on V", we can apply Lax-Milgram Lemma to conclude that 7"« € V" is uniquely defined by (2.11). By taking v = P"uin (2.11) and
making use of properties of " and a, we can prove the stability inequality

1P ully < llully - (212)
A suitable discrete initial data can be chosen by u(')’ = Phy, since
a"P"uy, v") = a(uy, ") Yo' e vV
Then the discrete analog of (2.1) holds:
a"(Puy, ") + j(WM) > (£"0), 0"y Yot e v (2.13)

In the rest of the section, we assume all the properties of the data a, ¢, ug, o and #" stated above are valid.
2.1. Spatially semi-discrete scheme

The spatially semi-discrete approximation of Problem 2.1 is as follows.
Problem 2.2. Find u” : [0,T] — V" such that
up =Py, (2.14)
and for almost all ¢ € (0,T), i(t) € V" and
d"W@0). 0" =i @) + j") = j@" @) 2 ("0, 0" = i) VeV (2.15)

Applying Han and Sofonea [1, Theorem 4.16], we know there is a unique solution «” € W0, T; V") to Problem 2.2. We use the
notation L!(0,T; V") for the subspace of functions v* in L'(0,T;V) such that v*(r) € V" for a.a. t € (0,T), and ||[v"()|l;, € L0, T).
The following result is useful in estimating the semi-discrete approximation error.

Theorem 2.3. Let u and u” be the solutions of Problems 2.1 and 2.2. Then for any v € L'(0,T; V"),
llu = u"l| Looorovry S M= PMull oo o vy + 1P = il 1o ropry + i = 0" o oy
1/2
+IRWH ooy + 16 = ooy, (2.16)
where for t € (0,T),
(¢ =M@, ")

_¢h )=
N6 =2 Ollny = sup =7 =—"
R 1) 1= a(u(n), o = a(0) +j(0") = j@®) = (£ (0, 0" = a0). o
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Proof. We will use the fact that || - || ,» defines a norm that is uniformly equivalent to the norm || - ||,, on V'*. For any v* € L'(0,T; V"),

we write

%%llphu(t) - uh(r)nj,, = d"P"u(r) — u" (1), PMat) = () = T} + T, + T,
where

T, := d"Phu@) — u" ), PMa(t) - a(r)),

T, 1= d"Phut) — u" (1), ut) - " (1)),

Ty = d"(Phu@) — u" ), v (1) - i (1)).
Then,

Ty S IP"u(@) = u @l 1P ae) = i)l

Ty S IP"u(@) = " 0)ll o @) = " @)l -
Note that

Ty = a"Phu(e), o — i (1)) = a" W' (1), V" 1) = i (1)).
In view of (2.11), we obtain

" (Phu(n), o () = i) = (o), " (1) = " (1))

= a(u(), V" (t) — i) + a(u(), i(?) — i"(1)).

We take v = i"(t) in (2.3),

a(u(®), i (1) = a(®)) + j@" ) = j@@®) = (@), d" @) = a0))y .
From (2.15),

=" W), "0 = ") < j@W" ®) = j@"®) = ("0, 0" @) = i @)
Combining (2.21)-(2.24), we get

Ty < a(u(n), v (1) — () + j" (1) — j@®) — (€O, 1) — u@®)) = ("), 0" (1) - i" (1))
< RWM0;t) + (£@) - £ (1), v (1) — i (1)),

where R(v"(7);1) is defined in (2.17). Combining (2.18), (2.19), (2.20) and (2.25), we have

2L NP ) = O S IP"ute) = Ol [P"te) = o)y

+ 1P u@) — " Oll g i) = " @Oy + R@" (1) 1)
+(2@t) - "), v (1) — Pra) + (2@) - "), Phur) — i ().

For any s € [0, T, integrating the above inequality from 7 = 0 to s, noting that P"u, = u”, we obtain

0,
1P u(s) — ()2 /0 1P () = @)L (1P 0) = a0y + 1) = Ol )t
+ /S RW"(@); 0 di + /S<z,”(t) — "), V(@) - Phur)) di
0 0

+ /OSW,) = M), P — i (1)) dt.
We can replace the || - ||»-norm by || - |l;,-norm to get
1P u(s) — u”(s)lli s /OS 1P u(t) = u O lly, (1P i) — a@)lly, + o) = " @)l ) dt
+ /0 ' R ()0 dt + /0 S(f(r) - h@), () = Phucn))y di
+ /0 S(ef(t) — (), Pha) — i (1)dt.
Perform an integration by parts,
/0 S(b”(t) — M), Phu@) — i @))dr = (£(s) — " (), PMu(s) — u(s))

- / S<f”(t) =M@, Phut) — uP (1)dt.
0

4

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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According to the Sobolev embedding theorem, we have

whO,T; (V") = C(0,T1; (V™). (2.28)
Then,
(£(s) = £"(s), PMu(s) = u(9)) < 1€ = " o rmyy I1P"u = || Lo )5 (2.29)
- /0 (0 - M0, PPute) - )1 < 17— £ Iy 1P =i || oo 1) (2.30)
Furthermore,

s
/ (€@ = "0, ") = PHa@)dt S 1€ = "l oo 10" = PPall o)
0
SN2 =" wraorgmn 10" =Pl o ra)- (2.31)
Combining (2.26)-(2.31),
2 o )
1P u = " oo o 7y S WP u =l oo 0y (1P = ill 11 g iy + Ml = "l 110 )
+1Z = My rnyy) + IRODN Lo
+11Z = My 10" = PRl 1o s
where ||[R@WY)|| LIOT) is a short-hand notation for ||R(v"; )| Lo BY (2.10), the Cauchy-Schwarz inequality, and
”Uh - Phﬂ”Ll(o,T;V) < ”Phu - ""”L'(O,T;V) + |l — Uh”Ll((),T;V)’
we get
1P"u - uh“Lw(o,T;V) < |1Pha - il oy + = Uh“]_l(o,r;v)
1/2
+IRWMII o tIE= M lwiorny)- (2.32)
Finally, by the triangle inequality,
[l — ”h”Loo(o,T;V) <lu- Phu”Lw(o,T;V) + ||7)h“ - uh”Lw(o,T;V)’

we obtain (2.16) from (2.32). O

2.2. Fully discrete scheme

For a full discretization, in addition to the finite dimensional subspace V" of V, we need a partition of the time interval: [0,T] =
N
Ut 1,0 with 0 =1, <7, < ... <ty =T. Denote the step-size by k, =1, —t,_;, | <n < N. Let k = max, k,, and write u, = u(r,) for a
n=1
continuous function u(r). We use the symbol Au, = u, — u,_; for the backward difference and §,u, = Au,/k, for the backward divided
difference. Then a fully discrete approximation of Problem 2.1 is as follows.

Problem 2.4. Find u"* = {u/*} ",V: 0 C V" such that

Wl = Phuy (2.33)

and forn=1,...,N,
a" (ufl’k, ol — 5nuf1'k) +j(vh) —j(énu:k) > (ff ol - 5nufl'k)y Vot e vh (2.34)

Existence of a unique solution for Problem 2.4 can be obtained following the arguments used in proving [8, Theorem 11.7]. For
the fully discrete scheme, we only need the approximations ff ~ ¢"(t,), 0 < n < N. Nevertheless, for simplicity and without loss of
generality, we continue to use #” as an approximation of # on [0, T], as in the case of spatially semi-discrete scheme. Let us show a
stability result for the solution of Problem 2.4 with respect to the initial value u, and the right hand side #".

Theorem 2.5. For £/,#!" € W10, T; (V") and initial data P"u, o, P'u,, € V", the corresponding solutions {uf’;}:’:o and {ug’;},’:’:O of
Problem 2.4 satisfy the inequality

omax ey, = uyil, S 1P g = Plusolly + 167 = €310 nyy: (2.35)
Proof. From the defining inequality (2.34) for the solutions {u?’j1 }fl"= , and {ué”; } :j: o> We have

ah(ui"’;, ot — 5nuj"’;) +j@" —j(anuj'f‘") > (ff", ol — 5,,.4{’;) vo e vh, (2.36)

Wik " = 8,u%) + (") = () 2 (2] " = subk) vl eV (2.37)
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Denote ¢, = u’*
n
h._ _h h
A, i=d(e,, 8,e,) < (LY, — 2n,6 e,).
Write
1
Al = — (ah(e,,,en) - ah(en,en_l)).

"ok

n

By the Cauchy-Schwarz inequality,

2
depsen) < 3 (lleuly +lles I, ):
Hence,

1
i (el

Al >
n>

2
~llewrl2,)-

Then for 1 < n < N, we obtain

lleall2, = lleuillZ, < 2027, =23 ey —euy)-
An induction argument yields
lleall?, < Nleoll?, +2Z<t’h £y e —eiy)
= lleoll?, +2<f" — 8 e = 2L €8 eo)
h h h h
+22<(f _flz+1)_(f2,i_{2,i+1)’ei>'
Then, since || - || ,» is uniformly equivalent to || - ||,
lle, ||V~||e0||V+<f" — O e = (L] =00 eq)

h h
L) = @0 =650 e).

+ Z (G
i=1

Denote M = Omax lle,|l,,- We have, for some n between 0 and N,
<n<N

2 2 h h h h
M2 S lleolly + M(IE7, = €5, oy + 16T = 23,0,
n—1
h h h
+Z ”(fl,i _f],i+1)_(f2,i 2,+1)”(yn)/)’
i=1

Applying (2.10) and (2.28), we obtain
lleully S 1P"uy 0 = Phusglly, +1€7 = 51l gy

Therefore, (2.35) holds. [
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- ug"; . Taking v" = 5,[142"’; in (2.36) and v" = 5n“?ﬁ, in (2.37), adding the two inequalities, we get

(2.38)

Now, we turn our attention to error analysis for the fully discrete scheme.

Theorem 2.6. Let u and u!** be the solutions of Problems 2.1 and 2.4. Then, for any {v!}N c V", we have

N

N

hk h h . . h
ma l, =¥l S max Y, = Puylly + 3 ka3, = lly + Kl = vl

n=1

N-1

+ max ||£,
1<n<N

N 172
n ( 3 k,,R,,(uf)) ;
n=1
where
(€, —¢h ot
o™ 11y

R,(W") := a(uy,, v — ) + j0") = j(,) = (€, " —,).

16, = 20l gy = sup

vhevh

n=1

fh||(V,,),+Z||(fn+1 €)=y =D yny

(2.39)
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Proof. The quantity of interest is the error e, = u, — u. Write
hk

n -

e, =u, — Phu,, +Phu,, —-u
Then,
h h hk
lleally < luy = Pluylly + 1P u, —u," -

Denote ¢/ = Ptu, — ul*. Let A" = a"(e!, 5,¢"). By (2.38),

(e 1% = lleh_, I1%,).
Write
8,e = 8,PMu, — 5,u* = (8,P"u, —u,) + (1, —v") + (V" = 6,u).
Then,
Az’ = ah(ez’, 6n7)hu,, - L't,,) + ah(ei’,un - Uh) + ah(Phu,, - ufk, ol - 6,,142”‘).
By the definition of Pl in (2.11), we have
ah(P"un - uﬁk, ot — 5nu:k) = a(u,, ot — 5nu£’k) - ah(uf;k, ot — 6ﬂu2k).
Let v = §,u"™ in (2.3) to get
aliy, 8,u™ — i) + j(6,u™) — j(,) = (£, 5,u* —u,).
Combining (2.34) with v" = v" and (2.43), we have
—a" @, o = 8,ul") < au,, ,ul* — 1) + j(0") - j(,)
— (L Bt — 11,y = (1 V0 — 5,uM%),
Then,
ah(Phun - usk, Uf: - 5nufk) < a(u,, UZ - 5nu2k) + a(un,é,,usk —1,) +j(vf:)
= Jay) = (€ 8,0 = ) = (£, 0y = B,
= R,,(UZ) +(¢, — ff, Uf'l - 6nu2k).
In view of (2.41), (2.42) and (2.44), we have

1
2k,

2 2 . .
(et =Nl I1,) < a"(el,6,P"u, — i) + a" (e, i, — vf) + R, ()

1
(= O = 8,P )+ (Ey = Eel el ).
n

We change the index » to i in the inequality (2.45), multiply both sides by k; and sum from i = 1 to » to obtain

n n n

2 . .

el <2 ) kia" (el ;P — ) +2 ) kya (el iy — o) +2 ) kR0
i=1 i=1 i=1

i i—-1
i= i=1

n n
+2 ) k(= ol = 5Py + 2 ) = el — e ),
o~ 4
where we used the fact that

n =0,

h _ ph, _
ey =Plug —uy

Note that
n n—1
Dt —tlel —el Y=, = Ehely = Yo =) =l = E])el).
i=1 i=1
Denote M = max, ||ef}||a,,. By (2.7), (2.9), Cauchy-Schwarz inequality, we get
<n<

N N
M2 M Y k18,2 = iy lly + D Kl = o2,
n=1 n=1

N-1
h h h
+ max (14, = £l gy + ; I =€) = ", = fn)u(V,,),)

N N
+ DKy Ry + Dkl = 0 gy 02 = 6,P" -

n=1 n=1

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)
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Applying (2.10), since || - ||» is uniformly equivalent to || - ||,, on V", we obtain
N N
max |[P"u, =l 3 Zl k18, P, i Iy, + 21 Feglliy = 031l + max 1, =231 ny
- n= n= sn=s
N-1 N %
+ Y it = €=y =Dy + (X R @)
n=1 n=1
N 3
(X kalleh = 8,P 1, 16, = £y ) (2.46)
n=1

We notice that
1
N 2
(X kallet = 8,2, 1, 1, = 2y )
n=1
1

2

N
] ny /2 h h
< max |17, =, “(vw(;k"””n —65,P u,,lly)
N N
h h . . h
S max 116, = €l ny + Zlknnénp ty = iyl + ZIknnun A
n= n=

Applying this relation in (2.46), and then combining with (2.40), we get (2.39). O
3. A quasistatic frictional contact problem

In this section, we consider the numerical solution of a quasistatic frictional contact problem and apply the results from the previous
section to derive convergence order error estimates of the numerical solutions under appropriate solution regularity assumptions.
The setting of the contact problem is as follows. We assume that the set of governing equations is posed on a bounded Lipschitz
domain Q ¢ R? with boundary T, which is divided into three disjoint and measurable parts 'y, 'y and ' such that meas(I"p) > 0.
Let T > 0 and 7 € [0,T] be the time variable. We assume the contact is bilateral and the friction obeys Tresca’s friction law. The
strain-displacement relation is e(u) = %(Vu + (Vu)"). For a vector v, denote on the boundary by v, = v-v its normal component
and v, = v - v,v the tangential component, respectively. Let C : S?> — S? be the fourth order elasticity tensor, which is bounded,
symmetric and positive definite. Here, S? denotes the set of all symmetric second order tensor in R?. We will focus on the case of an
isotropic, nonhomogeneous linear elastic material:

Ce :=2ue + Mr(e)l,

where 4 and y are the constant Lamé coefficients, I is the unit matrix. We define the normal component as ¢, = (6v) - v and tangential
component as 6, = ov — o, v. Then, the classical formulation of the mechanical problem in a quasistatic process can be described as
follows.

Problem 3.1. Find a displacement field u : Q x [0,T] — R? satisfying the relations

o =Ce(u) inQx(0,T), (3.1)
—dive = f; inQx(0,7), 3.2)
u=0 onIpyx(0,T), (3.3)
ov=f, onlyx(0,7T), (3.4
u(0)=u; inQ (3.5)

u,=0, |lo|<g
lol<g=> u,=0 onI'c x(0,T). (3.6)
lo,|=g=>31>0s1 0, =—4u,

In Problem 3.1, f, is the density of the volume forces. Boundary condition (3.3) means that the body is clamped on I';,. Surface
traction f, acts on I'y x (0,T) in (3.4), g > 0 represents a friction bound function.
We introduce a Hilbert space

V={ve H(QR"|vl, =0, vl =0},
which is equipped with the inner product and the induced norm given by

w,v)y = / ew) 1 e@)dx, |vlly = @.v)/>.
Q
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Since meas(I'p) > 0, Korn’s inequality holds, implying that || - ||, is a norm on V, equivalent to the standard H'(Q;R?) norm on V.
To simplify the notation, we write (H' (Q))2 for H!(Q: R?), (L2(Q))* for L2(Q; R?) and so on. For the force densities, assume

2 2
fL e WSO, T (L)), f, € WO, T;(L*Ty)), (3.7)
and for the friction bound function, we assume
geL®Ty), g=>0ae. onlc.

We define a bilinear form a(:,-) over V by
a(u,v) = / Ce(u) : e(w)dx =2u(e(u), e(v)) + A(divu, dive) Vu,veV.
Q
Let

(Z®,v) 3=/f1(t)-vdx+/ HL@®-vds, j©) :=/ glv,|ds.
Q 'y e

Under the assumption (3.7), £(t) € W*(0,T; V'). Then the weak formulation of Problem 3.1 is as follows.
Problem 3.2. Find u : [0,T] — V such that
u(0) = u, (3.8)
and for a.e. t € (0,7),
a(u(®),v —u®) +j) — j@@®) 2 (€@),v-u) VveV. (3.9)
Assume the initial data satisfies
uy €V, a(uy,v)+jw) = (€0),v) YveV. (3.10)

Then we can apply Han and Sofonea [1, Theorem 4.16] to conclude that Problem 3.2 has a unique solution u € W*(0,T; V). Note
that (3.10) is trivially satisfied if u, = 0 and #(0) = 0. More generally, if the initial displacement u, and the initial loading £(0) are in
equilibrium in the sense that

a(uy,v) =(€0),v) Yvev,

then (3.10) is valid.
Following [25], we make the following assumption for the mesh 7;, that are compatible with the partition of the boundary I'
into its flat components:

Te=U2 e,
where for 1 <i <ij, I'¢; is a line segment if d = 2 or a polygon if d = 3.

Assumption 3.3. For each K € T, there exists a “virtual triangulation" 7 of K such that 7 is uniformly shape regular and quasi-
uniform. The corresponding mesh size of 7y is bounded below by a constant multiple of 4. Each edge of K is a side of a triangle in
Tk-

Define a local virtual element space on the element K,
Whi={ve H'(K) : Av=0,v],x € C°00K),v|, € P;(e) Ve C OK},

with the function values at the vertices of K as a set of degrees of freedom.
Let

ho._ 2
whi=wly (3.11)
Then the global virtual element space V" is defined by
Vhii=(veV vigeW, VKeT,).

Denote V,é' = V"|g. Corresponding to the local degrees of freedom on each element K, we choose function values at the vertices as
global degrees of freedom for functions in V. For a continuous function v, the global nodal interpolation operator is denoted by I'"v,
which is equal to I'yv on K. The following interpolation error estimate is shown in Chen and Huang [25].

Lemma 3.4. For the nodal interpolation operator Ty, : (H*(K ))2 - VI?, there holds

2
||V—IKV||(L2(K))2 + hillv - Igvlly, < hilvl(Hz(K))z, ve (HXK) nVg. (3.12)

9
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To construct a”(-,-), as in Beirao Da Veiga et al. [26], Zhang et al. [27], we define a projection operator ITy : WI? - ([PJI(K))2 by
the relations

(e(Tgv), e(@))g = (@), e(@)x Vg € (P(K)Y,

Mgvds = vds,
9, 0K
/KVXHdexz/vadx.
K K

At this point, we construct the bilinear form “,12(" -) on each polygon K € 7, as follows:
ay ", 0"y = 2p (e(Mu"), e My v™)) g + AT diva”, T dive™)
+ S @ —Hgu", V" — ™) vul, o' e V], (3.13)

Nk

where Hg is the L?-projection on K to Py(K) and Sk (v, w) = 2 1) x;(w), y; being the ith local degree of freedom on K, 1 <i <
i=

Nk :=dimV}].

To define an approximation of the right-hand side #(r), as in Beirao Da Veiga et al. [26], we introduce

&0, = Z /Hgfl(t)-ﬁhdx+/ fHr)-vhds votevh,
K 'y

KeT,

where l'Ig is the projection operator in (L?(K ))2 norm onto the space (Py(K ))? and 9" is the average value of the function v” over all
vertices of K. According to Chen and Huang [25], Beirao Da Veiga et al. [26], for all 7 € [0, T'], we have

h h h h

@@, 0" = (€20, 0") S hlLFiON 22 10" Ny
which implies

12 =" Dllyny S AIFO 2q2- (3.14)

Now we consider a semi-discrete approximation of Problem 3.2 by the VEM.

Problem 3.5. Find u”: [0,T] ~ V" such that

uh(0) = Phu, (3.15)
and for t € (0,T), a"(t) € V" with

a" W@, " —a"(0) + j@") - j@ ) = ("0, 0" - i) Vo' eV (3.16)

Similar to Problem 3.2, under the stated conditions on the data, Problem 3.5 has a unique solution u* € W10, T; V).

According to the definition of a’;<(~, -) in (3.13), it satisfies the condition (2.8). Similar to the result in Beirao Da Veiga et al. [26],
Brenner [28], the stability condition (2.9) can be obtained by the norm equivalence in Chen and Huang [25]. Applying the general
results in Chen and Huang [25], Brenner et al. [29], Brenner and Scott [30] for the virtual element space (3.11) with a degree k =1,
due to Assumption 3.3, we get the following result. We denote V| ¢ by V.

Lemma 3.6. For everyv € (HZ(K))Z, there exists a function v, € (I]3>1(K))2 such that
2

llv— v,,ll(Lz(K))z +hgllv—velly, S hKlvl(Hz(K))z. (3.17)
Lemma 3.7. Let P" : V — V" be defined by (2.11). Then forallu € V n (HXQ)),
h
1P"u = ully S hlul o0 (3.18)
Proof. Since meas(I";)) >0, by the Poincaré-Friedrichs inequality, we have
h h
|P u—ull(Lz(ﬂ))z S|P 'u—uly. (3.19)
Denote w), := P"u —u,. Then
a w3 < d'wy,wy) = d"(PMu,w)) — "y, w)). (3.20)

By the definition (2.11),
d"Phu,wy) = o (u, wy,).
Now

h h h h
a'(up,wy) = Z agur,wy) = Z [aK(u,—u,,,wh)+aK(u,,,wh)].
KeT), KeTy,

By the vector-valued function version of (2.8),
a',z(u,,, wy) = ag(u,, wp).

10
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Hence, we may write

ah(u,,wh) = Z [a',;(u, —u,, wy)+ag(u, —u, wh)] +a(u,wy,).
KeT),
Thus, from (3.20),
0‘*|Wh|%/ <- Z [0'1'(("1 — Uy, wy) +ag(u, —u, Wh)]~
KeT,
Then,
1/2
2 2
lwyly < [ 3 (|u—u,,|VK + |u—u,|VK)] .
KeT,

Applying (3.17) and (3.12), we deduce that

lwyly Sh |u|(Hz(Q)>2- (3.21)
By the triangle inequality, (3.12) and (3.21), we have
1P"u ~uly < hlul (3.22)

H2Q)"
Combining (3.19) and (3.22), we get the desired result (3.18). O

Theorem 3.8. Let uc WH®(0,T;V) and u" € W'*(0,T; V") be the solutions of Problems 3.2 and 3.5, respectively. Assume u €
L0, T: (HAQ)*), u € L'0, T:(H*(Q)"), il € L'0.T:(H*(T¢,))°) for 1 < i < iy. Then we have

h
lu—u ||Lm(0’T;V) < h.

Proof. Let I'"u be the global nodal interpolant of &. We apply Theorem 2.3 and choose v = I'"u:

llu = u"ll oo,y S = Pull oo o 1oy + 1P =l 1o gy + Nl = 10l 1o 7y

+IRA" DI )+ 1 =€ s oy (3.23)
where
RUIMu(n); 1) = a(u(), I"a(t) — () + j("a() — j@@) — (€@, I"a() — u()) (3.24)

From (3.12),

X ho |
[la—T u”Ll(o,T;V) s h“u”L‘(O,T;(HZ(Q))Z)'
By (3.18),

h
||lu—-7P u”LOO(o,T;V) < h”u“L“’(OﬁT;(HZ(Q))Z)’

h . .
P —all or.vy S h”u”L'((),T;(HZ(Q))Z)'

In view of (3.14) and the embedding theorem, we get

h
12 =2 w0 rwnyy S LA e 0 120

1/2
L10,T)"

As in Han and Sofonea[1, Section 8.1], we can show that under the stated regularity conditions, the weak solution u satisfies the
relations (3.1) and (3.2) a.e. in Q x (0, T') and the relation (3.4) a.e. onI"y; x (0, T). By integration by parts, forallv € V and r € [0, T],

we have

a(u(t),v) = /(G(I)V)‘l) ds — / dive(t) -vdx
r Q

:/ o-T(t)~des+/ fz(t)~vds+/f1(t)~vdx.
I'c 'y Q
Then from (3.24),

It only remains to bound the term || R(I'"u)||

RUIMa(r); 1) = / [0, (-1t (1) — 1, 0) + g (111, 0)] — 12, (01| dis.
I'c

Note that on I, I"u is equal to the usual continuous (P,)*> nodal interpolant of i. Then,
i 1/2
IRA" D) 1oy S M=l o) S h2< ,; lulil(o,r;mz(rc,,-»z)) : (325)
Using Theorem 2.3, we obtain the desired result. O

11
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Then we consider the fully discrete approximation of Problem 3.2.
Problem 3.9. Find u"* = {u*}N 'c V" such that
ulk = phuy (3.26)
and forn=1,...,N,
a" @™, v" - 5,ukh) + j") - j6,u) 2 (e V" — s uly ot e Vi (3.27)
Theorem 3.10. Let u€ W'®(0,T;V) and u"* c V" be the solutions of Problems 3.2 and 3.9, respectively. Assume u €

Cl([0,TT; (H2Q)), i € L'(O,T; V), i, € C([0.T]; (HZ(FC,,))Z) for 1 <i <i. Then, we have the optimal order error estimate

_ ok <
lrsnngv |, —u,"lly Sh+k. (3.28)
Proof. We apply Theorem 2.6 with v = I'"i,, the global interpolant of #,, 1 <n < N:

N

N
hk h h . . h .
max flu, —wlly S max fu, = Pru,lly + k15,7 un—un||y+§‘1k,,||un—1 i, lly
o

! n=1

N-1
h h h
+ 1211225\/ 1€, =€ Nny + E @1 =€) = @y —E DN wny

n=1
1/2

¥ ( i k,,Rn(Ihuﬂ)) , (3.29)
n=1

where

R, (I, := a(u,, [, —u,) + j(I"a,) - j@,) — (€, ["a, —u,).

By (3.18),
llw, = Pu,lly < hllwllggp < Bl ez,
Note that
N N N
X klls, Pru, =, lly <Yk, l18,P w, = Pl lly + Yk, 1P a, —
n=1 n=1 n=1

By (3.18), we have

| hoe . N
lla, = PPy lly S Allill 2 S Al

N
D kallP" i, =ty ly S Bllill g 722y
n=1

We take Taylor expansion for u,_; at 7,:

Tn-1
u,_ 1 =u,—k,u,+ / (t,—q — 9)(s)ds.

tn

Then,
r/l
8, Pu, — Phu, = k' (Ptu, — PMu,_) - Phu, = k! / (t,—y — $)Plii(s) ds.
-1

Hence,
N

N ty
PPy = PPyl [ = 9P dsly
1 n=1 Tl

n=

T
<k / 1P i(s)lly ds.
0

We then apply the stability inequality (2.12) to get

N
X klls, Pru, = Pha,lly S Klliill o 1)

n=1

By (3.12), we have

N

. h.- .
2 kallivy = 1",y Al g 12
n=1

12
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By (3.14), we have
h
12, =€l S Ao 2@y
Similar to (3.14),
101 =) = @y =Dy S L1 et = fiall 20

Combing with the embedding theorem,

N-1 N-1
2‘1 1@pir =€) = @1y = EDllyy S h ; 1101 = Frall 22

S h”fl ||L°°(0,T;(L2(Q))2)'

Similar to the derivation of (3.25), by integration by parts,

N N
h e .
r; k,R,(I"a,) < r; eall ity = gl o2

squares voronoi

0

0.2 0.4 0.6 0.8

-
o

0.2 0.4 0.6 0.8
smoothed-voronoi non-convex

Fig. 1. Four different types of polygonal meshes.

Table 1
Numerical errors at ¢ = 1 on square meshes for lowest-order
VEM.

kh  GH G R Gy (Gw)
error 0.1745 0.0911 0.0458 0.0221 0.0099
order \ 0.9377 0.9921 1.0461 1.1681
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N i
2 . AT
s z{ kh zf Mall o 2 S BN o ey
pr pe

Combining the above inequalities, we derive (3.28) from (3.29). O

4. Numerical solution of the discrete problem

In this section, we report numerical results on a two dimensional test problem. We use the VEM to discretize the spatial variable
and uniform backward difference scheme in time. For the discrete problem, we solve it by an adaptive semi-smooth Newton method
[24]; for details, cf. Feng et al. [15]. In the numerical simulation, the polygonal meshes are produced by an algorithm discussed in
Talischi et al. [31] and the codes are written based on the program described in Sutton [32]. Four different types of meshes used in
the following numerical example are presented in Fig. 1.

Let the domain Q = (0,1) X (0, 1) represent the cross section of a three-dimensional linearly elastic body. The boundary 0Q is
decomposed into three parts: I'p,, I'c, I'z. On the boundary I';, = {1} x (0, 1), the body is clamped and therefore the displacement field
vanishes there. On the boundary I' = (0, 1) x {0}, the body is in bilateral frictional contact with a rigid obstacle, and the friction is
modeled with Tresca’s law. The remaining part I'j; is a traction boundary condition, the force f, acts on the boundary whereas the
part of the boundary represented by (0, 1) x {1} is traction free. No volume force is assumed to act on the body Q. For computation,
we use the following data

E =200daN/mm?, =03, g=4daN/mm?,
f1 = 0,07 daN/mm?,  f,(x;, x5, 1) = (8(1.25 — x,)t, =0.01r)daN/mm?,
uy=0, T =1s.

where E is the Young’s modulus and « is the Poisson’s ratio of the material.

Numerical solution u1 Numerical solution ut

0.15 0.15
0.1 0.1 4
0.05 4 0.05
3 3
04 04
-0.05 -0.05
-0.1 0 -0.1 4 0
0 0
0.5 squares 0.5 voronoi
05 05
1 1 1 1
y x ¥y >
Numerical solution ut Numerical solution u1
0.15 0.15
0.1 0.1
0.05 0.05 4
= s
04 04
-0.05 -0.05 4
-0.1 0 0.1 4 0
0 )
0.5 smoothed-voronoi 0.5 non-convex
05 05
1 A X 1 1 X

Fig. 2. The numerical solution related to different meshes.
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Then the Lame coefficients are
Ex E
A= , U= .
1+ x)(1 —-2k) 2(1 +x)
The numerical solutions in tangential direction, corresponding to different meshes are displayed in Fig. 2, respectively.
In Table 1 and Fig. 3, we report relative errors of the numerical solutions in the energy norm on square meshes, ||u,..; —
upll g/ llues |l £, where the energy norm is defined by the formula

1 1/2
lellg == ﬁ(Ce(V),e(v))Q -

The aim of this part is to illustrate the convergence of the discrete scheme and to provide numerical evidence of the optimal error
estimate obtained in Section 3. To this end, we compute a sequence of numerical solutions by using uniform discretization with
the spatial discretization parameter s and the time step k. Since the true solution u is not available, we use the numerical solution
corresponding to a fine discretization of Q and a small time step as the “reference” solution u; in computing the solution errors. The
numerical solution with A = 1/256 and k = 1/256 is taken to be the “reference” solution u,.;. Note that the theoretical error bound
predicts an optimal first order convergence of the numerical solutions measured in the energy norm, under certain solution regularity
assumptions.
The relative errors in the energy norm are shown in Fig. 3.

Remark 4.1. Many people are concerned about comparing the performance of the virtual element method with that of other nu-
merical methods such as the finite element method. However, it is rather involved to address the issue. We refer the reader to the
references [33-35] for discussions along this line. Note that if the mesh is triangular, the virtual element method related to WI? is the

0.1745 B
=
[}
—
5 0.0911 B
-~
5 0.0458 B
|
o
8 0.0221 B
="
0.0099 1
0.0313 0.0625 0.125 0.25 0.5
h+k

Fig. 3. Relative errors in energy norm.
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linear finite element method. Thus, it makes sense to compare the number of degrees of freedom of the virtual element method with
that of the traditional linear finite element method on grids of same scales. It appears difficult to establish a rigorous and complete
theoretical result for the comparison, and so let us present some relevant numerical values. Over a unit square, consider numbers of
nodes for polygonal meshes and triangular meshes with the equal number of mesh elements n,, as shown in Fig. 4. The node counts
for the polygonal meshes and the triangular meshes are 99 vs. 36 for n, = 50, 400 vs. 121 for n, = 200, 1601 vs. 441 for n, = 800, and
9986 vs. 2601 for n, = 5000, respectively. When n, = 5000, for the polygonal mesh, the longest element side is 0.0219, and for the
triangular mesh, the element side parallel to the axes is 0.02. These numerical results suggest that the polygonal mesh tends to have
more vertices than the triangular mesh with the same number of elements, and hence corresponds to a relatively larger number of
degrees of freedom.

On the other hand, the virtual element method exhibits certain advantages on robustness against mesh distortion and handling
problems with high regularity solutions (cf. Brezzi and Luisa [33], Mengolini et al. [34], Zhang et al.[35]). Moreover, the virtual
element method works well even on more complex geometries with unstructured or non-convex meshes.

Evidently, further investigations are needed to determine relative strengths and weaknesses of the virtual element method as
compared to the finite element method and other numerical methods.
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