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 a b s t r a c t

In this paper, we first consider the numerical solution of an abstract quasistatic variational in-
equality arising in the study of quasistatic physical processes. The temporal discretization is car-
ried out by the backward Euler difference scheme, while the spatial discretization is based on 
the virtual element method. A general framework is provided for the spatially semidiscrete and 
the fully discrete approximations of the quasistatic variational inequality. Then, as an applica-
tion of the theoretical results on the abstract problem, a quasistatic contact problem is studied 
and optimal order error estimates are derived for the lowest-order VEM, under appropriate solu-
tion regularity assumptions. Numerical examples are presented to show the performance of the 
proposed methods.

1.  Introduction

Frictional contact phenomena for deformable bodies abound in industry and daily life [1–5]. Much research has been done on 
modeling, analysis and numerical simulations of contact processes. In particular, comprehensive presentations of studies of contact 
models for the quasistatic processes can be found in Han and Sofonea[1], Shillor et al. [4]. A unified approach, which can be applied 
to various quasistatic problems, including unilateral and bilateral contact with nonlocal friction, or normal compliance conditions, is 
given in Badea and Cocou[6], and quasistatic problems with Coulomb friction are analyzed in Cocou[7]. Quasistatic contact problems 
are naturally studied in the form of quasistatic variational inequalities. Such quasistatic variational inequalities also arise in the study 
of other applications in sciences and engineering, e.g., in elastoplasticity [8]. To solve the quasistatic variational inequalities, the finite 
element method and the discontinuous Galerkin (DG) method have been commonly applied, cf. Barboteu et al. [9], Han et al. [10] 
and Wang et al. [11], respectively. In this paper, we study the virtual element method (VEM) for the numerical solution of quasistatic 
variational inequalities.
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\begin {equation}a(u_0,v)+j(v)\ge \langle \ell (0),v\rangle \quad \forall \,v\in V. \label {u_0}\end {equation}


$u:[0,T]\rightarrow V$


\begin {equation}u(0)=u_0 \label {eq:2.1a}\end {equation}


$t\in (0,T)$


$\dot {u}(t)\in V$


\begin {equation}\label {Eq:variation} a(u(t),v-\dot {u}(t))+j(v)-j(\dot {u}(t))\ge \langle \ell (t),v-\dot {u}(t)\rangle \quad \forall \,v\in V.\end {equation}
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$a(\cdot ,\cdot )$


\begin {equation}a(v,w):=\sum _{K\in {\mathcal T}_h} a_K(v,w),\quad \forall \, v,w\in V, \label {eq:2.3a}\end {equation}


$a_K(\cdot ,\cdot )$


$V_K:=V{|}_K$
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$V_K$


$V_K$


${\|\cdot \|}_{V_K}$


\begin {equation*}\label {norm-summation} \|v\|_V^2=\sum _{K\in {\mathcal T}_h} \|v\|_{V_K}^2\quad \forall \, v\in V,\end {equation*}


$K\in {\mathcal T}_h$


\begin {equation}\label {bilinear-bounded} a_K( v, v)\lesssim {\|v\|}_{V_K}^2\quad \forall \, v\in V_K,\end {equation}
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$\ell ^h\in W^{1,\infty }{(0,T;(V^h)}^\prime )$


$\ell $


\begin {equation}\langle \ell ^h(0),v^h\rangle = \langle \ell (0),v^h\rangle \quad \forall \,v^h\in V^h. \label {ell_0}\end {equation}


$V^h$


$a(\cdot ,\cdot )$


$a^h(\cdot ,\cdot )$


\begin {equation}\label {sum1} a^h( u,v):=\sum _{K\in {\mathcal T}_h}a^h_{K}( u, v),\end {equation}


$a^h_{K}(\cdot ,\cdot )$


$a_{K}(\cdot ,\cdot )$
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$k$


$k$


\begin {equation}\label {consistency} a^h_K( p, v)=a_K( p, v)\quad \forall \,p\in \mathbb {P}_k(K),\,v \in V^h_K:=V^h{|}_K.\end {equation}


$\alpha _{\star }$


$\alpha ^{\star }$


$h_K$


$K$


\begin {equation}\label {stability} \alpha _{\star }a_K(v, v)\leq a^h_K(v,v)\le \alpha ^{\star } a_K(v,v)\quad \forall \,v\in V^h_K.\end {equation}


${\|v^h\|}_{a^h} := a^h{(v^h,v^h)}^{1/2}$


$v^h\in V^h$


$a(\cdot ,\cdot )$


${\|\cdot \|}_{a^h}$


$V^h$


${\|\cdot \|}_V$


$V^h$


$h$


\begin {equation}\label {elem} x,a,b\geq 0~ {\rm and}~ x^2\leq ax+b\Rightarrow x\leq a+b^{\frac {1}{2}}.\end {equation}


$\mathcal {P}^h:V\rightarrow V^h$


\begin {equation}\label {relation1} \mathcal {P}^hu\in V^h,\quad a^h(\mathcal {P}^hu,v^h)=a(u,v^h)\quad \forall \, v^h\in V^h.\end {equation}
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$v^h\mapsto a(u,v^h)$


$V^h$


$\mathcal {P}^hu\in V^h$


$v^h=\mathcal {P}^hu$


$a^h$


$a$


\begin {equation}{\|\mathcal {P}^hu\|}_V \lesssim {\|u\|}_V. \label {eq:2.10a}\end {equation}


$u^h_0=\mathcal { P}^h u_0$


\begin {equation*}a^h(\mathcal { P}^hu_0,v^h)=a(u_0,v^h)\quad \forall \, v^h\in V^h.\end {equation*}


\begin {equation}a^h(\mathcal {P}^hu_0,v^h)+j(v^h)\ge \langle \ell ^h(0),v^h\rangle \quad \forall \,v^h\in V^h. \label {u^h_0}\end {equation}
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$a^h$


$\ell ^h$


$u^h :[0,T]\rightarrow V^h$


\begin {equation}\label {eq:2.8a} u^h_0=\mathcal {P}^hu_0\end {equation}


$t\in (0,T)$


$\dot {u}^h(t)\in V^h$


\begin {equation}\label {discrete} a^h(u^h(t),v^h-\dot {u}^h(t))+j(v^h)-j(\dot {u}^h(t))\ge \langle \ell ^h(t),v^h-\dot {u}^h(t)\rangle \quad \forall \, v^h\in V^h.\end {equation}


$u^h\in W^{1,\infty }(0,T;V^h)$


$L^1(0,T;V^h)$


$v^h$


$L^1(0,T;V)$


$v^h(t)\in V^h$


$t\in (0,T)$


${\|v^h(\cdot )\|}_V\in L^1(0,T)$


$u$


$u^h$


$v^{h} \in L^{1}(0,T;V^{h})$


\begin {align}\label {aim} {\|u-u^{h} \|}_{L^{\infty }(0,T;V)} & \lesssim {\|u-\mathcal P^{h} u\|}_{L^{\infty }(0,T;V)}+{\|\mathcal P^{h} {\dot {u}}- {\dot {u}}\|}_{L^{1}(0,T;V)} + {\|{\dot {u}}-v^{h} \|}_{L^{1}(0,T;V)}\nonumber \\ & \quad +{\|R(v^{h} ; {\cdot } )\|}_{L^{1}(0,T)}^{1/2} +{\| \ell -\ell ^{h} \|}_{W^{1,1}(0,T;(V^{h})^{\prime } )},\end {align}


$t\in (0,T)$


\begin {align}& {\|\ell (t)-\ell ^h(t)\|}_{(V^h)'} :=\sup _{v^h\in V^h}\frac {\langle \ell (t)-\ell ^h(t),v^h\rangle }{{\|v^h\|}_V},\nonumber \\ & R(v^h;t):=a( u(t), v^h-\dot {u}(t))+j( v^h)-j(\dot {u}(t))- \langle \ell (t), v^h-\dot {u}(t)\rangle .\label {second}\end {align}


${\|\cdot \|}_{a^h}$


${\|\cdot \|}_V$


$V^h$


$v^h\in L^1(0,T;V^h)$


\begin {equation}\label {Eq2:14} \frac {1}{2}\frac {d}{dt}{\|\mathcal {P}^hu(t)-u^h(t)\|}^2_{{a^h}} = a^h(\mathcal P^h u(t)-u^h(t),\mathcal P^h\dot {u}(t)-\dot {u}^h(t))=T_1+T_2+T_3,\end {equation}


\begin {align*}T_1&:=a^h(\mathcal P^h u(t)-u^h(t),\mathcal P^h\dot {u}(t)-\dot {u}(t)),\\ T_2&:=a^h(\mathcal P^hu(t)-u^h(t),\dot {u}(t)- v^h(t)),\\ T_3&:=a^h(\mathcal P^hu(t)-u^h(t),v^h(t)-\dot {u}^h(t)).\end {align*}


\begin {align}T_1& \lesssim {\|\mathcal { P}^hu(t)-u^h(t)\|}_{{a^h}} {\|\mathcal {P}^h\dot {u}(t)-\dot {u}(t)\|}_V,\label {Eq2:15}\\ T_2&\lesssim {\|\mathcal {P}^hu(t)-u^h(t)\|}_{{a^h}} {\|\dot {u}(t)-v^h(t)\|}_V.\label {Eq2:16}\end {align}


\begin {equation}\label {T3} T_3 = a^h(\mathcal P^hu(t),v^h-\dot {u}^h(t))-a^h(u^h(t), v^h(t)-\dot {u}^h(t)).\end {equation}


\begin {align}a^h(\mathcal P^h u(t),v^h(t)-\dot {u}^h(t)) & =a(u(t),v^h(t)-\dot {u}^h(t)) \nonumber \\ &=a(u(t),v^h(t)-\dot {u}(t))+a(u(t),\dot {u}(t)-\dot {u}^h(t)). \label {eq:2.19}\end {align}


$v=\dot {u}^h(t)$


\begin {equation}a(u(t),\dot {u}^h(t)-\dot {u}(t))+j(\dot {u}^h(t))-j(\dot {u}(t))\ge \langle \ell (t),\dot {u}^h(t)-\dot {u}(t)\rangle _V. \label {eq:def1}\end {equation}


\begin {equation}\label {eq:mid} -a^h(u^h(t),v^h(t)-\dot {u}^h(t))\leq j(v^h(t))-j(\dot {u}^h(t))- \langle \ell ^h(t), v^h(t)-\dot {u}^h(t)\rangle .\end {equation}


\begin {align}\label {Eq2:17} T_3&\le a(u(t),v^h(t)-\dot {u}(t))+j(v^h(t))-j(\dot {u}(t))- \langle \ell (t),\dot {u}^h(t)-\dot {u}(t)\rangle -\langle \ell ^h(t),v^h(t)-\dot { u}^h(t)\rangle \nonumber \\ &\le R(v^h(t);t)+\langle \ell (t)-\ell ^h(t),v^h(t)-\dot { u}^h(t)\rangle ,\end {align}


$R(v^h(t);t)$


\begin {align*}\frac {1}{2}\frac {d}{dt}{\|\mathcal { P}^hu(t)-u^h(t)\|}_{{a^h}}^2& \lesssim {\|\mathcal {P}^hu(t)-u^h(t)\|}_{{a^h}}{\|\mathcal {P}^h\dot {u}(t)-\dot {u}(t)\|}_V \\ &\quad {} +{\|\mathcal {P}^hu(t)-u^h(t)\|}_{{a^h}}{\|\dot {u}(t)-v^h(t)\|}_V+R(v^h(t);t)\\ &\quad {} +\langle \ell (t)-\ell ^h(t),v^h(t)-\mathcal { P}^h\dot {u}(t)\rangle +\langle \ell (t)-\ell ^h(t),\mathcal {P}^h\dot {u}(t)-\dot {u}^h(t)\rangle .\end {align*}


$s\in [0,T]$


$t=0$


$s$


$\mathcal {P}^hu_0=u^h_0$


\begin {align*}{\|\mathcal P^h u(s)- u^h(s)\|}_{{a^h}}^2&\lesssim \int _0^s{\|\mathcal P^hu(t)-u^h(t)\|}_{{a^h}}\big ({\|\mathcal P^h\dot {u}(t)-\dot {u}(t)\|}_{V}+{\|\dot {u}(t)-v^h(t)\|}_{V}\big )dt\\ &\quad {} +\int _0^s R(v^h(t);t)\,dt+\int _0^s \langle \ell (t)-\ell ^h(t),v^h(t)-\mathcal P^h\dot {u}(t)\rangle \,dt\\ &\quad {}+\int _0^s\langle \ell (t)-\ell ^h(t),\mathcal P^h\dot {u}(t)-\dot {u}^h(t)\rangle dt.\end {align*}


${\|\cdot \|}_{a^h}$


${\|\cdot \|}_V$


\begin {align}\label {eq2.23} {\|\mathcal P^h u(s)- u^h(s)\|}_{V}^2&\lesssim \int _0^s{\|\mathcal P^hu(t)-u^h(t)\|}_{V}\big ({\|\mathcal P^h\dot {u}(t)-\dot {u}(t)\|}_{V}+{\|\dot {u}(t)-v^h(t)\|}_{V}\big )dt\nonumber \\ &\quad {} +\int _0^s R(v^h(t);t)\,dt+\int _0^s \langle \ell (t)-\ell ^h(t),v^h(t)-\mathcal P^h\dot {u}(t)\rangle \,dt\nonumber \\ &\quad {}+\int _0^s\langle \ell (t)-\ell ^h(t),\mathcal P^h\dot {u}(t)-\dot {u}^h(t)\rangle dt.\end {align}


\begin {align}\label {eq2.24} \int _0^s\langle \ell (t)-\ell ^h(t),\mathcal P^h\dot {u}(t)-\dot {u}^h(t)\rangle dt&=\langle \ell (s)-\ell ^h(s),\mathcal P^h u(s)-u^h(s)\rangle \nonumber \\ &\quad {} -\int _0^s\langle \dot {\ell }(t)-\dot {\ell }^h(t), \mathcal P^h u(t)- u^h(t)\rangle dt.\end {align}


\begin {equation}W^{1,1}(0,T; (V^h)')\hookrightarrow C([0,T];(V^h)'). \label {embed}\end {equation}


\begin {align}\label {eq228} \int _0^s\langle \ell (t)-\ell ^h(t),v^h(t)-\mathcal P^h\dot {u}(t)\rangle dt&\lesssim {\|\ell -\ell ^h\|}_{L^{\infty }(0,T;(V^h)')}{\|v^h-\mathcal P^h\dot {u}\|}_{L^{1}(0,T;V)}\nonumber \\ &\lesssim {\|\ell -\ell ^h\|}_{W^{1,1}(0,T;(V^h)')}{\|v^h-\mathcal P^h\dot {u}\|}_{L^{1}(0,T;V)}.\end {align}


\begin {align*}{\|\mathcal P^h u- u^h\|}_{L^{\infty }(0,T; V)}^2&\lesssim {\|\mathcal P^hu- u^h\|}_{L^{\infty }(0,T;V)}\big ( {\|\mathcal P^h\dot {u}-\dot {u}\|}_{L^{1}(0,T;V)}+{\|\dot {u}-v^h\|}_{L^{1}(0,T;V)}\\ &\quad {}+{\|\ell -\ell ^h\|}_{W^{1,1}(0,T;(V^h)')}\big )+{\|R(v^h)\|}_{L^1(0,T)}\\ &\quad {}+{\|\ell -\ell ^h\|}_{W^{1,1}(0,T;(V^h)')}{\|v^h-\mathcal P^h\dot {u}\|}_{L^{1}(0,T;V)},\end {align*}


${\|R(v^h)\|}_{L^1(0,T)}$


${\|R(v^h;\cdot )\|}_{L^1(0,T)}$


\begin {equation*}{\|v^h-\mathcal P^h\dot {u}\|}_{L^{1}(0,T;V)}\le {\|\mathcal P^h\dot {u}-\dot {u}\|}_{L^{1}(0,T;V)}+{\|\dot {u}-v^h\|}_{L^{1}(0,T;V)},\end {equation*}


\begin {align}{\|\mathcal P^hu- u^h\|}_{L^{\infty }(0,T;V)}&\lesssim {\|\mathcal P^h\dot {u}-\dot {u}\|}_{L^{1}(0,T;V)}+{\|\dot {u}-v^h\|}_{L^{1}(0,T;V)}\nonumber \\ &\quad {}+{\|R(v^h)\|}_{L^{1}(0,T)}^{1/2}+{\|\ell -\ell ^h\|}_{W^{1,1}(0,T;(V^h)')}. \label {eq:2.28a}\end {align}


\begin {equation*}{\|u-u^h\|}_{L^{\infty }(0,T;V)} \le {\|u-\mathcal P^hu\|}_{L^{\infty }(0,T;V)} + {\|\mathcal P^hu-u^h\|}_{L^{\infty }(0,T;V)},\end {equation*}
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$1\le n\le N$


$k=\max _nk_n$


$u_n=u(t_n)$


$u(t)$


$\Delta u_n=u_n-u_{n-1}$


$\delta _n u_n=\Delta u_n/k_n$


$u^{hk}=\{u_n^{hk}\}_{n=0}^{N}\subset V^h$


\begin {equation}u^{hk}_0=\mathcal {P}^hu_0 \label {eq:2.24a}\end {equation}


$n=1,\dots ,N$


\begin {equation}\label {pro:fully-discrete} a^h\left (u_n^{hk},v^h-\delta _n u_n^{hk}\right )+j\left (v^h\right )-j\left (\delta _nu_n^{hk}\right )\geq \langle \ell _n^h, v^h-\delta _n u_n^{hk}\rangle _{V}\quad \forall \, v^h \in V^h.\end {equation}


$\ell ^h_n\approx \ell ^h(t_n)$


$0\le n\le N$


$\ell ^h$


$\ell $


$[0,T]$


$u_0$


$\ell ^h$


$\ell _1^h,\ell _2^h\in W^{1,1}(0,T;(V^h)')$


$\mathcal { P}^hu_{1,0}, \mathcal { P}^hu_{2,0}\in V^h$


$\{u_{1,n}^{hk}\}_{n=0}^N$


$\{u_{2,n}^{hk}\}_{n=0}^N$


\begin {equation}\max _{0\leq n\leq N}{\|u_{1,n}^{hk}-u_{2,n}^{hk}\|}_{V}\lesssim {\|\mathcal P ^hu_{1,0}-\mathcal P^h u_{2,0}\|}_{V}+{\| \ell _1^h-\ell _2^h\|}_{W^{1,1}(0,T;(V^h)')}. \label {eq:2.30a}\end {equation}


$\{u_{1,n}^{hk}\}_{n=0}^N$


$\{u_{2,n}^{hk}\}_{n=0}^N$


\begin {flalign}\label {1} &a^h(u_{1,n}^{hk},v^h-\delta _n u_{1,n}^{hk})+j(v^h)-j(\delta _n u_{1,n}^{hk})\geq \langle \ell _{1,n}^h, v^h-\delta _n u_{1,n}^{hk}\rangle \quad \forall \, v^h\in V^h,\\ \label {2} &a^h(u_{2,n}^{hk},v^h-\delta _n u_{2,n}^{hk})+j(v^h)-j(\delta _nu_{2,n}^{hk})\geq \langle \ell _{2,n}^h, v^h-\delta _nu_{2,n}^{hk}\rangle \quad \forall \,v^h\in V^h.\end {flalign}


$e_n= u_{1,n}^{hk}- u_{2,n}^{hk}$


$v^h=\delta _n u_{2,n}^{hk}$


$v^h=\delta _n u_{1,n}^{hk}$


\begin {equation*}A_n^h:=a^h(e_n,\delta _ne_n)\leq \langle \ell _{1,n}^h- \ell _{2,n}^h,\delta _n e_n\rangle .\end {equation*}


\begin {equation*}A_n^h=\frac {1}{k_n}\big (a^h(e_n,e_n)-a^h(e_n, e_{n-1})\big ).\end {equation*}


\begin {equation*}a^h(e_n, e_{n-1}) \le \frac {1}{2} \left ( {\|e_n\|}_{a^h}^2 + {\|e_{n-1}\|}_{a^h}^2 \right ).\end {equation*}


\begin {equation}\label {lower} A_n^h\ge \frac {1}{2k_n}\big ({\| e_n\|}_{a^h}^2-{\| e_{n-1}\|}_{a^h}^2\big ).\end {equation}


$1\leq n\leq N$


\begin {equation*}{\| e_n\|}_{a^h}^2-{\|e_{n-1}\|}_{a^h}^2\leq 2\langle \ell _{1,n}^h- \ell _{2,n}^h, e_n-e_{n-1}\rangle .\end {equation*}


\begin {align*}{\|e_n\|}_{a^h}^2&\leq {\| e_0\|}_{a^h}^2+2\sum _{i=1}^{n}\langle \ell _{1,i}^h-\ell _{2,i}^h, e_i- e_{i-1}\rangle \\ &={\| e_0\|}_{a^h}^2+2\langle \ell _{1,n}^h- \ell _{2,n}^h, e_n\rangle -2\langle \ell _{1,1}^h- \ell _{2,1}^h,e_0\rangle \\ &\quad {} +2\sum _{i=1}^{n-1}\big \langle (\ell _{1,i}^h-\ell _{1,i+1}^h)-( \ell _{2,i}^h- \ell _{2,i+1}^h), e_i\big \rangle .\end {align*}


${\|\cdot \|}_{a^h}$


${\|\cdot \|}_V$


\begin {align*}{\|e_n\|}_V^2 & \lesssim {\|e_0\|}_V^2+\langle \ell _{1,n}^h- \ell _{2,n}^h, e_n\rangle -\langle \ell _{1,1}^h- \ell _{2,1}^h,e_0\rangle \\ &\quad {} +\sum _{i=1}^{n-1}\big \langle (\ell _{1,i}^h-\ell _{1,i+1}^h)-( \ell _{2,i}^h- \ell _{2,i+1}^h), e_i\big \rangle .\end {align*}


$M=\max \limits _{0\leq n\leq N}{\| e_n\|}_{ V}$


$n$


$N$


\begin {align*}M^2 & \lesssim {\|e_0\|}_{ V}^2+M\big ({\|\ell _{1,n}^h-\ell _{2,n}^h\|}_{(V^h)'}+{\| \ell _{1,1}^h- \ell _{2,1}^h\|}_{ (V^h)'}\\ &\quad {} +\sum _{i=1}^{n-1}{\|(\ell _{1,i}^h-\ell _{1,i+1}^h)-(\ell _{2,i}^h-\ell _{2,i+1}^h)\|}_{(V^h)'}\big ).\end {align*}


\begin {equation*}{\|e_n\|}_{V}\lesssim {\|\mathcal P ^hu_{1,0}-\mathcal P^h u_{2,0}\|}_{ V}+{\|\ell _1^h- \ell _2^h\|}_{W^{1,1}(0,T;(V^h)')}.\end {equation*}


$u$


$u_n^{hk}$


$\{v^h_n\}_{n=1}^N \subset V^h$


\begin {align}\max _{1\le n\le N}{\|u_n-u_n^{hk}\|}_V & \lesssim \max _{1\le n\le N} {\|u_n-\mathcal { P}^hu_n\|}_V+\sum \limits _{n=1}^{N}k_n{\|\delta _n\mathcal {P}^h u_n-\dot {u}_n\|}_{V}+\sum \limits _{n=1}^{N}k_n{\|\dot {u}_n-v^h_n\|}_V\nonumber \\ &\quad {} + \max _{1\le n\le N}{\|\ell _n-\ell ^h_n\|}_{(V^h)'} + \sum _{n=1}^{N-1} {\|(\ell _{n+1}-\ell _n)-(\ell _{n+1}^h-\ell _n^h)\|}_{(V^h)'} \nonumber \\ &\quad {} +{\Big (\sum _{n=1}^{N} k_n R_n(v^h_n)\Big )}^{1/2}, \label {err_bd}\end {align}


\begin {align*}& {\|\ell _n-\ell ^h_n\|}_{(V^h)'}:=\sup _{v^h\in V^h} \frac {\langle \ell _n-\ell _n^h,v^h\rangle }{{\|v^h\|}_V},\\ & R_n(v^h):=a(u_n,v^h-\dot {u}_n)+j(v^h)-j(\dot {u}_n)-\langle \ell _n, v^h-\dot {u}_n\rangle .\end {align*}


$e_n=u_n- u_n^{hk}$


\begin {equation*}e_n=u_n-\mathcal {P}^hu_n+\mathcal {P}^hu_n- u_n^{hk}.\end {equation*}


\begin {equation}\label {use} {\|e_n\|}_V\le {\|u_n-\mathcal {P}^hu_n\|}_V + {\|\mathcal {P}^hu_n- u_n^{hk}\|}_V.\end {equation}


$e_n^h=\mathcal {P}^hu_n- u_n^{hk}$


$A_n^h=a^h(e_n^h,\delta _n e_n^h)$


\begin {equation}A_n^h\ge \frac {1}{2k_n}\big ({\| e_n^h\|}_{a^h}^2-{\| e_{n-1}^h\|}_{a^h}^2). \label {eq:2.36a}\end {equation}


\begin {equation*}\delta _n e_n^h = \delta _n\mathcal {P}^h u_n-\delta _nu_n^{hk} = \left (\delta _n\mathcal {P}^hu_n-\dot {u}_n\right ) + \left (\dot {u}_n- v^h\right )+ \left (v^h-\delta _n u_n^{hk}\right ).\end {equation*}


\begin {equation}\label {upper} A_n^h=a^h\left (e_n^h,\delta _n\mathcal {P}^hu_n-\dot {u}_n\right )+a^h\left (e_n^h,\dot {u}_n-v^h\right )+a^h\left (\mathcal {P}^h u_n-u_n^{hk},v^h-\delta _n u_n^{hk}\right ).\end {equation}


$\mathcal {P}^h$


\begin {equation*}a^h(\mathcal {P}^hu_n-u_n^{hk},v^h-\delta _nu_n^{hk})=a(u_n,v^h-\delta _nu_n^{hk})-a^h( u_n^{hk},v^h-\delta _n u_n^{hk}).\end {equation*}


$v=\delta _nu_n^{hk}$


\begin {equation}\label {tran1s} a(u_n,\delta _nu_n^{hk}-\dot {u}_n)+j(\delta _n u_n^{hk})-j(\dot {u}_n)\geq \langle \ell _n,\delta _nu_n^{hk}-\dot {u}_n\rangle .\end {equation}


$v^h=v^h_n$


\begin {align*}-a^h(u_n^{hk},v^h_n-\delta _nu_n^{hk}) & \leq a(u_n,\delta _nu_n^{hk}-\dot {u}_n)+j(v^h_n)- j(\dot {u}_n) \\ &\quad {} - \langle \ell _n,\delta _nu_n^{hk}-\dot {u}_n\rangle -\langle \ell _n^h,v^h_n-\delta _nu_n^{hk}\rangle .\end {align*}


\begin {align}\label {ph} a^h(\mathcal {P}^hu_n-u_n^{hk},v^h_n-\delta _nu_n^{hk}) &\leq a(u_n,v^h_n-\delta _nu_n^{hk})+a(u_n,\delta _nu_n^{hk}-\dot {u}_n)+j(v^h_n)\nonumber \\ &\quad {}-j(\dot {u}_n)-\langle \ell _n,\delta _nu_n^{hk}-\dot {u}_n\rangle -\langle \ell _n^h,v^h_n-\delta _n u_n^{hk}\rangle \nonumber \\ &= R_n(v^h_n)+\langle \ell _n-\ell _n^h,v^h_n-\delta _nu_n^{hk}\rangle .\end {align}


\begin {align}\label {eq239} \frac {1}{2k_n}\big ({\|e_n^h\|}_{a^h}^2-{\|e_{n-1}^h\|}_{a^h}^2\big ) & \le a^h(e_n^h,\delta _n\mathcal {P}^h u_n-\dot {u}_n)+a^h(e_n^h,\dot {u}_n-v_n^h)+R_n(v^h_n)\nonumber \\ &\quad {} +\langle \ell _n-\ell _n^h,v_n^h-\delta _n\mathcal {P}^hu_n\rangle +\frac {1}{k_n}\langle \ell _n-\ell _n^h,e_n^h-e_{n-1}^h\rangle .\end {align}


$n$


$i$


$k_i$


$i=1$


$n$


\begin {align*}{\|e_n^h\|}_{a^h}^2 & \le 2 \sum _{i=1}^n k_i a^h(e_i^h,\delta _i\mathcal {P}^h u_i-\dot {u}_i) +2 \sum _{i=1}^n k_i a^h(e_i^h,\dot {u}_i-v^h_i)+2 \sum _{i=1}^n k_i R_i(v^h_i)\\ &\quad {} +2 \sum _{i=1}^n k_i\langle \ell _i-\ell _i^h,v^h_i-\delta _i\mathcal {P}^hu_i\rangle +2 \sum _{i=1}^n\langle \ell _i-\ell _i^h,e_i^h- e_{i-1}^h\rangle ,\end {align*}


\begin {equation*}e_0^h=\mathcal {P}^hu_0- u^h_0=0.\end {equation*}


\begin {equation*}\sum _{i=1}^n\langle \ell _i-\ell _i^h,e_i^h- e_{i-1}^h\rangle = \langle \ell _n-\ell _n^h,e_n^h\rangle - \sum _{i=1}^{n-1}\langle (\ell _{i+1}-\ell _i)-(\ell _{i+1}^h-\ell _i^h),e_i^h\rangle .\end {equation*}


$M=\max \limits _{1\le n\le N}{\|e_n^h\|}_{a^h}$


\begin {align*}M^2 & \lesssim M\Big ( \sum _{n=1}^Nk_n{\|\delta _n\mathcal {P}^hu_n-\dot {u}_n\|}_V+\sum \limits _{n=1}^N k_n{\|\dot {u}_n-v^h_n\|}_V\\ &\quad {} +\max _{1\le n\le N}{\|\ell _n-\ell ^h_n\|}_{(V^h)'} + \sum _{n=1}^{N-1} {\|(\ell _{n+1}-\ell _n)-(\ell _{n+1}^h-\ell _n^h)\|}_{(V^h)'} \Big )\\ &\quad {} +\sum _{n=1}^Nk_nR_n(v^h_n)+\sum _{n=1}^Nk_n{\|\ell _n-\ell _n^h\|}_{(V^h)'}{\|v^h_n-\delta _n\mathcal { P}^hu_n\|}_V.\end {align*}


${\|\cdot \|}_{a^h}$


${\|\cdot \|}_V$


$V^h$


\begin {align}\max _{1\le n\le N}{\|\mathcal {P}^hu_n-u_n^{hk}\|}_V & \lesssim \sum \limits _{n=1}^{N}k_n{\|\delta _n\mathcal {P}^h u_n-\dot {u}_n\|}_V+\sum \limits _{n=1}^{N}k_n{\|\dot {u}_n-v^h_n\|}_V + \max _{1\le n\le N}{\|\ell _n-\ell ^h_n\|}_{(V^h)'}\nonumber \\ &\quad {} +\sum _{n=1}^{N-1} {\|(\ell _{n+1}-\ell _n)-(\ell _{n+1}^h-\ell _n^h)\|}_{(V^h)'} +{\Big (\sum _{n=1}^{N}k_nR_n(v^h_n)\Big )}^{\frac {1}{2}}\nonumber \\ &\quad {}+{\Big (\sum _{n=1}^{N}k_n{\| v^h_n-\delta _n\mathcal { P}^hu_n\|}_{V}{\|\ell _n-\ell _n^h\|}_{(V^h)'}\Big )}^{\frac {1}{2}}. \label {eq:temp}\end {align}


\begin {align*}& {\Big (\sum _{n=1}^{N}k_n{\| v^h_n-\delta _n\mathcal { P}^hu_n\|}_{V}{\|\ell _n-\ell _n^h\|}_{(V^h)'}\Big )}^{\frac {1}{2}}\\ &\qquad \le \max _{1\le n\le N}{\|\ell _n-\ell ^h_n\|}_{(V^h)'}^{1/2} {\Big (\sum _{n=1}^{N}k_n{\| v^h_n-\delta _n\mathcal { P}^hu_n\|}_{V}\Big )}^{\frac {1}{2}}\\ &\qquad \lesssim \max _{1\le n\le N}{\|\ell _n-\ell ^h_n\|}_{(V^h)'} + \sum \limits _{n=1}^{N}k_n{\|\delta _n\mathcal {P}^h u_n-\dot {u}_n\|}_V+\sum \limits _{n=1}^{N}k_n{\|\dot {u}_n-v^h_n\|}_V.\end {align*}


$\Omega \subset \mathbb {R}^2$


$\Gamma $


$\Gamma _D$


$\Gamma _N$


$\Gamma _C$


${\rm {meas}}(\Gamma _D)>0$


$T>0$


$t\in [0,T]$


$\bm \varepsilon (\bm u)=\frac {1}{2}(\nabla \bm u+{(\nabla \bm u)}^T)$


$\bm v$


$v_{\nu }=\bm v\cdot \bm \nu $


$\bm v_{\bm \tau }=\bm v-v_{\nu }\bm \nu $


$\mathbb {C}:\mathbb {S}^2\rightarrow \mathbb {S}^2$


$\mathbb {S}^2$


$\mathbb {R}^2$


\begin {equation*}\mathbb {C}\bm {\varepsilon }:=2\mu \bm {\varepsilon }+\lambda {\rm tr}(\bm {\varepsilon })\bm I,\end {equation*}


$\lambda $


$\mu $


$\bm I$


$\sigma _{\nu }=(\bm \sigma \bm \nu )\cdot \bm \nu $


$\bm \sigma _{\bm \tau }=\bm \sigma \bm \nu -\sigma _{\nu }\bm \nu $


$\bm u: \Omega \times [0,T]\rightarrow \mathbb {R}^2$


\begin {flalign}\label {elastic} & \bm \sigma =\mathbb {C}\bm \varepsilon (\bm u)\quad {\rm in}\ \Omega \times (0,T),\\ \label {equilibrium} & -{\rm div} \bm \sigma =\bm f_1\quad {\rm in}\ \Omega \times (0,T),\\ \label {boundary1} & \bm u=\bm 0\quad {\rm on}\ \Gamma _{D}\times (0,T),\\ \label {traction} & \bm \sigma \bm \nu =\bm f_2\quad {\rm on}\ \Gamma _{N}\times (0,T),\\ & \bm u(0)=\bm u_0\quad {\rm in}\ \Omega \\ &\left . \begin {aligned}\label {Tresca} &u_{\nu }=0,~~|\bm \sigma _{\bm \tau }|\leq g\\ &|\bm {\sigma _{\tau }}|<g\Rightarrow ~\dot {\bm u}_{\bm \tau }=\bm 0\\ &|\bm {\sigma _{\tau }}|=g\Rightarrow \exists \lambda \geq 0\ s.t.\ \bm \sigma _{\bm \tau }=-\lambda \dot {\bm u}_{\bm \tau } \end {aligned} \right \}\quad {\rm on}\ \Gamma _{C}\times (0,T).\end {flalign}


$\bm f_1$


$\Gamma _{D}$


$\bm f_2$


$\Gamma _{N}\times (0,T)$


$g\geq 0$


\begin {equation*}\label {space} {\bm V}=\{{\bm v}\in H^1(\Omega ;\mathbb {R}^2)\,|\,{\bm v}|_{\Gamma _{D}}={\bm 0},\ v_{\nu }|_{\Gamma _{C}}=0\},\end {equation*}


\begin {equation*}(\bm u,\bm v)_{\bm V}=\int _{\Omega }\bm \varepsilon (\bm u):\bm \varepsilon (\bm v)\,dx,~~~{\|\bm v\|}_{\bm V}=(\bm v, \bm v)_{\bm V}^{1/2}.\end {equation*}


$(\Gamma _{D})>0$


${\|\cdot \|}_{\bm V}$


$\bm V$


$H^1(\Omega ;\mathbb {R}^2)$


$\bm V$


${(H^1(\Omega ))}^2$


$H^1(\Omega ;\mathbb {R}^2)$


${(L^2(\Omega ))}^2$


$L^2(\Omega ;\mathbb {R}^2)$


\begin {equation}\label {eq:rhs} {\bm f}_1\in W^{1,\infty }(0,T;{(L^2(\Omega ))}^2),\quad {\bm f}_2\in W^{1,\infty }(0,T;{(L^2(\Gamma _{N}))}^2),\end {equation}


\begin {equation*}\label {eq:bound} g\in L^{\infty }(\Gamma _{C}),\quad g\geq 0\ {\rm a.e.}\ {\rm on}\ \Gamma _{C}.\end {equation*}


$a(\cdot ,\cdot )$


$\bm V$


\begin {equation*}a(\bm u,\bm v)=\int _{\Omega }\mathbb {C}\bm \varepsilon (\bm u):\bm \varepsilon (\bm v)\,dx =2\mu (\bm \varepsilon (\bm u),\bm \varepsilon (\bm v))+\lambda ({\rm div}\bm u,{\rm div}\bm v)\quad \forall \,\bm u,\bm v\in \bm V.\end {equation*}


$\bm \ell (t)\in W^{1,\infty }(0,T;\bm V^\prime )$


$\bm u:[0,T]\rightarrow \bm V$


\begin {equation}\bm u(0)=\bm u_0 \label {eq:3.7a}\end {equation}


$t\in (0,T)$


\begin {equation}a(\bm u(t),\bm v-\dot {\bm u}(t))+j(\bm v)-j(\dot {\bm u}(t))\ge \langle \bm \ell (t),{\bm v}-\dot {\bm u}\rangle \quad \forall \, \bm v\in \bm V.\label {prodis}\end {equation}


\begin {equation}\bm u_0\in \bm V,\,\, a(\bm u_0,\bm v)+j(\bm v)\ge \langle \bm \ell (0),\bm v\rangle \quad \forall \,\bm v\in \bm V. \label {eq:3.6a}\end {equation}


$\bm u\in W^{1,\infty }(0,T;\bm V)$


$\bm u_0=\bm 0$


$\bm \ell (0)=\bm 0$


$\bm u_0$


$\bm \ell (0)$


\begin {equation*}a(\bm u_0,\bm v)=\langle \bm \ell (0),\bm v\rangle \quad \forall \,\bm v\in \bm V,\end {equation*}


$\mathcal {T}_h$


$\Gamma _{C}$


\begin {equation*}\Gamma _C=\cup _{i=1}^{i_0}\Gamma _{C,i},\end {equation*}


$1\le i\le i_0$


$\Gamma _{C,i}$


$d=2$


$d=3$


$K \in \mathcal {T}_h$


$\mathcal {T}_K$


$K$


$\mathcal {T}_K$


$\mathcal {T}_K$


$h_K$


$K$


$\mathcal {T}_K$


$K$


\begin {equation*}W^h_K:=\{ v\in H^1(K):\Delta v=0, v{|}_{\partial K}\in C^0(\partial K), v{|}_e\in \mathbb {P}_1(e)\,\,\forall \,e\subset \partial K\},\end {equation*}


$K$


\begin {equation}\label {local-space} \bm W^h_K:={(W^h_K)}^2.\end {equation}


$\bm V^h$


\begin {equation*}\bm V^h:=\{\bm v\in \bm V:\bm v|_K\in \bm W^h_K\quad \forall \,K\in \mathcal {T}_h\}.\end {equation*}


$\bm V^h_K=\bm V^h|_K$


$K$


$\bm V^h$


$\bm v$


$\bm I^h \bm v$


$\bm I_K\bm v$


$K$


$\bm I_K: {(H^2(K))}^2\to \bm V^h_K$


\begin {equation}\label {lem:interperror} {\|\bm v-\bm I_K\bm v\|}_{{(L^2(K))}^2}+h_K{\|\bm v- \bm I_K\bm v\|}_{\bm V_K}\lesssim h_K^2|\bm v|_{{(H^2(K))}^2},\quad \bm v\in {(H^2(K))}^2\cap \bm V_K.\end {equation}


$a^h(\cdot ,\cdot )$


$\Pi _K:\bm W_K^h\rightarrow {(\mathbb {P}_1(K))}^2$


\begin {equation*}\left \{\begin {array}{@{}l} \displaystyle ({\bm \varepsilon }(\Pi _K {\bm v}),{\bm \varepsilon }({\bm q}))_K=({\bm \varepsilon }({\bm v}),{\bm \varepsilon }({\bm q}))_K\quad \forall \, {\bm q}\in (\mathbb {P}_1(K))^2, \\ \displaystyle \int _{\partial K} \Pi _K{\bm v}\,ds=\int _{\partial K}{\bm v}\,ds,\,\\ \displaystyle \int _{K}\nabla \times \Pi _K{\bm v}\,dx=\int _K\nabla \times {\bm v}\,dx. \end {array}\right . \label {pi}\end {equation*}


$a^h_K(\cdot ,\cdot )$


$K\in \mathcal {T}_h$


\begin {align}\label {discretebilinear} a^h_K({\bm u}^h,{\bm v}^h)& =2\mu \,({\bm \varepsilon }({\bm \Pi }_K {\bm u}^h), {\bm \varepsilon }({\bm \Pi }_K {\bm v}^h))_K+\lambda \left (\Pi ^0_{0}{\rm div} {\bm u}^h,\Pi ^0_{0}{\rm div} {\bm v}^h\right )_K\nonumber \\ &\quad +S_K({\bm u}^h-{\bm \Pi }_K {\bm u}^h,{\bm v}^h-{\bm \Pi }_K{\bm v}^h)\quad \forall \,{\bm u}^h,{\bm v}^h\in {\bm V}^h_K,\end {align}


$\Pi ^0_{0}$


$L^2$


$K$


$\mathbb {P}_{0}(K)$


$S_K(\bm v,\bm w)=\sum \limits _{i=1}^{N_K}\chi _i(\bm v)\chi _i(\bm w)$


$\chi _i$


$i$


$K$


$1\le i \le N_K:={\rm dim}\bm V^h_K$


$\bm \ell (t)$


\begin {equation*}\langle \bm \ell ^h(t),\bm v^h\rangle :=\sum _{K\in \mathcal {T}_h}\int _K\bm \Pi _0^0\bm f_1(t)\cdot \widehat { \bm v}^h\,dx+\int _{\Gamma _{N}}\bm f_2(t)\cdot \bm v^h\,ds\quad \forall \, \bm v^h\in \bm V^h,\end {equation*}


$\bm \Pi _0^0$


${(L^2(K))}^2$


${(\mathbb {P}_0(K))}^2$


$\widehat { \bm v}^h$


$\bm v^h$


$K$


$t\in [0,T]$


\begin {equation*}(\bm \ell (t),\bm v^h)-\langle \bm \ell ^h(t),\bm v^h\rangle \lesssim h\|\bm f_1(t)\|_{{(L^2(\Omega ))}^2}\|\bm v^h\|_{\bm V},\end {equation*}


\begin {equation}\label {rhs} \|\bm \ell (t)-\bm \ell ^h(t)\|_{(\bm V^h)'}\lesssim h\|\bm f_1(t)\|_{{(L^2(\Omega ))}^2}.\end {equation}


$\bm u^h\colon [0,T]\mapsto \bm V^h$


\begin {equation}\bm u^h(0)={\cal P}^h \bm u_0 \label {3.11a}\end {equation}


$t\in (0,T)$


$\dot {\bm u}^h(t)\in \bm V^h$


\begin {equation}a^h(\bm u^h(t),\bm v^h-\dot { \bm u}^h(t))+j(\bm v^h)-j(\dot {\bm u}^h(t))\ge \langle \bm \ell ^h(t),\bm v^h-\dot { \bm u}^h(t)\rangle \quad \forall \,\bm v^h \in \bm V^h.\label {semipro}\end {equation}


$\bm u^h\in W^{1,\infty }(0,T; \bm V^h)$


$a^h_K(\cdot ,\cdot )$


$k=1$


$\bm V|_K$


$\bm V_K$


$\bm v\in {(H^2(K))}^2$


$\bm v_\pi \in {(\mathbb P_1(K))}^2$


\begin {equation}\label {lem:projerror} \|\bm v-\bm v_\pi \|_{{(L^2(K))}^2}+h_K\|\bm v-\bm v_\pi \|_{\bm V_K}\lesssim h_K^2|\bm v|_{{(H^2(K))}^2}.\end {equation}


$\mathcal {P}^h:\bm V\rightarrow \bm V^h$


$\bm u\in \bm V\cap {(H^2(\Omega ))}^2$


\begin {equation}\label {esti} \|\mathcal {P}^h\bm u-\bm u\|_{\bm V}\lesssim h\,|\bm u|_{{(H^2(\Omega ))}^2}.\end {equation}


${\rm meas}(\Gamma _{D})>$


\begin {equation}\label {result2} \|\mathcal {P}^h\bm u-\bm u\|_{{(L^2(\Omega ))}^2}\lesssim |\mathcal {P}^h\bm u-\bm u|_{\bm V}.\end {equation}


$\bm w_h:=\mathcal {P}^h\bm u-\bm u_I$


\begin {align}\alpha _{\star }|\bm w_h|_{\bm V}^2\leq a^h(\bm w_h,\bm w_h)=a^h(\mathcal {P}^h\bm u,\bm w_h)-a^h(\bm u_I,\bm w_h). \label {eq:3.18}\end {align}


\begin {equation*}a^h(\mathcal {P}^h\bm u,\bm w_h) = a^h(\bm u,\bm w_h).\end {equation*}


\begin {equation*}a^h(\bm u_I,\bm w_h) = \sum _{K\in {\mathcal T}_h} a^h_K(\bm u_I,\bm w_h) = \sum _{K\in {\mathcal T}_h} \left [ a^h_K(\bm u_I-\bm u_{\pi },\bm w_h) + a^h_K(\bm u_{\pi },\bm w_h)\right ] .\end {equation*}


\begin {equation*}a^h_K(\bm u_{\pi },\bm w_h) = a_K(\bm u_{\pi },\bm w_h).\end {equation*}


\begin {equation*}a^h(\bm u_I,\bm w_h) =\sum _{K\in {\mathcal T}_h}\left [ a^h_K(\bm u_I-\bm u_{\pi },\bm w_h)+a_K(\bm u_{\pi }-\bm u,\bm w_h)\right ]+a(\bm u,\bm w_h).\end {equation*}


\begin {equation*}\alpha _{\star }|\bm w_h|_{\bm V}^2\leq -\sum _{K\in {\mathcal T}_h}\Big [a^h_K(\bm u_I-\bm u_{\pi },\bm w_h)+a_K(\bm u_{\pi }-\bm u,\bm w_h)\Big ].\end {equation*}


\begin {equation*}|\bm w_h|_{\bm V}\lesssim {\Big [\sum _{K\in \mathcal {T}_h}\left (|\bm u-\bm u_{\pi }|_{\bm V_K}^2+|\bm u-\bm u_I|_{\bm V_K}^2\right )\Big ]}^{1/2}.\end {equation*}


\begin {equation}\label {estm} |\bm w_h|_{\bm V}\lesssim h\,|\bm u|_{{(H^2(\Omega ))}^2}.\end {equation}


\begin {equation}\label {result1} |\mathcal {P}^h\bm u-\bm u|_{\bm V}\lesssim h\,|\bm u|_{{(H^2(\Omega ))}^2}.\end {equation}


$\bm u\in W^{1,\infty }(0,T; \bm V)$


$\bm u^h\in W^{1,\infty }(0,T; \bm V^h)$


$\bm u\in L^{\infty }(0,T;{(H^2(\Omega ))}^2)$


$\dot {\bm u}\in L^1(0,T;{(H^2(\Omega ))}^2)$


$\dot {\bm u}|_{\Gamma _{C,i}}\in L^1(0,T;{(H^2(\Gamma _{C,i}))}^2)$


$1\le i\le i_0$


\begin {equation*}\|\bm u-\bm u^h\|_{L^{\infty }(0,T;\bm V)}\lesssim h.\end {equation*}


$\bm I^h \dot {\bm u}$


$\dot {\bm u}$


$\bm v^h=\bm I^h \dot {\bm u}$


\begin {align}\|\bm u-\bm u^h\|_{L^{\infty }(0,T;\bm V)} & \lesssim \|\bm u-\mathcal { P}^h\bm u\|_{L^{\infty }(0,T;\bm V)} + \|\mathcal { P}^h \dot {\bm u}-\dot {\bm u}\|_{L^{1}(0,T;\bm V)} + \|\dot {\bm u} - \bm I^h\dot {\bm u}\|_{L^1(0,T;V)}\nonumber \\ &\quad {} + \|R(\bm I^h\dot {\bm u})\|_{L^1(0,T)}^{1/2} + \|\bm \ell -\bm \ell ^h\|_{W^{1,1}(0,T;(\bm V^h)')}, \label {eq:3.17a}\end {align}


\begin {equation}R(\bm I^h\dot {\bm u}(t);t)=a(\bm u(t),\bm I^h\dot {\bm u}(t)-\dot {\bm u}(t))+j(\bm I^h\dot {\bm u}(t))-j(\dot {\bm u}(t))-\langle \bm \ell (t),\bm I^h\dot {\bm u}(t)-\dot {\bm u}(t)\rangle \label {eq:3.21a}\end {equation}


\begin {equation*}\|\dot {\bm u}-\bm I^h\dot {\bm u}\|_{L^{1}(0,T;\bm V)}\lesssim h\|\dot {\bm u}\|_{L^{1}(0,T;{{(H^2(\Omega ))}^2})}.\end {equation*}


\begin {align*}& \|\bm u-\mathcal { P}^h\bm u\|_{L^{\infty }(0,T;\bm V)}\lesssim h\|\bm u\|_{L^{\infty }(0,T;{{(H^2(\Omega ))}^2})},\\ & \|\mathcal { P}^h \dot {\bm u}-\dot {\bm u}\|_{L^{1}(0,T;\bm V)}\lesssim h\|\dot {\bm u}\|_{L^{1}(0,T;{{(H^2(\Omega ))}^2})}.\end {align*}


\begin {equation*}\|\bm \ell -\bm \ell ^h\|_{W^{1,1}(0,T;(\bm V^h)')}\lesssim h\|\bm f_1\|_{W^{1,\infty }(0,T;{(L^2(\Omega ))}^2)}.\end {equation*}


$\|R(\bm I^h\dot {\bm u})\|_{L^1(0,T)}^{1/2}$


$\bm u$


$\Omega \times (0,T)$


$\Gamma _N\times (0,T)$


$\bm v\in \bm V$


$t\in [0,T]$


\begin {align*}a(\bm u(t),\bm v)&=\int _{\Gamma }(\bm \sigma (t)\bm \nu ){\cdot } \bm v\,ds-\int _{\Omega }{\rm div} \bm \sigma (t)\cdot \bm v\,dx\nonumber \\ &=\int _{\Gamma _{C}}\bm \sigma _{\bm \tau }(t){\cdot }\bm v_{\bm \tau }ds+\int _{\Gamma _{N}}\bm f_2(t){\cdot }\bm v\,ds +\int _{\Omega }\bm f_1(t){\cdot }\bm v\, dx.\end {align*}


\begin {equation*}R(\bm I^h\dot {\bm u}(t);t)=\int _{\Gamma _{C}}\left [\bm \sigma _{\bm \tau }(t){\cdot }(\bm I^h\dot {\bm u}_{\bm \tau }(t)-\dot {\bm u}_{\bm \tau }(t))+g\left (|\bm I^h \dot {\bm u}_{\bm \tau }(t)|-|\dot {\bm u}_{\bm \tau }(t)|\right )\right ]ds.\end {equation*}


$\Gamma _{C}$


$\bm I^h{\dot {\bm u}}$


${(\mathbb {P}_1)}^2$


$\dot {\bm u}$


\begin {equation}\|R(\bm I^h\dot {\bm u})\|_{L^1(0,T)} \lesssim \|\bm I^h\dot {\bm u}-\dot {\bm u}\|_{L^1(0,T;{(L^2(\Gamma _{C}))}^2)}\lesssim h^2{\Big (\sum _{i=1}^{i_0}|\dot { \bm u}|_{L^1(0,T;{(H^2(\Gamma _{C,i}))}^2)}^2\Big )}^{1/2}.\label {imp}\end {equation}


$\bm u^{hk}=\{ \bm u_n^{hk}\}_{n=0}^N\subset \bm V^h$


\begin {equation}\bm u^{hk}_0=\mathcal {P}^h\bm u_0 \label {eq:3.19a}\end {equation}


$n=1,\dots ,N$


\begin {equation}a^h(\bm u_n^{hk},\bm v^h-\delta _n \bm u_n^{kh})+j(\bm v^h)-j(\delta _n\bm u_n^{hk})\geq \langle \bm \ell _n^h, \bm v^h-\delta _n \bm u_n^{hk}\rangle \quad \forall \, \bm v^h \in \bm V^h.\label {semipro1}\end {equation}


$\bm u\in W^{1,\infty }(0,T; \bm V)$


$\bm u^{hk}\subset \bm V^h$


$\bm u\in C^1([0,T];{(H^2(\Omega ))}^2)$


$\ddot {\bm u}\in L^1(0,T;\bm V)$


$\dot {\bm u}|_{\Gamma _{C,i}}\in C([0,T];{(H^2(\Gamma _{C,i}))}^2)$


$1\le i\le i_0$


\begin {equation}\label {result} \max _{1\le n\le N} \|\bm u_n-\bm u_n^{hk}\|_{\bm V}\lesssim h+k.\end {equation}


$\bm v^h_n=\bm I^h\dot {\bm u}_{n}$


$\dot {\bm u}_{n}$


$1\le n\le N$


\begin {align}\max _{1\le n\le N}\|\bm u_n-\bm u_n^{hk}\|_{\bm V} & \lesssim \max _{1\le n\le N} \|\bm u_n-\mathcal {P}^h \bm u_n\|_{\bm V}+\sum \limits _{n=1}^{N}k_n\|\delta _n\mathcal {P}^h \bm u_n-\dot {\bm u}_n\|_{\bm V}+\sum \limits _{n=1}^{N}k_n\|\dot {\bm u}_n-\bm I^h\dot {\bm u}_{n}\|_{\bm V}\nonumber \\ &\quad {} + \max _{1\le n\le N}\|\bm \ell _n-\bm \ell ^h_n\|_{(V^h)'} + \sum _{n=1}^{N-1} \|(\bm \ell _{n+1}-\bm \ell _n)-(\bm \ell _{n+1}^h-\bm \ell _n^h)\|_{(V^h)'} \nonumber \\ &\quad {} +{\Big (\sum _{n=1}^{N} k_n R_n(\bm I^h\dot {\bm u}_{n})\Big )}^{1/2}, \label {err_bd1}\end {align}


\begin {equation*}R_n(\bm I^h\dot {\bm u}_n):=a(\bm u_n,\bm I^h\dot {\bm u}_n-\dot {\bm u}_n)+j(\bm I^h\dot {\bm u}_n)-j(\dot {\bm u}_n)-\langle \bm \ell _n,\bm I^h\dot {\bm u}_n-\dot {\bm u}_n\rangle .\end {equation*}


\begin {equation*}\|\bm u_n-\mathcal {P}^h \bm u_n\|_{\bm V}\lesssim h\|\bm u_n\|_{H^2{(\Omega )}^2}\lesssim h\|\bm u\|_{C(0,T;H^2{(\Omega )}^2)}.\end {equation*}


\begin {equation*}\sum _{n=1}^{N}k_n \|\delta _n\mathcal {P}^h\bm u_n-\dot {\bm u}_n\|_{\bm V}\le \sum _{n=1}^{N}k_n \|\delta _n\mathcal {P}^h\bm u_n-\mathcal {P}^h\dot {\bm u}_n\|_{\bm V}+\sum _{n=1}^{N}k_n \|\mathcal {P}^h\dot {\bm u}_n-\dot {\bm u}_n\|_{\bm V}.\end {equation*}


\begin {align*}& \|\dot {\bm u}_n-\mathcal { P}^h \dot {\bm u}_n\|_{\bm V}\lesssim h\|\dot {\bm u}_n\|_{H^2{(\Omega )}^2}\lesssim h\|\dot {\bm u}\|_{C(0,T;H^2{(\Omega )}^2)},\nonumber \\ & \sum _{n=1}^{N}k_n \|\mathcal {P}^h\dot {\bm u}_n-\dot {\bm u}_n\|_{\bm V}\lesssim h\|\dot {\bm u}\|_{C(0,T;H^2{(\Omega )}^2)}.\end {align*}


$\bm u_{n-1}$


$t_n$


\begin {equation*}\bm u_{n-1} = \bm u_n-k_n \dot {\bm u}_n+ \int _{t_n}^{t_{n-1}}(t_{n-1}-s)\ddot {\bm u}(s)\,ds.\end {equation*}


\begin {equation*}\delta _n\mathcal {P}^h\bm u_n-\mathcal {P}^h\dot {\bm u}_n =k_n^{-1}(\mathcal { P}^h\bm u_n-\mathcal { P}^h\bm u_{n-1})-\mathcal { P}^h\dot { \bm u}_n =k_n^{-1}\int _{t_{n-1}}^{t_n}(t_{n-1}-s)\mathcal { P}^h\ddot {\bm u}(s)\,ds.\end {equation*}


\begin {align*}\sum _{n=1}^{N}k_n \|\delta _n\mathcal {P}^h\bm u_n-\mathcal {P}^h\dot {\bm u}_n\|_{\bm V} &\lesssim k\sum _{n=1}^N\|k_n^{-1}\int _{t_{n-1}}^{t_n}(t_{n-1}-s)\mathcal { P}^h\ddot {\bm u}(s)\,ds\|_{\bm V}\\ &\lesssim k\int _{0}^T\|\mathcal { P}^h\ddot {\bm u}(s)\|_{\bm V}\,ds.\end {align*}


\begin {equation*}\sum _{n=1}^{N}k_n \|\delta _n\mathcal {P}^h\bm u_n-\mathcal {P}^h\dot {\bm u}_n\|_{\bm V} \lesssim k\,\|\ddot {\bm u}\|_{L^1(0,T;{\bm V})}.\end {equation*}


\begin {equation*}\sum \limits _{n=1}^{N}k_n\|\dot {\bm u}_n-\bm I^h\dot {\bm u}_n\|_{\bm V}\lesssim h\|\dot {\bm u}\|_{C([0,T];{(H^2(\Omega ))}^2)}.\end {equation*}


\begin {equation*}\|\bm \ell _n-\bm \ell _n^h\|_{\bm V'_h}\lesssim h\|\bm f_1\|_{C([0,T];{(L^2(\Omega ))}^2)}.\end {equation*}


\begin {equation*}\|(\bm \ell _{n+1}-\bm \ell _n)-(\bm \ell _{n+1}^h-\bm \ell _n^h)\|_{\bm V'_h}\lesssim h\|\bm f_{1,n+1}-\bm f_{1,n}\|_{{(L^2(\Omega ))}^2}.\end {equation*}


\begin {align*}\sum _{n=1}^{N-1}\|(\bm \ell _{n+1}-\bm \ell _n)-(\bm \ell _{n+1}^h-\bm \ell _n^h)\|_{\bm V'_h} &\lesssim h \sum _{n=1}^{N-1} \|\bm f_{1,n+1}-\bm f_{1,n}\|_{{(L^2(\Omega ))}^2} \\ &\lesssim h \|\dot {\bm f}_1\|_{L^{\infty }(0,T;{(L^2(\Omega ))}^2)}.\end {align*}


\begin {align*}\sum _{n=1}^{N}k_nR_n(\bm I^h \dot {\bm u}_{n})&\lesssim \sum \limits _{n=1}^{N}k_n\|\bm I^h\dot {\bm u}_n-\dot {\bm u}_n\|_{{(L^2(\Gamma _{C}))}^2} \\ &\lesssim \sum _{n=1}^{N}k_nh^2\sum _{i=1}^{i_0}\|\dot {\bm u}_n\|_{{(H^2(\Gamma _{C,i}))}^2}\lesssim h^2\|\dot { \bm u}\|_{C([0,T];{(H^2(\Gamma _{C,i}))}^2)}.\end {align*}


$\Omega =(0,1)\times (0,1)$


$\partial \Omega $


$\Gamma _{D}$


$\Gamma _{C}$


$\Gamma _{F}$


$\Gamma _{D}=\{1\}\times (0,1)$


$\Gamma _{C}=(0,1)\times \{0\}$


$\Gamma _{F}$


$\bm f_2$


$(0,1)\times \{1\}$


$\Omega $


\begin {align*}& E=200\,{\rm daN/mm^2},\quad \kappa =0.3,\quad g = 4\; {\rm daN/mm^2},\\ & \bm {f}_1={(0,0)}^T\,{\rm daN/mm^2},\quad \bm {f}_2(x_1,x_2,t)=(8(1.25-x_2)t,-0.01t){\rm daN/mm^2},\\ &\bm u_0=\bm 0,~~T=1s.\end {align*}


$E$


$\kappa $


\begin {equation*}\lambda =\frac {E\kappa }{(1+\kappa )(1-2\kappa )},~~~\mu =\frac {E}{2(1+\kappa )}.\end {equation*}


$t=1$


$\|\bm u_{\rm ref}-\bm u_h\|_E/\|\bm u_{\rm ref}\|_E$


\begin {equation*}{\|\bm v\|}_E:=\frac {1}{\sqrt {2}}(\mathcal {C}\bm \varepsilon (\bm v),\bm \varepsilon (\bm v))_Q^{1/2}.\end {equation*}


$h$


$k$


$\bm u$


$\Omega $


$\bm u_{\rm ref}$


$h = 1/256$


$k= 1/256$


$\bm u_{\rm ref}$


$W_K^h$


$n_e$


$n_e=50$


$n_e=200$


$n_e=800$


$n_e=5000$


$n_e=5000$
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The VEM was first proposed and analyzed in Ahmad et al. [12], Beirao Da Veiga et al. [13,14]. It has been applied successfully to a 
wide variety of scientific and engineering problems because of its favorable features in handling problems with complex geometries or 
problems requiring high-regularity solutions. In recent years, this method has been applied to solve variational inequalities [15–23].

In this paper, we consider the numerical solution of a quasistatic variational inequality by the virtual element method for spatial 
discretization and the backward Euler difference scheme for temporal discretization. Optimal order error estimates are derived for 
both semi-discrete solutions and fully discrete solutions under appropriate solution regularity assumptions. The fully discrete problem 
can be converted into a convex programming and an adaptive semi-smooth Newton method [24] can be applied to solve the fully 
discrete variational inequality. Numerical results are reported to illustrate computational performance of the method in this paper.

The rest of this paper is organized as follows. Error analysis is given for both the spatially semidiscrete and the fully discrete 
schemes of the abstract quasistatic variational inequality in Section 2. We apply the virtual element method in spatial discretization 
and backward difference method in time discretization of a quasistatic contact problem. Then, optimal order error estimates are 
derived for both schemes under appropriate solution regularity assumptions in Section 3. In Section 4, we present numerical simulation 
results on a numerical example to illustrate the theoretically predicted convergence order.

2.  A general framework for numerical solution of the quasistatic problem

Let 𝑉  be a Hilbert space, which is equipped with the norm ‖ ⋅ ‖𝑉 . The dual space of 𝑉  is denoted by 𝑉 ′ and the duality pairing 
between 𝑉 ′ and 𝑉  is denoted by ⟨⋅, ⋅⟩. Let 𝑇  be a positive number and let 𝑚 be a non-negative integer. We denote by 𝐶𝑚([0, 𝑇 ];𝑉 ) the 
space of continuous functions 𝑢 ∶ [0, 𝑇 ] → 𝑉  that have continuous derivatives of an order less than or equal to 𝑚, which is a Banach 
space endowed with the norm

‖𝑣‖𝐶𝑚([0,𝑇 ],𝑉 ) =
𝑚
∑

𝑘=0
max
0≤𝑡≤𝑇

‖𝑣(𝑘)(𝑡)‖𝑉 .

For 1 ≤ 𝑝 < ∞, the space 𝐿𝑝(0, 𝑇 ;𝑉 ) consists of all measurable functions 𝑣 from [0, 𝑇 ] to 𝑉  for which

‖𝑣‖𝐿𝑝(0,𝑇 ;𝑉 ) =
(

∫

𝑇

0
‖𝑣(𝑡)‖𝑝𝑉 𝑑𝑡

)

1∕𝑝

< ∞.

For the case 𝑝 = ∞, we denote the space by 𝐿∞(0, 𝑇 ;𝑉 ) with the norm
‖𝑣‖𝐿∞(0,𝑇 ;𝑉 ) = ess sup0≤𝑡≤𝑇 ‖𝑣(𝑡)‖𝑉 .

For an integer 𝑚 ≥ 0 and a real 𝑝 ≥ 1, we denote by 𝑊 𝑚,𝑝(0, 𝑇 ;𝑉 ) the space of functions 𝑓 ∈ 𝐿𝑝(0, 𝑇 ;𝑉 ) such that 𝑓 (𝑖) ∈ 𝐿𝑝(0, 𝑇 ;𝑉 ), 
1 ≤ 𝑖 ≤ 𝑚, with the norm

‖𝑓‖𝑊 𝑚,𝑝(0,𝑇 ;𝑉 ) =

{ 𝑚
∑

𝑖=0

‖

‖

‖

𝑓 (𝑖)‖
‖

‖

𝑝

𝐿𝑝(0,𝑇 ;𝑉 )

}1∕𝑝

.

When 𝑝 = 2, we write 𝐻𝑚(0, 𝑇 ;𝑉 ) for 𝑊 𝑚,𝑝(0, 𝑇 ;𝑉 ).
Let 𝑎 ∶ 𝑉 × 𝑉 → ℝ be a symmetric, bounded, and 𝑉 -elliptic bilinear form, 𝑗 ∶ 𝑉 → ℝ a continuous seminorm, and 𝓁 ∈

𝑊 1,∞(0, 𝑇 ;𝑉 ′). Let 𝑢0 ∈ 𝑉  such that
𝑎(𝑢0, 𝑣) + 𝑗(𝑣) ≥ ⟨𝓁(0), 𝑣⟩ ∀ 𝑣 ∈ 𝑉 . (2.1)

We consider the following abstract problem.
Problem 2.1. Find 𝑢 ∶ [0, 𝑇 ] → 𝑉  such that

𝑢(0) = 𝑢0 (2.2)

and for almost all 𝑡 ∈ (0, 𝑇 ), 𝑢̇(𝑡) ∈ 𝑉  and
𝑎(𝑢(𝑡), 𝑣 − 𝑢̇(𝑡)) + 𝑗(𝑣) − 𝑗(𝑢̇(𝑡)) ≥ ⟨𝓁(𝑡), 𝑣 − 𝑢̇(𝑡)⟩ ∀ 𝑣 ∈ 𝑉 . (2.3)

By Han and Sofonea[1, Theorem 4.16], under the stated assumptions on the data, there exists a unique solution 𝑢 ∈ 𝑊 1,∞(0, 𝑇 ;𝑉 )
to Problem 2.1.

Suppose the spatial domain associated with Problem 2.1 is a bounded polygon Ω ⊂ ℝ2. Let {ℎ}ℎ, ℎ ∶= {𝐾}𝐾∈ℎ , be a sequence 
of decompositions of Ω into polygons. A generic element in ℎ is denoted by 𝐾 whose diameter is denoted by ℎ𝐾 ∶= diam(𝐾). The 
mesh-size of ℎ is ℎ ∶= max𝐾∈ℎ ℎ𝐾 . Corresponding to the mesh ℎ, we construct a finite dimensional subspace 𝑉 ℎ of 𝑉 . For a non-
negative integer 𝑘 and a bounded domain 𝐷 in ℝ or ℝ2, denote by ℙ𝑘(𝐷) the set of all polynomials on 𝐷 with a total degree no more 
than 𝑘. Assume the bilinear form 𝑎(⋅, ⋅) allows for the decomposition

𝑎(𝑣,𝑤) ∶=
∑

𝐾∈ℎ

𝑎𝐾 (𝑣,𝑤), ∀ 𝑣,𝑤 ∈ 𝑉 , (2.4)

where 𝑎𝐾 (⋅, ⋅) is a symmetric bilinear form over the space 𝑉𝐾 ∶= 𝑉 |𝐾 . For a function in 𝑉 , we naturally view its restriction to 𝐾 as a 
function in 𝑉𝐾 . We equip the space 𝑉𝐾 with a norm or semi-norm ‖ ⋅ ‖𝑉𝐾  such that

‖𝑣‖2𝑉 =
∑

𝐾∈ℎ

‖𝑣‖2𝑉𝐾 ∀ 𝑣 ∈ 𝑉 ,
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and assume for all 𝐾 ∈ ℎ,

𝑎𝐾 (𝑣, 𝑣) ≲ ‖𝑣‖2𝑉𝐾 ∀ 𝑣 ∈ 𝑉𝐾 , (2.5)

where and in what follows, for two quantities 𝑎 and 𝑏, }}𝑎 ≲ 𝑏ε means }}𝑎 ≤ 𝐶𝑏ε, 𝐶 being a generic constant independent of ℎ𝐾 or ℎ, 
which may take different values at different occurrences. Assume 𝓁ℎ ∈ 𝑊 1,∞(0, 𝑇 ; (𝑉 ℎ)′) is an approximation of 𝓁 such that

⟨𝓁ℎ(0), 𝑣ℎ⟩ = ⟨𝓁(0), 𝑣ℎ⟩ ∀ 𝑣ℎ ∈ 𝑉 ℎ. (2.6)

Over the given finite dimensional space 𝑉 ℎ, we approximate the bilinear form 𝑎(⋅, ⋅) by a modified bilinear form 𝑎ℎ(⋅, ⋅) constructed 
as follows:

𝑎ℎ(𝑢, 𝑣) ∶=
∑

𝐾∈ℎ

𝑎ℎ𝐾 (𝑢, 𝑣), (2.7)

where 𝑎ℎ𝐾 (⋅, ⋅) is an approximation of 𝑎𝐾 (⋅, ⋅). We assume 𝑎ℎ𝐾 (⋅, ⋅) is a symmetric bilinear form on 𝐾 such that it is 𝑘-consistent and 
stable, for some given natural number 𝑘. The 𝑘-consistency refers to the property that

𝑎ℎ𝐾 (𝑝, 𝑣) = 𝑎𝐾 (𝑝, 𝑣) ∀ 𝑝 ∈ ℙ𝑘(𝐾), 𝑣 ∈ 𝑉 ℎ
𝐾 ∶= 𝑉 ℎ

|𝐾 . (2.8)

The stability means that there exist two positive constants 𝛼⋆ and 𝛼⋆, independent of ℎ𝐾 and 𝐾, such that
𝛼⋆𝑎𝐾 (𝑣, 𝑣) ≤ 𝑎ℎ𝐾 (𝑣, 𝑣) ≤ 𝛼⋆𝑎𝐾 (𝑣, 𝑣) ∀ 𝑣 ∈ 𝑉 ℎ

𝐾 . (2.9)

Denote ‖𝑣ℎ‖𝑎ℎ ∶= 𝑎ℎ(𝑣ℎ, 𝑣ℎ)1∕2 for 𝑣ℎ ∈ 𝑉 ℎ. By (2.7), (2.9), (2.4) and the assumptions on 𝑎(⋅, ⋅), we can verify that ‖ ⋅ ‖𝑎ℎ  defines a 
norm on 𝑉 ℎ and it is uniformly equivalent to ‖ ⋅ ‖𝑉  on 𝑉 ℎ, i.e., the equivalence coefficients are independent of ℎ.

For later use, we recall the following elementary implication:

𝑥, 𝑎, 𝑏 ≥ 0 and 𝑥2 ≤ 𝑎𝑥 + 𝑏 ⇒ 𝑥 ≤ 𝑎 + 𝑏
1
2 . (2.10)

We define the energy projection operator ℎ ∶ 𝑉 → 𝑉 ℎ by
ℎ𝑢 ∈ 𝑉 ℎ, 𝑎ℎ(ℎ𝑢, 𝑣ℎ) = 𝑎(𝑢, 𝑣ℎ) ∀ 𝑣ℎ ∈ 𝑉 ℎ. (2.11)

By the stability of 𝑎ℎ in (2.9), we observe that 𝑎ℎ(⋅, ⋅) is continuous and coercive on 𝑉 ℎ. Since the functional 𝑣ℎ ↦ 𝑎(𝑢, 𝑣ℎ) is continuous 
on 𝑉 ℎ, we can apply Lax–Milgram Lemma to conclude that ℎ𝑢 ∈ 𝑉 ℎ is uniquely defined by (2.11). By taking 𝑣ℎ = ℎ𝑢 in (2.11) and 
making use of properties of 𝑎ℎ and 𝑎, we can prove the stability inequality

‖ℎ𝑢‖𝑉 ≲ ‖𝑢‖𝑉 . (2.12)

A suitable discrete initial data can be chosen by 𝑢ℎ0 = ℎ𝑢0 since
𝑎ℎ(ℎ𝑢0, 𝑣

ℎ) = 𝑎(𝑢0, 𝑣ℎ) ∀ 𝑣ℎ ∈ 𝑉 ℎ.

Then the discrete analog of (2.1) holds:
𝑎ℎ(ℎ𝑢0, 𝑣

ℎ) + 𝑗(𝑣ℎ) ≥ ⟨𝓁ℎ(0), 𝑣ℎ⟩ ∀ 𝑣ℎ ∈ 𝑉 ℎ. (2.13)

In the rest of the section, we assume all the properties of the data 𝑎, 𝓁, 𝑢0, 𝑎ℎ and 𝓁ℎ stated above are valid.

2.1.  Spatially semi-discrete scheme

The spatially semi-discrete approximation of Problem 2.1 is as follows.
Problem 2.2. Find 𝑢ℎ ∶ [0, 𝑇 ] → 𝑉 ℎ such that

𝑢ℎ0 = ℎ𝑢0 (2.14)

and for almost all 𝑡 ∈ (0, 𝑇 ), 𝑢̇ℎ(𝑡) ∈ 𝑉 ℎ and
𝑎ℎ(𝑢ℎ(𝑡), 𝑣ℎ − 𝑢̇ℎ(𝑡)) + 𝑗(𝑣ℎ) − 𝑗(𝑢̇ℎ(𝑡)) ≥ ⟨𝓁ℎ(𝑡), 𝑣ℎ − 𝑢̇ℎ(𝑡)⟩ ∀ 𝑣ℎ ∈ 𝑉 ℎ. (2.15)

Applying Han and Sofonea[1, Theorem 4.16], we know there is a unique solution 𝑢ℎ ∈ 𝑊 1,∞(0, 𝑇 ;𝑉 ℎ) to Problem 2.2. We use the 
notation 𝐿1(0, 𝑇 ;𝑉 ℎ) for the subspace of functions 𝑣ℎ in 𝐿1(0, 𝑇 ;𝑉 ) such that 𝑣ℎ(𝑡) ∈ 𝑉 ℎ for a.a. 𝑡 ∈ (0, 𝑇 ), and ‖𝑣ℎ(⋅)‖𝑉 ∈ 𝐿1(0, 𝑇 ). 
The following result is useful in estimating the semi-discrete approximation error.
Theorem 2.3. Let 𝑢 and 𝑢ℎ be the solutions of Problems 2.1 and 2.2. Then for any 𝑣ℎ ∈ 𝐿1(0, 𝑇 ;𝑉 ℎ),

‖𝑢 − 𝑢ℎ‖𝐿∞(0,𝑇 ;𝑉 ) ≲ ‖𝑢 − ℎ𝑢‖𝐿∞(0,𝑇 ;𝑉 ) + ‖ℎ𝑢̇ − 𝑢̇‖𝐿1(0,𝑇 ;𝑉 ) + ‖𝑢̇ − 𝑣ℎ‖𝐿1(0,𝑇 ;𝑉 )

+ ‖𝑅(𝑣ℎ; ⋅)‖1∕2𝐿1(0,𝑇 ) + ‖𝓁 − 𝓁ℎ
‖𝑊 1,1(0,𝑇 ;(𝑉 ℎ)′), (2.16)

where for 𝑡 ∈ (0, 𝑇 ),

‖𝓁(𝑡) − 𝓁ℎ(𝑡)‖(𝑉 ℎ)′ ∶= sup
𝑣ℎ∈𝑉 ℎ

⟨𝓁(𝑡) − 𝓁ℎ(𝑡), 𝑣ℎ⟩
‖𝑣ℎ‖𝑉

,

𝑅(𝑣ℎ; 𝑡) ∶= 𝑎(𝑢(𝑡), 𝑣ℎ − 𝑢̇(𝑡)) + 𝑗(𝑣ℎ) − 𝑗(𝑢̇(𝑡)) − ⟨𝓁(𝑡), 𝑣ℎ − 𝑢̇(𝑡)⟩. (2.17)
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Proof.  We will use the fact that ‖ ⋅ ‖𝑎ℎ  defines a norm that is uniformly equivalent to the norm ‖ ⋅ ‖𝑉  on 𝑉 ℎ. For any 𝑣ℎ ∈ 𝐿1(0, 𝑇 ;𝑉 ℎ), 
we write

1
2
𝑑
𝑑𝑡

‖ℎ𝑢(𝑡) − 𝑢ℎ(𝑡)‖2𝑎ℎ = 𝑎ℎ(ℎ𝑢(𝑡) − 𝑢ℎ(𝑡),ℎ𝑢̇(𝑡) − 𝑢̇ℎ(𝑡)) = 𝑇1 + 𝑇2 + 𝑇3, (2.18)

where

𝑇1 ∶= 𝑎ℎ(ℎ𝑢(𝑡) − 𝑢ℎ(𝑡),ℎ𝑢̇(𝑡) − 𝑢̇(𝑡)),

𝑇2 ∶= 𝑎ℎ(ℎ𝑢(𝑡) − 𝑢ℎ(𝑡), 𝑢̇(𝑡) − 𝑣ℎ(𝑡)),

𝑇3 ∶= 𝑎ℎ(ℎ𝑢(𝑡) − 𝑢ℎ(𝑡), 𝑣ℎ(𝑡) − 𝑢̇ℎ(𝑡)).

Then,

𝑇1 ≲ ‖ℎ𝑢(𝑡) − 𝑢ℎ(𝑡)‖𝑎ℎ‖ℎ𝑢̇(𝑡) − 𝑢̇(𝑡)‖𝑉 , (2.19)

𝑇2 ≲ ‖ℎ𝑢(𝑡) − 𝑢ℎ(𝑡)‖𝑎ℎ‖𝑢̇(𝑡) − 𝑣ℎ(𝑡)‖𝑉 . (2.20)

Note that
𝑇3 = 𝑎ℎ(ℎ𝑢(𝑡), 𝑣ℎ − 𝑢̇ℎ(𝑡)) − 𝑎ℎ(𝑢ℎ(𝑡), 𝑣ℎ(𝑡) − 𝑢̇ℎ(𝑡)). (2.21)

In view of (2.11), we obtain
𝑎ℎ(ℎ𝑢(𝑡), 𝑣ℎ(𝑡) − 𝑢̇ℎ(𝑡)) = 𝑎(𝑢(𝑡), 𝑣ℎ(𝑡) − 𝑢̇ℎ(𝑡))

= 𝑎(𝑢(𝑡), 𝑣ℎ(𝑡) − 𝑢̇(𝑡)) + 𝑎(𝑢(𝑡), 𝑢̇(𝑡) − 𝑢̇ℎ(𝑡)). (2.22)

We take 𝑣 = 𝑢̇ℎ(𝑡) in (2.3),
𝑎(𝑢(𝑡), 𝑢̇ℎ(𝑡) − 𝑢̇(𝑡)) + 𝑗(𝑢̇ℎ(𝑡)) − 𝑗(𝑢̇(𝑡)) ≥ ⟨𝓁(𝑡), 𝑢̇ℎ(𝑡) − 𝑢̇(𝑡)⟩𝑉 . (2.23)

From (2.15),
−𝑎ℎ(𝑢ℎ(𝑡), 𝑣ℎ(𝑡) − 𝑢̇ℎ(𝑡)) ≤ 𝑗(𝑣ℎ(𝑡)) − 𝑗(𝑢̇ℎ(𝑡)) − ⟨𝓁ℎ(𝑡), 𝑣ℎ(𝑡) − 𝑢̇ℎ(𝑡)⟩. (2.24)

Combining (2.21)–(2.24), we get
𝑇3 ≤ 𝑎(𝑢(𝑡), 𝑣ℎ(𝑡) − 𝑢̇(𝑡)) + 𝑗(𝑣ℎ(𝑡)) − 𝑗(𝑢̇(𝑡)) − ⟨𝓁(𝑡), 𝑢̇ℎ(𝑡) − 𝑢̇(𝑡)⟩ − ⟨𝓁ℎ(𝑡), 𝑣ℎ(𝑡) − 𝑢̇ℎ(𝑡)⟩

≤ 𝑅(𝑣ℎ(𝑡); 𝑡) + ⟨𝓁(𝑡) − 𝓁ℎ(𝑡), 𝑣ℎ(𝑡) − 𝑢̇ℎ(𝑡)⟩, (2.25)

where 𝑅(𝑣ℎ(𝑡); 𝑡) is defined in (2.17). Combining (2.18), (2.19), (2.20) and (2.25), we have
1
2
𝑑
𝑑𝑡

‖ℎ𝑢(𝑡) − 𝑢ℎ(𝑡)‖2𝑎ℎ ≲ ‖ℎ𝑢(𝑡) − 𝑢ℎ(𝑡)‖𝑎ℎ‖ℎ𝑢̇(𝑡) − 𝑢̇(𝑡)‖𝑉

+ ‖ℎ𝑢(𝑡) − 𝑢ℎ(𝑡)‖𝑎ℎ‖𝑢̇(𝑡) − 𝑣ℎ(𝑡)‖𝑉 + 𝑅(𝑣ℎ(𝑡); 𝑡)

+ ⟨𝓁(𝑡) − 𝓁ℎ(𝑡), 𝑣ℎ(𝑡) − ℎ𝑢̇(𝑡)⟩ + ⟨𝓁(𝑡) − 𝓁ℎ(𝑡),ℎ𝑢̇(𝑡) − 𝑢̇ℎ(𝑡)⟩.

For any 𝑠 ∈ [0, 𝑇 ], integrating the above inequality from 𝑡 = 0 to 𝑠, noting that ℎ𝑢0 = 𝑢ℎ0 , we obtain

‖ℎ𝑢(𝑠) − 𝑢ℎ(𝑠)‖2𝑎ℎ ≲ ∫

𝑠

0
‖ℎ𝑢(𝑡) − 𝑢ℎ(𝑡)‖𝑎ℎ

(

‖ℎ𝑢̇(𝑡) − 𝑢̇(𝑡)‖𝑉 + ‖𝑢̇(𝑡) − 𝑣ℎ(𝑡)‖𝑉
)

𝑑𝑡

+ ∫

𝑠

0
𝑅(𝑣ℎ(𝑡); 𝑡) 𝑑𝑡 + ∫

𝑠

0
⟨𝓁(𝑡) − 𝓁ℎ(𝑡), 𝑣ℎ(𝑡) − ℎ𝑢̇(𝑡)⟩ 𝑑𝑡

+ ∫

𝑠

0
⟨𝓁(𝑡) − 𝓁ℎ(𝑡),ℎ𝑢̇(𝑡) − 𝑢̇ℎ(𝑡)⟩𝑑𝑡.

We can replace the ‖ ⋅ ‖𝑎ℎ -norm by ‖ ⋅ ‖𝑉 -norm to get

‖ℎ𝑢(𝑠) − 𝑢ℎ(𝑠)‖2𝑉 ≲ ∫

𝑠

0
‖ℎ𝑢(𝑡) − 𝑢ℎ(𝑡)‖𝑉

(

‖ℎ𝑢̇(𝑡) − 𝑢̇(𝑡)‖𝑉 + ‖𝑢̇(𝑡) − 𝑣ℎ(𝑡)‖𝑉
)

𝑑𝑡

+ ∫

𝑠

0
𝑅(𝑣ℎ(𝑡); 𝑡) 𝑑𝑡 + ∫

𝑠

0
⟨𝓁(𝑡) − 𝓁ℎ(𝑡), 𝑣ℎ(𝑡) − ℎ𝑢̇(𝑡)⟩ 𝑑𝑡

+ ∫

𝑠

0
⟨𝓁(𝑡) − 𝓁ℎ(𝑡),ℎ𝑢̇(𝑡) − 𝑢̇ℎ(𝑡)⟩𝑑𝑡. (2.26)

Perform an integration by parts,

∫

𝑠

0
⟨𝓁(𝑡) − 𝓁ℎ(𝑡),ℎ𝑢̇(𝑡) − 𝑢̇ℎ(𝑡)⟩𝑑𝑡 = ⟨𝓁(𝑠) − 𝓁ℎ(𝑠),ℎ𝑢(𝑠) − 𝑢ℎ(𝑠)⟩

− ∫

𝑠

0
⟨𝓁̇(𝑡) − 𝓁̇ℎ(𝑡),ℎ𝑢(𝑡) − 𝑢ℎ(𝑡)⟩𝑑𝑡. (2.27)
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According to the Sobolev embedding theorem, we have
𝑊 1,1(0, 𝑇 ; (𝑉 ℎ)′) ↪ 𝐶([0, 𝑇 ]; (𝑉 ℎ)′). (2.28)

Then,

⟨𝓁(𝑠) − 𝓁ℎ(𝑠),ℎ𝑢(𝑠) − 𝑢ℎ(𝑠)⟩ ≤ ‖𝓁 − 𝓁ℎ
‖𝑊 1,1(0,𝑇 ;(𝑉 ℎ)′)‖

ℎ𝑢 − 𝑢ℎ‖𝐿∞(0,𝑇 ;𝑉 ), (2.29)

−∫

𝑠

0
⟨𝓁̇(𝑡) − 𝓁̇ℎ(𝑡),ℎ𝑢(𝑡) − 𝑢ℎ(𝑡)⟩𝑑𝑡 ≤ ‖𝓁 − 𝓁ℎ

‖𝑊 1,1(0,𝑇 ;(𝑉 ℎ)′)‖
ℎ𝑢 − 𝑢ℎ‖𝐿∞(0,𝑇 ;𝑉 ). (2.30)

Furthermore,

∫

𝑠

0
⟨𝓁(𝑡) − 𝓁ℎ(𝑡), 𝑣ℎ(𝑡) − ℎ𝑢̇(𝑡)⟩𝑑𝑡 ≲ ‖𝓁 − 𝓁ℎ

‖𝐿∞(0,𝑇 ;(𝑉 ℎ)′)‖𝑣
ℎ − ℎ𝑢̇‖𝐿1(0,𝑇 ;𝑉 )

≲ ‖𝓁 − 𝓁ℎ
‖𝑊 1,1(0,𝑇 ;(𝑉 ℎ)′)‖𝑣

ℎ − ℎ𝑢̇‖𝐿1(0,𝑇 ;𝑉 ). (2.31)

Combining (2.26)–(2.31),

‖ℎ𝑢 − 𝑢ℎ‖2𝐿∞(0,𝑇 ;𝑉 ) ≲ ‖ℎ𝑢 − 𝑢ℎ‖𝐿∞(0,𝑇 ;𝑉 )
(

‖ℎ𝑢̇ − 𝑢̇‖𝐿1(0,𝑇 ;𝑉 ) + ‖𝑢̇ − 𝑣ℎ‖𝐿1(0,𝑇 ;𝑉 )

+ ‖𝓁 − 𝓁ℎ
‖𝑊 1,1(0,𝑇 ;(𝑉 ℎ)′)

)

+ ‖𝑅(𝑣ℎ)‖𝐿1(0,𝑇 )

+ ‖𝓁 − 𝓁ℎ
‖𝑊 1,1(0,𝑇 ;(𝑉 ℎ)′)‖𝑣

ℎ − ℎ𝑢̇‖𝐿1(0,𝑇 ;𝑉 ),

where ‖𝑅(𝑣ℎ)‖𝐿1(0,𝑇 ) is a short-hand notation for ‖𝑅(𝑣ℎ; ⋅)‖𝐿1(0,𝑇 ). By (2.10), the Cauchy–Schwarz inequality, and

‖𝑣ℎ − ℎ𝑢̇‖𝐿1(0,𝑇 ;𝑉 ) ≤ ‖ℎ𝑢̇ − 𝑢̇‖𝐿1(0,𝑇 ;𝑉 ) + ‖𝑢̇ − 𝑣ℎ‖𝐿1(0,𝑇 ;𝑉 ),

we get
‖ℎ𝑢 − 𝑢ℎ‖𝐿∞(0,𝑇 ;𝑉 ) ≲ ‖ℎ𝑢̇ − 𝑢̇‖𝐿1(0,𝑇 ;𝑉 ) + ‖𝑢̇ − 𝑣ℎ‖𝐿1(0,𝑇 ;𝑉 )

+ ‖𝑅(𝑣ℎ)‖1∕2𝐿1(0,𝑇 ) + ‖𝓁 − 𝓁ℎ
‖𝑊 1,1(0,𝑇 ;(𝑉 ℎ)′). (2.32)

Finally, by the triangle inequality,
‖𝑢 − 𝑢ℎ‖𝐿∞(0,𝑇 ;𝑉 ) ≤ ‖𝑢 − ℎ𝑢‖𝐿∞(0,𝑇 ;𝑉 ) + ‖ℎ𝑢 − 𝑢ℎ‖𝐿∞(0,𝑇 ;𝑉 ),

we obtain (2.16) from (2.32). ∎

2.2.  Fully discrete scheme

For a full discretization, in addition to the finite dimensional subspace 𝑉 ℎ of 𝑉 , we need a partition of the time interval: [0, 𝑇 ] =
𝑁
⋃

𝑛=1
[𝑡𝑛−1, 𝑡𝑛] with 0 = 𝑡0 < 𝑡1 < … < 𝑡𝑁 = 𝑇 . Denote the step-size by 𝑘𝑛 = 𝑡𝑛 − 𝑡𝑛−1, 1 ≤ 𝑛 ≤ 𝑁 . Let 𝑘 = max𝑛 𝑘𝑛 and write 𝑢𝑛 = 𝑢(𝑡𝑛) for a 

continuous function 𝑢(𝑡). We use the symbol Δ𝑢𝑛 = 𝑢𝑛 − 𝑢𝑛−1 for the backward difference and 𝛿𝑛𝑢𝑛 = Δ𝑢𝑛∕𝑘𝑛 for the backward divided 
difference. Then a fully discrete approximation of Problem 2.1 is as follows.
Problem 2.4. Find 𝑢ℎ𝑘 = {𝑢ℎ𝑘𝑛 }𝑁𝑛=0 ⊂ 𝑉 ℎ such that

𝑢ℎ𝑘0 = ℎ𝑢0 (2.33)

and for 𝑛 = 1,… , 𝑁 ,

𝑎ℎ
(

𝑢ℎ𝑘𝑛 , 𝑣ℎ − 𝛿𝑛𝑢
ℎ𝑘
𝑛
)

+ 𝑗
(

𝑣ℎ
)

− 𝑗
(

𝛿𝑛𝑢
ℎ𝑘
𝑛
)

≥ ⟨𝓁ℎ
𝑛 , 𝑣

ℎ − 𝛿𝑛𝑢
ℎ𝑘
𝑛 ⟩𝑉 ∀ 𝑣ℎ ∈ 𝑉 ℎ. (2.34)

Existence of a unique solution for Problem 2.4 can be obtained following the arguments used in proving [8, Theorem 11.7]. For 
the fully discrete scheme, we only need the approximations 𝓁ℎ

𝑛 ≈ 𝓁ℎ(𝑡𝑛), 0 ≤ 𝑛 ≤ 𝑁 . Nevertheless, for simplicity and without loss of 
generality, we continue to use 𝓁ℎ as an approximation of 𝓁 on [0, 𝑇 ], as in the case of spatially semi-discrete scheme. Let us show a 
stability result for the solution of Problem 2.4 with respect to the initial value 𝑢0 and the right hand side 𝓁ℎ.

Theorem 2.5. For 𝓁ℎ
1 ,𝓁

ℎ
2 ∈ 𝑊 1,1(0, 𝑇 ; (𝑉 ℎ)′) and initial data ℎ𝑢1,0,ℎ𝑢2,0 ∈ 𝑉 ℎ, the corresponding solutions {𝑢ℎ𝑘1,𝑛}𝑁𝑛=0 and {𝑢ℎ𝑘2,𝑛}𝑁𝑛=0 of 

Problem 2.4 satisfy the inequality
max

0≤𝑛≤𝑁
‖𝑢ℎ𝑘1,𝑛 − 𝑢ℎ𝑘2,𝑛‖𝑉 ≲ ‖ℎ𝑢1,0 − ℎ𝑢2,0‖𝑉 + ‖𝓁ℎ

1 − 𝓁ℎ
2 ‖𝑊 1,1(0,𝑇 ;(𝑉 ℎ)′). (2.35)

Proof.  From the defining inequality (2.34) for the solutions {𝑢ℎ𝑘1,𝑛}𝑁𝑛=0 and {𝑢ℎ𝑘2,𝑛}𝑁𝑛=0, we have

𝑎ℎ(𝑢ℎ𝑘1,𝑛, 𝑣
ℎ − 𝛿𝑛𝑢

ℎ𝑘
1,𝑛) + 𝑗(𝑣ℎ) − 𝑗(𝛿𝑛𝑢ℎ𝑘1,𝑛) ≥ ⟨𝓁ℎ

1,𝑛, 𝑣
ℎ − 𝛿𝑛𝑢

ℎ𝑘
1,𝑛⟩ ∀ 𝑣ℎ ∈ 𝑉 ℎ, (2.36)

𝑎ℎ(𝑢ℎ𝑘2,𝑛, 𝑣
ℎ − 𝛿𝑛𝑢

ℎ𝑘
2,𝑛) + 𝑗(𝑣ℎ) − 𝑗(𝛿𝑛𝑢ℎ𝑘2,𝑛) ≥ ⟨𝓁ℎ

2,𝑛, 𝑣
ℎ − 𝛿𝑛𝑢

ℎ𝑘
2,𝑛⟩ ∀ 𝑣ℎ ∈ 𝑉 ℎ. (2.37)
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Denote 𝑒𝑛 = 𝑢ℎ𝑘1,𝑛 − 𝑢ℎ𝑘2,𝑛. Taking 𝑣ℎ = 𝛿𝑛𝑢ℎ𝑘2,𝑛 in (2.36) and 𝑣ℎ = 𝛿𝑛𝑢ℎ𝑘1,𝑛 in (2.37), adding the two inequalities, we get

𝐴ℎ
𝑛 ∶= 𝑎ℎ(𝑒𝑛, 𝛿𝑛𝑒𝑛) ≤ ⟨𝓁ℎ

1,𝑛 − 𝓁ℎ
2,𝑛, 𝛿𝑛𝑒𝑛⟩.

Write

𝐴ℎ
𝑛 = 1

𝑘𝑛

(

𝑎ℎ(𝑒𝑛, 𝑒𝑛) − 𝑎ℎ(𝑒𝑛, 𝑒𝑛−1)
)

.

By the Cauchy–Schwarz inequality,

𝑎ℎ(𝑒𝑛, 𝑒𝑛−1) ≤
1
2

(

‖𝑒𝑛‖
2
𝑎ℎ + ‖𝑒𝑛−1‖

2
𝑎ℎ

)

.

Hence,

𝐴ℎ
𝑛 ≥ 1

2𝑘𝑛

(

‖𝑒𝑛‖
2
𝑎ℎ − ‖𝑒𝑛−1‖

2
𝑎ℎ
)

. (2.38)

Then for 1 ≤ 𝑛 ≤ 𝑁 , we obtain
‖𝑒𝑛‖

2
𝑎ℎ − ‖𝑒𝑛−1‖

2
𝑎ℎ ≤ 2⟨𝓁ℎ

1,𝑛 − 𝓁ℎ
2,𝑛, 𝑒𝑛 − 𝑒𝑛−1⟩.

An induction argument yields

‖𝑒𝑛‖
2
𝑎ℎ ≤ ‖𝑒0‖

2
𝑎ℎ + 2

𝑛
∑

𝑖=1
⟨𝓁ℎ

1,𝑖 − 𝓁ℎ
2,𝑖, 𝑒𝑖 − 𝑒𝑖−1⟩

= ‖𝑒0‖
2
𝑎ℎ + 2⟨𝓁ℎ

1,𝑛 − 𝓁ℎ
2,𝑛, 𝑒𝑛⟩ − 2⟨𝓁ℎ

1,1 − 𝓁ℎ
2,1, 𝑒0⟩

+ 2
𝑛−1
∑

𝑖=1

⟨

(𝓁ℎ
1,𝑖 − 𝓁ℎ

1,𝑖+1) − (𝓁ℎ
2,𝑖 − 𝓁ℎ

2,𝑖+1), 𝑒𝑖
⟩

.

Then, since ‖ ⋅ ‖𝑎ℎ  is uniformly equivalent to ‖ ⋅ ‖𝑉 ,
‖𝑒𝑛‖

2
𝑉 ≲ ‖𝑒0‖

2
𝑉 + ⟨𝓁ℎ

1,𝑛 − 𝓁ℎ
2,𝑛, 𝑒𝑛⟩ − ⟨𝓁ℎ

1,1 − 𝓁ℎ
2,1, 𝑒0⟩

+
𝑛−1
∑

𝑖=1

⟨

(𝓁ℎ
1,𝑖 − 𝓁ℎ

1,𝑖+1) − (𝓁ℎ
2,𝑖 − 𝓁ℎ

2,𝑖+1), 𝑒𝑖
⟩

.

Denote 𝑀 = max
0≤𝑛≤𝑁

‖𝑒𝑛‖𝑉 . We have, for some 𝑛 between 0 and 𝑁 ,

𝑀2 ≲ ‖𝑒0‖
2
𝑉 +𝑀

(

‖𝓁ℎ
1,𝑛 − 𝓁ℎ

2,𝑛‖(𝑉 ℎ)′
+ ‖𝓁ℎ

1,1 − 𝓁ℎ
2,1‖(𝑉 ℎ)′

+
𝑛−1
∑

𝑖=1
‖(𝓁ℎ

1,𝑖 − 𝓁ℎ
1,𝑖+1) − (𝓁ℎ

2,𝑖 − 𝓁ℎ
2,𝑖+1)‖(𝑉 ℎ)′

)

.

Applying (2.10) and (2.28), we obtain
‖𝑒𝑛‖𝑉 ≲ ‖ℎ𝑢1,0 − ℎ𝑢2,0‖𝑉 + ‖𝓁ℎ

1 − 𝓁ℎ
2 ‖𝑊 1,1(0,𝑇 ;(𝑉 ℎ)′).

Therefore, (2.35) holds. ∎
Now, we turn our attention to error analysis for the fully discrete scheme.

Theorem 2.6. Let 𝑢 and 𝑢ℎ𝑘𝑛  be the solutions of Problems 2.1 and 2.4. Then, for any {𝑣ℎ𝑛}𝑁𝑛=1 ⊂ 𝑉 ℎ, we have

max
1≤𝑛≤𝑁

‖𝑢𝑛 − 𝑢ℎ𝑘𝑛 ‖𝑉 ≲ max
1≤𝑛≤𝑁

‖𝑢𝑛 − ℎ𝑢𝑛‖𝑉 +
𝑁
∑

𝑛=1
𝑘𝑛‖𝛿𝑛ℎ𝑢𝑛 − 𝑢̇𝑛‖𝑉 +

𝑁
∑

𝑛=1
𝑘𝑛‖𝑢̇𝑛 − 𝑣ℎ𝑛‖𝑉

+ max
1≤𝑛≤𝑁

‖𝓁𝑛 − 𝓁ℎ
𝑛 ‖(𝑉 ℎ)′ +

𝑁−1
∑

𝑛=1
‖(𝓁𝑛+1 − 𝓁𝑛) − (𝓁ℎ

𝑛+1 − 𝓁ℎ
𝑛 )‖(𝑉 ℎ)′

+
(

𝑁
∑

𝑛=1
𝑘𝑛𝑅𝑛(𝑣ℎ𝑛 )

)

1∕2

, (2.39)

where

‖𝓁𝑛 − 𝓁ℎ
𝑛 ‖(𝑉 ℎ)′ ∶= sup

𝑣ℎ∈𝑉 ℎ

⟨𝓁𝑛 − 𝓁ℎ
𝑛 , 𝑣

ℎ
⟩

‖𝑣ℎ‖𝑉
,

𝑅𝑛(𝑣ℎ) ∶= 𝑎(𝑢𝑛, 𝑣ℎ − 𝑢̇𝑛) + 𝑗(𝑣ℎ) − 𝑗(𝑢̇𝑛) − ⟨𝓁𝑛, 𝑣
ℎ − 𝑢̇𝑛⟩.
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Proof.  The quantity of interest is the error 𝑒𝑛 = 𝑢𝑛 − 𝑢ℎ𝑘𝑛 . Write
𝑒𝑛 = 𝑢𝑛 − ℎ𝑢𝑛 + ℎ𝑢𝑛 − 𝑢ℎ𝑘𝑛 .

Then,

‖𝑒𝑛‖𝑉 ≤ ‖𝑢𝑛 − ℎ𝑢𝑛‖𝑉 + ‖ℎ𝑢𝑛 − 𝑢ℎ𝑘𝑛 ‖𝑉 . (2.40)

Denote 𝑒ℎ𝑛 = ℎ𝑢𝑛 − 𝑢ℎ𝑘𝑛 . Let 𝐴ℎ
𝑛 = 𝑎ℎ(𝑒ℎ𝑛 , 𝛿𝑛𝑒

ℎ
𝑛 ). By (2.38),

𝐴ℎ
𝑛 ≥ 1

2𝑘𝑛

(

‖𝑒ℎ𝑛‖
2
𝑎ℎ − ‖𝑒ℎ𝑛−1‖

2
𝑎ℎ ). (2.41)

Write

𝛿𝑛𝑒
ℎ
𝑛 = 𝛿𝑛ℎ𝑢𝑛 − 𝛿𝑛𝑢

ℎ𝑘
𝑛 =

(

𝛿𝑛ℎ𝑢𝑛 − 𝑢̇𝑛
)

+
(

𝑢̇𝑛 − 𝑣ℎ
)

+
(

𝑣ℎ − 𝛿𝑛𝑢
ℎ𝑘
𝑛
)

.

Then,

𝐴ℎ
𝑛 = 𝑎ℎ

(

𝑒ℎ𝑛 , 𝛿𝑛
ℎ𝑢𝑛 − 𝑢̇𝑛

)

+ 𝑎ℎ
(

𝑒ℎ𝑛 , 𝑢̇𝑛 − 𝑣ℎ
)

+ 𝑎ℎ
(

ℎ𝑢𝑛 − 𝑢ℎ𝑘𝑛 , 𝑣ℎ − 𝛿𝑛𝑢
ℎ𝑘
𝑛
)

. (2.42)

By the definition of ℎ in (2.11), we have
𝑎ℎ(ℎ𝑢𝑛 − 𝑢ℎ𝑘𝑛 , 𝑣ℎ − 𝛿𝑛𝑢

ℎ𝑘
𝑛 ) = 𝑎(𝑢𝑛, 𝑣ℎ − 𝛿𝑛𝑢

ℎ𝑘
𝑛 ) − 𝑎ℎ(𝑢ℎ𝑘𝑛 , 𝑣ℎ − 𝛿𝑛𝑢

ℎ𝑘
𝑛 ).

Let 𝑣 = 𝛿𝑛𝑢ℎ𝑘𝑛  in (2.3) to get
𝑎(𝑢𝑛, 𝛿𝑛𝑢ℎ𝑘𝑛 − 𝑢̇𝑛) + 𝑗(𝛿𝑛𝑢ℎ𝑘𝑛 ) − 𝑗(𝑢̇𝑛) ≥ ⟨𝓁𝑛, 𝛿𝑛𝑢

ℎ𝑘
𝑛 − 𝑢̇𝑛⟩. (2.43)

Combining (2.34) with 𝑣ℎ = 𝑣ℎ𝑛 and (2.43), we have
−𝑎ℎ(𝑢ℎ𝑘𝑛 , 𝑣ℎ𝑛 − 𝛿𝑛𝑢

ℎ𝑘
𝑛 ) ≤ 𝑎(𝑢𝑛, 𝛿𝑛𝑢ℎ𝑘𝑛 − 𝑢̇𝑛) + 𝑗(𝑣ℎ𝑛 ) − 𝑗(𝑢̇𝑛)

− ⟨𝓁𝑛, 𝛿𝑛𝑢
ℎ𝑘
𝑛 − 𝑢̇𝑛⟩ − ⟨𝓁ℎ

𝑛 , 𝑣
ℎ
𝑛 − 𝛿𝑛𝑢

ℎ𝑘
𝑛 ⟩.

Then,

𝑎ℎ(ℎ𝑢𝑛 − 𝑢ℎ𝑘𝑛 , 𝑣ℎ𝑛 − 𝛿𝑛𝑢
ℎ𝑘
𝑛 ) ≤ 𝑎(𝑢𝑛, 𝑣ℎ𝑛 − 𝛿𝑛𝑢

ℎ𝑘
𝑛 ) + 𝑎(𝑢𝑛, 𝛿𝑛𝑢ℎ𝑘𝑛 − 𝑢̇𝑛) + 𝑗(𝑣ℎ𝑛 )

− 𝑗(𝑢̇𝑛) − ⟨𝓁𝑛, 𝛿𝑛𝑢
ℎ𝑘
𝑛 − 𝑢̇𝑛⟩ − ⟨𝓁ℎ

𝑛 , 𝑣
ℎ
𝑛 − 𝛿𝑛𝑢

ℎ𝑘
𝑛 ⟩

= 𝑅𝑛(𝑣ℎ𝑛 ) + ⟨𝓁𝑛 − 𝓁ℎ
𝑛 , 𝑣

ℎ
𝑛 − 𝛿𝑛𝑢

ℎ𝑘
𝑛 ⟩. (2.44)

In view of (2.41), (2.42) and (2.44), we have
1
2𝑘𝑛

(

‖𝑒ℎ𝑛‖
2
𝑎ℎ − ‖𝑒ℎ𝑛−1‖

2
𝑎ℎ
)

≤ 𝑎ℎ(𝑒ℎ𝑛 , 𝛿𝑛
ℎ𝑢𝑛 − 𝑢̇𝑛) + 𝑎ℎ(𝑒ℎ𝑛 , 𝑢̇𝑛 − 𝑣ℎ𝑛 ) + 𝑅𝑛(𝑣ℎ𝑛 )

+ ⟨𝓁𝑛 − 𝓁ℎ
𝑛 , 𝑣

ℎ
𝑛 − 𝛿𝑛ℎ𝑢𝑛⟩ +

1
𝑘𝑛

⟨𝓁𝑛 − 𝓁ℎ
𝑛 , 𝑒

ℎ
𝑛 − 𝑒ℎ𝑛−1⟩. (2.45)

We change the index 𝑛 to 𝑖 in the inequality (2.45), multiply both sides by 𝑘𝑖 and sum from 𝑖 = 1 to 𝑛 to obtain

‖𝑒ℎ𝑛‖
2
𝑎ℎ ≤ 2

𝑛
∑

𝑖=1
𝑘𝑖𝑎

ℎ(𝑒ℎ𝑖 , 𝛿𝑖
ℎ𝑢𝑖 − 𝑢̇𝑖) + 2

𝑛
∑

𝑖=1
𝑘𝑖𝑎

ℎ(𝑒ℎ𝑖 , 𝑢̇𝑖 − 𝑣ℎ𝑖 ) + 2
𝑛
∑

𝑖=1
𝑘𝑖𝑅𝑖(𝑣ℎ𝑖 )

+ 2
𝑛
∑

𝑖=1
𝑘𝑖⟨𝓁𝑖 − 𝓁ℎ

𝑖 , 𝑣
ℎ
𝑖 − 𝛿𝑖ℎ𝑢𝑖⟩ + 2

𝑛
∑

𝑖=1
⟨𝓁𝑖 − 𝓁ℎ

𝑖 , 𝑒
ℎ
𝑖 − 𝑒ℎ𝑖−1⟩,

where we used the fact that
𝑒ℎ0 = ℎ𝑢0 − 𝑢ℎ0 = 0.

Note that
𝑛
∑

𝑖=1
⟨𝓁𝑖 − 𝓁ℎ

𝑖 , 𝑒
ℎ
𝑖 − 𝑒ℎ𝑖−1⟩ = ⟨𝓁𝑛 − 𝓁ℎ

𝑛 , 𝑒
ℎ
𝑛 ⟩ −

𝑛−1
∑

𝑖=1
⟨(𝓁𝑖+1 − 𝓁𝑖) − (𝓁ℎ

𝑖+1 − 𝓁ℎ
𝑖 ), 𝑒

ℎ
𝑖 ⟩.

Denote 𝑀 = max
1≤𝑛≤𝑁

‖𝑒ℎ𝑛‖𝑎ℎ . By (2.7), (2.9), Cauchy–Schwarz inequality, we get

𝑀2 ≲ 𝑀
(

𝑁
∑

𝑛=1
𝑘𝑛‖𝛿𝑛ℎ𝑢𝑛 − 𝑢̇𝑛‖𝑉 +

𝑁
∑

𝑛=1
𝑘𝑛‖𝑢̇𝑛 − 𝑣ℎ𝑛‖𝑉

+ max
1≤𝑛≤𝑁

‖𝓁𝑛 − 𝓁ℎ
𝑛 ‖(𝑉 ℎ)′ +

𝑁−1
∑

𝑛=1
‖(𝓁𝑛+1 − 𝓁𝑛) − (𝓁ℎ

𝑛+1 − 𝓁ℎ
𝑛 )‖(𝑉 ℎ)′

)

+
𝑁
∑

𝑛=1
𝑘𝑛𝑅𝑛(𝑣ℎ𝑛 ) +

𝑁
∑

𝑛=1
𝑘𝑛‖𝓁𝑛 − 𝓁ℎ

𝑛 ‖(𝑉 ℎ)′‖𝑣
ℎ
𝑛 − 𝛿𝑛ℎ𝑢𝑛‖𝑉 .
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Applying (2.10), since ‖ ⋅ ‖𝑎ℎ  is uniformly equivalent to ‖ ⋅ ‖𝑉  on 𝑉 ℎ, we obtain

max
1≤𝑛≤𝑁

‖ℎ𝑢𝑛 − 𝑢ℎ𝑘𝑛 ‖𝑉 ≲
𝑁
∑

𝑛=1
𝑘𝑛‖𝛿𝑛ℎ𝑢𝑛 − 𝑢̇𝑛‖𝑉 +

𝑁
∑

𝑛=1
𝑘𝑛‖𝑢̇𝑛 − 𝑣ℎ𝑛‖𝑉 + max

1≤𝑛≤𝑁
‖𝓁𝑛 − 𝓁ℎ

𝑛 ‖(𝑉 ℎ)′

+
𝑁−1
∑

𝑛=1
‖(𝓁𝑛+1 − 𝓁𝑛) − (𝓁ℎ

𝑛+1 − 𝓁ℎ
𝑛 )‖(𝑉 ℎ)′ +

(

𝑁
∑

𝑛=1
𝑘𝑛𝑅𝑛(𝑣ℎ𝑛 )

)

1
2

+
(

𝑁
∑

𝑛=1
𝑘𝑛‖𝑣

ℎ
𝑛 − 𝛿𝑛ℎ𝑢𝑛‖𝑉 ‖𝓁𝑛 − 𝓁ℎ

𝑛 ‖(𝑉 ℎ)′

)

1
2

. (2.46)

We notice that

(

𝑁
∑

𝑛=1
𝑘𝑛‖𝑣

ℎ
𝑛 − 𝛿𝑛ℎ𝑢𝑛‖𝑉 ‖𝓁𝑛 − 𝓁ℎ

𝑛 ‖(𝑉 ℎ)′

)

1
2

≤ max
1≤𝑛≤𝑁

‖𝓁𝑛 − 𝓁ℎ
𝑛 ‖

1∕2
(𝑉 ℎ)′

(

𝑁
∑

𝑛=1
𝑘𝑛‖𝑣

ℎ
𝑛 − 𝛿𝑛ℎ𝑢𝑛‖𝑉

)

1
2

≲ max
1≤𝑛≤𝑁

‖𝓁𝑛 − 𝓁ℎ
𝑛 ‖(𝑉 ℎ)′ +

𝑁
∑

𝑛=1
𝑘𝑛‖𝛿𝑛ℎ𝑢𝑛 − 𝑢̇𝑛‖𝑉 +

𝑁
∑

𝑛=1
𝑘𝑛‖𝑢̇𝑛 − 𝑣ℎ𝑛‖𝑉 .

Applying this relation in (2.46), and then combining with (2.40), we get (2.39). ∎

3.  A quasistatic frictional contact problem

In this section, we consider the numerical solution of a quasistatic frictional contact problem and apply the results from the previous 
section to derive convergence order error estimates of the numerical solutions under appropriate solution regularity assumptions. 
The setting of the contact problem is as follows. We assume that the set of governing equations is posed on a bounded Lipschitz 
domain Ω ⊂ ℝ2 with boundary Γ, which is divided into three disjoint and measurable parts Γ𝐷, Γ𝑁  and Γ𝐶 such that meas(Γ𝐷) > 0. 
Let 𝑇 > 0 and 𝑡 ∈ [0, 𝑇 ] be the time variable. We assume the contact is bilateral and the friction obeys Tresca’s friction law. The 
strain-displacement relation is 𝜺(𝒖) = 1

2 (∇𝒖 + (∇𝒖)𝑇 ). For a vector 𝒗, denote on the boundary by 𝑣𝜈 = 𝒗 ⋅ 𝝂 its normal component 
and 𝒗𝝉 = 𝒗 − 𝑣𝜈𝝂 the tangential component, respectively. Let ℂ ∶ 𝕊2 → 𝕊2 be the fourth order elasticity tensor, which is bounded, 
symmetric and positive definite. Here, 𝕊2 denotes the set of all symmetric second order tensor in ℝ2. We will focus on the case of an 
isotropic, nonhomogeneous linear elastic material:

ℂ𝜺 ∶= 2𝜇𝜺 + 𝜆tr(𝜺)𝑰 ,

where 𝜆 and 𝜇 are the constant Lamé coefficients, 𝑰 is the unit matrix. We define the normal component as 𝜎𝜈 = (𝝈𝝂) ⋅ 𝝂 and tangential 
component as 𝝈𝝉 = 𝝈𝝂 − 𝜎𝜈𝝂. Then, the classical formulation of the mechanical problem in a quasistatic process can be described as 
follows.

Problem 3.1. Find a displacement field 𝒖 ∶ Ω × [0, 𝑇 ] → ℝ2 satisfying the relations
𝝈 = ℂ𝜺(𝒖) in Ω × (0, 𝑇 ), (3.1)

− div𝝈 = 𝒇1 in Ω × (0, 𝑇 ), (3.2)

𝒖 = 𝟎 on Γ𝐷 × (0, 𝑇 ), (3.3)

𝝈𝝂 = 𝒇2 on Γ𝑁 × (0, 𝑇 ), (3.4)

𝒖(0) = 𝒖0 in Ω (3.5)

𝑢𝜈 = 0, |𝝈𝝉 | ≤ 𝑔

|𝝈𝝉 | < 𝑔 ⇒ 𝒖̇𝝉 = 𝟎
|𝝈𝝉 | = 𝑔 ⇒ ∃𝜆 ≥ 0 𝑠.𝑡. 𝝈𝝉 = −𝜆𝒖̇𝝉

⎫

⎪

⎬

⎪

⎭

on Γ𝐶 × (0, 𝑇 ). (3.6)

In Problem 3.1, 𝒇1 is the density of the volume forces. Boundary condition (3.3) means that the body is clamped on Γ𝐷. Surface 
traction 𝒇2 acts on Γ𝑁 × (0, 𝑇 ) in (3.4), 𝑔 ≥ 0 represents a friction bound function.

We introduce a Hilbert space
𝑽 = {𝒗 ∈ 𝐻1(Ω;ℝ2) | 𝒗|Γ𝐷 = 𝟎, 𝑣𝜈 |Γ𝐶 = 0},

which is equipped with the inner product and the induced norm given by

(𝒖, 𝒗)𝑽 = ∫Ω
𝜺(𝒖) ∶ 𝜺(𝒗) 𝑑𝑥, ‖𝒗‖𝑽 = (𝒗, 𝒗)1∕2𝑽 .
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Since meas(Γ𝐷) > 0, Korn’s inequality holds, implying that ‖ ⋅ ‖𝑽  is a norm on 𝑽 , equivalent to the standard 𝐻1(Ω;ℝ2) norm on 𝑽 . 
To simplify the notation, we write (𝐻1(Ω))2 for 𝐻1(Ω;ℝ2), (𝐿2(Ω))2 for 𝐿2(Ω;ℝ2) and so on. For the force densities, assume

𝒇1 ∈ 𝑊 1,∞(0, 𝑇 ; (𝐿2(Ω))2), 𝒇2 ∈ 𝑊 1,∞(0, 𝑇 ; (𝐿2(Γ𝑁 ))2), (3.7)

and for the friction bound function, we assume

𝑔 ∈ 𝐿∞(Γ𝐶 ), 𝑔 ≥ 0 a.e. on Γ𝐶 .

We define a bilinear form 𝑎(⋅, ⋅) over 𝑽  by

𝑎(𝒖, 𝒗) = ∫Ω
ℂ𝜺(𝒖) ∶ 𝜺(𝒗) 𝑑𝑥 = 2𝜇(𝜺(𝒖), 𝜺(𝒗)) + 𝜆(div𝒖, div𝒗) ∀ 𝒖, 𝒗 ∈ 𝑽 .

Let 

⟨𝓵(𝑡), 𝒗⟩ ∶= ∫Ω
𝒇1(𝑡) ⋅ 𝒗 𝑑𝑥 + ∫Γ𝑁

𝒇2(𝑡) ⋅ 𝒗 𝑑𝑠, 𝑗(𝒗) ∶= ∫Γ𝐶
𝑔|𝒗𝜏 | 𝑑𝑠.

Under the assumption (3.7), 𝓵(𝑡) ∈ 𝑊 1,∞(0, 𝑇 ;𝑽 ′). Then the weak formulation of Problem 3.1 is as follows.

Problem 3.2. Find 𝒖 ∶ [0, 𝑇 ] → 𝑽  such that

𝒖(0) = 𝒖0 (3.8)

and for a.e. 𝑡 ∈ (0, 𝑇 ),

𝑎(𝒖(𝑡), 𝒗 − 𝒖̇(𝑡)) + 𝑗(𝒗) − 𝑗(𝒖̇(𝑡)) ≥ ⟨𝓵(𝑡), 𝒗 − 𝒖̇⟩ ∀ 𝒗 ∈ 𝑽 . (3.9)

Assume the initial data satisfies

𝒖0 ∈ 𝑽 , 𝑎(𝒖0, 𝒗) + 𝑗(𝒗) ≥ ⟨𝓵(0), 𝒗⟩ ∀ 𝒗 ∈ 𝑽 . (3.10)

Then we can apply Han and Sofonea[1, Theorem 4.16] to conclude that Problem 3.2 has a unique solution 𝒖 ∈ 𝑊 1,∞(0, 𝑇 ;𝑽 ). Note 
that (3.10) is trivially satisfied if 𝒖0 = 𝟎 and 𝓵(0) = 𝟎. More generally, if the initial displacement 𝒖0 and the initial loading 𝓵(0) are in 
equilibrium in the sense that

𝑎(𝒖0, 𝒗) = ⟨𝓵(0), 𝒗⟩ ∀ 𝒗 ∈ 𝑽 ,

then (3.10) is valid. 
Following [25], we make the following assumption for the mesh ℎ that are compatible with the partition of the boundary Γ𝐶

into its flat components:

Γ𝐶 = ∪𝑖0
𝑖=1Γ𝐶,𝑖,

where for 1 ≤ 𝑖 ≤ 𝑖0, Γ𝐶,𝑖 is a line segment if 𝑑 = 2 or a polygon if 𝑑 = 3.

Assumption 3.3. For each 𝐾 ∈ ℎ, there exists a “virtual triangulation" 𝐾 of 𝐾 such that 𝐾 is uniformly shape regular and quasi-
uniform. The corresponding mesh size of 𝐾 is bounded below by a constant multiple of ℎ𝐾 . Each edge of 𝐾 is a side of a triangle in 
𝐾 .

Define a local virtual element space on the element 𝐾,

𝑊 ℎ
𝐾 ∶= {𝑣 ∈ 𝐻1(𝐾) ∶ Δ𝑣 = 0, 𝑣|𝜕𝐾 ∈ 𝐶0(𝜕𝐾), 𝑣|𝑒 ∈ ℙ1(𝑒) ∀ 𝑒 ⊂ 𝜕𝐾},

with the function values at the vertices of 𝐾 as a set of degrees of freedom.
Let

𝑾 ℎ
𝐾 ∶= (𝑊 ℎ

𝐾 )2. (3.11)

Then the global virtual element space 𝑽 ℎ is defined by

𝑽 ℎ ∶= {𝒗 ∈ 𝑽 ∶ 𝒗|𝐾 ∈ 𝑾 ℎ
𝐾 ∀𝐾 ∈ ℎ}.

Denote 𝑽 ℎ
𝐾 = 𝑽 ℎ

|𝐾 . Corresponding to the local degrees of freedom on each element 𝐾, we choose function values at the vertices as 
global degrees of freedom for functions in 𝑽 ℎ. For a continuous function 𝒗, the global nodal interpolation operator is denoted by 𝑰ℎ𝒗, 
which is equal to 𝑰𝐾𝒗 on 𝐾. The following interpolation error estimate is shown in Chen and Huang[25].

Lemma 3.4. For the nodal interpolation operator 𝑰𝐾 ∶ (𝐻2(𝐾))2 → 𝑽 ℎ
𝐾 , there holds

‖𝒗 − 𝑰𝐾𝒗‖(𝐿2(𝐾))2 + ℎ𝐾‖𝒗 − 𝑰𝐾𝒗‖𝑽𝐾 ≲ ℎ2𝐾 |𝒗|(𝐻2(𝐾))2 , 𝒗 ∈ (𝐻2(𝐾))2 ∩ 𝑽𝐾 . (3.12)
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To construct 𝑎ℎ(⋅, ⋅), as in Beirao Da Veiga et al. [26], Zhang et al. [27], we define a projection operator Π𝐾 ∶ 𝑾 ℎ
𝐾 → (ℙ1(𝐾))2 by 

the relations
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝜺(Π𝐾𝒗), 𝜺(𝒒))𝐾 = (𝜺(𝒗), 𝜺(𝒒))𝐾 ∀ 𝒒 ∈ (ℙ1(𝐾))2,

∫𝜕𝐾
Π𝐾𝒗 𝑑𝑠 = ∫𝜕𝐾

𝒗 𝑑𝑠,

∫𝐾
∇ × Π𝐾𝒗 𝑑𝑥 = ∫𝐾

∇ × 𝒗 𝑑𝑥.

At this point, we construct the bilinear form 𝑎ℎ𝐾 (⋅, ⋅) on each polygon 𝐾 ∈ ℎ as follows:
𝑎ℎ𝐾 (𝒖

ℎ, 𝒗ℎ) = 2𝜇 (𝜺(𝚷𝐾𝒖ℎ), 𝜺(𝚷𝐾𝒗ℎ))𝐾 + 𝜆
(

Π0
0div𝒖

ℎ,Π0
0div𝒗

ℎ)

𝐾

+ 𝑆𝐾 (𝒖ℎ −𝚷𝐾𝒖ℎ, 𝒗ℎ −𝚷𝐾𝒗ℎ) ∀ 𝒖ℎ, 𝒗ℎ ∈ 𝑽 ℎ
𝐾 , (3.13)

where Π0
0 is the 𝐿2-projection on 𝐾 to ℙ0(𝐾) and 𝑆𝐾 (𝒗,𝒘) =

𝑁𝐾
∑

𝑖=1
𝜒𝑖(𝒗)𝜒𝑖(𝒘), 𝜒𝑖 being the 𝑖th local degree of freedom on 𝐾, 1 ≤ 𝑖 ≤

𝑁𝐾 ∶= dim𝑽 ℎ
𝐾 .

To define an approximation of the right-hand side 𝓵(𝑡), as in Beirao Da Veiga et al. [26], we introduce

⟨𝓵ℎ(𝑡), 𝒗ℎ⟩ ∶=
∑

𝐾∈ℎ
∫𝐾

𝚷0
0𝒇1(𝑡) ⋅ 𝒗

ℎ 𝑑𝑥 + ∫Γ𝑁
𝒇2(𝑡) ⋅ 𝒗ℎ 𝑑𝑠 ∀ 𝒗ℎ ∈ 𝑽 ℎ,

where 𝚷0
0 is the projection operator in (𝐿2(𝐾))2 norm onto the space (ℙ0(𝐾))2 and ̂𝒗ℎ is the average value of the function 𝒗ℎ over all 

vertices of 𝐾. According to Chen and Huang[25], Beirao Da Veiga et al. [26], for all 𝑡 ∈ [0, 𝑇 ], we have
(𝓵(𝑡), 𝒗ℎ) − ⟨𝓵ℎ(𝑡), 𝒗ℎ⟩ ≲ ℎ‖𝒇1(𝑡)‖(𝐿2(Ω))2‖𝒗

ℎ
‖𝑽 ,

which implies
‖𝓵(𝑡) − 𝓵ℎ(𝑡)‖(𝑽 ℎ)′ ≲ ℎ‖𝒇1(𝑡)‖(𝐿2(Ω))2 . (3.14)

Now we consider a semi-discrete approximation of Problem 3.2 by the VEM.
Problem 3.5. Find 𝒖ℎ ∶ [0, 𝑇 ] ↦ 𝑽 ℎ such that

𝒖ℎ(0) = ℎ𝒖0 (3.15)

and for 𝑡 ∈ (0, 𝑇 ), 𝒖̇ℎ(𝑡) ∈ 𝑽 ℎ with
𝑎ℎ(𝒖ℎ(𝑡), 𝒗ℎ − 𝒖̇ℎ(𝑡)) + 𝑗(𝒗ℎ) − 𝑗(𝒖̇ℎ(𝑡)) ≥ ⟨𝓵ℎ(𝑡), 𝒗ℎ − 𝒖̇ℎ(𝑡)⟩ ∀ 𝒗ℎ ∈ 𝑽 ℎ. (3.16)

Similar to Problem 3.2, under the stated conditions on the data, Problem 3.5 has a unique solution 𝒖ℎ ∈ 𝑊 1,∞(0, 𝑇 ;𝑽 ℎ).
According to the definition of 𝑎ℎ𝐾 (⋅, ⋅) in (3.13), it satisfies the condition (2.8). Similar to the result in Beirao Da Veiga et al. [26],

Brenner[28], the stability condition (2.9) can be obtained by the norm equivalence in Chen and Huang[25]. Applying the general 
results in Chen and Huang[25], Brenner et al. [29], Brenner and Scott [30] for the virtual element space (3.11) with a degree 𝑘 = 1, 
due to Assumption 3.3, we get the following result. We denote 𝑽 |𝐾 by 𝑽𝐾 .
Lemma 3.6. For every 𝒗 ∈ (𝐻2(𝐾))2, there exists a function 𝒗𝜋 ∈ (ℙ1(𝐾))2 such that

‖𝒗 − 𝒗𝜋‖(𝐿2(𝐾))2 + ℎ𝐾‖𝒗 − 𝒗𝜋‖𝑽𝐾 ≲ ℎ2𝐾 |𝒗|(𝐻2(𝐾))2 . (3.17)

Lemma 3.7. Let ℎ ∶ 𝑽 → 𝑽 ℎ be defined by (2.11). Then for all 𝒖 ∈ 𝑽 ∩ (𝐻2(Ω))2,

‖ℎ𝒖 − 𝒖‖𝑽 ≲ ℎ |𝒖|(𝐻2(Ω))2 . (3.18)

Proof.  Since meas(Γ𝐷) >0, by the Poincaré-Friedrichs inequality, we have
‖ℎ𝒖 − 𝒖‖(𝐿2(Ω))2 ≲ |ℎ𝒖 − 𝒖|𝑽 . (3.19)

Denote 𝒘ℎ ∶= ℎ𝒖 − 𝒖𝐼 . Then 
𝛼⋆|𝒘ℎ|

2
𝑽 ≤ 𝑎ℎ(𝒘ℎ,𝒘ℎ) = 𝑎ℎ(ℎ𝒖,𝒘ℎ) − 𝑎ℎ(𝒖𝐼 ,𝒘ℎ). (3.20)

By the definition (2.11),
𝑎ℎ(ℎ𝒖,𝒘ℎ) = 𝑎ℎ(𝒖,𝒘ℎ).

Now

𝑎ℎ(𝒖𝐼 ,𝒘ℎ) =
∑

𝐾∈ℎ

𝑎ℎ𝐾 (𝒖𝐼 ,𝒘ℎ) =
∑

𝐾∈ℎ

[

𝑎ℎ𝐾 (𝒖𝐼 − 𝒖𝜋 ,𝒘ℎ) + 𝑎ℎ𝐾 (𝒖𝜋 ,𝒘ℎ)
]

.

By the vector-valued function version of (2.8),
𝑎ℎ𝐾 (𝒖𝜋 ,𝒘ℎ) = 𝑎𝐾 (𝒖𝜋 ,𝒘ℎ).
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Hence, we may write
𝑎ℎ(𝒖𝐼 ,𝒘ℎ) =

∑

𝐾∈ℎ

[

𝑎ℎ𝐾 (𝒖𝐼 − 𝒖𝜋 ,𝒘ℎ) + 𝑎𝐾 (𝒖𝜋 − 𝒖,𝒘ℎ)
]

+ 𝑎(𝒖,𝒘ℎ).

Thus, from (3.20),
𝛼⋆|𝒘ℎ|

2
𝑽 ≤ −

∑

𝐾∈ℎ

[

𝑎ℎ𝐾 (𝒖𝐼 − 𝒖𝜋 ,𝒘ℎ) + 𝑎𝐾 (𝒖𝜋 − 𝒖,𝒘ℎ)
]

.

Then,

|𝒘ℎ|𝑽 ≲
[

∑

𝐾∈ℎ

(

|𝒖 − 𝒖𝜋 |2𝑽𝐾 + |𝒖 − 𝒖𝐼 |2𝑽𝐾
)]1∕2

.

Applying (3.17) and (3.12), we deduce that
|𝒘ℎ|𝑽 ≲ ℎ |𝒖|(𝐻2(Ω))2 . (3.21)

By the triangle inequality, (3.12) and (3.21), we have
|ℎ𝒖 − 𝒖|𝑽 ≲ ℎ |𝒖|(𝐻2(Ω))2 . (3.22)

Combining (3.19) and (3.22), we get the desired result (3.18). ∎
Theorem 3.8. Let 𝒖 ∈ 𝑊 1,∞(0, 𝑇 ;𝑽 ) and 𝒖ℎ ∈ 𝑊 1,∞(0, 𝑇 ;𝑽 ℎ) be the solutions of Problems 3.2 and 3.5, respectively. Assume 𝒖 ∈
𝐿∞(0, 𝑇 ; (𝐻2(Ω))2), 𝒖̇ ∈ 𝐿1(0, 𝑇 ; (𝐻2(Ω))2), 𝒖̇|Γ𝐶,𝑖

∈ 𝐿1(0, 𝑇 ; (𝐻2(Γ𝐶,𝑖))
2) for 1 ≤ 𝑖 ≤ 𝑖0. Then we have

‖𝒖 − 𝒖ℎ‖𝐿∞(0,𝑇 ;𝑽 ) ≲ ℎ.

Proof.  Let 𝑰ℎ𝒖̇ be the global nodal interpolant of 𝒖̇. We apply Theorem 2.3 and choose 𝒗ℎ = 𝑰ℎ𝒖̇:

‖𝒖 − 𝒖ℎ‖𝐿∞(0,𝑇 ;𝑽 ) ≲ ‖𝒖 − ℎ𝒖‖𝐿∞(0,𝑇 ;𝑽 ) + ‖ℎ𝒖̇ − 𝒖̇‖𝐿1(0,𝑇 ;𝑽 ) + ‖𝒖̇ − 𝑰ℎ𝒖̇‖𝐿1(0,𝑇 ;𝑉 )

+ ‖𝑅(𝑰ℎ𝒖̇)‖1∕2
𝐿1(0,𝑇 )

+ ‖𝓵 − 𝓵ℎ
‖𝑊 1,1(0,𝑇 ;(𝑽 ℎ)′), (3.23)

where

𝑅(𝑰ℎ𝒖̇(𝑡); 𝑡) = 𝑎(𝒖(𝑡), 𝑰ℎ𝒖̇(𝑡) − 𝒖̇(𝑡)) + 𝑗(𝑰ℎ𝒖̇(𝑡)) − 𝑗(𝒖̇(𝑡)) − ⟨𝓵(𝑡), 𝑰ℎ𝒖̇(𝑡) − 𝒖̇(𝑡)⟩ (3.24)

From (3.12),
‖𝒖̇ − 𝑰ℎ𝒖̇‖𝐿1(0,𝑇 ;𝑽 ) ≲ ℎ‖𝒖̇‖𝐿1(0,𝑇 ;(𝐻2(Ω))2).

By (3.18),
‖𝒖 − ℎ𝒖‖𝐿∞(0,𝑇 ;𝑽 ) ≲ ℎ‖𝒖‖𝐿∞(0,𝑇 ;(𝐻2(Ω))2),

‖ℎ𝒖̇ − 𝒖̇‖𝐿1(0,𝑇 ;𝑽 ) ≲ ℎ‖𝒖̇‖𝐿1(0,𝑇 ;(𝐻2(Ω))2).

In view of (3.14) and the embedding theorem, we get
‖𝓵 − 𝓵ℎ

‖𝑊 1,1(0,𝑇 ;(𝑽 ℎ)′) ≲ ℎ‖𝒇1‖𝑊 1,∞(0,𝑇 ;(𝐿2(Ω))2).

It only remains to bound the term ‖𝑅(𝑰ℎ𝒖̇)‖1∕2
𝐿1(0,𝑇 )

.
As in Han and Sofonea[1, Section 8.1], we can show that under the stated regularity conditions, the weak solution 𝒖 satisfies the 

relations (3.1) and (3.2) a.e. in Ω × (0, 𝑇 ) and the relation (3.4) a.e. on Γ𝑁 × (0, 𝑇 ). By integration by parts, for all 𝒗 ∈ 𝑽  and 𝑡 ∈ [0, 𝑇 ], 
we have

𝑎(𝒖(𝑡), 𝒗) = ∫Γ
(𝝈(𝑡)𝝂)⋅𝒗 𝑑𝑠 − ∫Ω

div𝝈(𝑡) ⋅ 𝒗 𝑑𝑥

= ∫Γ𝐶
𝝈𝝉 (𝑡)⋅𝒗𝝉𝑑𝑠 + ∫Γ𝑁

𝒇2(𝑡)⋅𝒗 𝑑𝑠 + ∫Ω
𝒇1(𝑡)⋅𝒗 𝑑𝑥.

Then from (3.24),

𝑅(𝑰ℎ𝒖̇(𝑡); 𝑡) = ∫Γ𝐶

[

𝝈𝝉 (𝑡)⋅(𝑰ℎ𝒖̇𝝉 (𝑡) − 𝒖̇𝝉 (𝑡)) + 𝑔
(

|𝑰ℎ𝒖̇𝝉 (𝑡)| − |𝒖̇𝝉 (𝑡)|
)]

𝑑𝑠.

Note that on Γ𝐶 , 𝑰ℎ𝒖̇ is equal to the usual continuous (ℙ1)
2 nodal interpolant of 𝒖̇. Then,

‖𝑅(𝑰ℎ𝒖̇)‖𝐿1(0,𝑇 ) ≲ ‖𝑰ℎ𝒖̇ − 𝒖̇‖𝐿1(0,𝑇 ;(𝐿2(Γ𝐶 ))
2) ≲ ℎ2

(

𝑖0
∑

𝑖=1
|𝒖̇|2

𝐿1(0,𝑇 ;(𝐻2(Γ𝐶,𝑖))
2)

)

1∕2

. (3.25)

Using Theorem 2.3, we obtain the desired result. ∎
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Then we consider the fully discrete approximation of Problem 3.2.
Problem 3.9. Find 𝒖ℎ𝑘 = {𝒖ℎ𝑘𝑛 }𝑁𝑛=0 ⊂ 𝑽 ℎ such that

𝒖ℎ𝑘0 = ℎ𝒖0 (3.26)

and for 𝑛 = 1,… , 𝑁 ,

𝑎ℎ(𝒖ℎ𝑘𝑛 , 𝒗ℎ − 𝛿𝑛𝒖𝑘ℎ𝑛 ) + 𝑗(𝒗ℎ) − 𝑗(𝛿𝑛𝒖ℎ𝑘𝑛 ) ≥ ⟨𝓵ℎ
𝑛 , 𝒗

ℎ − 𝛿𝑛𝒖ℎ𝑘𝑛 ⟩ ∀ 𝒗ℎ ∈ 𝑽 ℎ. (3.27)

Theorem 3.10. Let 𝒖 ∈ 𝑊 1,∞(0, 𝑇 ;𝑽 ) and 𝒖ℎ𝑘 ⊂ 𝑽 ℎ be the solutions of Problems 3.2 and 3.9, respectively. Assume 𝒖 ∈
𝐶1([0, 𝑇 ]; (𝐻2(Ω))2), 𝒖̈ ∈ 𝐿1(0, 𝑇 ;𝑽 ), 𝒖̇|Γ𝐶,𝑖

∈ 𝐶([0, 𝑇 ]; (𝐻2(Γ𝐶,𝑖))
2) for 1 ≤ 𝑖 ≤ 𝑖0. Then, we have the optimal order error estimate

max
1≤𝑛≤𝑁

‖𝒖𝑛 − 𝒖ℎ𝑘𝑛 ‖𝑽 ≲ ℎ + 𝑘. (3.28)

Proof.  We apply Theorem 2.6 with 𝒗ℎ𝑛 = 𝑰ℎ𝒖̇𝑛, the global interpolant of 𝒖̇𝑛, 1 ≤ 𝑛 ≤ 𝑁 :

max
1≤𝑛≤𝑁

‖𝒖𝑛 − 𝒖ℎ𝑘𝑛 ‖𝑽 ≲ max
1≤𝑛≤𝑁

‖𝒖𝑛 − ℎ𝒖𝑛‖𝑽 +
𝑁
∑

𝑛=1
𝑘𝑛‖𝛿𝑛ℎ𝒖𝑛 − 𝒖̇𝑛‖𝑽 +

𝑁
∑

𝑛=1
𝑘𝑛‖𝒖̇𝑛 − 𝑰ℎ𝒖̇𝑛‖𝑽

+ max
1≤𝑛≤𝑁

‖𝓵𝑛 − 𝓵ℎ
𝑛 ‖(𝑉 ℎ)′ +

𝑁−1
∑

𝑛=1
‖(𝓵𝑛+1 − 𝓵𝑛) − (𝓵ℎ

𝑛+1 − 𝓵ℎ
𝑛 )‖(𝑉 ℎ)′

+
(

𝑁
∑

𝑛=1
𝑘𝑛𝑅𝑛(𝑰ℎ𝒖̇𝑛)

)

1∕2

, (3.29)

where

𝑅𝑛(𝑰ℎ𝒖̇𝑛) ∶= 𝑎(𝒖𝑛, 𝑰ℎ𝒖̇𝑛 − 𝒖̇𝑛) + 𝑗(𝑰ℎ𝒖̇𝑛) − 𝑗(𝒖̇𝑛) − ⟨𝓵𝑛, 𝑰ℎ𝒖̇𝑛 − 𝒖̇𝑛⟩.

By (3.18),
‖𝒖𝑛 − ℎ𝒖𝑛‖𝑽 ≲ ℎ‖𝒖𝑛‖𝐻2(Ω)2 ≲ ℎ‖𝒖‖𝐶(0,𝑇 ;𝐻2(Ω)2).

Note that
𝑁
∑

𝑛=1
𝑘𝑛‖𝛿𝑛ℎ𝒖𝑛 − 𝒖̇𝑛‖𝑽 ≤

𝑁
∑

𝑛=1
𝑘𝑛‖𝛿𝑛ℎ𝒖𝑛 − ℎ𝒖̇𝑛‖𝑽 +

𝑁
∑

𝑛=1
𝑘𝑛‖ℎ𝒖̇𝑛 − 𝒖̇𝑛‖𝑽 .

By (3.18), we have
‖𝒖̇𝑛 − ℎ𝒖̇𝑛‖𝑽 ≲ ℎ‖𝒖̇𝑛‖𝐻2(Ω)2 ≲ ℎ‖𝒖̇‖𝐶(0,𝑇 ;𝐻2(Ω)2),
𝑁
∑

𝑛=1
𝑘𝑛‖ℎ𝒖̇𝑛 − 𝒖̇𝑛‖𝑽 ≲ ℎ‖𝒖̇‖𝐶(0,𝑇 ;𝐻2(Ω)2).

We take Taylor expansion for 𝒖𝑛−1 at 𝑡𝑛:

𝒖𝑛−1 = 𝒖𝑛 − 𝑘𝑛𝒖̇𝑛 + ∫

𝑡𝑛−1

𝑡𝑛
(𝑡𝑛−1 − 𝑠)𝒖̈(𝑠) 𝑑𝑠.

Then,

𝛿𝑛ℎ𝒖𝑛 − ℎ𝒖̇𝑛 = 𝑘−1𝑛 (ℎ𝒖𝑛 − ℎ𝒖𝑛−1) − ℎ𝒖̇𝑛 = 𝑘−1𝑛 ∫

𝑡𝑛

𝑡𝑛−1
(𝑡𝑛−1 − 𝑠)ℎ𝒖̈(𝑠) 𝑑𝑠.

Hence,
𝑁
∑

𝑛=1
𝑘𝑛‖𝛿𝑛ℎ𝒖𝑛 − ℎ𝒖̇𝑛‖𝑽 ≲ 𝑘

𝑁
∑

𝑛=1
‖𝑘−1𝑛 ∫

𝑡𝑛

𝑡𝑛−1
(𝑡𝑛−1 − 𝑠)ℎ𝒖̈(𝑠) 𝑑𝑠‖𝑽

≲ 𝑘∫

𝑇

0
‖ℎ𝒖̈(𝑠)‖𝑽 𝑑𝑠.

We then apply the stability inequality (2.12) to get
𝑁
∑

𝑛=1
𝑘𝑛‖𝛿𝑛ℎ𝒖𝑛 − ℎ𝒖̇𝑛‖𝑽 ≲ 𝑘 ‖𝒖̈‖𝐿1(0,𝑇 ;𝑽 ).

By (3.12), we have
𝑁
∑

𝑛=1
𝑘𝑛‖𝒖̇𝑛 − 𝑰ℎ𝒖̇𝑛‖𝑽 ≲ ℎ‖𝒖̇‖𝐶([0,𝑇 ];(𝐻2(Ω))2).
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By (3.14), we have
‖𝓵𝑛 − 𝓵ℎ

𝑛 ‖𝑽 ′
ℎ
≲ ℎ‖𝒇1‖𝐶([0,𝑇 ];(𝐿2(Ω))2).

Similar to (3.14),
‖(𝓵𝑛+1 − 𝓵𝑛) − (𝓵ℎ

𝑛+1 − 𝓵ℎ
𝑛 )‖𝑽 ′

ℎ
≲ ℎ‖𝒇1,𝑛+1 − 𝒇1,𝑛‖(𝐿2(Ω))2 .

Combing with the embedding theorem,
𝑁−1
∑

𝑛=1
‖(𝓵𝑛+1 − 𝓵𝑛) − (𝓵ℎ

𝑛+1 − 𝓵ℎ
𝑛 )‖𝑽 ′

ℎ
≲ ℎ

𝑁−1
∑

𝑛=1
‖𝒇1,𝑛+1 − 𝒇1,𝑛‖(𝐿2(Ω))2

≲ ℎ‖𝒇1‖𝐿∞(0,𝑇 ;(𝐿2(Ω))2).

Similar to the derivation of (3.25), by integration by parts,
𝑁
∑

𝑛=1
𝑘𝑛𝑅𝑛(𝑰ℎ𝒖̇𝑛) ≲

𝑁
∑

𝑛=1
𝑘𝑛‖𝑰ℎ𝒖̇𝑛 − 𝒖̇𝑛‖(𝐿2(Γ𝐶 ))

2

Fig. 1. Four different types of polygonal meshes.

Table 1 
Numerical errors at 𝑡 = 1 on square meshes for lowest-order 
VEM.

(𝑘, ℎ) ( 1
4
, 1
4
) ( 1

8
, 1
8
) ( 1

16
, 1
16
) ( 1

32
, 1
32
) ( 1

64
, 1
64
)

 error  0.1745  0.0911  0.0458  0.0221  0.0099
 order ∖  0.9377  0.9921  1.0461  1.1681
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≲
𝑁
∑

𝑛=1
𝑘𝑛ℎ

2
𝑖0
∑

𝑖=1
‖𝒖̇𝑛‖(𝐻2(Γ𝐶,𝑖))

2 ≲ ℎ2‖𝒖̇‖𝐶([0,𝑇 ];(𝐻2(Γ𝐶,𝑖))
2).

Combining the above inequalities, we derive (3.28) from (3.29). ∎

4.  Numerical solution of the discrete problem

In this section, we report numerical results on a two dimensional test problem. We use the VEM to discretize the spatial variable 
and uniform backward difference scheme in time. For the discrete problem, we solve it by an adaptive semi-smooth Newton method 
[24]; for details, cf. Feng et al. [15]. In the numerical simulation, the polygonal meshes are produced by an algorithm discussed in 
Talischi et al. [31] and the codes are written based on the program described in Sutton[32]. Four different types of meshes used in 
the following numerical example are presented in Fig. 1.

Let the domain Ω = (0, 1) × (0, 1) represent the cross section of a three-dimensional linearly elastic body. The boundary 𝜕Ω is 
decomposed into three parts: Γ𝐷, Γ𝐶 , Γ𝐹 . On the boundary Γ𝐷 = {1} × (0, 1), the body is clamped and therefore the displacement field 
vanishes there. On the boundary Γ𝐶 = (0, 1) × {0}, the body is in bilateral frictional contact with a rigid obstacle, and the friction is 
modeled with Tresca’s law. The remaining part Γ𝐹  is a traction boundary condition, the force 𝒇2 acts on the boundary whereas the 
part of the boundary represented by (0, 1) × {1} is traction free. No volume force is assumed to act on the body Ω. For computation, 
we use the following data

𝐸 = 200 daN∕mm2, 𝜅 = 0.3, 𝑔 = 4 daN∕mm2,

𝒇1 = (0, 0)𝑇 daN∕mm2, 𝒇2(𝑥1, 𝑥2, 𝑡) = (8(1.25 − 𝑥2)𝑡,−0.01𝑡)daN∕mm2,

𝒖0 = 𝟎, 𝑇 = 1𝑠.

where 𝐸 is the Young’s modulus and 𝜅 is the Poisson’s ratio of the material.

Fig. 2. The numerical solution related to different meshes.
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Then the Lame coefficients are
𝜆 = 𝐸𝜅

(1 + 𝜅)(1 − 2𝜅)
, 𝜇 = 𝐸

2(1 + 𝜅)
.

The numerical solutions in tangential direction, corresponding to different meshes are displayed in Fig. 2, respectively.
In Table 1 and Fig. 3, we report relative errors of the numerical solutions in the energy norm on square meshes, ‖𝒖ref −

𝒖ℎ‖𝐸∕‖𝒖ref‖𝐸 , where the energy norm is defined by the formula

‖𝒗‖𝐸 ∶= 1
√

2
(𝜺(𝒗), 𝜺(𝒗))1∕2𝑄 .

The aim of this part is to illustrate the convergence of the discrete scheme and to provide numerical evidence of the optimal error 
estimate obtained in Section 3. To this end, we compute a sequence of numerical solutions by using uniform discretization with 
the spatial discretization parameter ℎ and the time step 𝑘. Since the true solution 𝒖 is not available, we use the numerical solution 
corresponding to a fine discretization of Ω and a small time step as the “reference” solution 𝒖ref  in computing the solution errors. The 
numerical solution with ℎ = 1∕256 and 𝑘 = 1∕256 is taken to be the “reference” solution 𝒖ref . Note that the theoretical error bound 
predicts an optimal first order convergence of the numerical solutions measured in the energy norm, under certain solution regularity 
assumptions.

The relative errors in the energy norm are shown in Fig. 3.
Remark 4.1. Many people are concerned about comparing the performance of the virtual element method with that of other nu-
merical methods such as the finite element method. However, it is rather involved to address the issue. We refer the reader to the 
references [33–35] for discussions along this line. Note that if the mesh is triangular, the virtual element method related to 𝑊 ℎ

𝐾  is the 

Fig. 3. Relative errors in energy norm.

Fig. 4. Comparison of the number of grid nodes for different numbers of elements.

Communications in Nonlinear Science and Numerical Simulation 152 (2026) 109251 

15 



F. Feng et al.

linear finite element method. Thus, it makes sense to compare the number of degrees of freedom of the virtual element method with 
that of the traditional linear finite element method on grids of same scales. It appears difficult to establish a rigorous and complete 
theoretical result for the comparison, and so let us present some relevant numerical values. Over a unit square, consider numbers of 
nodes for polygonal meshes and triangular meshes with the equal number of mesh elements 𝑛𝑒, as shown in Fig. 4. The node counts 
for the polygonal meshes and the triangular meshes are 99 vs. 36 for 𝑛𝑒 = 50, 400 vs. 121 for 𝑛𝑒 = 200, 1601 vs. 441 for 𝑛𝑒 = 800, and 
9986 vs. 2601 for 𝑛𝑒 = 5000, respectively. When 𝑛𝑒 = 5000, for the polygonal mesh, the longest element side is 0.0219, and for the 
triangular mesh, the element side parallel to the axes is 0.02. These numerical results suggest that the polygonal mesh tends to have 
more vertices than the triangular mesh with the same number of elements, and hence corresponds to a relatively larger number of 
degrees of freedom.

On the other hand, the virtual element method exhibits certain advantages on robustness against mesh distortion and handling 
problems with high regularity solutions (cf. Brezzi and Luisa[33], Mengolini et al. [34], Zhang et al. [35]). Moreover, the virtual 
element method works well even on more complex geometries with unstructured or non-convex meshes.

Evidently, further investigations are needed to determine relative strengths and weaknesses of the virtual element method as 
compared to the finite element method and other numerical methods.
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