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ARTICLE INFO ABSTRACT

Keywords: In this paper, the al|-|l, —Sll-Il,, sparsity regularization with parameters a > § > 0 is studied for
Sparsity regularization nonlinear ill-posed inverse problems. The well-posedness of the regularization is investigated.
Nonlinear inverse problem Compared to the case where a > f > 0, the results for the case « = f > 0 are weaker due

aty-p¢, regularization to the lack of coercivity and Radon-Riesz property of the regularization term. Under certain

Non-convex conditions on the nonlinearity of F, sparsity is shown for every minimizer of the «||-||, — /]l ||

Iterative soft thresholding algorithm y » Sparsity y o Pl
regularized inverse problem. Moreover, for the case a« > f > 0, convergence rates O(52) and
0(6) are proved for the regularized solution toward a sparse exact solution, under different yet
commonly adopted conditions on the nonlinearity of F. The iterative soft thresholding algorithm
is shown to be useful to solve the af| - |l — Al - ll,, regularized problem for nonlinear ill-posed
equations. Numerical results illustrate the efficiency of the proposed method.

1. Introduction

Investigation of the non-convex al| - ||, = All - llz, (a > f > 0) regularization has attracted attention in the field of sparse recovery
in the recent years, see [1-5] and references therein. As an alternative to the #,-norm with 0 < p < 1, the advantages of using the
functional af| - ll;, = Bl - ll¢, (@ 2 § > 0) lie in the fact that it is a good approximation of the #-norm and it has a simpler structure
than the #-norm from the perspective of computation. It is known to be difficult to determine the optimal exponent p for the £,
(0 < p < 1) regularization [6]. For the «f| - || e, =Bl g, regularization, it can be shown that # = #/a plays a role similar to that of p
in the ¢, regularization, see [1, Fig. 1] for details. In this paper, we investigate the potential of the af| - ||, =8Il - I, regularization
method for solving nonlinear ill-posed operator equations with sparse solutions. In addition, we analyze the well-posedness of the
regularization for the particular case a = §.

We are interested in solving an ill-posed operator equation of the form

Fx) =y, 1.1

where x is sparse, F : ¢, — Y is a weakly sequentially closed nonlinear operator mapping between the 7, space and a Hilbert

space Y with norms || - lls, and || - ||y, respectively. Throughout this paper, we let (-,-) denote the inner product in the ¢, space

and e; = (0,...,0,1,0,...), i > 1. The exact data y' and the observed data y° satisfy ||y’ — y'||y < & with a noise level 5 > 0. The
——

most commoniy adopted technique to solve the problem (1.1) is sparsity regularization, see the monographs [7,8] and the special
issues [9-12] for many developments on regularizing properties and minimization schemes.
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1.1. Related works

The first theoretical analysis on sparsity regularization for ill-posed inverse problems dates back to 2004. In the seminal
paper [13], Daubechies et al. proposed an £, (1 < p < 2) sparsity regularization for linear ill-posed problems and established the
convergence of an iterative soft thresholding algorithm. Inspired by [13], many investigations focused on the regularizing properties
and iteration schemes for linear ill-posed inverse problems, see [7-9]. Subsequently, the schemes and their analysis were quickly
extended to nonlinear ill-posed inverse problems. Much effort has been devoted to investigating the regularization properties as well
as the minimization of the sparsity regularization for nonlinear ill-posed inverse problems, see [11,14-19] and the references therein.
We emphasize that in the above cited references only the convex case p > 1 is investigated. For the non-convex case 0 < p < 1, special
conditions and techniques are needed to analyze the well-posedness and convergence rate. In [20], a sub-linear ¢, regularization
is proposed and convergence is proved in the sense of the weak* topology on ¢;. A multi-parameter Tikhonov regularization with
¢, constraint is presented in [21,22], where results on regularizing properties and convergence rates are obtained. In [23], with
the use of a superposition operator N > the sparsity regularization with 0 < p < 1 can be studied within a more classical convex
formulation with 1 < ¢ < 2. Then the well-known results on regularizing properties of convex sparsity regularization can be utilized
to analyze the original non-convex sparsity regularization.

Concerning the minimization of the £, sparsity regularization with 0 < p < 1, several numerical algorithms were developed
for linear ill-posed inverse problems, e.g. alternating direction method of multipliers (ADMM) [24], iteratively reweighted least
squares (IRLS) [25], primal-dual active set method [26] and iterative hard thresholding [27]. Unfortunately, these algorithms cannot
be extended to nonlinear ill-posed equations directly. Sparsity regularization with non-convex regularized terms for nonlinear ill-
posed inverse problems is far from being investigated systematically. Though there is a great potential in the non-convex sparsity
regularization for nonlinear ill-posed inverse problems, to the best of our knowledge, only two papers are available in the literature.
In [28], the non-convex Tikhonov functional is transformed to a more viable one. Then a surrogate functional approach is applied to
the new convex functional straightforwardly. In [29], an iterative algorithm is developed and analyzed, which aims at minimizing
non-smooth and non-convex functionals, covering the important special case of Tikhonov functionals for non-linear operators and
non-convex penalty terms.

1.2. Contribution and organization

In this paper, we solve the nonlinear ill-posed inverse problem (1.1) by the following regularization method:
g

)r(glfr; T 5, (1.2)

with
1

T2 p(x) = JIFe) = YUY + Ry p(x),
where ¢ > 1 and

Ry p(x) 1= t:(||x||fl —/}||x||f2, a>p>0. (1.3)
For a > 0, denoting n = f/a, we can equivalently express the functional in (1.3) as

Ry p(x) = aR,(x),

where R, (x) := |Ixll,, —#nllxllz,, 1 > 7 > 0. We will investigate the well-posedness of the problem (1.2). For the case « > f > 0, we
show the existence, stability as well as convergence of regularized solutions under the assumption that the nonlinear operator F
is weakly sequentially closed. The numerical results reported in [1] show that we can obtain satisfactory results even when « = .
Actually, R, ; behaves more and more like a constant multiple of the #;-norm as #/a — 1. So in this paper, we also analyze properties
of R, ; when a = §, even though the well-posedness results of the regularization are weaker than that in the case « > § > 0. For the
case a > f > 0, we identify the convergence rate under an appropriate source condition. As is standard in analyzing convergence
rates, we need to impose restrictions on the nonlinearity of the operator F. Typically, the restrictions are utilized to bound the
crucial term (F’(x")(x — x"), w,) in deriving convergence rate results. Under two commonly adopted conditions on the nonlinearity
of F, we get convergence rates 0(5%) and O(5) of the regularized solution in the #,-norm, respectively.

For the minimization problem (1.2), we propose an iterative soft thresholding algorithm [13,30] based on the generalized
conditional gradient method (GCGM). In [31,32], GCGM is applied to solve the minimization problem for sparsity regularization
with the convex regularization term Y, w,|{(u, ¢,)|” with p > 1, where {w, > 0} are the weights, and {¢,} is an orthonormal basis
of a Hilbert space. In this paper, it is shown that this method can be applied to the non-convex a#| — ¢, sparsity regularization for
nonlinear inverse problems. For the case g = 2, we rewrite the functional .](f_ s in (1.2) as

T2 50 = G(x) + D(x),

where G(x) = (1/2) || F(x)=y°||3 —0(x), ®(x) = O(x)+al|x|lo, —Blix|lz, and Ox) = (4/2) ||x||§,7 +pllxllz,. Here 4 > 0 is a parameter whose
effect on the performance of the proposed algorithm is shown in Table 1 of Section 5. We show that if the nonlinear operator F is
continuously Fréchet differentiable and F is bounded on bounded sets, then the iterative soft thresholding algorithm is convergent.
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The rest of the paper is organized as follows. In Section 2, we analyze the well-posedness of the al| - ll,, = Il - ll, (@ 2 § > 0)
regularization. In Section 3, we derive the convergence rates in the #,-norm under an appropriate source condition and two
commonly adopted conditions on the nonlinearity of F. In Section 4, we present an iterative soft thresholding algorithm based
on GCGM and discuss its convergence. Finally, some numerical experiments are presented in Section 5.

2. Well-posedness of regularization problem

In this section we analyze the well-posedness of the regularization method, i.e., existence, stability as well as convergence of
regularized solutions. For the case a« = 5, R, ; does not have coercivity nor Radon-Riesz property, and the well-posedness result of
the regularization is weaker than that in the case a > §.

Let us denote a general minimizer of the functional .J. (ﬁ s by xi » ie.

x) y €argming? (), T2 = CIFG) = Y1 + Ry (). @2.1)

Definition 2.1. An element x' e ¢, is called an R,,—minimum solution to the problem (1.1) if

x"e arg min {R,’(x) | x €y, F(x)= y}.

Definition 2.2. x € ¢, is called sparse if supp(x) := {i € N| x; # 0} is finite, where x; is the ith component of x.
To characterize the sparsity, as in [13], we define the index set
Ix")={ieN|x] #0}, (2.2)

where xl.T is the ith component of x’. Next, we present a result on the non-negativity of Ry
Lemma 2.3. If a > f > 0, then R, 4(x) > 0 for any x € ¢,.

Proof. By the definition of R, 5, we have R, 4(x) = (a - Plixllz, + Blxlle, = lxll,)- Since [Ixll,, < lIxllz, and 0 < § < a, this implies
Repx)20. N

2.1. The case a > >0

We first recall some properties of R, 5 (¢ > f > 0) which are crucial tools in analyzing the well-posedness of the regularization,
cf. [1] for the proofs.

Lemma 2.4. The functional R, 5 (« > f§ > 0) has the following properties:
(i) (Coercivity) For x € ¢, ||x||,f2 — oo implies R, 5(x) — co.
(i) (Weak lower semi-continuity) If x, — x in ¢, and {R, 4(x,)} is bounded, then

o S
llm”mf R p(xp) = Ry p(x).

(iii) (Radon-Riesz property) If x, = x in £, and R, 4(x,) = R, 4(x), then ||x, — x|l,, — 0.

Lemma 2.5. Assume the sequence {||y,|ly} is bounded in Y. For a given M > 0, let x,, € £,, n=1,2, ... and
1
allF(xn)_yn”L)I/ +Ra,ﬂ(xn) <M. (23)

Then there exist an element x € ¢, and a subsequence {x, } of {x,} such that x, — x and F(x, ) — F(x).

Proof. By (2.3), {R, 4(x,)} is bounded. It follows from the coercivity of R, 4(x) that {llx,ll 2, } is bounded. Meanwhile, since {||y,|ly}
is bounded, {||F(x,)|ly} is bounded. Hence, there exists a subsequence {x,,} of {x,}, x €, and y € Y such that

Xy, = xinéy, F(x,)—yinY.

Since F is weakly sequentially closed, F(x) = y. This proves the lemma. [

We have the existence, stability as well as convergence of the regularized solution given in the next three results, similar to
Theorems 2.11, 2.12 and 2.13 in [1]. Their proofs are based on the properties stated in Lemmas 2.4 and 2.5.

Theorem 2.6 (Existence). For any y° € Y, there exists at least one minimizer to J ,f s in ¢,.

Theorem 2.7 (Stability). Let @, > f, >0, a, = a (@ > 0), , = f as n — co. Let the sequence {y,} C Y be convergent to y° € Y, and let

.. . . . ) . 5 . 6
x,, be a minimizer to ‘711:, 5 Then the sequence {x,} contains a subsequence {x,, } converging to a minimizer of Tp Furthermore, if T

. ) . b‘ . 6 _
has a unique minimizer Xop then lim;_, ||xﬂk - xmyﬂllf2 =0.
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Theorem 2.8 (Convergence). Let a, := a(8,), B, := p(5,), a, > B, > 0 satisfy

q
lima, =0, limp,=0 and lim — =0.
n—oo n—oo h—00 a,,
Assume that n = lim,_, , 1, € [0, 1) exists, where , = f,/a,. Let 5, = 0 as n — +oco and y*» satisfy ||y — y*|| < 6,. Moreover, let
6’1

6,
X p, € AEMINT, 1y ().

5, . 5 . L . P .

Then {xa;,ﬂn} has a subsequence, still denoted by {Xa:,ﬂ,, }, converging to an R,-minimizing solution x' in ¢,. Furthermore, if the
L . . . . 8y .

R,-minimizing solution x" is unique, then the entire sequence {xam ﬂn} converges to x' in ¢,.

2.2. The case a = f >0

We turn to the case « = > 0. The functional R, ; remains to be weakly lower semi-continuous, see [1, Lemma 2.8, Remark 2.9]
for details. However, coercivity and Radon-Riesz property cannot be extended to the case a = f, cf. Examples 2.9 and 2.11 below.

Example 2.9 (Non-coercivity). Let x = te; for some i, where ¢; = (0,...,0,1,0,...). Then, ||x||/2 — co as t — co. However, R, ,(x) =0
i

for each . So R, , is not coercive.

Note that the standard proof of the well-posedness of Tikhonov regularization is invalid without the coercivity of the regular-
ization term. So to ensure the well-posedness of the problem (1.2) in the case « = f§, we provide a result next where an additional
restriction, i.e. coercivity is imposed on the nonlinear operator F; see [26,33] for some examples of the nonlinear (or linear) coercive
operator.

Lemma 2.10. Assume F(x) is coercive with respect to | x|| ¢y Ll [Ixllg, = o0 implies || F(x)|ly — oo. Then the functional Jf{l is coercive.

Proof. By the definition of J j »

1 1 q
T2 ) = NFe) = YUy +ealxlly, —allxll, > NFGly = 15Ny -
Since F is coercive, it is obvious that Jlfa(x) —ooasxll, > 0. W
Note that if F = A is linear, then its coercivity is equivalent to the existence of a positive constant ¢, > 0 such that

lAx|ly > colixll,, Vx €2,

So when F is linear and coercive, the problem (1.1) is well-posed and there would be no need to solve it with regularization.
Based on Lemma 2.10, we can demonstrate the existence of the regularized solution; the proof is similar to that in Theorem 2.11
in [1].
Next we give an example to show that x, does not necessarily converge strongly to x even if x, = x in £, and R, ,(x,) = R, ,(x).
Thus R, , fails to satisfy the Radon-Riesz property.

Example 2.11 (Non-Radon-Riesz Property). Let x,, = (0, ...,0,1,0,...) and x = 0. Then x, — x in ¢,. We have
—

n

R = alllxlly, = 1%,ll7,) =0 and Ry o(x) =0.
S0 R, 4(x,) = R, o(x). However, ||x, — xl|,, = 1, which implies that x, does not converge strongly to x.

Since R, , fails to satisfy the Radon-Riesz property, we do not have stability and convergence properties similar to the ones
stated in Theorems 2.7 and 2.8. Nevertheless, under the additional assumption of the coercivity of F, with the help of Lemma 2.10,
stability and convergence properties can be proved, similar to that of Theorems 2.12 and 2.13 in [1].

2.3. Sparsity

Next we turn to a discussion of the sparsity of the regularized solution. When ¢ = 2, under a restriction on the nonlinearity of
F, it can be shown that every minimizer of .J f P is sparse whenever a > f§ or a = f.

Assumption 2.12. Assume that F : ¢, — Y is Fréchet-differentiable and there exists y > 0 such that

IF' 3 = F' @l eyy S vy =xll,, 2.4

for any y € By(x), where x is a minimizer of Jfﬂ and Bs(x) :={y||ly— xllf2 <6}, 6 2 1%l oo

4
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Remark 2.13. By [11, p. 14], (2.4) implies
IFG) = FG) = F'eoy = 0lly < iy =12, @.5)

for any y € B;(x), 6 > ||x|lc-

Proposition 2.14 (Sparsity). Let x be a minimizer of ]‘f s for a > >0 and q = 2. If Assumption 2.12 holds, then x is sparse.

Proof. For i € N, consider x := x — x;e;, where x; is the ith component of x. It is clear that x € Bs(x). By the definition of x,

LIFG) =PI + Ry < FNFE) = I + Ry (). 2.6)
If x =0, then x is sparse. Suppose x # 0. By (2.6), we see that
|xi|2 -
alx;| - ﬂm =Ry p(X) =Ry (%)
< SIF® =PI - 31FC - I
= %lIF(fC) - F®l} + (F(x) - y°, F(%) — F(x)). 2.7)
From Remark 2.13, we see that
F(Z) = F(x)+ F'(x)(% = x) + 1% (2.8)
with
12ty < i =1, (2.9)

A combination of (2.8) and (2.9) implies that
1FE) = FOll} = IF' )& = 0I5 + 17115, + 2(F (x)(% = x).r3)
SIF' @,y 1% =17+ 7;”;( = X1, +VIEF O Loy 1% = xI17,
= I PIF @I,y + élx,-r* + 715 PIF Ol ey vy (2.10)
Moreover,

(F(x)—)°, F(%) = F(x)) = (F(x) = y*, F'(x)(X = x) + 1)

< =3 {(F' (0" (F) = y).e) + S PG = . @11
A combination of (2.7), (2.10) and (2.11) implies that
|xi|2 1 20 ! 2 72 4, 1 3 o
|- f——" < _|x.|?|F x|t 4 zylxPIF
alx;] ’}||x||f2+||x||f2 < S O,y + g Il + 371 PIF @,y
= x{(F' )" (F(x) = %), e;) + %IX,-IZIIF(X) -Ylly (2.12)

for every i € N. Define ||x|ly := X,y sgn(|x;|), where sgn is the sign function. Now if ||x||, = 1, then x is sparse. Otherwise, ||x|, > 2

and then il o, Thus, there exists a constant ¢ > 0 such that
Iz, +171l7,

c+nlx| . c n1x;1

— =< |, - - = . (2.13)
xll, + 1%, Ixll, + 1%, Ixllz, + 1%,

Multiplying (2.13) by a|x;|, we have

2
[x;] Ix;1

— _ <ax|-pf— . (2.14)
lIxllz, + 11Xl T, # N1,

Denote

- 1 2 1
(Uxllz, + 1%l ) (;xqu'(x)ni(fz,y) +Lxd + nyl-|x,-|||F’<x>||L(f2,n)
K. =

i

ca
Uy, + 15l) (~CF/ G (G = ¥, + Il F0 = ¥y )

ca

+
Then a combination of (2.12) and (2.14) implies that

Kix; > x|, ieN
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Since x is a minimizer of .J a& 2 | F(x) = ¥°|ly is finite. In addition, since F is Fréchet-differentiable, || F’(x)|| Lty 18 also finite. Since
x, X € £y, F'(x)*(F(x) - y°) € ¢,, we have K; — 0 as i - oo, and this implies that A := {i € N | |K;| > 1} is finite. It is obvious that
x; = 0 whenever i ¢ A. This proves the proposition. [l

Note that the above result holds only for the case g = 2. It is not clear whether each minimizer of J f s is sparse when g # 2.

3. Convergence rate of the regularized solutions

We consider the convergence rate for the case a > # > 0 in this section. For this purpose, we need to impose a restriction on the
smoothness of x'. Meanwhile, we impose two commonly adopted conditions on the nonlinearity of F, and derive two corresponding
1
inequalities. Then we get convergence rates O(562) and O($) in the #,-norm based on the two inequalities, respectively.

1
3.1. Convergence rate O(62)

Assumption 3.1. Let x' # 0 be an R,-minimizing solution of the problem (1.1) that is sparse. Assume that
(i) F is continuously Fréchet differentiable. For every i € I(x"), there exists w; € Y such that

e; = F'(x"w,, 3.1)

where I(x") is defined in (2.2).
(i) There exist y >0, p >0, R,(x") < p such that

1F' ) = F' Dl ey < vlx =l (3.2)
for all x € £, satisfying R, (x) < p.

Assumption 3.1(i) and other analogous conditions were introduced in [20,34]. Actually, Assumption 3.1(i) is a source condition
which imposes the smoothness on the solution x'. Assumption 3.1 (ii) is a restriction on F which has two-fold meaning. One is to
impose nonlinearity condition on F. Another more crucial effect is to estimate the term (F'(x")(x — x*), »;), where w; are the same
as that in (3.1). Many authors pointed out that the restrictions on the nonlinearity of F coupled with source conditions prove to
be a powerful tool to obtain convergence rates in regularization [35-37]. There are several ways to choose the restrictions on the
nonlinearity of F. A commonly adopted restriction is (3.2), i.e. F’ is Lipschitz continuous [11,38].

Remark 3.2. Note that for all x € £, satisfying R, (x) < p, (3.2) implies
1FG) = PGy = F () = xlly < Dl =11, 3.3)
from a Taylor approximation of F. Thus, with the triangle inequality, we obtain
1F' G =xOlly < Zllx =12, + 1F ) = FHlly 3.4)
for all x € #, satisfying R, (x) < p, which can be used to give an upper bound of the term (F’ Hx = xT), w;).
Lemma 3.3. If Assumption 3.1 holds, then there exists o' € Y such that x' = F'(x")*@'.
This result is verified easily by setting o™ = Y, 16h) x?(o,.

Next we derive an inequality needed in the proof of the convergence rate. By Lemma 2.4(i), for any M > 0, there exists M, > 0
such that R, 4(x) < M for x € £, implies |x||,, < M. We further denote

=M+ ||X+||fzs (3.5)
4 2||’ |
o =( 1+ —=— ) HGOI max flolly + 7—., (3.6)
IxFll, el Ix*l,
2wt
¢ = 2lly (3.7
X,

Lemma 3.4. Let M > 0 be given and define c,, ¢, and c; by (3.5)=(3.7). Under Assumption 3.1, if I' := %‘fﬂ?ﬂ) <1, then

=212, < i [ 25 (Rap @) = Rup ™) + 2 = esPIFG) = FGOly |

for any x € £, with R, 5(x) < M satisfying R, (x) < p.
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Proof. By the definition of R p in (1.3), it is clear that
Ry 5(x) = alixll, = Blixllz, = alllxlly, = lIxll,) + (@ = Bllxll,
= ak(x) + (a = P)lIxllz,,
where £(x) := lIxllz, = lixllz,. We see that
Ry p(X) = Ry p(x") = alK(x) = KN + (@ = A)IIxIl, = I1xT,)
lIx112 = [1xF]12
= alK(x) - KD + (@ — p)—2— 2
lIxllz, + I1xTll,
llx = xTI17 + 26", x = xT)

= alK(x) = KD + (@ = ) - (8
lxll, + 17,
From the definition of X(x), we have
Ke) = KN = Nxlly, = Ixllz, = 16Tl + 1xT N, -
With the definition of index set I(x") in (2.2), we obtain that
Ixlly, = D0 Ixl+ D Ixl,
iel(xt) igl(xt)
: : :
“lxlly, 2= Y P - Y WP 2 X P - Y Il
iel(xt) i¢l(xT) iel(xT) i¢l(xT)
Then,
1 1
2 2
2
k@-rkehz Y (=)= X WP -f X T
iel(x") iel(xT) iel(xT)
which is rewritten as
. Frerety (il Dx =1 D)
K@) -G 2 T (x| - Ixf ) - —==— T 3.9)
iel(xh) (Ziel(xh |X1|2> 2 +(Z‘EIM) |x2.|2> 2
By the definition of M, we have
2 2
2
oo+ Y T < M+,
iel(xh) iel(x")
Thus,
x|+ Ix] | < M+ IIxTll,, Vi€ I(x). (3.10)
Meanwhile, we have
1 1
L2
0<lx'll,, <| X Il +] X 51| - (3.11)
iel(xt) iel(xt)
A combination of (3.9), (3.10) and (3.11) implies that
. Ml
Kx)-KaxhHh>- Y |x-x/|- ‘W_”tz Siero I = x01.
iel(x") 2
i.e.
t M, +
Ke) - KGxhH> -2+ — > k=l (3.12)
Ix"lle, ) o)
A combination of (3.8) and (3.12) implies that
llx — X'}'lli M
@=f)———— <Ry y(0)~ Ry yxH+al 2+ —1 Ix; = x!|
Ixllo, + lIxTll,, “ “ IxTll,, [e,z(m b
LR
e py X=X (3.13)

Ixlly, + 157l
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Since ||x]l,, < M, by (3.13), we see that

a— . M +
4 ||x—xT||§2SRa’ﬁ(x)—Ra,ﬂ(xT)+a(2+ 1 ) 2 [x; = x;

M, + X, Ixl,,

iel(x)
"
e XX (3.14)
lxll, + 1,
By Assumption 3.1 (i), we have
Ix; = x] | = (e, x = x")| = |{@,. F'(x")(x — x"))| < Dy Nooglly I1F' ) x = xDly-
i x!
Hence,
Y x- xj| < HGD| MaxX;ey(xt) oo lly 1F” (D) = xHlly, (3.15)
iel(x")
where |I(x")| denotes the cardinality of the index set I(x"). On the other hand, by Lemma 3.3, we see that
(x = 5D _ @, P = xD)_ oy I D6 = xDlly 3.16)
Ixllz, +1xFl, Il + 11X, Ixll,,
A combination of (3.14), (3.15) (3.4) and (3.16) implies that
i”x _ x’f”?
My +IxTll, 2

SRy () = Ry p(xh)

llo®lly

M, + + 4 2
+lal 2+ = [1(x")] max |lo;ly +2(a — f)— (1Fx) = F&Dly + S lIx = x"1%),
P ieth e, 2

ie.
lx—x")1% < L Ry j(x) = Ry y () + —— (e — e M F(x) — F(xD|
= (1_ Vcl(cza—c'3ﬂ)) a—p @p @ a—p 2 3 r{
2(a—p)

where ¢, ¢, and ¢; are defined by (3.5)-(3.7). W

Theorem 3.5. Suppose Assumption 3.1 holds. Let xi, s be defined by (2.1), and let the constants c¢; > 0, ¢, > ¢; > 0 be as in Lemma 3.4.
rei(ea—csp)
2(a—p)
1.Ifg=1and cya — c3p < 1, then

ci[1 4+ (cpa — c50)]6

Assume I' := <1

. . [14 (cyax — c30)16
o xM2 < , FGS )=y lly s ———3—, 3.17.
llxg 5= x"lly, < @« pHa-n 1F(xg ) = lly < = (ya—csp) (3.17a)
2. If ¢ > 1, then
ne e
. . q (g— D2 (cra — c3f) 9!
x0 —x'2<c—15—+ca—c S+ s
Wy =2 le, = Gopa—r | g T e P q
e -
84 (g — D201 (cyor — c35) 7!
IF GG = Iy < a| =+ (caa—csps+ a— (3.17b)
Proof. By the definition of x‘; » it is clear that
! s 5119 5 1 i 51 4
SIFGS )= PI5 + R(G ) < CIFGD) = 52115 + R,
ie.
54 w1
7z R(x) ) = R(x") + EnF(xﬁ,,,) =°II%.
Then R(xi ﬂ) is bounded. Applying Lemma 3.4, we see that
831 _(@=pa-1I) 5 ; 1
2> CPC= D~ 212, = = esDIFGS ) = FGOlly + PR
1
(a-pa-r
> %nxﬁﬁ —xI, ~ (@ - e PIFGS ) - ¥y
1
—(a—c;B) + 5||F(xﬁ,,,> =119 (3.18)

So if ¢ =1 and c,a — ¢34 < 1, then (3.17a) holds.
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If ¢ > 1, we apply Young’s inequality ab < % + % for a,b > 0 and ¢* > 1 defined by % + qi* = 1. We have

1 _1
(@ = ePIFES ) =3 lly =29 (a = e3p2 7 IIF(x) ) =¥ lly

1 q_
1 . (g —1)24¢-1 (cza—c3ﬂ) g-1
<3 IFGE ) =01 + . . (3.19)

A combination with (3.18) and (3.19) implies (3.17b). W

Note that by the definition of xz »

1 1 1
EllF(x;i,ﬂ) =PI} + R ) < 1FO - YL+ RO = IFO - yIe.

Hence, the upper bound of R(xi ) depends on the noise level §.
X 1
Remark 3.6 (A-priori Estimation). Let § = na be a fixed constant. For the case g > 1, if  ~ 671, then ||xi 5 xly, < c82 for some

€
constant ¢ > 0. For the particular case g = 1, if a ~ 6'~¢ (0 < ¢ < 1), then ||xiﬁ - XW‘IIL«;2 < ¢d2 for some constant ¢ > 0.

Note that due to the presence of the term gllx - x“lli in the estimation (3.4), we need an additional condition to obtain the
convergence rate, i.e. y > 0 must be small enough such that I < 1. This additional condition is similar to the condition y ||w|| < 1
in the classical quadratic regularization [38].

Theorem 3.7 (Discrepancy Principle). Keep the assumptions of Lemma 3.4 and let xg s be defined by (2.1). Assume there exist parameters
a and p (f = na) which are determined by the discrepancy principle

8 <IIFGS ) =y lly <76 (x21).

5 _ ot [ei(er = eam(z + 1)8
”XD(,/? X ”fz S —(1—;1)(1—1") .

Proof. By the definition of xz @ and p, we see that

Then

1 1 5 5 1
pli R p(x5 ) < 5||F(x3,,,> =V} + Ry p) < guF(x*) = PIIT + Ry p(xh). (3.20)

Hence Ra’ﬂ(xi’ﬂ) < Raﬁ(xf). It follows from Lemma 3.4 that

. -pU-T .
02 Ry p(x) ) =Ry p(x’) > % x5 5 = x"I7, = (e = e3DIF(x, ) = FGOly

> (a— ﬂZ(l -I) ||Xi,/1 _ x*||§,2 — (@ — e3B)(z + 1)6. (3.21)
1
Then
ci(cra —c3p)(t + 1)6
(a=pA-1)

The theorem is proven with f =na. W

13 7112
15, = x"I2, <

Note that a drawback of the discrepancy principle is that a regularization parameter with
S<IIFGG ) =y lly <76 (x21)

might not exist for general nonlinear operators F. Actually, for nonlinear operators, it is hard to ensure the existence of the
regularization parameter « which determined by Morozov’s discrepancy principle. We need to impose some conditions on F. In
this paper, we are mainly interested in the convergence rate under Morozov’s discrepancy principle. Existence of « will be done in
forthcoming papers.

3.2. Convergence rate O(5)

In [39, p. 6], it is pointed out that for ill-posed problems, (3.3) does not carry enough information about the local behavior of
F around x' to draw conclusions about convergence, since the left hand side of (3.3) can be much smaller than the right hand side
for certain pairs of points x and x'. Therefore, several researchers adopted an alternative

IF G = F&H = F DG =Dl <7IF@ - FeOlly, 0<y <5 (3.22)

as the condition on the nonlinearity of F; see [38, pp. 278-279], [39, p. 61, [37, pp. 69-70].
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Assumption 3.8. Let x’ # 0 be an R,-minimizing solution of the problem F(x) = y that is sparse. We further assume that
(i) F is Fréchet differentiable at x'. For each i € I(x"), there exists an w; € Y such that

e; = F'(x"Yw, (3.23)

holds, where I(x") is defined in (2.2).
(ii) There exist constants 0 < y < %, p>0, Rn(x+) < p such that

IF(x) — F(x") = F'(xD(x = xHlly < 7IIF(x0) = FxHlly (3.24)

for any x € £, with R, (x) < p.

Remark 3.9. Thanks to the triangle inequality, it follows from (3.24) that

%IIF’(x*)(x —xHlly < IF@) = FehHlly < ——I1F eHx - xDlly (3.25)
+7y -y

which provides two-sided bounds on || F’(x")(x — x7)||y. The condition
IF' NG = xDlly < A+ PIFG) = FOlly

has been adopted by several researchers. This assumption immediately leads to a bound of the critical inner product (F’(x")(x —
x), ;).

Next, we derive an inequality from the condition (3.24). The linear convergence rate O(5) follows from the inequality directly.

Lemma 3.10. Let Assumption 3.8 hold and R, 4(x) < M for a given M > 0. Then there exist constants c, > c5 such that
(@=Plix = x"llg, < Ry p(x) = Ry p(x7) + (e = esPIIF(x) = FxHly (3.26)
for any x € ¢, satisfying R, (x) < p.

Proof. By Lemma 2.4(i), for M > 0, there exists M, > 0 such that Ry p(x) < M for x € ¢, implies ||x||/2 < M,. Then, in analogy
with the proof in [1, Theorem 2.17], we have

(@ = p)llx - XT”fl SRy p(x) = R, p(xh) + (2(1 + Lﬂ) DIREES xj.Ll. (3.27)

>
e, ) i)

In addition, by Assumption 3.8,
Ix; = x| = [{e;. x = x")| = Kooy F'(xD)x = x| < max, Nooglly I1F ) x = xDly -
1 x!

Hence,

D= x 1< G| max oy lly 1F/ (e = xDly

iel(x") ielx")

Then, by (3.24), we have

>k = x| < HGH] max o lly(1+ DIFE) = FGHly- (3.28)
iel(x) ielxh

A combination of (3.27) and (3.28) implies that

(@=Plix = x"llg, < Ry p(x) = Ry p(x")

M .
+| 204+ ——F | 1G] max floylly (1+PIF) = FHly, (3.29)
X", iel(x)
ie.,
(@=P)lix = x"llg, <Ry p(x) = Ry y(x") + (cya — esPIF(x) = F(xHlly,
where
+ M, 4
¢y =2/1(N| max flolly(1+7).  e5 =————[I(x")] max [lo;lly(l+7).
iel(x") J|x7 ||f2 iel(xt)

Obviously, ¢4 > ¢5 and c o — c5f > 0. The proof is completed. W

Note that the proof of Lemma 2.17 in [1] can be performed up to (2.32) in [1] and that (2.32) in [1] corresponds to this estimate
choosing m, as the right-hand side of (3.10). With Lemma 3.10 at our disposal, we can obtain the following result, the proof is almost
same as that in [1, Theorem 2.18].

10
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Theorem 3.11. Suppose Assumption 3.8 holds. Let x be defined by (2.1) and let the constants c, > ¢5 be as in Lemma 3.10.
1.Ifg=1and 1 — (csa — ¢c5p) > 0, then

. 1+ (cqa —csp) 14+ (cqax — c5p)
] t 4 5 4 5
x°  —x <—— -5, F(x <—— 5. (3.30a)
x5 ll, @—p I F( a,,) Py < = (o —csh)
2. If ¢ > 1, then
e @
; 1 |67 (g — D241 (cpax — csp)a!
5 _ i < o _
||xnr,ﬂ x ||fl *a=pl3 + (cqa — c5B)d + p s
e 0
q —1)2¢ 1 (cja - =
IFGE ) -1 < a| &+ (coa = cgpps + D2 Car = s (3.30b)
: q q

Obviously, if a ~ §4~! with ¢ > 1, then ”sz,ﬁ - x"||f2 < ¢6 for some constant ¢ > 0. For the particular case ¢ = 1, if & ~ 6!~¢
(0 <e< 1), then ||xf;ﬁ - x"'llf2 < ¢6¢ for some constant ¢ > 0, where f = na.

Note that we cannot get the inequality (3.26) if the restriction (3.24) is replaced by (3.2). Also, the above results on the
convergence rate hold only for the case « > . When « = #, Lemmas 3.4 and 3.10 are no longer meaningful. So the proofs of
the convergence rate are invalid if « = f.

If the regularization parameter « is determined by Morozov’s discrepancy principle, we can also obtain the convergence rate
0(5), cf. [1, Theorem 2.20] for a proof.

Theorem 3.12 (Discrepancy Principle). Keep the assumptions of Lemma 3.10 and let xi s be defined by (2.1). If there exist « and f (B = na)
such that

S<IFGL )=y lly sv6 (x 21,

then
5 i (¢q —esm)(r + 1)
Ity =l < =0 ——

4. Computational approach

In this section we introduce and analyze a solution algorithm for the problem (1.2) in the finite dimensional space R”. We propose
an iterative soft thresholding algorithm based on the generalized conditional gradient method (GCGM). We prove the convergence
of the algorithm and show that GCGM can be applied to the «||x||, , —Blixll, (@ > B > 0) sparsity regularization for nonlinear inverse
problems.

4.1. Generalized conditional gradient method

In [31,32], GCGM was proposed to solve a minimization problem for a functional G + @ on a Hilbert space H, where
G : H — R is continuously Fréchet differentiable and @ : H — R U {0} is proper, convex, lower semi-continuous and coercive.
In addition, GCGM has been applied to solve the classical sparsity regularization by setting G(x) = l||F(x) y’5||2 - i||x||2
D(x) = —||x||2 +a), w,|{x,¢,)|° with p > 1, where {w, > 0} are the weights, {¢,} is an orthonormal basis of H, and F is a hnear
(or nonhnearf operator. GCGM from [32] is stated in the form of Algorithm 1.

Algorithm 1 Generalized conditional gradient method

1: Choose x° € H such that &(x°) < +o0, and set k = 0.
2: Determine a solution z¥ by solving

min(G’ (x*), z) + @(2).
zeH

k

3: Set a step size s* as a solution of

min G(x* + s(zF = x5)) + @(xF + s(zF — x¥)).
s€[0,1]

4: Put x**+! = xk 4 sk(zk — x*), and k < k + 1, return to Step 2.

We now consider applying GCGM to solve the problem (1.2) in the finite dimensional space R”. In this section, we assume that
the nonlinear operator F : R" — R™ is continuously Fréchet differentiable and is bounded on bounded sets. For simplicity, we only

11
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consider the case g = 2 in (1.2). Since the term allxllz, — Blixllz, is not convex, a property required by GCGM, we rewrite J ,f ﬂ(x) in
(1.2) in the finite dimensional space R" as

T2 5 = G(x) + D(x), (4.1)
where

G = 2IF@ - I, -0, 0(x) = 6() +allxl, — fllxl,,
and O(x) = §||X||§2 + Blixllz,, 4> 0. Thus, the problem (1.2) can be expressed as

min WANEIN (4.2)

It is clear that @(x) = «a|x|| ot §||x||§ is proper, convex, lower semi-continuous and coercive in #,. Unfortunately, since &’'(x) =
2

Ax + ﬁ, G(x) = %llF (x) — yéllf, - (%Hxll?,z + ﬂ||x||fz> is not Fréchet differentiable at x = 0. So G fails to fulfill the smoothness
¢ %

condition required by GCGM. We recall the definition of the soft-thresholding (ST) function
Sa//{(x) = Z Sa/l(xi)ei’ (4.3)
1

where S/, : R — R is defined by

z—% if > %
S =1 0 if <3, 4.9
t+§ if IS—%.

In this paper, we propose a numerical algorithm based on the idea that when an iterate is zero, the next iterate is computed
by solving the classical #, sparsity regularization problem, and otherwise, the next iterate is obtained by solving the minimization
problem (4.2) with GCGM. We call it ST-(a?| — f¢,) algorithm which is summarized in Algorithm 2.

Algorithm 2 ST-(a, — f¢,) algorithm for problem (1.2) in the finite dimensional space R"

Let x° = 0 and choose a small number ¢ > 0 for stopping criterion.
Determine a solution x! of the problem min %llF ) = Y1} +allxll,,
If x! =0, then stop and take 0 as the solution;
otherwise, for k > 1 do the following until ||x**! — x¥ o, <e:
Determine a solution z¥ of the problem min,¢ (G’ (x¥), z) + ®(z) by computing

k_ B VS sy o Ky _ 6
z _Sa/i<(/l||x"||fz+l>x AF(x)(F(x) y)>

Set a step size s* as a solution of

min G(xk + s(zk - xk)) + d5(xk + s(zk - xk)).
s€[0,1]

XkHL = xk oy sk(zk — by
k—k+1

For convenience in presentation, in case x' = 0, we formally let x* = 0 for k > 2. Next, we recall a result proved in [32].

Lemma 4.1. Let G : ¢, — R denote a Gdteaux-differentiable functional and let & : £, — R be proper, convex, lower semi-continuous and
coercive. Then, the first order necessary condition for optimality in (4.2) is

XE€ECy: (G(x),y—x)>®x)—D(y) forall y€f,. (4.5)
This condition is equivalent to

(G'(x), x) + @(x) = min({G' (x), y) + D). (4.6)
YEL,

In the following, we show that J : ﬁ(x") decreases with respect to k, where {x*} is generated by Algorithm 2.

Lemma 4.2. Denote by {x*} the sequence generated by Algorithm 2. Suppose x* does not fulfill the first order optimality condition (4.5).
Then J2,(<"*!) < 72, (<%).

Proof. If x* = 0, by Algorithm 2, we have

1
Toph = G + @G = SIFCED =I5+ allx g, = A,

12
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1
< SIFO) = Y113, +allOllz, = Iz, < SIFO) = Y113, +alOllz, = AllON,

ST

= J72 (5. (4.7)

If x¥ # 0, G is Fréchet differentiable at x* and the rest of the proof is similar to that of Lemma 2 in [32]. W

Remark 4.3. Note that if x' # 0, then the second inequality in (4.7) is strict and so

NACORIVAR(R
By Lemma 4.2,

T2 < T2 (9 < - < T2 (e < T2 (0). (4.8)
Consequently, x* # 0 for any k > 1. Moreover, the limit x* of any convergent subsequence of {x*} satisfies

x* #0.

This is easily proven from (4.8).
In Algorithm 2, to determine x!, we need to solve the problem

.1
min 2| F() = Iy + allxllz, 4.9

This is the classical #,-norm sparsity regularization for nonlinear ill-posed problems. There are several algorithms for solving the
problem (4.9) [15], e.g., GCGM, surrogate functional approach, the quadratic approximation method and generalized gradient
projection method. In this paper, we use GCGM to solve the problem (4.9),

1
xL, =Su (x,‘ — 2 F ) (Fx)) - yﬁ)), 1=0,1,2,...,

cf. [15] for the proof of the convergence. Note that x! is not necessary a global minimizer. It could be a stationary point. Nevertheless,
it can be ensured that the objective function is decreasing.

4.2. Convergence analysis

Definition 4.4. An element 0 # x* € £, is called a stationary point of .J j P if it satisfies
(G'(x*),y = x") 2 ®(x*) = D(y) Vy€e,,
or

(G'(x*), x*) + D(x*) = min((G'(x*), y) + P()).
YELy

Note that Algorithm 2 either “produces the sequence {0,0,0,...} and x* = 0 is the solution” or “produces a sequence x* with
xk # 0 for any k > 1 and any cluster point of the sequence {x*} is not zero”. That is why Definition 4.4 is limited to the case
0#x* € 5.

Next, we recall a result proved in [32].

Lemma 4.5. Let @ be proper, convex, lower semi-continuous and coercive, and let F be continuously Fréchet differentiable. Then
P(x) 1= (G'(x),x) + D(x) - yrgi[n«G’(X), y)+ @) (4.10)
2
is lower semi-continuous.

We have the following lemma, cf. [32, Theorem 1] for the proof.
Lemma 4.6. Denote by {x*} the sequence generated by Algorithm 2. Then lim, ¥ (x*) = 0.

Theorem 4.7. Denote by {x*} the sequence generated by Algorithm 2. {x*} has a subsequence converging to an element x*. If x' # 0, then
x* # 0, and x* is a stationary point of the functional Jf 5

Proof. Since {IkaIIfz} is bounded, there exist an element x* and a convergent subsequence of {x*}, still denoted by {x*}, such that
x* — x*. If x! # 0, then x* # 0 by Remark 4.3. For ¥ from Lemma 4.5 it holds that liminf,_, , ¥(x*) > ¥(x*). Then, by Lemma 4.6,
we have ¥(x*) = 0, which completes the proof of the theorem. W

Since determining the optimal step size s* is expensive, next we show that the step size can be chosen as s = 1, V k € N, if
A is sufficiently large. Note that s = 1 is not necessary the optimal step size; nevertheless, we can show that J j s decreases with
constant step size s* = 1. The proof is along the lines of that of Lemma 2.4 in [31].

13



L. Ding and W. Han Journal of Computational and Applied Mathematics 450 (2024) 115987

Assumption 4.8. Define By := {x | ||x — 0llz, < R}. Assume that F is Fréchet differentiable and there exists a constant L (R) such
that

IF' () = F'Wll ygngmy < Ler(RIx = yllz,  Vx,y € Bg. (4.11)

Lemma 4.9. Under Assumption 4.8,

1FG) = FO)llz, < (2L (R) R+ 1 F'O)l o gmy) X = ¥llz, VX, € Bg.
Proof. Write

1
F(X)—F(y)=/ diF(Sx+(1—S)y)ds
0 N
1
=/ F'(sx + (1= 5)y) (x — y)ds
0

1
= /O [F'(sx+(1—5)y)— F'W] (x = p)ds + F'(3) (x - y).

So
1
IFG) = FW)llg, < LF,(R)/ sllx - y||§2ds +IF Dl Ln gemy 11X = ll ¢, -
0
Note that
LF' W)l gn gy < I1F' ) = F/ (Ol g gy + 1F Ol g gy < Lpr (R) R+ | F'O)| g )
and

lx=yll;, <2R.
Hence, the stated inequality is proven. [l

So under Assumption 4.8, F’ and F are bounded on bounded sets.

Lemma 4.10. Keep Assumption 4.8 and define ¢(x) = %llF(x) - y5||§,2. Then ¢' is locally Lipschitz continuous, i.e. there exist a constant
Ly (R) that depends on R such that

19’ () = &' Wl gnmemy < Ly (BlIx = ¥llz, Vx,7 € Bp. (4.12)

Proof. Let x,y € Bg. Then

lg' %) = & Wl L momy = IIF' ) (F(x) = ¥) = F'30)*(FO) = ¥ Len momy
S NIF' ) = F W)l o 1F ) = ¥l
+ I F Dl Ln gy 1 F ) = FD - (4.13)

Since
I1F) = llg, < sup IFl, + 150l
XEBpR -

and || F' )l Lgn gmy < SUPyeg, | F" (0l gn gmy> (4.12) follows from (4.13) with a constant

Ly(R) = LF/<R)< sup [[F(0)ll,, + ||y'5||f2>
XEBp
+ (2Lpr (R) R+ [ F'O)ll g zem) sup [1F' GOl en o)
XEBp

This completes the proof. Wl
Theorem 4.11. Choose C, > 0, x, > 0, and

1 5 -

FIF©O =37llp, < J75() < oo,
Define

M, = sup{ lIxll, | T2 500 < J;ﬁ<x>},

My = 1 O)l| e oy + (1 +c;! L¢/(M1)) M, +C7'p.

14
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If

A> max{L¢;(M2), ),
Algorithm 2 with a constant step size s* = 1 produces a sequence such that

N ANE D BV ANED)

as long as x* does not satisfy the first order optimality condition (4.5) for a nonzero minimizer x* of J: 5

Proof. If x* = 0, by the proof of Lemma 4.2, we have Jjﬂ(x"“) < J,f,;(xk)~ Meanwhile, ||Xk||f2 < M, and

T2, = SIFO = Fll, < T2y,

If x* # 0, we assume that ||x*||,, < M, and J‘fﬂ(xk) < Jjﬁ(fc). Next we show it still holds for x¥*+!. If sk = 1,

k+1 _ s kLo ks Ky _ 6
x _Sa/l((illxkllta*_l)x AF(x)(F(x) y)>.

By the contraction property of S,,, [13],
[l llz, < A O g e oy + ||Xk||f2 +47'p
< AN Ol o gy + A7 Ly (MDIIX N, + 1551, + 478
<M I Ol Ly + (1 + CT Ly (MM, + CT1 = M,
Define
G(x) := H(x) = BlIxllz,.
where
HG) = HIF) - P12, - 2l
2 )
By the Taylor expansion, we have

GOM) = G(x*) = (HEM) = HER)) = BI ,, — BlIxkNl,)
1
= /O CHY (2 + 11 = x99, 541 = xyde = (x4, = BllI,,)

1
=/ (H' (5% + 151 = xRy) — HY (X0), XK+ = xKydr 4+ (G (x50, x4+ — xky
0

k
+< b xk+‘—xk>—(ﬂ||x"“||f2—ﬁux"ufz). 4.14)

=<1,
Since x* does not fulfill the first order optimality condition (4.5), we have
(G’ (xF), XK — XKy < d(xF) — d(xF+). (4.15)
A combination of (4.14) and (4.15) implies that

(GEMH + @(xFh) = (G(F) + d(xb))

1
< / (H' (x* 4+ (XM = xRy — H (5%, x¥1 = xKyar
0

k
+ < bx Xk — xk> - (ﬂ||xk+l||f2 - ﬁ||xk||/2)

Ix*1l,”

1
A
= /0 (@ (" 41— x) = ! (), X — oy — S =K

px* K+l _ k\ _ K+ _ ik
+ A=K~ BT, = Bl (4.16)

=<1,
By Lemma 4.10 and Cauchy-Schwarz inequality, it follows from (4.16) that
(GG + 2 = (GGH) + (x))

1 k
A Px
< /0 Ly (M)t]|x*+ — x"||§2dr - 5||xk+1 - x"||§2 + < xk+1> =Bl

X1l

1 k+1 k2
SE(LW(MZ)—A) |+t — x 7, <o.
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This implies that
3 k+1 3 k 6 (=
J2,6M < I8 69 < T2 ).

By the definition of M,, we have [Ix**!|l,, < M,. W
4.3. Determining a solution z*

In Algorithm 2, when x* # 0, a crucial issue is how to determine the direction z¥. The Fréchet derivative of G(x) is given by

Px

G'(x) = F'()"(F(x) =) — Ax — ——.
B

In Algorithm 2, z¥ is given as a solution of the minimization problem

A 2 Ky _ 8y _ gk _ _BXK A2
min{F’ (x*)*(F(x*) = y*) — 4x ”xk,,fz,ZH szl +allzlly, - (4.17)

The minimizer of (4.17) can be computed by the iterative soft thresholding operator, cf. [10,13] for the details of iterative soft
thresholding operator.

Lemma 4.12. If x* # 0, then z* is the minimizer of problem (4.17) if and only if

*=8,, <<W + 1) xk = ZF (k) (F (k) — y5)> . (4.18)

Proof. The problem (4.17) is equivalent to the problem

Ly, _ s k_ L ks ky_ b g
z <(/{||x"||f2+1>x AF(x)(F(x) y)> .

min -
zZ

2

+ S lizll,- (4.19)

2

The proximal mapping P of aA™! llzll,, is defined by
Pwl-‘||~||f (x) := argmin l||z - x||§, + gllzllf] .
1 z 2 2 A
For penalty functionals of the form ai~!||z|| £y WE have the well known equivalence, see, e.g., [15,40],
Pyt 09 = 0+ 200 1707 (0 = 8,00,
Then we can obtain (4.18). W

The componentwise form of w € 9|| - llz, () is: w; = sgn(x;) if x; # 0, w; € [-1,1] if x; = 0, for any component subscript i.
5. Numerical experiments

Though GCGM can be applied to solve a| — ¢, sparsity regularization, it is challenging to determine the optimal step size. In
analogy to that in [31], in this section, we implement Algorithm 2 with constant step size s = 1 for a nonlinear compressive sensing
(CS) problem [41-44]. Here we are interested in the sparse recovery for a CS problem where the observed signal is measured with
some nonlinear system. The research of nonlinear CS is not only important in theoretical analysis but also in many applications,
where the observation system is often nonlinear. For example, in diffraction imaging, charge coupled device (CCD) records the
amplitude of the Fourier transform of the original signal. So one only obtains the nonlinear measurements of the original signal.
Fortunately, in [42], it is shown that if the system satisfies some nonlinear conditions then recovery should still be possible.

Under the nonlinear CS frame, the measurement system is nonlinear. Assume, therefore, that the observation model is

y=Fx)+9, (5.1)

where § € R™ is a noise level, x € R" and F : R” - R™ is a nonlinear operator. It can be shown that if the linearization of F at an
exact solution x" satisfies the restricted isometry property (RIP), then the convergence property of the iterative hard thresholding
algorithm (IHTA) is guaranteed [42]. Next we illustrate the efficiency of the proposed algorithm by a nonlinear CS example of the
form

y = F(x) := a(Ab(x)) (5.2)

which was introduced in [42], where A is a CS matrix, 4 and b are nonlinear operators, respectively. Here, 4 encodes nonlinearity
after mixing by A as well as nonlinear “crosstalk” between mixed elements, and 5 encodes the same system properties for the inputs
before mixing. For simplicity, we write d(x) = x + a(x) and b(x) = x + b(x), where again a and b are nonlinear maps. In particular,
let a(x) = x¢ and b(x) = x?, where ¢,d € N + and x¢ and x4 should be understood in a componentwise sense.

Next, we consider the nonlinearity of the operator F(x). In [42], it is shown that the Jacobian matrix of a(Ab(x)) is of the form

F'(x) = (I + d)[AU + b))
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Table 1

SNR of iterative solution x* with different A.
A Iteration number Computation time SNR
10 149 5.2690s 35.0692
50 806 29.9565 35.0240
100 1628 58.5911 35.0146
200 3272 115.9108 35.0089
500 8203 438.6556 35.0002
1000 16423 636.3524 35.0011
2000 32862 1661.3564 35.0004

We assume that ||x|| fz is bounded, then o’ is bounded on bounded sets. Then, there exists a constant ¢ > 0 such that ||F'(x;) —
F' )l Lngmy < cllx; = x3ll,, i-e. F'(x) is Lipschitz continuous, cf. [42, Lemmas 3 & 4].

We present several numerical tests which demonstrate the efficiency of the proposed method. To make Algorithm 2 clear to the
reader, we study the influence of the parameters 4, , s and the nonlinear maps a and b on the iterative result x*. Note that if s =0
i.e. p =0, (1.2) reduces to the convex ¢, sparsity regularization. Then (4.18) reduces to the form

* =8, (xk - %F’(xk)*(F(xk) - yﬁ)) .

For the numerical simulation, we use a setting that A is a Gaussian random measurement matrix. The nonlinear CS problem is of
the form d(A,,,b(x,)) = y,,, where A, is a Gaussian random measurement matrix. The exact solution x' is s-sparse. The exact data
y! is obtained by y" = 4(Ah(x")). White Gaussian noise is added to the exact data y' and 5 is the noise level, measured in dB. The
iterative solution is denoted by x*. The performance of the iterative solution x* is evaluated by signal-to-noise ratio (SNR) which is
defined by
llx* = T2,
SNR := —10log;g ————2.
I,

We utilize the discrepancy principle to choose the regularization parameter a. Starting with an initial guess of the regularization
parameter, if || F(x*) — y|| £ >0 then we keep halving the value of the regularization parameter until || F(x*) — yllf2 > 6.

Let n = 200, m = 0.4n, p = 0.2m, where p is the number of the impulses in the true solution. For the sparsity regularization of
linear ill-posed problems, the value of ||A4,,,I|l, needs to be less than 1 [13]. This requirement is also needed for the nonlinear CS
problem (5.1). The value of ||A,,,ll, is around 20, and we re-scale the matrix A,,, by A,x, — 0.054,,,. The initial value x° in
Algorithm 2 is generated by calling x° = 1e-6% ones(n, 1) in MATLAB. Actually, for sparse recovery, one natural choice for the initial
value x0 is 0 vector, i.e. zeros(n, 1). If x* = zeros(n, 1), we compute x! by the classical #; sparsity regularization and the number of
iterations is 10. All numerical experiments were tested in MATLAB R2010 on an i7-6500U 2.50 GHz workstation with 8 Gb RAM.

In the first test, we discuss the convergence and convergence rate of the proposed algorithm. We let ¢ =2, d =3 and s = 1. The
noise level 6 is 30dB. We choose different parameters # to test its influence on the iterative solution x*. Theoretically, for Algorithm
2 with a constant step size s = 1, we require that the condition in Theorem 4.11 holds, i.e. 4 is large enough. Next, we test whether
A satisfies this condition. In Theorem 4.11, we let ¢; = 1, ¥ = x', @ = 0.125 and p = 0.05. Then, J5 (%) = 0.0316, M, is around
16, ||¢’(0)||f is around 3.5706 and L (M) is around 4.5794. Hence, M, is around 9.2. The value of Ly (M,) is around 18.3176.
So we let A = 20. Fig. 1 shows the graphs of the iterative solution x* when the regularization parameter « = 0.125. It is obvious
that the results of iteration get better with 5 increasing, which shows that the non-convex regularization with # > 0 has better
performance than the classical ¢, regularization. Fig. 2 displays graphs of the iterative solution x* with respect to iteration number
k when n = 1.0. It shows a good convergence pattern. Fig. 3 shows the convergence rate of iterative solution x* with respect to
iteration number k. We use the relative error e = ||x* — xTIlfz/ ||>c+||f2 to evaluate the accuracy of x*.

In the second test, we examine the effect of the parameter A. Let n = 200, m = 0.6n, p = 0.2m. By (4.1), it is obvious that the
iterative results do not change with respect to 1. However, numerical results show that larger A leads to more iterations number
and iterations time. Actually, from the formulation of Algorithm 2, we see that a larger value of A admits a smaller value of the
threshold «/A. Theoretically, if A is sufficiently large, the convergence speed could be arbitrarily slow and it is computationally
expensive. In Table 1, we set n = 1.0 and let a, &, ¢ and d same as that in test 1 and give the iterative results of Algorithm 2 with
different A. If the norm value of the iterative solution does not change for three subsequent iterations, then we stop the iteration. It
is shown that one needs more iterations and higher computation time with the value of A increasing.

In the third test, we study the stability of Algorithm 2. To test the influence of 5, we choose several different noise levels which
are added to the exact data y. Table 2 displays the iterative results. Obviously, the SNR of Inversion solution x* increase with the
noise level decreasing. It is shown that we can obtain satisfactory result when the noise level § > 20dB. Meanwhile, Table 2 shows
that Algorithm 2 has good stability corresponding to the noise level when the parameter 7 is fixed. This implies that the constant
step-size variant of Algorithm 2 is not sensitive with respect to 7.

In the last test, we discuss the influence of the nonlinearity of F, i.e. the parameter ¢ and d on the iterative solution x*. The
nonlinearity of the CS problem (5.2) depends on the parameters ¢ and d. In particular, the degree of nonlinearity of F increases
with the parameter ¢ and d increasing. In Table 3, we set n = 1.0 and let @, § and s same as that in Test 1. It is obvious that the
iterative results are stable with respect to the parameter c¢. The SNR of the iterative solution x* are similar with different parameter
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exact data
1.4r observed data |4

1.2 q

1k 4

0.8

0.6

0.4r,

o 50 100 150 200 o] 10 20 30 40 50 60 70 80

(a) Exact signal (b) Observed and exact data (6=30dB)

1.5 T T T 1.5

0.5

o 50 100 150 200 o 50 100 150 200

(c) n=0.0, SNR=29.4755, 1000 iterations  (d) n = 0.4, SNR=34.3366, 1000 iterations

o 50 100 150 200 o] 50 100 150 200

(e) n = 0.8, SNR=35.0716, 1000 iterations  (f) n = 1.0, SNR=35.3914, 1000 iterations

Fig. 1. (a) Exact signal. (b) Observed and exact data. (c)—(f) The iterative solution x* with different # at a fixed regularization parameter « = 0.125.

c. However, the iterative results are sensitive with respect to the parameter 4. When d > 7, we cannot get satisfactory results. In
particular, Algorithm 2 is invalid when the parameter d is an even number. Fig. 4 shows the iterative solution x* with respect to
the iterations at the fixed parameter ¢ = 2 and d = 4. Actually, Algorithm 2 can only identify the positive impulses and it fails to
recovery the negative impulses when d is an even number. Theoretically, due to the non-convexity of s % in (1.2), the minimizer
of J Of may be non-unique. Nevertheless, in numerical experiments, convergence is still observed and the limit depends on the
choice of the initial vector x’. When d is an even number, we cannot obtain the desired iterative results when x? =1e-6xones(n,1).
Nevertheless, we still obtain satisfactory iterative results when we let x* = 0.9 % xT.
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o 50 100 150 200 o 50 100 150 200

(a) k =5, SNR=1.8169 (b) k = 40, SNR=4.2687

] 50 100 150 200 ~o 50 100 150 200

(c) k = 80, SNR=23.8996 (d) k = 100, SNR=35.3914

Fig. 2. The iterative solution x* with different iteration number k at a fixed parameter 5 = 1.0.
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Relative error
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0.2F 4

0.1F 4

0 L L L
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Iterations

Fig. 3. Convergence rate of the iterative solution x* with respect to iteration number k at a fixed parameter » = 1.0.

Table 2
SNR of iterative solution x* with several noise levels, iterations number 1000.
n=0 n=02 n=04 n=20.6 n=0.8 n=10

Noise free,a =0.015 44.5479 45.0044 45.4848 45.9917 46.5286 47.0994
5 =50 dB, « =0.031 43.3370 45.7636 46.2097 46.6770 47.1678 47.6844
6 =40 dB, a =0.062 36.2226 37.6898 38.1772 38.6865 39.2201 39.7804
§=30dB, a =0.125 29.4775 32.1682 34.3366 34.9682 35.0716 35.3914
=20 dB, « =0.125 22.4699 24.1333 25.5513 25.7172 25.7959 25.9081
6 =10 dB, a =0.250 -1.5015 —1.5146 -1.5307 —1.5438 —1.5546 —1.5641
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Table 3
SNR of iterative solution x* with different parameters ¢ and d, iteration number 1000.
d=1 d=2 d=3 d=4 d=35 d=6 d=17 d=38 d=9
c=1 46.2683 4.1589 41.8642 3.2158 41.2564 2.5784 13.5876 NaN NaN
c=2 40.6830 4.2591 42.0519 3.0102 43.8885 1.2486 11.9139 NaN NaN
c=3 39.0531 3.0102 40.5454 1.2494 33.1849 2.0412 14.1032 NaN NaN
c=4 39.4280 2.0409 39.5473 2.0311 33.4812 3.0022 18.8408 6.0172 NaN
c=5 39.5284 3.0097 40.5428 2.0412 31.6905 4.2200 17.0556 2.0336 NaN
c= 39.8423 3.0095 39.9291 2.0411 35.7897 1.2494 16.8327 2.0403 NaN
c=15 39.8423 1.2493 42.2085 3.0101 38.4862 2.0412 19.9787 3.0045 NaN
c=20 39.8423 1.2492 38.8362 2.0412 39.2417 3.0103 18.6429 2.0412 NaN
c=50 40.5934 2.1863 39.7846 2.1957 39.7341 2.9472 19.1584 2.6893 NaN

(a) Exact signal

0.4 1
-0.6 1 0.6 1

-0.8F 9 -0.8[ 1

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

(¢) k =80, SNR=4.5921 (d) k =100, SNR=5.0444

Fig. 4. (a) Exact signal. (b)-(d) The iterative solution x* with different iteration number k at a fixed constant ¢ =2 and d = 4.

6. Conclusion

We analyzed the af; — ¢, (¢ > p > 0) sparsity regularization for nonlinear ill-posed problems. For the well-posedness of the
regularization, compared to the case a > # > 0, we only obtained the weak convergence for the case « = g > 0. If the nonlinear
operator F’ is Lipschitz continuous, we proved that the regularized solution is sparse. Two different convergence rates 0(5%) and
0O(6) were obtained under two widely adopted nonlinear conditions. A soft thresholding algorithm ST-(a#, — f¢,) can be extended
to solving the non-convex a?| — ¢, (a > f > 0) sparsity regularization for nonlinear ill-posed problems. Numerical experiments
show that the proposed method is convergent and stable. However, for some particular nonlinear CS problems, we can only identify
the positive impulses.

Data availability
No data was used for the research described in the article.
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