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1. Introduction

Hemivariational inequalities (HVIs) arise in the study of various industrial pro-

cesses and engineering applications. In the past three decades, many researchers have

contributed mathematical theories for such models (cf. [18, 32, 37, 39–41]). The fi-

nite element method has been used to solve them with systematic theoretical analysis

(cf. [6, 27, 29–32]). We refer the reader to the survey paper [28] for details along this

line. In this paper, we intend to propose and analyze the virtual element method for an

elliptic hemivariational inequality with convex constraint, which can be viewed as an

extension of our earlier work in [23].

We first introduce some notation about function spaces for later uses. Throughout
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this paper, we will use the standard notation for Sobolev spaces and their norms and

seminorms (cf. [1]). Let Ω ⊂ Rd (d = 2, 3) be an open bounded domain with Lipschitz

boundary ∂Ω. Given an integer m ≥ 1, let X be a closed subspace of H1(Ω;Rm)
and K a closed and convex subset of X with 0X ∈ K. Moreover, let Xj be another

Banach space and γj ∈ L(X,Xj). Then, the mathematical problem to be studied can

be described as follows.

Problem (P). Find an element u ∈ K such that

a(u, v − u) + j0(γju; γjv − γju) ≥ 〈f, v − u〉, ∀v ∈ K, (1.1)

where a(·, ·) is a bilinear form over X, j : Xj → R is a locally Lipschitz function, f
is a bounded linear functional over X, while j0(x; v) denotes the generalized Clarke

directional derivative of j at x in a direction v defined by (cf. [21])

j0(x; v) = lim sup
y→x, λ↓0

1

λ

(
j(y + λv)− j(y)

)
.

Recently, virtual element methods (VEMs) were developed and have gained popu-

larity as a numerical approach for solving partial differential equations (PDEs), started

with [2, 7, 9]. VEMs have some advantages over standard finite element methods. For

example, they are more convenient to handle PDEs on complex geometric domains or

the ones associated with high-regularity admissible spaces. The methods have been

applied to solve many different kinds of mathematical physical problems, e.g., con-

forming and nonconforming VEMs for second-order elliptic problems [5, 17, 24, 35],

fourth-order problems [3,16,44], elasticity problems [8,45], and (2m)-th-order elliptic

problems in any dimensions (cf. [20]). Some systematic theoretical analyses were given

in [10,14,19,20] for conforming and nonconforming VEMs. In the reference [23], we

introduced an abstract framework of numerical method and established an error anal-

ysis for the problem (1.1) without constraint, i.e. for the case K = X. We applied

the VEM for solving two contact problems and derived optimal order error estimates of

their numerical solutions under appropriate solution regularity assumptions.

In this paper, we first extend the ideas in [23] to devise naturally an abstract frame-

work of numerical method for the problem (1.1). Then, we extend arguments pre-

sented in [25, 31] in a subtle way to show convergence of the numerical solutions. In

addition, we derive a Céa-type inequality by using the techniques in [23,25]. As a typi-

cal example, we apply the previous results to propose a VEM for a frictionless unilateral

contact problem and derive its optimal error estimates. Under some assumptions, this

discrete problem is equivalent to a minimization problem (cf. [26, 32]), from which

we are able to compute the numerical solution by means of the multiobjective double

bundle method (cf. [38]) effectively. Finally, we provide several numerical results to

show the performance of the proposed method.

We end this section by introducing some basic results for later requirements. The

following elementary inequality is simple but useful in the forthcoming analysis:

a, b, x ≥ 0 and x2 ≤ ax+ b =⇒ x2 ≤ a2 + 2b. (1.2)
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If ψ : X → R is a locally Lipschitz functional on the Banach spaceX, the generalized

gradient (subdifferential) of ψ at x is defined by ([21])

∂ψ(x) =
{
ζ ∈ X∗ | ψ0(x; v) ≥ 〈ζ, v〉,∀v ∈ X

}
,

where X∗ denotes the dual space of X. The following properties hold:

ψ0(x; v) = max
{
〈ζ, v〉 | ζ ∈ ∂ψ(x)

}
. (1.3)

ψ0(x; v1 + v2) ≤ ψ0(x; v1) + ψ0(x; v2), ∀v1, v2 ∈ X. (1.4)

xn → x and vn → v in X ⇒ lim sup
n→∞

ψ0(xn; vn) ≤ ψ0(x; v). (1.5)

Here, 〈·, ·〉X∗×X stands for the duality pairing between X∗ and X, and is simply written

as 〈·, ·〉 when there is no confusion caused.

2. A framework of numerical solution and its theoretical analysis

As usual, we make the following assumptions for Problem (P).

(Ha) a(·, ·) : X × X → R is bilinear, symmetric, continuous and X-elliptic; we will

denote the X-ellipticity constant by mA > 0:

a(v, v) ≥ mA‖v‖2X , ∀v ∈ X. (2.1)

(Hj) j : Xj → R is locally Lipschitz, and there are constants c0, c1, αj ≥ 0 such that

‖∂j(z)‖X∗

j
≤ c0 + c1‖z‖Xj

, ∀z ∈ Xj , (2.2)

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ αj‖z1 − z2‖2Xj
, ∀z1, z2 ∈ Xj . (2.3)

Moreover, denote by cj ≥ 0 an upper bound of the norm of the operator γj ∈ L(X,Xj):

‖γjv‖Xj
≤ cj‖v‖X , ∀v ∈ X. (2.4)

Define a linear operator A : X → X∗ by

〈Au, v〉 = a(u, v), ∀u, v ∈ X. (2.5)

It is easy to check that A ∈ L(X,X∗) and it is monotone with a monotonicity constant

mA, which implies A is pseudomonotone ([43, Proposition 27.6]). Hence, following

[29, Theorem 3.1], we have the next result.

Theorem 2.1. Assume (Ha), (Hj), and

αjc
2
j < mA, (2.6)

where cj is from (2.4). Then for any f ∈ X∗, Problem (P) has a unique solution u ∈ K.
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2.1. A framework of numerical solution and its unique solvability

Let Th = {E}E∈Th be a polytopal mesh of Ω into polytopes, with E denoting

a generic element; h = maxE∈Th hE and hE = diam(E). With this mesh, we asso-

ciate a finite dimensional subspace Xh of X. Let Kh be a non-empty, closed and convex

subset of Xh and 0 ∈ Kh. Moreover, for any domain D and a nonnegative integer k,

denote by Pk(D) the set of all polynomials on D with the total degree no more than

k. Assume that there exists a natural number k such that Pk(E;Rm) ⊂ Xh|E for all

E ∈ Th, and the bilinear form a(·, ·) can be decomposed as

a(v,w) =
∑

E∈Th

aE(v,w), ∀v,w ∈ X,

where aE(·, ·) is a bilinear, symmetric and nonnegative form over XE = X|E . We equip

the space X|E with a norm or semi-norm ‖ · ‖X,E such that

‖v‖2X =
∑

E∈Th

‖v‖2X,E , ∀v ∈ X, (2.7)

and for all E ∈ Th, there holds

aE(v, v) . ‖v‖2X,E , ∀v ∈ XE . (2.8)

Here and below, for any two quantities a and b, “a . b” stands for “a ≤ C b”, where

the hidden constant C is independent of the mesh sizes but may take different values

at different occurrences.

With the help of the above preparation, our abstract frame of numerical method for

Problem (P) reads:

Problem (Ph). Find an element uh ∈ Kh such that

ah(uh, vh − uh) + j0(γjuh; γjvh − γjuh) ≥ 〈fh, vh − uh〉, ∀vh ∈ Kh, (2.9)

where

fh ∈ X∗
h, (2.10)

and it satisfies the condition

‖f − fh‖X∗

h
→ 0 as h→ 0 and 〈fh, v〉 ≤ c‖f‖X∗‖v‖X , ∀v ∈ Xh. (2.11)

Here,

‖f − fh‖X∗

h
= sup

vh∈Kh

〈f − fh, vh〉
‖vh‖X

,

and the bilinear form is obtained by

ah(u, v) =
∑

E∈Th

aEh (u, v) (2.12)

with the symmetric bilinear form aEh (·, ·) satisfying
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• k-Consistency: For all p ∈ Pk(E;Rm) and for all vh ∈ Xh|E,

aEh (p, vh) = aE(p, vh). (2.13)

• Stability: There exist two positive constants α∗ and α∗, independent of hE and

E, such that

α∗a
E(vh, vh) ≤ aEh (vh, vh) ≤ α∗aE(vh, vh), vh ∈ Xh|E . (2.14)

For the study of the discrete problem, we assume that

mA > max

{
1,

1

α∗

}
αjc

2
j . (2.15)

Let m̃A = α∗mA. Then from (2.15),

m̃A > αjc
2
j . (2.16)

A routine computation yields the Xh-ellipticity of ah(·, ·):

ah(v, v) ≥ α∗a(v, v) ≥ m̃A‖v‖2X , ∀v ∈ Xh. (2.17)

The arguments of Theorem 2.1 can be applied in the setting of the finite dimensional

set uh ∈ Kh. Thus, we can easily obtain the following result.

Theorem 2.2. Under the assumptions (Ha), (Hj), (2.4), (2.10), (2.15) and (2.17), Prob-

lem (Ph) has a unique solution.

2.2. Convergence analysis

In this subsection, we will study the convergence of Problem (Ph). Using the similar

arguments in [23,29], we can obtain the following result readily.

Lemma 2.1. If the assumptions (Ha), (Hj), (2.11), (2.15) and (2.17) hold, then

‖uh‖X . (‖f‖X∗ + 1).

To further our analysis, we make the following two assumptions for a certain natural

number k.

Assumption B1. For every v ∈ Hk+1(E;Rm), there exists a function vE = ΠEv ∈
Pk(E;Rm) such that

‖v − vE‖0,E + hE‖v − vE‖X,E . hk+1
E |v|k+1,E , ∀v ∈ Hk+1(E;Rm). (2.18)

Assumption B2. There exists an interpolation operator IE : Hk+1(E;Rm) ∩XE →
Xh|E such that

‖v − IEv‖0,E + hE‖v − IEv‖X,E . hk+1
E |v|k+1,E , ∀v ∈ Hk+1(E;Rm) ∩XE . (2.19)
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Moreover, we write vI as the global interpolant of v, i.e. vI(x) is equal to IEv(x) for

x ∈ E.

In order to get the convergence analysis of Problem (Ph), we assume {Kh}h approx-

imates K in the following sense

vh ∈ Kh and vh ⇀ v in X imply v ∈ K, (2.20)

∀v ∈ K, ∃vh ∈ Kh such that vh → v in X as h→ 0, (2.21)

where the symbol “⇀ ” stands for the weak convergence over the Banach space X.

To derive the convergence of Problem (Ph), we require an auxiliary result in ad-

vance.

Lemma 2.2. Let {wh}h be a sequence in Xh. If wh ⇀ w in X and ‖f − fh‖X∗

h
→ 0 as

h→ 0, then for all v ∈ X,

ah(v,wh) → a(v,w), 〈fh, wh〉 → 〈f,w〉 as h→ 0. (2.22)

Proof. Since Ω is a bounded domain with Lipschitz boundary, C∞(Ω̄;Rm) is dense

in H1(Ω;Rm). Recall that X is assumed to be a closed subspace of H1(Ω;Rm). Hence,

given any v ∈ X, for all ε > 0 there exists a certain vε ∈ C∞(Ω̄;Rm) such that

‖v − vε‖X < ε. (2.23)

For all E ∈ Th, according to assumption B1, we have vEε = ΠEvε ∈ Pk(E;Rm) such

that ∥∥vε − vEε
∥∥
1,E

. h|vε|2,E , (2.24)

leading to ∑

E∈Th

∥∥vε − vEε
∥∥2
1,E

. h2
∑

E∈Th

|vε|22,E . h2|vε|22,Ω. (2.25)

Hence, by (2.23), (2.25) and the triangle inequality,
∑

E∈Th

∥∥v − vEε
∥∥2
1,E

≤ 2
(
‖v − vε‖2X +

∑

E∈Th

∥∥vε − vEε
∥∥2
1,E

)

. ε2 + h2|vε|22,Ω. (2.26)

Since X is reflexive, according to the Banach-Steinhaus theorem in functional analysis,

the weak convergence of the sequence {wh} in X implies the boundedness of {‖wh‖X}.

Therefore, in view of (2.13), (2.14), (2.26) and the Cauchy-Schwarz inequality,

|ah(v,wh)− a(v,w)|
= |ah(v,wh)− a(v,wh) + a(v,wh)− a(v,w)|

≤
∣∣∣∣
∑

E∈Th

[
aEh
(
v − vEε , wh

)
− aE

(
v − vEε , wh

)] ∣∣∣∣+ |a(v,wh − w)|

.

( ∑

E∈Th

∥∥v − vEε
∥∥2
1,E

) 1

2

‖wh‖X + |a(v,wh − w)|

. (ε+ h|vε|2,Ω)‖wh‖X + |a(v,wh − w)|. (2.27)
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Note that

a(v,wh − w) → 0 as h→ 0.

So the estimate (2.27) yields

lim sup
h→0

|ah(v,wh)− a(v,w)| . ε.

Due to the arbitrariness of ε > 0, and |ah(v,wh)− a(v,w)| ≥ 0, we obtain

ah(v,wh) → a(v,w) as h→ 0.

Furthermore, by means of the weak convergence of {wh} in X,

〈fh, wh〉 − 〈f,w〉 = 〈fh − f,wh〉+ 〈f,wh − w〉
≤ ‖f − fh‖X∗

h
‖wh‖X + 〈f,wh − w〉 → 0 as h→ 0 (2.28)

as required.

Theorem 2.3. If assumptions (Ha), (Hj), (2.11), (2.13)-(2.15), (2.18), and (2.20)-

(2.21) hold, then

uh → u in X as h→ 0. (2.29)

Proof. The proof is rather involved and is divided into three steps for clarity.

Step 1: By Lemma 2.1, {uh} is bounded in X. Since X is reflexive and γj ∈
L(X,Xj), there exists a subsequence {uh′} ⊂ {uh} and an element w ∈ X such that

uh′ ⇀ w in X, γjuh′ ⇀ γjw in Xj. (2.30)

By the assumption (2.20), we know that w ∈ K.

Step 2: Intend to show the strong convergence, uh′ → w in X. By (2.21), there

exists a sequence {wh′} ⊂ X with wh′ ∈ Kh′ , such that

wh′ → w in X, γjwh′ → γjw in Xj as h′ → 0. (2.31)

Owing to (2.17), there holds

m̃A‖wh′ − uh′‖2X ≤ ah′(wh′ − uh′ , wh′ − uh′)

= ah′(wh′ , wh′ − uh′)− ah′(uh′ , wh′ − uh′)

= ah′(wh′ − w,wh′ − uh′) + ah′(w,wh′ − uh′)

− ah′(uh′ , wh′ − uh′)

= ah′(wh′ − w,wh′ − uh′) + ah′(w,wh′ − w)

+ ah′(w,w − uh′)− ah′(uh′ , wh′ − uh′). (2.32)

According to (2.31) and the boundedness of {wh′ − uh′} in X, we easily achieve

ah′(wh′ − w,wh′ − uh′) → 0, ah′(w,wh′ − w) → 0 as h′ → 0. (2.33)
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Due to (2.30) and Lemma 2.2, we have

ah′(w,w − uh′) → 0 as h′ → 0. (2.34)

Furthermore, it follows from (2.9), (1.4) and (2.3) that

−ah′(uh′ , wh′ − uh′) ≤ j0(γjuh′ ; γjwh′ − γjuh′)− 〈fh′ , wh′ − uh′〉
≤ j0(γjuh′ ; γjwh′ − γjw) + j0(γjuh′ ; γjw − γjuh′)

+ j0(γjw; γjuh′ − γjw)− j0(γjw; γjuh′ − γjw)

− 〈fh′ , wh′ − uh′〉
≤ αjc

2
j‖uh′ − w‖2X + j0(γjuh′ ; γjwh′ − γjw)

− j0(γjw; γjuh′ − γjw)− 〈fh′ , wh′ − uh′〉. (2.35)

From the boundedness of {γjuh′} in Xj, (1.3) and (2.31), it follows that

lim sup
h′→0

j0(γjuh′ ; γjwh′ − γjw) → 0, (2.36)

and by (2.30),

−j0(γjw; γjuh′ − γjw) ≤ −〈ζτ , γjuh′ − γjw〉 → 0 as h′ → 0, (2.37)

where ζτ ∈ ∂j(γjw). Note that

‖uh′ − w‖2X ≤ ‖uh′ − wh′‖2X + ‖wh′ − w‖2X
+ 2‖uh′ − wh′‖X‖wh′ − w‖X . (2.38)

Hence, the combination of (2.32) to (2.38) implies

(
m̃A − αjc

2
j

)
‖wh′ − uh′‖2X

≤ αjc
2
j

[
‖w − wh′‖2X + 2‖wh′ − uh′‖X‖wh′ − w‖X

]
− 〈fh′ , wh′ − uh′〉,

and in view of Young’s inequality and (2.16),

‖wh′ − uh′‖2X . ‖w − wh′‖2X − 〈fh′ , wh′ − uh′〉. (2.39)

On the other hand, we have

〈fh′ , wh′ − uh′〉 = 〈fh′ − f,wh′ − uh′〉+ 〈f,wh′ − w〉+ 〈f,w − uh′〉.

It follows from (2.30) and (2.31) that

〈f,wh′ − w〉+ 〈f,w − uh′〉 → 0 as h′ → 0.

By (2.11),

〈fh′ − f,wh′ − uh′〉 ≤ ‖f − fh′‖X∗

h′
‖wh′ − uh′‖X → 0 as h′ → 0.
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Therefore,

〈fh′ , wh′ − uh′〉 → 0 as h′ → 0,

which together with (2.31) and (2.39) implies

‖wh′ − uh′‖2X → 0 as h′ → 0. (2.40)

The strong convergence follows readily from (2.31) and (2.40), i.e.,

uh′ → w, h′ → 0. (2.41)

Step 3: Intend to show that the strong limit w is the unique solution of Problem (P).

For any v ∈ K, there exists a sequence {vh′} ⊂ X with vh′ ∈ Kh′ , such that vh′ → v in

X. Then γjvh′ → γjv in Xj . By definition,

ah′(uh′ , vh′ − uh′) + j0(γjuh′ ; γjvh′ − γjuh′) ≥ 〈fh′ , vh′ − uh′〉, ∀vh′ ∈ Kh′ . (2.42)

Write

ah′(uh′ , vh′ − uh′) = ah′(uh′ − w, vh′ − uh′) + ah′(w, vh′ − uh′). (2.43)

Using (2.41) and the boundedness of {vh′ − uh′} in X gives

ah′(uh′ − w, vh′ − uh′) → 0 as h′ → 0.

Since (vh′ − uh′) → (v − w) in X, an application of Lemma 2.2 immediately implies

ah′(w, vh′ − uh′) → a(w, v − w), 〈fh′ , vh′ − uh′〉 → 〈f, v − w〉 as h′ → 0.

By (1.5),

lim sup
h′→0

j0(γjuh′ ; γjvh′ − γjuh′) ≤ j0(γjw; γjv − γjw).

Consequently, it follows from (2.42) that

a(w, v − w) + j0(γjw; γjv − γjw) ≥ 〈f, v − w〉, ∀v ∈ K.

Thus, w is a solution of Problem (P). Note that the solution of Problem (P) is unique,

so w = u, which, in conjunction with (2.41), yields the strong convergence uh → u as

h→ 0.

2.3. Error estimates

In this subsection, we are ready to state and prove a Céa’s type inequality, which

can be viewed as a starting point for further error estimates.
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Theorem 2.4. Assume that (Ha), (Hj), (2.4), (2.11), (2.13)-(2.15), (2.18)-(2.19) hold.

If the exact solution u of (1.1) belongs to Hk+1(Ω) for a certain natural number k and

uI ∈ Kh, then for all v ∈ K we have the error bound

‖u− uh‖X . hk|u|k+1,Ω + ‖γju− γjuI‖
1

2

Xj
+ ‖f − fh‖X∗

h

+ |Ru(uI , u)|
1

2 + |Ru(v, uh)|
1

2 , (2.44)

where

Ru(v,w) = a(u, v − w) + j0(γju; γjv − γjw)− 〈f, v − w〉. (2.45)

Proof. Let w = uI − uh. Then, due to (2.17),

m̃A‖w‖2X ≤ ah(uI , w) − ah(uh, w). (2.46)

In view of (2.13) and (2.18), there exists uE ∈ Pk(E;Rm) such that

aEh (uE , vh) = aE(uE , vh), ∀vh ∈ Xh|E,

so

ah(uI , w) =
∑

E∈Th

(
aEh (IEu− uE , w) + aE(uE − u,w)

)

+ a(u, uI − u) + a(u, u− v) + a(u, v − uh). (2.47)

On the other hand, using (1.1) and (2.9) gives rise to

a(u, u− v)− ah(uh, w) ≤ j0(γju; γjv − γju) + j0(γjuh; γjuI − γjuh)

− 〈f, v − u〉 − 〈fh, w〉. (2.48)

Plugging (2.47) and (2.48) into (2.46), we derive

m̃A‖w‖2X ≤
∑

E∈Th

(
aEh (IEu− uE, w) + aE(uE − u,w)

)

+ 〈f − fh, w〉+ Ij(v, uI) +Ru(uI , u) +Ru(v, uh), (2.49)

where

Ij(v, uI) = j0(γju; γjv − γju) + j0(γjuh; γjuI − γjuh)

− j0(γju; γjuI − γju)− j0(γju; γjv − γjuh),

Ru(v,w) = a(u, v − w) + j0(γju; γjv − γjw)− 〈f, v − w〉.

Applying the subadditivity of the generalized directional derivative, we have

j0(γju; γjv − γju) ≤ j0(γju; γjv − γjuh) + j0(γju; γjuh − γju),

j0(γjuh; γjuI − γjuh) ≤ j0(γjuh; γjuI − γju) + j0(γjuh; γju− γjuh).
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By (2.3),

j0(γju; γjuh − γju) + j0(γjuh; γju− γjuh) ≤ αj‖γju− γjuh‖2Xj
.

Moreover,

∣∣j0(γjuh; γjuI − γju)
∣∣ ≤

(
c0 + c1‖γjuh‖Xj

)
‖γjuI − γju‖Xj

,
∣∣j0(γju; γjuI − γju)

∣∣ ≤
(
c0 + c1‖γju‖Xj

)
‖γjuI − γju‖Xj

.

Note that ‖γjuh‖Xj
is uniformly bounded by a constant independent of h, we find by

combing the above five inequalities that

Ij(v, uI) ≤ αj‖γju− γjuh‖2Xj
+ C‖γjuI − γju‖Xj

. (2.50)

On the other hand,

∑

E∈Th

(
aEh (IEu− uE, w) + aE(uE − u,w)

)

.

( ∑

E∈Th

(
‖IEu− uE‖2X,E + ‖u− uE‖2X,E

)) 1

2

‖w‖X

by using (2.14) and the Cauchy-Schwarz inequality. It is evident that

‖u− uh‖2X ≤ ‖u− uI‖2X + ‖w‖2X + 2‖u− uI‖X‖w‖X .

Hence, we deduce from (2.4), (2.16), (2.49) and (2.50) that

(m̃A − ajc
2
j )‖w‖2X

.

[( ∑

E∈Th

‖IEu− uE‖2X,E +
∑

E∈Th

‖u− uE‖2X,E

) 1

2

+ ‖f − fh‖X∗

h

]
‖w‖X

+ ‖u− uI‖2X + ‖γju− γjuI‖Xj
+Ru(uI , u) +Ru(v, uh). (2.51)

It follows from (2.18) and (2.19) that

( ∑

E∈Th

‖u− uE‖2X,E

) 1

2

. hk|u|k+1,Ω,

‖u− uI‖X =

( ∑

E∈Th

‖u− IEu‖2X,E

) 1

2

. hk|u|k+1,Ω. (2.52)

Applying (1.2) in (2.51), we find

‖w‖2X . h2k|u|2k+1,Ω + ‖f − fh‖2X∗

h
+ ‖γju− γjuI‖Xj

+Ru(uI , u) +Ru(v, uh),

which readily leads to (2.44) by means of (2.52) and the triangle inequality.
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3. A virtual element method and its error analysis for the contact problem
with unilateral constraint

Based on the results developed in the preceding section, as a typical example, we

will propose and analyze a virtual element method for a contact problem with unilateral

constraint in [29]. In this example, Ω is the reference configuration of the linear elastic

body, assumed to be an open, bounded, connected polygon in R2. The boundary Γ =
∂Ω is made up of Γ1,Γ2 and Γ3, where meas(Γ1) > 0. We assume that the body is

clamped on Γ1. The surface traction of density f2 is applied to Γ2,Γ3 is the contact

surface with a rigid foundation. Volume forces of density f0 act in Ω. Here, for a vector

v, denote by vν = v · ν its normal component and vτ = v − vνν the tangential

component, respectively. We use S2 for the space of second order symmetric tensors

which is equipped with the canonical inner product “:”. For a second order tensor σ,

define its normal component as σν = σν · ν and tangential component as στ = σν −
σνν. For the contact problems under consideration, we have the elastic constitutive

law

σ = Fε(u) in Ω, (3.1)

the equilibrium equation

Divσ + f0 = 0 in Ω, (3.2)

the displacement boundary condition

u = 0 on Γ1, (3.3)

the traction boundary condition

σν = f2 on Γ2, (3.4)

and the frictionless unilateral contact condition

uν ≤ g, σν + ξν ≤ 0, (uν − g)(σν + ξν) = 0, ξν ∈ ∂jν(uν) on Γ3, (3.5)

στ = 0 on Γ3, (3.6)

where −σν = ξν ∈ ∂jν(uν) and g represents the thickness of the elastic layer. The

problem described by (3.1)-(3.4) and (3.5)-(3.6) represents the frictionless version of

a nonlinear elastic contact model studied in [34]. In (3.1), F : Ω × S2 → S2 is the

linear elasticity operators (cf. [29]) and the potential function in (3.5), jν : Γ3×R → R
are satisfied with the conditions in [23]. The relation uν ≤ g restricts the allowed

penetration. We assume g ∈ H1(Γ3) in advance.

Introduce a Hilbert space Q = L2(Ω;S2), equipped with the canonical inner product

(σ, τ )Q =

∫

Ω
σij(x)τij(x) dx

and the induced norm ‖ · ‖Q. For simplicity, write (·, ·) for (·, ·)Q.
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Let

X = V =
{
v ∈ H1

(
Ω;R2

)
| v = 0 a.e. on Γ1

}

equipped with the norm

‖v‖V =
(
ε(v), ε(v)

) 1

2

Q
, ∀v ∈ V . (3.7)

Since meas(Γ1) > 0, by Korn’s inequality (see e.g. [11, Remark 1.1]), we find that

‖v‖H1(Ω;R2) . ‖v‖V . ‖v‖H1(Ω;R2), ∀v ∈ V . (3.8)

Assume

f0 ∈ L2
(
Ω;R2

)
, f2 ∈ L2

(
Γ2;R

2
)
,

and define f ∈ V ∗ by

〈f ,v〉V ∗×V = (f0,v)L2(Ω;R2) + (f2,v)L2(Γ2;R2), ∀v ∈ V .

Define

〈Au,v〉 =
(
F(ε(u)), ε(v)

)
, u,v ∈ V ,

j(z) =

∫

Γ3

jν
(
·, z(·)

)
ds, z ∈ Xj .

Note that ([37, Theorem 3.1])

j0(z;w) ≤
∫

Γ3

j0ν
(
·, z(·);w(·)

)
ds, z, w ∈ Xj . (3.9)

Considering the constraint uν ≤ g on Γ3, we introduce a subset of the space V

U =
{
v ∈ V | vν ≤ g a.e. on Γ3

}
. (3.10)

Letting K = U in (1.1), Xj = L2(Γ3) and γjv = vν for v ∈ V , we then achieve the

following weak formulation of this contact problem.

Problem (P1). Find a displacement field u ∈ U such that

(
Fε(u), ε(v − u)

)
Q
+

∫

Γ3

j0ν(uν ; vν − uν) ds ≥ 〈f ,v − u〉V ∗×V , ∀v ∈ U . (3.11)

Remark 3.1. Using the analogous notation in [23,29], the assumption (Ha) is satisfied

with mA = mF and (Hj) is satisfied with αj = αjν , where αjν is the constant given

in [29, Eq. (65)]. Applying (3.9) and Theorem 2.1, we know that Problem (P1) has

a solution u ∈ U under the stated assumptions, and (2.6) takes the form

αjν < λ1,VmF ,

where λ1,V > 0 is the smallest eigenvalue of the problem

u ∈ V ,

∫

Ω
ε(u) : ε(v) dx = λ

∫

Γ3

uν · vν ds, ∀v ∈ V .

The uniqueness of a solution to Problem (P1) can be proved in view of Theorem 2.1.
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We make the following assumption on the family of meshes {Th}h (cf. [15,19]).

Assumption B. For each E ∈ Th, there exists a “virtual triangulation” TE of E such

that TE is uniformly shape regular and quasi-uniform. The corresponding mesh size of

TE is bounded below by a constant multiple of hE . Each edge of E is a side of a certain

triangle in TE .

Furthermore, we express the three parts of the boundary Γ as unions of closed flat

components with disjoint interiors:

Γk = ∪ik
i=1Γk,i, 1 ≤ k ≤ 3.

Then, we construct virtual linear element spaces corresponding to Th. Let

V1(E) =
{
v ∈ H1(E) |∆v = 0 in E, v|∂E ∈ C(∂E),

v|e ∈ P1(e) for each edge e ⊂ ∂E
}
,

Wh =
{
v ∈ C(Ω̄) | v|E ∈ V1(E) for all E ∈ Th

}
.

The displacement fields will be sought in the space

Xh = Vh := (Wh)
2 ∩ V .

Let ΠE be a projection operator from Vh(E) into P0(E)2×2
sym such that for any given

vh ∈ Vh(E),

∫

E

ΠE(vh) : ε
P dx =

∫

E

ε(vh) : ε
P dx, ∀εP ∈ P0(E)2×2

sym,

where P0(E)2×2
sym stands for the set of all second order symmetric tensor fields with each

entry being constant. Then, following [4, Eq. (12)], define

aEh (vh,wh) =

∫

E

FΠE(vh) : ΠE(wh) dx+ bEh (vh,wh), ∀vh,wh ∈ Vh(E), (3.12)

where the first term on the right of (3.12) is essentially equivalent to the first term

given in [8, Eq. (4.1)] and the second term is a stabilization term. We refer to [4,8] for

details.

Next, define a local projection Π∇
1 : H1(E) → P1(E) as the solution of

{
(∇Π∇

1 v,∇p)E = (∇v,∇p)E , ∀p ∈ P1(E),

Π∇
1 v = v

for all v ∈ H1(E). Here, (·, ·)E means the L2(E) inner product, and v is the integral av-

erage of v on the boundary ∂E of E. For the convenience, we also use Π∇
1 to represent

the related element-wise defined global operator.
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For the right-hand side f , define the approximation fh such that

〈fh,vh〉 =
∑

E∈Th

∫

E

f0 ·Π∇
1 vh dx+

∫

Γ2

f2 · vh ds, ∀vh ∈ Vh, (3.13)

where Π
∇
1 is the vectorized analogue of Π∇

1 . Using the same arguments in [22, 23]

shows

〈fh,vh〉 .
(
‖f0‖2L2(Ω;R2) + ‖f2‖2L2(Γ2;R2)

) 1

2‖vh‖V , ∀vh ∈ Vh. (3.14)

Moreover, for any vh ∈ Vh, we deduce from [19, Lemma 2.2] and the H1-boundedness

of Π∇
1 that

|〈f − fh,vh〉| =
∣∣∣∣
∑

E∈Th

∫

E

f0(vh −Π
∇
1 vh)dx

∣∣∣∣

≤
∑

E∈Th

‖f0‖L2(E;R2)

∥∥vh −Π
∇
1 vh

∥∥
L2(E;R2)

.
∑

E∈Th

‖f0‖L2(E;R2)hE |vh|H1(E;R2)

. h‖f0‖L2(Ω;R2)‖vh‖V . (3.15)

It is evident that ‖f − fh‖V ∗

h
→ 0 as h → 0. In view of (3.14) and (3.15), we can

verify the condition (2.11).

Furthermore, we define

Kh = Uh =
{
vh ∈ Vh | vhν ≤ g at node points on Γ3

}
.

Note that 0 ∈ Uh and in general Uh * U unless g is concave. Introduce the following

virtual element method for Problem (P1).

Problem (Ph
1). Find an element uh ∈ Uh such that

ah(uh,vh − uh) +

∫

Γ3

j0ν
(
uhν ; v

h
ν − uhν

)
ds ≥ 〈fh,vh − uh〉V ∗×V , ∀vh ∈ Uh. (3.16)

According to [4, 8, 11, 19], the bilinear form aEh (·, ·) in (3.12) satisfies conditions

(2.13) and (2.14). Since the mesh satisfies the assumption B, assumption B1 holds by

the classical Scott-Dupont theory (cf. [13]). According to [12,19], there exists a nodal

interpolation operator IE : H2(E;R2) → V (E) such that

‖v − IEv‖0,E + hE |v − IEv|1,E . h2E‖v‖2,E , ∀v ∈ H2
(
E;R2

)
.

For all v ∈ H2(Ω;R2) write its global interpolant as vI . Hence, the assumption B2

holds for k = 1 by using the interpolation operator IE . Moreover, it is easy to check

that uI ∈ Kh.
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On the other hand, (3.15) implies that

‖f − fh‖V ∗

h
. h. (3.17)

Assume the solution regularity

u ∈ H2
(
Ω;R2

)
, σν ∈ L2

(
Γ3;R

2
)
. (3.18)

By an argument similar to that for proving [25, Theorem 5], we know that for all v,

w ∈ V ,

|Ru(v,w)| . ‖v −w‖L2(Γ3;R2).

So it follows from Theorem 2.4 that

‖u− uh‖V . h+ ‖uI − u‖
1

2

L2(Γ3;R2)
+ inf

v∈U
‖v − uh‖

1

2

L2(Γ3;R2)
. (3.19)

Additionally, assume Γ3 is a flat component of the boundary ∂Ω and

u|Γ3
∈ H2

(
Γ3;R

2
)
. (3.20)

According to [25, Theorem 6] and using the error estimate for the interpolation oper-

ator for Lagrange elements (cf. [13]), we have

‖u− uI‖L2(Γ3;R2) . h2.

The last term on the right-hand side of inequality (3.19) can be bounded as follows.

Assume Γ3 is a smooth portion of the boundary Γ. Then the unit outward normal

ν(x), x ∈ Γ3, can be extended to an H1 function ν in a small neighborhood of Γ3

and ν|Γ3
= ν ([36, Section 2.1]). By multiplying ν with a smooth cut-off function

which is zero outside the small neighborhood of Γ3 and is 1 near Γ3, we get a function

ν̃ ∈ H1(Ω;R2) with ν̃|Γ3
= ν. Assume

g|Γ3
∈ H2(Γ3). (3.21)

Then, g is continuous and is the restriction of an H1(Ω) function g̃ on Γ3. Define

v = uh +
(
min

{
g̃,uh·ν̃

}
− uh·ν̃

)
ν̃.

Then,

vτ = uh
τ , vν = min

{
g, uhν

}
on Γ3

and consequently, v ∈ U . Note that

∥∥v − uh
∥∥
L2(Γ3;R2)

=
∥∥vν − uhν

∥∥
L2(Γ3)

.

Now

0 ≤ uhν(x)− vν(x), x ∈ Γ3,
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and since uhν(x) ≤ g(x) at all nodes x on Γ3, we have

uhν(x) ≤ Πhg(x), x ∈ Γ3,

where Πhg is the continuous piecewise linear interpolant of g on Γ3. Thus, on the part

of Γ3 where uhν > g, we have vν = g and

0 ≤ uhν(x)− vν(x) ≤ Πhg(x)− g(x).

On the remaining part of Γ3, u
h
ν ≤ g and vν = uhν . Thus,

∥∥vν − uhν
∥∥
L2(Γ3)

≤
∥∥Πhg − g

∥∥
L2(Γ3)

.

So we get

inf
v∈U

‖v − uh‖L2(Γ3;R2) . h2.

Therefore, under the smoothness assumptions (3.18), (3.20) and (3.21), we obtain

from (3.19) that

‖u− uh‖V . h.

Without assuming the solution regularities (3.18), (3.20) and in the case g = 0, we

can apply Theorem 2.3 to show the convergence of the virtual element solution:

uh → u in V . (3.22)

For this purpose, let us verify (2.20) (with a general g) and (2.21) (with g = 0). Note

that Uh can be equivalently defined as

Uh =
{
vh ∈ Vh | vhν ≤ Πhg on Γ3

}
.

Suppose vh ∈ Uh and vh ⇀ v in V . Due to the compactness of the trace operator

H1(Ω) ⊂ L2(Γ) ([1]), we have a sub-sequence {vh′} ⊂ {vh} such that

vh′ → v in L2
(
Γ3;R

2
)

and a.e. on Γ3.

Then from

vh
′

ν ≤ Πh′

g on Γ3,

we find that

vν ≤ g a.e. on Γ3.

It is then obviously true that v ∈ U , i.e., (2.20) is valid.

To verify (2.21) for the case g = 0, we note that U ∩C∞(Ω;R2) is dense in U . This

result is proved in [33]. Thus, for an arbitrarily by fixed element v ∈ U and any ǫ > 0,

there exists an element vǫ ∈ U ∩C∞(Ω;R2) such that

‖vǫ − v‖V <
ǫ

2
.
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For h > 0 sufficiently small, we have

∥∥vǫ − vh
ǫ,I

∥∥
V

≤ Ch‖vǫ‖H2(Ω;R2) <
ǫ

2
,

where vh
ǫ,I ∈ Uh is the global interpolant of vǫ. Then,

∥∥vh
ǫ,I − v

∥∥
V

≤
∥∥vh

ǫ,I − vǫ

∥∥
V
+ ‖vǫ − v‖V < ǫ.

Hence, v ∈ U can be approximated by a sequence of virtual element functions.

4. Numerical experiments

In order to do numerical simulation, we first rewrite Problem (Ph
1) in matrix/vector

notation. Let N0 be the number of nodal points, and let {φi}2N0

i=1 be the shape basis

functions of Vh. Then a function v ∈ Vh can be expressed as v =
∑2N0

k=1 αkφk, such that

the coefficients form a vector α = [α1, α2, · · · , α2N0
]T ∈ R2N0. Define ℓ : R2N0 → R by

ℓ(α) =

∫

Γ3

jν(v)ds =

∫

Γ3

jν

(
2N0∑

k=1

αkφk(x)

)
ds, ∀α ∈ R2N0 . (4.1)

Then, we require to find α∗ = [α∗
k]

2N0

k=1 such that it satisfies the conditions

2N0∑

k=1

αkφk(x) ∈ Uh, (4.2)

b−Aα ∈ ∂ℓ(α), (4.3)

where

b = [bi]
2N0

i=1 , bi = 〈fh,φi〉, A = [Aik]
2N0

i,k=1, Aik = ah(φi,φk).

The numerical solution is given by

uh =

2N0∑

k=1

α∗
kφk(x) ∈ Uh.

To numerically evaluate ℓ(·), we approximate it through numerical integration:
∫

Γ3

j
(∑

αkφk(x)
)
ds ≈

∑

i∈I

wij
(
αkφk(xi)

)
=: wT j(α).

In addition, we assume that N1 components corresponding to the index set I of Γ3 are

listed first, and write the vector α in block form as α = [(α1)
T , (α2)

T ]T with α1 ∈ RN1 .

Similarly,

A =

[
A11 A12

AT
12 A22

]
, b =

[
b1
b2

]
, w =

[
w1

0

]
. (4.4)
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As shown in [26], Problem (Ph
1) is equivalent to a minimization problem. Following

arguments similar to that in [23], we can reformulate it as
{
min F (α1),

s.t. α1 ∈ C,
(4.5)

where

F (α1) =
1

2
αT

1 Ã1α1 − b̃1
T
α1 +wT

1 j(α1), ∀α1 ∈ RN1 , (4.6)

C =
{
α1 ∈ RN1 | max{|α1| − g} ≤ 0

}

with

Ã1 = A11 −A12A
−1
22 A

T
12, b̃1 = b1 −A12A

−1
22 b2.

Here, |α1| denotes a new vector formed by taking the absolute value for each entry of

α1 and g is a vector formed by the values of g(x) at node points on Γ3.

Finally, the problem (4.5) is recast as a DC programming problem where the objec-

tive function is the difference of two convex functions, which can be solved efficiently

by using the multiobjective double bundle method developed in [38]. Now, let us

consider the numerical simulation of an example of Problem (P1) to investigate the

computational performance of our method proposed.

Example 4.1. The domain Ω = (0, 1)× (0, 1) is the cross section of a three-dimensional

linearly elastic body and the plane stress condition is imposed. The boundary ∂Ω is

decomposed into three parts: Γ1 = ({0} × [0, 1]) ∪ ({1} × [0, 1]) where the body is

clamped, Γ3 = (0, 1)×{0} where frictional contact takes place, and the remaining part

Γ2 = (0, 1) × {1} for traction boundary condition. The elasticity tensor F is given by

(Fε)ij =
Eν

(1 + ν)(1− 2ν)
(ε11 + ε22)δij +

E

1 + ν
εij , 1 ≤ i, j ≤ 2,

where E is the Young modulus, ν is the Poisson ratio of the material and δij is the

Kronecker delta. We use the following data:

E = 65daN/mm2, ν = 0.29,

f1 = (0, 0)GPam, f2 = (0,−8)GPam.

For the numerical simulations we choose g = 0.02. In addition, we choose

kv(r) = 40
(
0.5r+ + p(r)

)
, r ∈ R,

where r+ = max{r, 0} and

p(r) =





0, if r < 0,

r, if r ∈ [0, 0.01],

0.02 − r, if r ∈ (0.01, 0.02),

r − 0.02, if r ≥ 0.02.
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Choosing jν(uν) =
∫ uν

0 kν(r) dr, we obtain

jν(uν) =





0, if uν ≤ 0,

30u2ν , if uν ∈ (0, 0.01],

0.8uν − 10u2ν − 0.004, if uν ∈ (0.01, 0.02),

30u2ν − 0.8uν + 0.012, if uν ≥ 0.02.

(4.7)

Let jν(uν) = j1ν(uν)− j2ν(uν), where

j1ν(uν) =





10u2ν , if uν ≤ 0,

40u2ν , if uν ∈ (0, 0.01],

0.8uν − 0.004, if uν ∈ (0.01, 0.02),

40u2ν − 0.8uν + 0.012, if uν ≥ 0.02,

(4.8)

and

j2ν(uν) = 10u2ν .

For the numerical solution uhν , we choose

jν
(
uhν
)
= j1ν

(
uhν
)
− j2ν

(
uhν
)
,∫

Γ3

jν
(
uhν
)
ds =

∫

Γ3

(
j1ν
(
uhν
)
− j2ν

(
uhν
))
ds ≈ wT

1 j(α1) =: j(α1)

with

j(α1) = j1ν(α1)− j2ν(α1),

and the corresponding constraint is

C =
{
α1 ∈ RN1 | max{|α1| − g} ≤ 0

}
.

Then, we use the multiobjective double bundle method to obtain the numerical results.

The numerical solutions in normal direction, corresponding to four different types

polygonal meshes (cf. [42]) are displayed in Fig. 1, respectively.

We compute the numerical solutions for different N, which is the element number

of the mesh. According to the numerical solutions in normal direction on the boundary

[0, 1] × {0}, a similar convergence trend is clearly observed (cf. Fig. 2).

In Table 1 and Fig. 3, we report relative errors ‖uref−uh‖E/‖uref‖E of the numerical

solutions in the energy norm on square meshes, where the energy norm is given by

‖v‖E =
1√
2

(
F(ε(v)), ε(v)

) 1

2

Q
.

Table 1: Numerical errors on square meshes for lowest-order VEM.

h 1/4 1/8 1/16 1/32 1/64

error 52.07% 30.67% 17.89% 10.31% 5.602%
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Figure 1: The numerical solution in normal direction related to different polygonal meshes.

Figure 2: The numerical solutions in normal direction on [0, 1]× {0} for different N .
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Figure 3: Relative errors in energy norm.

Note that the error bound predicts an optimal first order convergence of the numerical

solutions measured in the energy norm, under the suitable regularity assumptions.

Since the true solution u is not available, we use the numerical solution with a fine

mesh as the “reference” solution uref in computing the solution errors. Specifically, the

“reference” solution uref is set as the numerical solution with h = 1
256 .

The relative errors in energy norm are shown in Fig. 3.
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