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Featured Review: Diffusion and Ecological Problems: Modern Perspectives. Sec-
ond Edition. By Akira Okubo and Simon Levin. Springer-Verlag, New York, 2001. $59.95.
xx+467 pp., hardcover. ISBN 0-387-98676-6.

This is a revised and expanded version of Okubo’s classic 1980 text Diffusion and
Ecological Problems: Mathematical Models [2]. While building on the original text,
the revision has brought the subject well into the 21st century: the length has almost
doubled and the number of references has tripled; themes hinted at in the original
version have been developed and matured. Before his death, Okubo asked that his
notes on book changes and expansions be left to a close colleague, Simon Levin, and
that “he would know what to do with them.” Well, Levin did know what to do with
them. The result is an excellent book on the role of diffusion theory in modern spatial
ecology. In addition to Okubo’s original book and its revisions, the contents have been
fleshed out by 12 additional authors, all experts in spatial ecology.

This book occupies the middle ground between mathematical theory and ecolog-
ical theory. It contains many innovative and original models, some analytical results,
but no theorems. However, mathematicians and quantitative biologists alike will find
the book a useful guide to the formulation and analysis of diffusion-based models in
ecology. While biological applications are discussed, the main focus is not on meth-
ods for relating model output directly with experimental or field measurement. By
contrast, a text that more fully develops the interplay between diffusion models and
experiment is Turchin [3].

The original text grew from Okubo’s interest in understanding ecological systems
with the tools and background of a mathematical physicist. In this original text, the
details of diffusion in the atmosphere and ocean are laid out beautifully, as are the
variety of different stochastic and deterministic modeling approaches for describing
diffusive processes. Later chapters of the original text include examples of animal dif-
fusion, dynamics of animal grouping, movements in home ranges, patchy distributions
of organisms, pattern formation, traveling waves, and the effect of community interac-
tions (e.g., competition predation and so forth) on the spatial distribution of animals.
In the revised edition it is these later chapters of the book that have been expanded
the most to include new advances, such as receptor kinetics-based taxis, evaluation of
diffusion models as a standard tool in animal ecology, continuum approximations for
animal grouping, data on home range movements of animals, microscale patchiness in
plankton systems, and advances in modeling critical domain size problems, to name
a few.

If the reader is looking for a comprehensive review of spatial ecology, he or she
will likely put this book down disappointed. Many important contributions to spatial
ecology, such as cellular automata, interacting particle systems, lattice or integrodif-
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this book highly as an essential reference for
any researcher in probability and statistics.

JOSEPH GLAZ

University of Connecticut

Theoretical Numerical Analysis: A Func-
tional Analysis Framework. By Kendall Atkin-
son and Weimin Han. Springer-Verlag, New York,
2001. $59.95. xvi+450 pp., hardcover. ISBN 0-
387-95142-3.

Reviewing a text in mathematical science
is always a most serious undertaking. The
present task is no exception. Indeed, this
book is close to me in many ways, among
them:

(i) One of the series editors is my col-
league at the University of Houston,
and one of its advisors took my class
on computational control.

(ii) My own research makes a systematic
use of tools discussed in this book (as
shown, for example, in [1]).

(iii) Some of our previous work ([58] and
[59] in the book) had some influence on
Chapter 10, and my Ph.D. thesis was
on the numerical solution of some non-
linear integral and integro-differential
equations by Galerkin methods.

As I see it, the main goal of this book is
to provide students and practitioners with
basic tools from functional analysis and
Sobolev space theory. With these tools,
they will be able to address the numeri-
cal solution of functional equations and in-
equalities by approximation and iterative
methods, and to investigate the conver-
gence of these methods. This book reflects,
clearly, the respective interests of the two
authors, namely, the numerical solution of
integral equations for Atkinson, and of vari-
ational inequalities for Han. This combina-
tion is fortunate since it leads to a text
blending topics rarely seen in the same
book. The book’s contents are as follows:

Chapter 1 is dedicated to linear (vector)
spaces, with particular attention being paid
to Banach, Hilbert, and Ck spaces.

Chapter 2 is an introduction to the “The-
ory of Linear Operators on Normed Spaces.”

It includes important topics such as the
open mapping theorem, the principle of
uniform boundedness, the Hahn–Banach
and Riesz representation theorems, com-
pact operators, and the Fredholm alterna-
tive (with applications to Fredholm integral
equations).

Chapter 3 is an introduction to “Ap-
proximation Theory.” As such, it contains
classical results on polynomial and trigono-
metric interpolations, best approximation
in Hilbert spaces, and a brief introduction
to the minimization of lower semicontinu-
ous functionals over convex sets in Banach
spaces.

Chapter 4 is dedicated to the iterative
solution of nonlinear equations in Banach
spaces. It begins with Banach’s fixed-point
theorem and various applications to the it-
erative solution of nonlinear equations in
one space dimension, of linear systems, of
linear and nonlinear Fredholm and Volterra
integral equations of the second kind, and
of ordinary differential equations in Banach
spaces. In order to prepare the reader for it-
erative methods such as Newton’s, Chapter
4 includes a brief introduction to “Differen-
tial Calculus for Nonlinear Operators in Ba-
nach Spaces,” with a discussion of Fréchet
and Gâteaux derivatives. The above intro-
duction is followed by a discussion of New-
ton’s method and its convergence proper-
ties. Newton’s method is then applied to
the solution of nonlinear Fredholm integral
equations of the second kind and of non-
linear two-point boundary value problems.
The chapter concludes with the Brouwer
and Schauder fixed point theorems and
with a discussion of the conjugate gradient
method for the solution of linear problems
for self-adjoint operators in Hilbert spaces.

Chapter 5 is an introduction to finite
difference methods, with application to rel-
atively simple parabolic equations such as
the heat equation in one space variable. The
backward Euler, Crank–Nicolson, and Lax–
Wendroff schemes are discussed (directly in
the text or as exercises). After these pre-
liminary considerations, the authors take a
more general approach and prove the Lax
equivalence theorem (i.e., for a consistent
difference scheme, stability is equivalent to
convergence) for a general class of linear
initial value problems.
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Chapter 6 is an introduction to Sobolev
spaces. The authors manage to avoid
the use of distribution theory, through
a “direct” definition of weak derivatives.
This being done, they define the Sobolev
spaces W k,p(Ω) for k a nonnegative inte-
ger and 1 ≤ p ≤ +∞, and prove that
W k,p(Ω) is a Banach space for a well-
chosen norm. From there, other spaces
are considered, such as W k,p

0 (Ω), W s,p(Ω)
with s a nonnegative real number and
1 ≤ p < +∞, W s,p

0 (Ω), W−s,p
′
(Ω) as the

dual space of W s,p
0 (Ω) (here p′ = p/(p−1)),

and finally, W s,p(∂Ω), ∂Ω being the bound-
ary of Ω. Next, the authors give a collection
of results concerning the density of smooth
function spaces in the Sobolev spaces, the
extension properties of Sobolev space func-
tions, the celebrated Sobolev embedding
theorem, and, finally, various trace theo-
rems.

When solving partial differential equa-
tions in Sobolev spaces, some norms may
play a privileged role; this observation leads
the authors to mention some classical results
concerning norm equivalence, including the
celebrated Korn’s inequality, so useful in
mathematical elasticity (see, e.g., [2]).

When Ω = Rd, it is possible to define the
Sobolev spaces W k,2(Rd) (= Hk(Rd)) using
the Fourier transform; the authors use this
approach to prove some embedding theo-
rems. This pivotal chapter concludes with
the following complements:

(a) a discussion of periodic Sobolev spaces
(the basic tool now is Fourier series);

(b) an application of spherical polyno-
mials and spherical harmonics to
the solution of the three-dimensional
Laplace equation and other approxi-
mation problems;

(c) various Green’s formulae.

The remaining chapters (Chapters 7 to
11) are more applied and computational
than the previous ones. They form indeed
the theoretical numerical analysis part of
this book.

Chapter 7 is concerned with the “Vari-
ational Formulation of Elliptic Boundary
Value Problems.” Taking the classical ho-

mogeneous Poisson problem
{
−∆u = f in Ω,
u = 0 on ∂Ω

as a model, it is shown how to use Green’s
formula to derive the variational formula-
tion of an elliptic linear partial differential
equation. This leads to the Lax–Milgram
lemma, a most important tool to show the
existence and uniqueness of a solution to
quite a broad class of linear variational prob-
lems in Hilbert spaces. Several applications
are given; they include the Poisson equa-
tion with nonhomogeneous Dirichlet bound-
ary conditions, the Neumann problem for
the Helmholtz operator −∆ + I and for
the Laplace operator −∆, the Helmholtz
equation with mixed (Dirichlet–Neumann)
boundary conditions, and the Neumann–
Dirichlet problem for general second-order
elliptic operators, i.e., problems of the form




−∇ · (A∇u) + b ·∇u+ cu = f in Ω,
u = 0 on ΓD,
A∇u · n = g on ΓN ,

where n denotes the outward unit normal
vector at the boundary Γ (= ∂Ω) of Ω (here
◦
ΓN ∩

◦
ΓD = ∅, ΓN ∪ ΓD = Γ). Linear el-

liptic problems with the Robin boundary
condition and the homogeneous Dirichlet
problem for the biharmonic operator, i.e.,

{
∆2u = f in Ω,

u =
∂u

∂n
= 0 on Γ,

are discussed via exercises. The variational
treatment of the linear elasticity equations
is also considered in this chapter, which
contains a discussion of mixed and dual for-
mulations of some linear elliptic problems,
including the celebrated Stokes problem





−∆u +∇p = f in Ω,
∇ · u = 0 in Ω,
u = 0 on Γ.

This important chapter concludes with the
two following topics:

(i) A generalized Lax–Milgram lemma
concerning the solution of linear vari-
ational problems such as

{
u ∈ U,

a(u, v) = L(v) ∀v ∈ V,
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where U and V are two Hilbert spaces,
not necessarily identical.

(ii) A brief discussion concerning the solv-
ability (via the direct methods of the
calculus of variations) of nonlinear
Dirichlet problems such as
{
−∇ · (α(|∇u|)∇u) = f in Ω,

u = 0 on Γ.

Chapter 8 addresses the solution of lin-
ear variational problems by various types
of Galerkin methods (the standard Galerkin
methods, the Petrov–Galerkin method, and
the generalized Galerkin method). Various
convergence results and error estimates are
derived, using, among other tools, Cea’s
lemma (incidentally, there is a typo on page
276, line 9, where the reference should be
to section 7.7 and not 6.5).

Chapter 9 is a (nice) introduction to “Fi-
nite Element Methods” and their analysis.
The reader is introduced to the subject via
the following one-dimensional test problem:

(BVP)

{
−u′′ + u = f in (0, 1),
u(0) = 0, u′(1) = b.

The authors discuss the finite element so-
lution of (BVP) using piecewise linear and
piecewise quadratic approximations. Many
details concerning the construction and the
solution of the resulting linear systems are
given. After this introduction, the authors
move to the solution of multidimensional
problems (essentially two-dimensional) by
finite element methods. The following con-
cepts are discussed: finite element meshes
made of triangles or quadrilaterals, refer-
ence elements, polynomial spaces on the
reference elements, finite element interpo-
lations (local and global), convergence and
error estimates of the finite element ap-
proximation of second order linear elliptic
problems (such as Poisson and Dirichlet’s),
and the condition number of the resulting
linear systems.

Chapter 10 is a concise, but fairly com-
plete, introduction to “Elliptic Variational
Inequalities” and their numerical solution.
Starting from some classical examples from
mechanics such as the obstacle problem for
an elastic membrane and the Signorini prob-

lem for an elastic body, the authors show
how to obtain variational formulations gen-
eralizing the linear variational equations
whose solution has been discussed in pre-
vious chapters. Roughly speaking, the re-
sulting (variational) inequalities can be clas-
sified as elliptic variational inequalities of
the first and second kinds. Next, the au-
thors address the finite element approxima-
tion of these inequalities and the solution
of the resulting finite-dimensional systems
of equations and inequalities by methods
based on regularization, Lagrange multipli-
ers, etc. Uzawa-type algorithms are briefly
mentioned on the occasion of the solution
of a simplified friction problem.

Chapter 11 concerns the numerical solu-
tion of Fredholm integral equations of the
second kind. It is the largest chapter of the
book, and as such contains a detailed dis-
cussion of the many topics involved when
solving such functional equations. These
topics include projection methods via col-
lacation techniques and Galerkin approxi-
mations, piecewise polynomial and trigono-
metric approximations, convergence results
and error estimates for the above approx-
imations, iterated projection methods, the
Nyström method, collectively compact op-
erator approximations, and the solution of
nonlinear integral equations. The theoret-
ical developments are illustrated by exam-
ples and numerical experiments.

The book concludes with Chapter 12, a
chapter dedicated to the solution of some
linear elliptic boundary value problems us-
ing boundary integral equations. The pre-
sentation is quite classical and covers the
usual topics, namely, the boundary integral
formulations of the interior and exterior
Dirichlet and Neumann problems for the
Laplace operator, single and double layer
potentials, and boundary-integral equations
of the second kind. After all of these prelim-
inaries, the authors address the solution of
boundary integral equations of the second
kind by the Nyström methods discussed in
Chapter 11; their discussion includes the
results of numerical experiments showing
how the approximation error behaves as a
function of discretization parameters. The
chapter concludes with the Galerkin solu-
tion of boundary integral equations of the
first kind.
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Overall, the book is clearly written, quite
pleasant to read, and contains a lot of im-
portant material; and the authors have done
an excellent job at balancing theoretical de-
velopments, interesting examples and exer-
cises, numerical experiments, and biblio-
graphical references. I sincerely regret that
such a text did not exist when I was a stu-
dent trying to apply variational methods
(learned from J. L. Lions) to the solution
of real-life problems from science and engi-
neering. I wish that the graduate students
I am trying to educate knew the contents
of the present text, since it provides an
excellent foundation for further and more
specialized education and investigations in
computational and applied mathematics.

Two minor criticisms:

• I regret that the authors did not give
a direct proof of Theorem 3.3.3 con-
cerning the projection on closed con-
vex sets in Hilbert spaces. I think that
the proof given in the book (based on
general results on the optimization of
convex functionals on convex sets in
Banach spaces) is misleading.

• I found the discussion on the conjugate
gradient methods (section 4.6) very in-
teresting. However, I would have pre-
ferred that instead of problem (4.6.1)
(Au = f), the authors had considered
the following linear variational prob-
lem:

(LVP)

{
u ∈ V,
a(u, v) = L(v);

problem (4.6.1) is a particular case of
(LVP). Indeed, in many applications
neither A nor f are known (we know
their existence from the Riesz repre-
sentation theorem, but constructing
them from a(·, ·) and L(·) is more
complicated, in general, than solving
(LVP)). It can be easily shown that
to solve (LVP) by a conjugate gradi-
ent algorithm, what is needed is the
possibility of computing a(v, w) and
a(v, w)− L(v) ∀v, w ∈ V.

Reading and reviewing this book has
been a most pleasant experience; I strongly
recommend this text to colleagues and stu-
dents.
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Asymptotic Modelling of Fluid Flow Phe-
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Applied mathematicians have always found
fluid mechanics to be a rich and interesting
field because the basic equations (i.e., the
Navier–Stokes equations) have an almost
unlimited capacity for producing complex
solutions that exhibit unbelievably inter-
esting properties and because the dimen-
sionless form of these equations contains
a parameter (called the Reynolds number)
which is usually quite large in technolog-
ically and geophysically interesting flows.
This means that asymptotic methods can
be used to obtain approximate solutions to
some very interesting and important flow
problems. These solutions usually turn out
to be of nonuniform validity (i.e., they break
down in certain regions of the flow), and
matched asymptotic expansions have to be
used to construct physically meaningful re-
sults.

However, advances in computer technol-
ogy have led to the development of increas-
ingly accurate numerical solutions and have
thereby diminished the interest in approxi-
mate analytical results. But real flows (es-
pecially those that are of geophysical or
engineering interest) are extremely complex
and exhibit an enormous range of length and
time scales whose resolution will probably
remain well beyond the capabilities of any
computer that is likely to become available
in the foreseeable future. So simplification
and modeling are still necessary, not only to
meet the engineer’s requirement for gener-
ating numbers but also for developing con-
ceptual models that are simple enough to be


