
Chapter 6
Symbolic Differentiation

This chapter presents the “method of computing” or “calculus” of derivatives by giving symbolic
rules for finding formulas for derivatives when we are given formulas for the functions.

When we compute a derivative, we want to know that the increment approximation is valid. You
must use high school algebra and trig, but you do not have to establish the increment approximation
directly as we did in Chapter 5. The graphical and symbolic theorems of 1-variable differentiation
say the following:

If we can compute the derivative f 0[x] of a function f [x] using the rules from this
chapter, then a sufficiently magnified view of the graph y = f [x] appears linear at each
point of the interval where the formulas for f [x] and f 0[x] are valid.

Figure 6.0:1: y = f [x] and dy = m · dx through a powerful microscope

The line with local coordinates dy = m dx “looks” the same as y = f [x] under
magnification when m = f 0[x]. The slope f 0[x] depends on the center of magnification,
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x.

This condition of “tangency” is expressed symbolically by the approximation formula that says
the nonlinear change is a linear term plus something small compared to the change:

f [x+ δx]− f [x] = f 0[x] · δx+ ε · δx
with the magnified error ε small, ε ≈ 0, whenever the input perturbation is small,
δx ≈ 0, and x lies in an interval [α, β] where both f [x] and f 0[x] are defined.

The microscope equation above expresses the nonlinear change, f [x+ dx]− f [x], in terms of a
change dx or “local variable” dx, with x fixed. The linear term in dx is called the differential,

dy = f 0[x] · dx or dy = m · dx

in (dx, dy) coordinates (with x fixed), where dy represents the change from f [x]. When dx = δx ≈ 0
is small, the difference between these terms is small compared to δx because the difference is a
product of a small term ε and the small change δx. On magnification by 1/δx, the term ε · δx
appears to be the size of ε. If this is small enough (by virtue of large enough magnification), we do
not see it and the graph appears linear.

The results of this chapter ensure that the error is small whenever x lies in an interval [α, β]
where both f [x] and f 0[x] are defined. (At a fixed high magnification the graph appears straight
simultaneously for every microscope at an x-focus point in [α, β].) The rules of calculus are theorems
which guarantee that this approximation is valid, provided the resulting formulas are defined on
intervals. This is a powerful yet practical theory. Here is a brief example of how it is used.

Example 6.1 f 0[x0] is the Slope of y = f [x]

The slope of the line (in local coordinates)

dy = m · dx

is m and the line points upward if m > 0. Because a microscopic image of the graph y = f [x]
cannot be distinguished from the graph of the linear equation dy = m · dx when m = f 0[x0], the
graph y = f [x] is increasing at the approximate rate f 0[x0] near x0.

Example 6.2 Using the Theory

The theory is easy to use once you learn the rules from this chapter. Here are two examples
where the theory breaks down. The breakdown is easy to detect. By the end of the chapter, you
will be able to apply rules and compute the following two derivatives for

f [x] =
p
x2 + 2x+ 1 and y = x

2
3
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obtaining

f 0[x] =
x+ 1√

x2 + 2x+ 1
and

dy

dx
=

2

3 3
√
x

After computing without fear, you need to check the formulas to see that

f 0[−1] = −1 + 1p
(−1)2 − 2 + 1

=
0

0
and

dy

dx
=

2

3 3
√
0
=
2

0

are undefined. When the formulas are not valid, the theory does not predict anything; but, in this
case, we have seen that there is a kink in the graph of f [x] at x = −1 (see Exercise 3.2.4). There
is a vertical cusp on the graph of y = x

2
3 at x = 0 (see Problem 6.1).

The rules of this chapter guarantee that the increment approximation for tangency holds when
the resulting formulas are valid on intervals. Of course, your first task now is to learn:

Example 6.3 All the Rules of Differentiation

There are only eight rules in this chapter and you must memorize them:

y = xp ⇒ dy
dx = pxp−1, p constant

y = Sin [θ] ⇒ dy
dθ = Cos [θ]

y = Cos [θ] ⇒ dy
dθ = −Sin [θ]

y = ex ⇒ dy
dx = y = ex

x = Log [y] ⇒ dx
dy =

1
y

d(a f [x]+b g[x])
dx = adf [x]dx + bdg[x]dx

d(f [x] g[x])
dx = df [x]

dx · g[x] + f [x] · dg[x]dx

dy
dx =

dy
du ·

du
dx , when y = f [u] & u = g[x]

The hard thing is to learn to combine these rules with high school algebra and trig.
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6.1 Rules for Special Functions

This section gives the five specific differentiation rules for basic functions.

The algebra of exponents together with the derivatives we computed in Chapter 5 suggest a
single rule that includes the examples of Exercise 5.1 and before. To understand why this rule
covers the cases of roots and reciprocals, you must understand the laws of exponents in the review
Chapter 28, especially Exercise 28.4.

Theorem 6.1 The Power Rule
For any constant p,

y = xp ⇒ dy

dx
= pxp−1

In other words, functions that can be expressed as powers are locally linear with derivative as above
— provided the formulas on both sides of the implication are defined on an interval.

We showed directly in the last chapter that if y =
√
x, then dy = 1

2
√
x
dx.

Example 6.4 d(
√
x)

dx by Rules

This is one special case of the Power Rule with p = 1/2, because

y =
√
x = x

1
2 , so

dy

dx
=
1

2
x
1
2
−1 =

1

2
x−

1
2

=
1

2

1

x
1
2

=
1

2

1√
x
=

1

2
√
x

Notice that our final formula is only valid on the open interval (0,∞) = {x : 0 < x <∞}. The
open interval of validity is part of the Power Rule, but you compute first and then think. Do not
forget the second step.

Example 6.5 d(1/x2)
dx by Rules
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This is a special case of the Power Rule with p = −2, because

y =
1

x2
= x−2, so

dy

dx
= −2x−2−1 = −2x−3

=
−2
x3

Notice that our final formula is only valid on the open interval (0,∞) = {x : 0 < x < ∞} or
the interval (−∞, 0) but not on any interval of the form [a, b] with a < 0 < b.

Example 6.6 d(x
√
x)

dx by Rules

This is a special case of the Power Rule with p = 3/2 because

y = x
√
x = x1 x1/2 = x1+

1
2 = x

3
2

dy

dx
=
3

2
x
3
2
−1 =

3

2
x
1
2

Notice that our final formula is valid only for x ≥ 0. The largest open interval where the
function and derivative are defined is (0,∞).

In the last chapter we directly proved derivative formulas for the sine and cosine using a micro-
scopic view of the circle. The angles must be measured in radians in order to compare differences
in sine and cosine with length along the unit circle. Here are the formulas:

Theorem 6.2 The Sine and Cosine Rules
For θ in radians,

y = Sin[θ] ⇒ dy

dθ
= Cos[θ]

y = Cos[θ] ⇒ dy

dθ
= −Sin[θ]

The sine and cosine rules are valid for all real θ. This means that the increment approximation
holds on (−∞,∞).

We will postpone the proof of the exponential and log rules but include them here because they
are the only other special function rules you need to learn.
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Theorem 6.3 The Log and Exponential Rules

y = ex ⇒ dy
dx = y = ex

x = Log [y] ⇒ dx
dy =

1
y

The exponential rule is valid for all real x or, in other words, the increment approximation
holds on (−∞,∞). The natural logarithm rule makes sense only if the log and the formula for the
derivative are both defined, so the increment approximation for Log[y] is valid on (0,∞).

Exercise Set 6.1

1. You cannot divide by zero or take even roots of negative numbers (as real functions). Show
that the Power Rule does not apply at x = 0 for p = 1

3 or at x = −2 for p =
1
4 .

y = xp = x1/3 ⇒ dy

dx
= pxp−1 =?

and

y = xp = x1/4 ⇒ dy

dx
= pxp−1 =?

Use the computer to graph the two functions y = x1/3 = 3
√
x and y = x1/4 = 4

√
x for

−3 ≤ x ≤ 3. Explain your “bad” analytical result above in terms of the graph.
We will not prove the general Power Rule Theorem now, but ask you to check it for the cases
we already know in the next exercise.

2.

(a) Show that the Power Rule agrees with all the derivatives we computed directly in and
before Exercise 5.1.1 as well as those that you computed in Problem 5.1. They are the
following:

y = x ⇒ dy
dx = 1 = 1x

1−1 = x0 ⇒ dy
dx =

−1
x2 = −1x

−2

y = x2 ⇒ dy
dx = 2x

1 = 2x2−1 ⇒ dy
dx =

−2
x3 = −2x

−3

y = x3 ⇒ dy
dx = 3x

2 = 3x3−1 ⇒ dy
dx =

1
2
√
x
= 1

2x
1
2

y = xn ⇒ dy
dx = nxn−1 ⇒ dy

dx =
1

3
3√
x2
= 1

3x
− 2
3
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(b) Differentiate the following by first converting to power form and then applying the Power
Rule. Convert your derivatives back to radical notation.

a) y = 1
x5

b) y = 5
√
x c) y = 1

3√
x2

d) y = x2
√
x e) y = x4

√
x3 f) y = x2

3√
x2

g) y = x 3
√
x h) y = x5

3
√
x2 i) y = x2

3√
x2

(c) The derivative of a constant function is zero. Why? The Power Rule also includes a
case of this in the form,

y = x0 ⇒ dy

dx
= 0 = 0x0−1

What is the value of x0? Is 00 defined?

It is important to be able to apply the differentiation rules to functions defined in terms of
letters other than x. At first, it is simplest to learn the manipulations with one letter, that’s
true, but it is also important to move beyond that. Here is some practice:

3. Other Variables

a) y = x2 ⇒ dy
dx =? b) u = 1

v2 ⇒
du
dv =?

c) y =
√
x⇒ dy

dx =? d) u = 1√
v
⇒ du

dv =?

e) y = x3
√
x3 ⇒ dy

cx =? f) u = v2
3√
v2
⇒ du

dv =?

g) y = Sin [x]⇒ dy
dx =? h) uCos [v]⇒ du

dv =?

i) y = Log [x]⇒ dy
dx =? j) u = ev ⇒ du

dv =?

Problem 6.1 A Cusp
When the graph of y = x2/3 is magnified at x = y = 0, what do we see? The Power Rule does

not apply at x = 0. Why? Still, we can either use small increments directly or look at microscopic
views for smaller and smaller values of δx. The question is th following: In an tiny microscope, do
we see a “VEE” or a vertical straight line segment? (HINT: Run the animation in the computer
program Zoom, then explain what you see analytically.)

The Power Rule, the Sine and Cosine Rules, and the Log and Exponential Rules are the only
particular function rules you need to learn. The other general rules of differentiation allow you to
use these to build a host of formulas that you can differentiate. The general function combination
rules take up the next three sections.
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6.2 The Superposition Rule

This section shows that the sum of the derivatives is the derivative of the sum. The physical
Superposition Principle says that the response to a sum of stimuli is the sum of the responses to
the separate stimuli. These are closely related ideas.

Another way to express the physical Superposition Rule is

Output[ stimulus 1 + stimulus 2 ] = Output[ stimulus 1 ] + Output[ stimulus 2 ]

This is a simple property that is often violated in real life. For example, the combined effect of a
cup of coffee and an aspirin is not the same as the two separate effects. Systems that satisfy the
Superposition Principle are often called “linear systems,” because you can apply the “output” to a
linear combination af [x] + bg[x] or form the same linear combination of the separate outputs,

Out[af [x] + bg[x]] = aOut[f [x]] + bOut[g[x]]

Chapter 23 and the associated projects develop important applications where physical superpo-
sition does apply and “linearity” of the derivative is at the heart of the matter. In the case of
differentiation, “Output” means derivative and “stimulus” means input function.

Theorem 6.4 The Superposition Rule (or Linearity of Differentiation)
If f [x] and g[x] are smooth real functions for α < x < β and a and b are real constants, then the
linear combination function h[x] = a f [x] + b g[x] is also smooth for α < x < β and

d (a f [x] + b g[x])

dx
= a

df [x]

dx
+ b

dg[x]

dx

In words the theorem says that the derivative of a linear combination of functions is the same
linear combination of their derivatives.

Proof of Superposition for Differentiation:
The general proof of the Superposition Rule is little more than algebra. We have the Increment

Formula for f [x] and g[x], so

h[x+ δx]− h[x] = (a f [x+ δx] + b g[x+ δx])− (a f [x] + b g[x])

= a (f [x+ δx]− f [x]) + b (g[x+ δx]− g[x])

= a
¡
f 0[x]δx+ ε1δx

¢
+ b

¡
g0[x]δx+ ε2δx

¢
=
¡
a f 0[x] + b g0[x]

¢
δx+ (aε1 + bε2)δx

Because ε1 ≈ 0 and ε2 ≈ 0 (by the Increment Formula for f and g), we know (aε1 + bε2) ≈ 0, thus
h0[x] = a f 0[x] + b g0[x] and the theorem is proved.
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Example 6.7 d(5·√x−π·x2)
dx

Let
f [x] =

√
x, a = 5, g[x] = x2, b = −π

then
a f [x] + b g[x] = 5 ·

√
x− π · x2

and the derivatives of the pieces are df
dx =

1
2
√
x
and dg

dx = 2x, so

d(af [x]+bg[x])
dx = adf [x]dx + bdg[x]dx

d(5 ·√x− π · x2)
dx

= 5 · 1

2
√
x
− π · 2x

A shortcut way to write this computation is

d(5
√
x− π · x2)
dx

= 5
d(
√
x)

dx
− π

d(x2)

dx

= 5
d(x1/2)

dx
− π

d(x2)

dx

= 5 · 1
2
· x 1

2
−1 − π · 2 · x2−1 = 5

2
x−

1
2 − 2π x

=
5

2

1

x1/2
− 2π x

=
5

2
√
x
− 2π x

Example 6.8 The Constant Multiple Rule, d(a f [x])
dx = a df

dx [x]

We may take b = 0 and g[x] = 0 in the Superposition Rule. If y = eπ
3√x , let a = eπ and

f [x] = 1
x1/3

, b = g[x] = 0, so

d(a f [x])
dx = adf [x]dx
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d( e
π

3√x)

dx
= eπ

d( 1
3√x)

dx
= eπ

d( 1
x1/3

)

dx
= eπ

d(x−1/3)

dx

= eπ
−1
3

x−
1
3
−1 = eπ

−1
3

x−
1
3
− 3
3 = eπ

−1
3

x−
4
3

= −e
π

3

1

x
4
3

= −e
π

3

1
3
√
x4

Notice that eπ is a constant, eπ = (2.71828 · · · )(3.14159··· ) ≈ 23.1407

6.2.1 Symbolic Differentiation with the Computer

The computer can solve all the symbolic differentiation exercises in this chapter. At first this fact
might discourage you, but it should not. We want you to learn to use the rules of differentiation
well enough to be confident that you understand them. The computer cannot think or understand
the meaning of the result of these computations, and the input syntax needed to make it solve the
exercises is troublesome itself.

WARNING: If you do NOT learn to compute derivatives without the computer, you probably
will not understand the rules well enough to succeed in calculus, even with a computer. Combining
your basic ability with the computer will lead to greater success than used to be possible, because
once you understand the rules, the computer can become a mental “lever.” It can do complicated
symbolic computations for you with great reliability. You are then left with the important and
interesting job of formulating the problem, programming it into the computer, and interpreting the
result.

You are also welcome to use the computer to check all of your work from this chapter. Use the
built-in computer differentiation command (in DfDx) once you have learned all the differentiation
rules. The DiffRules program is only intended to show you what cannot be done without some
of the rules. Knowing what cannot be done is part of understanding the strength of the general
functional rules.
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Exercise Set 6.2

1. Basic Superposition Drill
Find dy

dx for each of the following functions y = y[x]. (The letters a, b, c, and h denote
constants or parameters, and e is the natural base for logs and exponentials.)

a) y = 7x4 b) y = −5x2

c) y = 7x+ x4 d) y = 8x3 − 5x2 + 4x+ 1

e) y = 7
x4

f) y = −5 3
√
x

g) y = 7 5
√
x− 3 1

x4 h) y = 7
√
x

3√x − 5
1√
x

i) y = 7 ex − 3Log[x] j) y = 7 1
xe + 3Log[1/x]

k) y = e 5
√
x− π 1

x4
l) y = 3Sin[x]− Cos[7e]

m) y = f [x] = a+ b x+ c x2 + hx3 n) y = f [x] = 7 Cos[x]− 3 Sin[x]

The proof of “linearity of differentiation” is easy provided you understand the function no-
tation. Unfortunately, the notation gives many students trouble at first. The next exercise
helps you understand the general notation by working a specific example. One payoff to un-
derstanding the function formulas is that you will be able to write better computer programs
because much of modern computing uses function notation.

2. Let f [x] =
√
x, let g[x] = x2, let a = 5, and let b = π. Write out each step of the proof of the

Superposition Rule that appears above, except write the steps with these specific functions
and constants.

It is important, especially in applications, to be able to apply the differentiation rules to
functions defined in terms of letters other than x.

3. Other Variables

a) v = u2 + 2u+ 2 ⇒ dv
du =? b) u = 4

√
v − π 1

v2
⇒ du

dv =?

c) y = 3u
√
u+ 5/u2 ⇒ dy

du =? d) u = v1/4 − 1
v1/3

⇒ du
dv =?

e) y = Cos[θ]− Sin[θ] ⇒ dy
dθ =? f) u = Log[v]− ev ⇒ du

dv =?

The computer programDiffRules contains exercises to show you how the rules of differentia-
tion can be used to build a the computer program for differentiation. The computer program
DfDx shows you how to use the computer’s built-in differentiation.
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4. Differentiation by Computer
Run the DiffRules program and work through it line by line so that you can see how the
addition of each of the Superposition Rule, the Product Rule, and the Chain Rule makes sym-
bolic differentiation more powerful. We cannot differentiate

√
x Cos[x] without the Product

Rule, and neither can the computer.

Problem 6.2
Using only the Superposition Rule and derivatives of sine, cosine, natural log and exponential;

find the following or write brief explanations why they cannot be done this way. The letters a, b, c,
and m denote parameters (or unknown constants).

a) y = mx+ b, y0 =? b) y = uv + w, dydv =?

c) y = uv + w, dydw =? d) f [x] = 1 + 1
x +

1
x2
+ 1

x3
, f 0[x] =?

e) f [x] = a+ bx+ cx2 +mx3, f 0[x] =? f) u = 3Sin(θ)− Cos(θ), dudθ =?

g) y = 1
3√
x5
, dydx =? h) y =

√
x+ Sin[x], dydx =?

i)
√
xSin[x], dydx =? j) y =

p
Sin[x], dydx =?

k) y = Sin(
√
x), dydx =? l) y =

√
x, f [x] = dy

dx , f
0[x] =?

m) y = ex + Log[x], dydx =? n) y = ex Sin[x], dydx =?

What is the slope of each of the above graphs when the independent variable equals −1? 0? (What
are the tricks in this question?)

Once you have the Product Rule, you will be able to do some additional parts of the previous
problem and when you also have the Chain Rule, you will be able to do all the parts. The computer
program DiffRules can be used to check your work. Only enter the specific function rules and the
Superposition Rule. If the computer cannot find the derivative with these rules, it will return your
question as its output.

The next problem shows two practical ways that superposition of derivatives arise. You only
need to link those obvious applications with the symbolic expressions to solve the problems.
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Problem 6.3
Express the conditions in the following scenarios in terms of three functions yielding positions as

a function of time and the time derivatives of these functions. Write the general function rules that
yield the answer to the questions, and verify that the mathematical rules agree with the intuitively
obvious answers.

1. (a) A man and a woman are riding on a train that is travelling at the rate of 75 mph. Inside
the train, the woman is walking forward at the rate of 4 mph and the man is walking
backward at the rate of 3 mph. How fast is the man traveling relative to the ground?
How fast is the woman traveling relative to the ground?

Let T [t] equal the distance (in miles) that the train has traveled along the ground. Let
m[t] equal the distance the man has traveled forward on the train. Let w[t] equal the
distance the woman has traveled forward on the train. How much are dT

dt ,
dm
dt , and

dw
dt ,

including sign? What does the function f [t] = T [t] +m[t] represent? What is df
dt? How

does this compare to dT
dt +

dm
dt ? What are the similar constructions for the woman?

(b) A U.S. tourist is driving in Canada at 90 kilometers per hour, but her odometer and
speedometer read in the archaic English units of her home country. We want to see the
functional relationship between English and metric measurements of speed and distance.
Let the odometer reading be the numerical function E[t] = distance traveled in miles,
where t = time in hours. The distance traveled in kilometers is a function M [t]. There
are approximately 1.609 kilometers in a mile. Express E in terms of a constant and M .
Express dE

dt in terms of this same constant and
dM
dt . What is her speed in miles per hour?

Problem 6.4 Spherical Shell
The formula for the volume of a sphere is V [r] = π 43r

3 and for the surface area is S[r] = π4r2.

Compute the derivative dV
dr and explain its connection with S[r] by considering small changes in the

sphere.

6.3 The Product Rule

The derivative of a product is NOT the product of the derivatives.

Letm, n, b, and c denote unknown constants or parameters. We cannot differentiate the product
y = (mx+ b)(nx+ c) directly using the rules we have so far. However, we could do some algebra,
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(mx+ b)(nx+ c) = mnx2 +mcx+ bnx+ bc = mnx2 + (mc+ nb)x+ bc

so,

dy

dx
= 2mnx+mc+ nb

To verify that this agrees with the Product Rule given below, take f [x] = mx+b and g[x] = nx+c.
The derivatives are

df

dx
[x] =

d(mx+ b)

dx
= m &

dg

dx
[x] =

d(nx+ c)

dx
= n

The formula from the Product Rule below gives
This is the same answer because

m(nx+ c) + (mx+ b)n = mnx+mc+mnx+ nb = 2mnx+mc+ nb

Algebra can rearrange products of many power functions and linear combinations of power
functions into forms we can differentiate, but often it is easier to use the Product Rule. A product
like
√
xCos[x] really requires a new rule.

Theorem 6.5 The Product Rule
If f [x] and g[x] are smooth for α < x < β, then the product h[x] = f [x] · g[x] is also locally linear
for α < x < β and

d(f [x] g[x])

dx
=

df [x]

dx
· g[x] + f [x] · dg[x]

dx

In words, the Product Rule says,“Differentiate the terms of a product one at a time, multiply
by the other undisturbed term, and add these together.”

Proof of the Product Rule
The proof of the product rule is another straightforward computation with tiny increments. All

we do is add and subtract a term.

h[x+ δx]− h[x] = f [x+ δx]g[x+ δx]− f [x]g[x]

= f [x+ δx]g[x+ δx]− f [x]g[x+ δx] + f [x]g[x+ δx]− f [x]g[x]

= (f [x+ δx]− f [x]) g[x+ δx] + f [x] (g[x+ δx]− g[x])

=
¡
f 0[x]δx+ ε1δx

¢
g[x+ δx] + f [x]

¡
g0[x]δx+ ε2δx

¢
=
¡
f 0[x]δx+ ε1δx

¢
(g[x] + ε3) + f [x]

¡
g0[x]δx+ ε2δx

¢
= f 0[x]g[x]δx+ f [x]g0[x]δx+ δx · (ε4)
=
¡
f 0[x]g[x] + f [x]g0[x]

¢
· δx+ ε4 · δ
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Exercise SmallTerms below asks you to show that ε3 and ε4 are small. You can do this by
simple estimates.

Example 6.9 d(
√
xCos[x])
dx

Let f [x] =
√
x and g[x] = Cos[x], then df

dx =
1
2
√
x
and dg

dx = −Sin[x], so

d(f [x]·g[x])
dx = df [x]

dx · g[x] + f [x] · dg[x]dx

d(
√
xCos[x])

dx
=

1

2
√
x
· Cos[x]−

√
x · Sin[x]

We can also combine the Superposition Rule and Product Rule.

Example 6.10
d(( a√

x
−b Log[x])(ex−c))

dx

Let f [x] = a√
x
− b Log[x] and g[x] = ex − c, for constants a, b, and c. Then superposition says

df
dx= a

d 1√
x

dx − bd(Log[x])dx = a
d(x−1/2)

dx − bdLog[x]dx

= −a
2x
−3/2 − b

x = −
1
x

³
a√
x
+ b
´

and
dg

dx
=

d (ex)

dx
− dc

dx
= ex + 0 = ex

so

d(f [x]·g[x])
dx = df [x]

dx · g [x] + f [x] · dg[x]dx

d(f [x] g[x])

dx
=

µ
−1
x

µ
a√
x
+ b

¶¶
· (ex − c) +

µ
a√
x
− b Log[x]

¶
(ex)

We cannot differentiate y = Sin[2x] with the rules we have developed so far. Even the simple
expression 2x inside the sine makes this problem outside our present rules.
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Example 6.11 An Impossible Problem Made Possible

We can use the addition formula for sine to show that Sin[2x] = 2 Sin[x]×Cos[x],

Sin[α+ β] = Sin[α] Cos[β] + Sin[β] Cos[α]

Sin[x+ x] = Sin[x] Cos[x] + Sin[x] Cos[x]

Sin[2x] = 2 Sin[x] Cos[x]

This form of the expression can be differentiated using the Product Rule as follows:

Example 6.12 d(Sin[x] Cos[x])
dx

Let f [x] = Sin[x] and g[x] = Cos[x], so df
dx = Cos[x] and

dg
dx = −Sin[x], and

d(f [x]·g[x])
dx = df [x]

dx · g[x] + f [x] · dg[x]dx

d(Sin[x] Cos[x])

dx
= Cos[x] · Cos[x]− Sin[x] · Sin[x]

Together, the two examples mean that

d(Sin[2x])

dx
= 2

d(Sin[x] Cos[x])

dx
= 2

¡
Cos[x]2 − Sin[x]2

¢
= 2Cos[2x]

by the addition formula for cosine, Cos[α + β] = Cos[α] Cos[β] − Sin[α] Sin[β]. We can do this
directly with the Chain Rule below.
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6.3.1 The Microscope Approximation and Rules of Differentiation

The “microscope equation” defining the differentiability (Definition derivable) of a function f [x],

f [x+ δx] = f [x] + f 0[x] · δx+ ε · δx

with ε ≈ 0 if δx ≈ 0, is similar to a functional identity in that it involves an unknown function
f [x] and its related unknown derivative function f 0[x]. If we plug in the “input” function f [x] = x2

into this equation, the output is f 0[x] = 2x. If we plug in the “input” function f [x] = Log[x], the
output is f 0[x] = 1

x .
The microscope equation involves unknown functions, but, strictly speaking, it is not a func-

tional identity because of the error term ε (or the limit that can be used to formalize the error). It
is only an approximate identity.

The various “differentiation rules,” the Superposition Rule, the Product Rule, and the Chain
Rule are functional identities relating functions and their derivatives. For example, the Product
Rule states

d(f [x]·g[x])
dx = df [x]

dx · g[x] + f [x] · dg[x]dx

We urge you to write out this identity with general functions each time you use the Product Rule
in a differentiation computation.

We can think of f [x] and g[x] as “variables” that vary by simply choosing different functions
for f [x] and g[x]. Then the Product Rule yields an identity by “plugging in” the choices of f [x],
g[x], and their derivatives.

Example 6.13 More Examples of the Product Rule

Choosing f [x] = x2 and g[x] = Log[x] and plugging into the Product Rule yields

d(f [x]·g[x])
dx = df [x]

dx · g[x] + f [x] · dg[x]dx

d(x2 Log[x])

dx
= 2xLog[x] + x2

1

x

Choosing f [x] = x3 and g[x] = Exp[x] and plugging into the Product Rule yields

d(f [x]·g[x])
dx = df [x]

dx · g[x] + f [x] · dg[x]dx
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d(x3 Exp[x])

dx
= 3x2 Exp[x] + x3 Exp[x]

Example 6.14 A Half-General Rule

If we choose f [x] = x5 but do not make a specific choice for g[x], plugging into the Product
Rule will yield

d(f [x]·g[x])
dx = df [x]

dx · g[x] + f [x] · dg[x]dx

d(x5g[x])

dx
= 5x4g[x] + x5

dg[x]

dx

You need to know the Product Rule as a functional identity, not just learn shortcut computation
methods that use it. Look at the DiffRules program to see a “practical” use of the identity as a
computer program command.

Exercise Set 6.3

1. Drill on Products
Break each of the following expressions into a product of two terms and apply the Product
Rule to find dy

dx for each of the following functions y = y[x]. (The letters a, b, c, and h denote
constants or parameters, and e is the natural base for logs and exponentials.)

a) y = (2x3 − 4)(3x+ 5) b) y = (x3 − 2x2 + 4)(5x+ 6)

c) y = ( 2
x3
− 4)(3√x+ 5) d) y = (x3 − 2x2 + 3x+ 4)√x

e) y = ( 3
x2
− 4√

x
)(5
√
x+ 3

x5
) f) y = (x+ 1√

x
)(
√
x+ 1

x)

g) y = Log[x]
5√x h) y = (ex − 3)( 1x4 )

i) y = x2 ex j) y = 7 ex Cos[x]

k) y = (a+ b x)(c x2 + hx3) l) y = 3Sin[x] · Cos[7e]

m) y =
¡
x1/2 + x1/3 + x1/4

¢ ¡
x−2 + x−3 + x−4

¢
n) y =

¡
x2 + x3 + x4

¢ ¡
x−1/2 + x−1/3 + x−1/4

¢



Chapter 5 - SYMBOLIC DIFFERENTIATION 122

2. Which parts of Problem superdrill can you do now using the Product Rule that you could
not do without it? (Again, you can check your work with the DiffRules program by entering
the rules up to the Product Rule but not entering the Chain Rule.)

3. Let f [x] and g[x] be unknown functions that satisfy f [1] = 2, df
dx [1] = 3, g[1] = −3,

dg
dx [1] = 4.

Let h[x] = f [x]g[x]. Compute dh
dx [1].

4. Show that the derivative of Sin[θ] × Cos[θ] is Cos[2θ] using the addition formula for cosine.
(You can look that formula up in Chapter 28 on the CD.)

Combine this fact with the previous example to show that

d(Sin[2x])

dx
=

d(2 Sin[x] Cos[x])

dx
= 2 Cos[2x]

without using the Chain Rule! (We will be able to verify this more simply once we have the
Chain Rule. The point is that there are often several ways to apply the rules of algebra and
trig in combination with the rules of differentiation.)

It is important to be able to apply the differentiation rules to functions defined in terms of
letters other than x.

5. Other Variables

(a) v = eu Cos[u] ⇒ dv
du = ?

(b) v = (u3 + 3u+ 3)(Sin[u] + Cos[u]) ⇒ dv
du = ?

(c) u = (4
√
v − π 1

v2
)(v1/4 − 1

v1/3
) ⇒ du

dv =?

(d) y = (Cos[v]− Sin[v])(Log[v]− ev) ⇒ dy
dv = ?

Problem 6.5

1. Verify that ε3 ≈ 0 and ε4 ≈ 0 in the proof of the product rule above.

2. Let f [x] = x2 and g[x] = x3 and write out the steps of the proof of the product rule given
above for these specific functions.
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Problem 6.6
The “rule” that says the derivative of a product is the product of the derivatives might make

things simpler, but it is false. Show this by finding a counterexample from among functions you
know how to differentiate directly from increment computations (such as simple powers of x.) For
example, let f [x] = x2 and g[x] = x, so df

dx = 2x and
dg
dx = 1. How much is

df
dx ×

dg
dx? How much is

d(f ·g)
dx = d(x3)

dx ? How much is
df
dx · g + f · dgdx?

Explain why the derivative of a product is not necessarily the product of the derivatives.

The function notation in the general proof of the Product Rule may seem obscure, but the idea
is not. The next problem shows you why.

Problem 6.7 A Concrete Instance of the Product Rule

1. (a) A contractor’s crew is making forms to lay a rectangular concrete floor. One member of
the crew measures the length l (feet) and makes an error ∆l (feet), and another measures
the width w (feet) and makes a separate error ∆w (feet). The contracted area is A = lw,
but the actual area is A+∆A where the error in area is ∆A = ? (Write a formula in
terms of l, w, ∆l and ∆w. See the Figure 6.3:2 for help.)

Figure 6.3:2: Three error rectangles

(b) Check your formula with a numerical example. Suppose that the floor has design di-
mensions of 20 by 30 feet, the error in length is 2 inches, and the error in width is 1 inch
- both too long. How much too large is the floor? Is the error larger or smaller than a
desktop?

(c) With the same dimensions as in the previous part and same error in length, suppose the
error in width is 2 inches too short. Use ∆w = −2/12 in your formula and verify that it
gives the correct result. Is the floor too large or too small? What is the error in area?
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(d) Suppose that the length and width are changing with time (instead of a measurement
error), so ∆l

∆t and
∆w
∆t are the rates of change of length and width during the time

increment ∆t. (Imagine the floor expanding with a change in temperature.) Show that

∆A

∆t
=
∆w

∆t
· l + w · ∆l

∆t
+
∆w

∆t
· ∆l
∆t

·∆t

What is the Product Rule for A = l[t]w[t]? How do these expressions differ when ∆t is
very small?

The Scientific Project on the Expanding Economy shows another way that the Product Rule
arises in everyday discussions.

6.4 The Chain Rule

The Chain Rule for derivatives shows how to differentiate functions that are “hooked together in
a chain.” Mathematically this occurs in expressions like y = Sin[x2 + 1], with “chain” u = x2 + 1
“linked to” y = Sin[u].

If we let u = x2 + 1 and let y = Sin[u], then the original formula, y = Sin[x2 + 1] is what we
would get if we start with x, compute u, and then use that answer for u to compute y.

u = x2 + 1 → y = Sin[u]

The functional notation for this “chaining” if y = f [u] and u = g[x] is

y = f [g[x]] = Sin[x2 + 1]

Of course, we could have broken the final formula down in other ways. For example,

v = x2 → y = Sin[v + 1]

or y = f [g[x]], where f [v] = Sin[v+1] and v = g[x] = x2. The advantage of the first decomposition
is that we can differentiate each of the component pieces with rules already at our disposal,

du

dx
= 2x &

dy

du
= Cos[u]

Notice the importance of being able to differentiate with respect to a letter other
than x. This is one reason that we emphasized “other letters” in the early sections of
the chapter.
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The Chain Rule given next tells us how to use the derivatives of the components to find the
derivative of the whole composition. In this case,

dy

dx
=

dy

du
· du
dx

= Cos[u] · 2x
= Cos[x2 + 1] · 2x
= 2xCos[x2 + 1]

We removed the “link” variable u in our final expression for dy
dx because we introduced it only to

help solve the problem. (In some applications, the link variables actually have important separate
meanings.)

Theorem 6.6 The Chain Rule
If y = f [u] is smooth on the range of u = g[x] and g is smooth for α < x < β, then the chained
composition y = h[x] = f [g[x]] is smooth for α < x < β and h0[x] = f 0[g[x]] · g0[x] or

dy

dx
=

dy

du
· du
dx

Proof of the Chain Rule
The general proof is only a little more complicated use of the increment approximation.

f [g[x+ δx]]− f [g[x]] = f [g[x] + (g0[x]δx+ ε1 · δx)]− f [g[x]]

= f [g[x] + L1δx]− f [g[x]]

= f 0[g[x]]L1δx+ ε2 · L1δx
= f 0[g[x]] (g0[x] + ε1)δx+ ε2 · L1δx
= f 0[g[x]] g0[x] δx+ (f 0[g[x]] ε1 + ε2 · L1)δx
= f 0[g[x]] g0[x]δx+ ε3δx

where L1 = (g
0[x] + ε1) is finite so that L1δx ≈ 0 and we may apply the increment approximation

to f at g[x] with change L1δx. Also, ε3 = (f
0[g[x]]ε1) + ε2L1 ≈ 0 since f [u] is smooth on the range

of g[x].
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Procedure 6.1

To differentiate an expression like v =
√
x2 + 1 with the Chain Rule, you need to find a decom-

position of the formula satisfying the following

(a) Each piece of the decomposition can be differentiated by known rules.

(b) When chained back together, the pieces “compose” the original formula.

You can view the ‘links’ in function notation or by using a new variable.

Example 6.15 d(
√
x2+1)
dx

In this case, we let u = x2 + 1 and v =
√
u because substituting this value for u into the

u-expression for v makes v =
√
x2 + 1. The Power Rule and the Superposition Rule tell us

so the Chain Rule above says

dv
dx =

dv
du ·

du
dx

dv

dx
=

1

2
√
u
· 2x

=
x√

x2 + 1

In function notation, this example is solved as follows: The functions v = f [u] = u1/2 and
u = g[x] = x2 + 1 have v = f [g[x]] =

√
x2 + 1. The derivatives are

so

(f [g[x]])0 = f 0[g[x]] · g0[x]

=
x√

x2 + 1
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Example 6.16 d(Sin[x2+2x+1])
dx

In this case, we let y = Sin[u] and u = x2+2x+1, because substituting this value for u into the
u-expression for y makes y = Sin[x2+2x+1]. The Sine Rule, the Power Rule and the Superposition
Rule tell us

so the Chain Rule says

dv
dx =

dv
du ·

du
dx

dy

dx
= Cos[u](2x+ 2)

= 2(x+ 1)Cos[x2 + 2x+ 1]

Example 6.17 More Links y = Log[Cos[ex + x6]]

We decompose y = Log[Cos[ex+x6]] into three pieces below because resubstituting these yields
the original expression.

The simple two-link Chain Rule says

dy
dx =

dy
du ·

du
dx

dy

dx
=
1

u
· du
dx

and

du
dx =

du
dv ·

dv
dx

du

dx
= −Sin[v] · (ex + 6x5)



Chapter 5 - SYMBOLIC DIFFERENTIATION 128

so

dy

dx
=

dy

du
· du
dv
· dv
dx

dy

dx
=
1

u
· (−Sin[v]) · (ex + 6x5)

=
1

Cos[v]
(−Sin[ex + x6])(ex + 6x5)

= −(ex + 6x5) Sin[e
x + x6]

Cos[ex + x6]

= −(ex + 6x5)Tan[ex + x6]

It is easy to generalize this example to see that if we decompose an expression into three links,

dy
dx =

dy
du ·

du
dv ·

dv
dx

Example 6.18 “Generalized” Differentiation Rules

Some folks like to remember special cases of the Chain Rule such as

d(eu)

dx
= eu · du

dx

which they apply as follows. If we want to differentiate y = ex
3
, let u = x3, so du

dx = 3x
2 and use

the “Generalized Derivative” above,

d(eu)

dx
= eu · du

dx
= eu · 3x2 = 3x2 ex3

Of course, this is just the Chain Rule with y = eu and u = x3. There is no need to remember a
“generalized” formula, but you may if you wish.

6.4.1 The Everyday Meaning of the Chain Rule

The Scientific Projects contain a chapter on the “Expanding House.” The wood in your house
expands during the course of a normal day’s warming. A 40-foot long house only expands about
0.03 inches on a normal Fall day, but there is a substantial increase in the volume of the house.
Do you think it is about a thimble, a bucket, or a bathtub full? The numerical calculation might
surprise you, but the ideas of this calculation are similar to the way that the rules of calculus
are built. The project starts with simple but surprising arithmetic and progresses to a symbolic
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formulation of volume expansion. A final section uses the Chain Rule from the next section to give
a direct solution. We recommend that you at least skim through the Expanding House project
now.

Chapter 7 has several applications of the Chain Rule.

You may want to review chaining or function composition in Exercise 28.7 before
doing the Chain Rule exercises that follow.

Exercise Set 6.4

1. Drill on Chains

Break each of the following expressions into a composition of two functions and apply the
Chain Rule to find dy

dx . (The letters a, b, c denote constants or parameters, and e is the
natural base for logs and exponentials.)

a) y = (1 + x)33 b) y = (a+ b x)33 c) y = (a+ b x)c

d) y = ea x e) y = ex
2+3 f) y = eax

2+b

g) y = eCos[x] h) y = eSin[a x]+b i) y = eLog[x]

j) y = 3(Sin[x])3 k) y = 3(Sin[x3]) l) y = 3(Sin[x3])3

m) y = Log[x 5
√
x] n) y = 6

5 Log[x] o) y = Log[x
6
5 ]

p) y = Log[xc] q) y = cLog[x] r) y = Cos[7 ex ]

2. The product Sin[θ] Cos[θ] = 1
2 Sin[2θ]. Show this using the addition formula for the sine.

(HINT: Sin[θ + θ] =?) Use the Chain Rule to show that the derivative of the product is
Cos[2θ] by differentiating the right side of the equality. Check your work using the Product
Rule on the left side of the equality.

3. The sine function in degrees can be thought of this way

Sin[D] = Sin[
π

180
D]

where Sin[u] denotes the radian measure sine function. Use the Chain Rule to show that the
derivative of the sine in degrees is π

180 times the cosine in degrees,

y = Sin[D]⇒ dy

dD
=

π

180
Cos[D]



Chapter 5 - SYMBOLIC DIFFERENTIATION 130

4. Which parts of Exercise 6.2 can you now do using the Chain Rule (in addition to the other
rules) that you could not do without it?

6.5 General Exponentials

This section uses the Chain Rule to find d(ax)
dx and the derivatives of more general exponential

expressions.

The project on Numerical Differentiation of Exponentials shows you a direct way to approximate
the derivative of a general exponential function. The next topic shows you an exact symbolic
method. This is important in the theory of calculus because it reduces the calculus of other bases
to the natural base.

Suppose we have y = ect for some constant c. The Chain Rule says

dy
dt =

dy
du ·

du
dt

y = eu u = ct

dy
du = eu du

dt = c

d(ect)
dt = dy

du ×
du
dt = c ect

If we want to differentiate y = 2t, we can use the preceding Chain Rule computation and two
other important facts about exponentials. We know the general exponential law

(ac)x = acx

so we try to find a constant c that satisfies

2 = ec

Once we find this c we have 2t = ect for all t because of the law of exponents. We know how to
differentiate y = ect, and with this value of c, we learn how to differentiate 2t,

d(2t)

dt
=

d(ect)

dt
= c ect = c 2t

Now we solve for c using natural log. Natural log and exponential are inverse functions. This
simply means
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Log[et] = t and eLog[s] = s, s > 0

We apply this to our problem by taking logs of both sides of

2 = ec Log[2] = Log[ec] = c

Thus c = Log[2] and we see that
d(2t)

dt
= Log[2]× 2t

In general,

d(ax)
dx = Log[a] ax

but the procedure used above to find the derivative of 2t is what you should learn. That procedure
also applies to formulas like y = xx.

Example 6.19
d((Sin[x]Cos[x])

dx

Sin[x] = eLog[Sin[x]] for Sin[x] > 0

so

Sin[x]Cos[x] =
³
eLog[Sin[x]]

´Cos[x]
= eCos[x] Log[Sin[x]]

and we want to differentiate the chain
Use of the Product Rule

du

dx
=

d(Cos[x] Log[Sin[x]])

dx
=

d(Cos[x])

dx
Log[Sin[x]] + Cos[x]

d(Log[Sin[x]])

dx

= −Sin[x] Log[Sin[x]] + Cos[x] Cos[x]
Sin[x]

since another application of the Chain Rule gives

d(Log[Sin[x]])

dx
=

dw

dv
× dv

dx
=
Cos[x]

Sin[x]

This shows that
du

dx
=
Cos[x]2

Sin[x]
− Sin[x] Log[Sin[x]]

So finally,

d(
¡
Sin[x]Cos[x]

¢
dx

=
dy

du
× du

dx
=

µ
Cos[x]2

Sin[x]
− Sin[x] Log[Sin[x]]

¶
Sin[x]Cos[x]
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Exercise Set 6.5

1. For y[t] as follows, find dy
dt [t]:

a) y = 3t b) y = 10t c) y = at

d) y = tt e) y = 2Cos[t] f) y = tet

g) y = e
1
t h) y = 3

√
t i) y =

√
3t − 2t

(Check your work with the computer.)

2. Find dy
dx [x]

a) y = xx b) y = xSin[x] c) y = (Cos[x])x

Problem 6.8
If the number of algae cells is N [t] = N02

t/6, how long does it take to double the number of
cells? How long does it take to triple the number of cells? What is the instantaneous rate of growth
of algae at t = 0? At t = 6? What is the instantaneous rate of growth of algae as a percentage of
N at t = 0? At t = 6?

Problem 6.9
Let r be a constant. Use rules of calculus to prove that y = er x grows at the instantaneous rate

of r × 100%. (Compare this with Exercise NaturalPercentEx.)

Problem 6.10
What is wrong with the following nonsensical differentiation?

dxx

dx
= xxx−1 = x1xx−1 = x1+x−1 = xx

(HINT: Differentiate with the computer, and try y = xx = (eLog[x])x = exLog[x] yourself.)
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6.6 Derivative of the Natural Log

dLog[u]
du = 1

u

The inverse of x = Log[y] is y = ex and has derivative dy
dx = ex = y; therefore

dy = ex dx

or
dy = y dx

and
dx

dy
=
1

y

This computation is explored in more detail in the Project on Inverse Functions. The point is that
the derivative of the inverse function is the reciprocal of the derivative of the function.

Example 6.20 d Log[Tan[x]]
dx

Use the chain
y = Log [y] u = Tan [x] = Sin[x]

Cos[x]

dy
du =

1
u

du
dx =

1
(Cos[x])2

dy

dx
=

dy

du

du

dx
=
Cos[x]

Sin[x]
× 1

(Cos[x])2
=

1

Cos[x] Sin[x]

Compare this with the answer to

d Log[Sin[x]]

dx
− d Log[Cos[x]]

dx
=
Cos[x]

Sin[x]
+
Sin[x]

Cos[x]

=
(Cos[x])2 + Sin[x])2

Sin[x] Cos[x]

since Log[Tan[x]] = Log[Sin[x](Cos[x])−1] = Log[Sin[x]− Log[Cos[x]]
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Exercise Set 6.6

1. For y[t] as follows, find dy
dt [t]

a) y = (Log[t])3 b) y = Log[Cos[x]] c) y = tLog[t]− t

d) y = Log[Log[x]] e) y = Log[t1/t] f) y = Log[t2 + 2x]

Assume first that x is independent of t. Second, if x is a function of t but we forgot to give
you a formula for x = x[t]. Express your answers in terms of x and dx

dt . What is
dx
dt if x is

independent of t?

2. Differentiate y = Log[x3] using u = x3 and y = Log[u]. Also use the log identity, Log[xp] =
p Log[x] and differentiate y = Log[x3] = 3 Log[x] without the Chain Rule. Compare the two
answers.

6.7 Combined Symbolic Rules

You can make some additional rules of differentiation for general cases.

Custom Rules

Suppose you often need to differentiate a cube of a product of functions, y = (f [x] · g[x])3, for
various smooth functions f [x] and g[x]. We use the Chain Rule with unknown functions:

y = u3 u = f [x] · g [x]

dy
du = 3u

2 du
dx =

df
dx · g + f · dgdx

dy

dx
=

dy

du
· du
dx
= 3u2

µ
df

dx
· g + f · dg

dx

¶
= 3(f [x] · g[x])2

µ
df

dx
[x] · g[x] + f [x] · dg

dx
[x]

¶
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Exercise Set 6.7

1. Use all the rules of differentiation to find the following:

a) y = 1
ax+b ,

dy
dx = ? b) y = 1

2x−1 ,
dy
dx = ?

³
u=ax+b
y= 1

u
=u−1

´
c) y = Cos[x2], dydx = ? d) y = Cos2[x], dydx = ? (unchain two ways)

e) y =
√
1− x2, dydx = ? f) y = 1√

1−x2 ,
dy
dx = ?

g) y = (12− 3x7)8, dydx = ? h) y = Sin[x2 + x3], dydx = ?

i) y = (2x3 + 4)(x2 −√x), dydx = ? j) y = [(ax+ b)−1 + c]−1, dydx = ?

k) y = Sin[x] Cos[x], dydx = ? l) y = Sin[2x], dydx = ?

m) y = Sin[3x], dydx = ? n) y = 1
Cos[3x] ,

dy
dx = ?

o) y = Sin[x] · [Cos[x]]−1 = Sin[x]
Cos[x] = Tan[x], dy

dx=?

p) y = 2−3x
1+2x = (2− 3x)[(1 + 2x)−1],

dy
dx =?

Check your work with the computer.

2. Differentiate y =
√
x2 + 2x+ 1 using the Chain Rule, the Power Rule and the Superposition

Rule. The graph of this function is rather simple, as we saw in Exercise kinkex. Where does
your symbolic answer not make sense? Can you sketch the graph? Why does the symbolic
answer not work at the bad point?

3. Use the Superposition Rule and the Product Rule repeatedly to show in general that if f [x],
g[x] and h[x] are smooth on an interval, then so are their sum and product and

d(f [x] + g[x] + h[x])

dx
=

df

dx
[x] +

dg

dx
[x] +

dh

dx
[x]

d[f [x]g[x]h[x]]

dx
=

df

dx
[x] · g[x] · h[x] + f [x] · dg

dx
[x] · h[x] + f [x] · g[x] · dh

dx
[x]

(HINT: Let G[x] = (g[x] · h[x]) and apply the Product Rule to f [x] ·G[x].)

4. The Second Derivative Product Rule
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(a) Differentiate the general Product Rule identity to get a formula for

d2(f [x] · g[x])
dx2

(b) Let h[x] = f [x] · g[x] and use your rule to compute d2(h)
dx2

[1] if f [1] = 2, df
dx [1] = 3,

d2(f)
dx2

[1] = 5, g[1] = −3, dg
dx [1] = 4, and

d2(g)
dx2

[1] = −2.

6.7.1 The Quotient Rule

5. The Quotient Rule
Derive the quotient rule: If q[x] = f [x]

g[x] , where f and g are smooth and g[x] 6= 0 for α < x < β,

then q[x] is also smooth for α < x < β and

d(f [x]g[x] )

dx
=

df [x]
dx g[x]− f [x]dg[x]dx

[g[x]]2

Use the Chain Rule and Product Rule on the formula

f [x]

g[x]
= f [x]× (g[x])−1 = f [x]× h[x]

You will have to put your answer on a common denominator to get the formula above.

6.7.2 The Relative Growth Rule

We often make relative measurements stating the error (or accuracy) as a fraction of the amount
(or stating a percentage). A similar notion is the relative rate of change given by

f∗[x] =
1

f [x]

df

dx
[x]

6.

(a) Let f [x] = er x for a constant r. Compute f∗[x].

(b) Let f [x] = bx for a constant base b. Compute f∗[x].

7. Give a general symbolic rule for the relative rate of change of a product in terms of f∗[x] and
g∗[x].

(f [x] g[x])∗ =?

(HINT: Substitute a product into the rule for * and rewrite using ordinary rules.)
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6.8 Review - Inside the Microscope

Calculus lets us “see” inside a powerful microscope without actually magnifying the nonlinear
graph. We know that the curve looks like its tangent line at high magnification. The “rules”of
differentiation are the way we “see.” This section combines the rules with “looking.”

Figure 6.8:3: Possible microscopic views

6.8.1 Review - Numerical Increments

When a function is smooth, we summarize the local linear approximation by

y = f [x] ⇒ dy = f 0[x] dx

The differential dy = f 0[x] dx is a linear function of the local variable dx, with dependent variable
dy. This is the linear equation in microscope variables. The variable x in f 0[x] is considered fixed
until we move the point where we focus our microscope. The quantity dy is an approximation to
the change f [x+ dx]− f [x] in the actual function.

You should memorize the microscope approximation or Definition 5.2 and strive to understand
its algebraic and geometric consequences. Functions given by formulas are important in science
and mathematics, but they are not the only kind of functions.

The rules of calculus are theorems that guarantee that the local linear approximation is valid.
These rules are remarkably easy to use compared with the direct verification of the approximations
as in Chapter 5. You simply compute and look at the answers. We used the symbolic approximation
in Chapter 5 to estimate Sin[46◦].

Contrast what we learn about a function from the approximation with the simplicity of the
computation that guarantees that the approximation holds. If

y = x−3, then dy = − 3
x4

dx
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according to the rules. Both of these formulas are valid when x 6= 0, so the increment approximation
defining the derivative holds and the change in f is approximated by dy with dx = δx. In general,

f [x+ dx]− f [x] = f 0[x] · dx+ ε · dx
f [x+ dx]− f [x] = dy + ε · dx ≈ dy

In this case,
1

(x+dx)3
− 1

x3
= −3

x4
· dx+ ε · dx ≈ −3

x4
· dx

1
(3+.01)3

− 1
27 ≈ −

3
81 × 0.01

1
(3.01)3

− 1
27 ≈ −

.01
27

so,
1

(3.01)3
≈ .99× 1

27
≈ 0.0366667

the computer gives 1/(3.01)3 = 0.0366691, so the increment approximation is quite close even
though the x increment δx = 0.01 is not infinitesimal.

To make numerical differential approximations, do the following steps.

1. Compute f 0[x] by rules. The rules guarantee the approximation when dx ≈ 0.

2. Substitute the fixed x to find the numerical value of the derivative

m = f 0[x]

3. Compute df = m dx when dx =your perturbation using the number m.

4. Compute f [x+ dx] using this approximate change and the value of f [x],

f [x+ δx] ≈ f [x] + df [x]

In short, f [x+ dx]− f [x] ≈ df [x], with an error small compared to dx when dx is small.

6.8.2 Differentials and the (x, y)-Equation of the Tangent Line

The equation of the tangent line to y = f [x] in local coordinates is simply the differential dy =
f 0[x] dx, but there is possible confusion when we try to convert back to regular coordinates because
we are treating x as fixed in the local dx-dy-equation. Here is a way to find the equation of the
tangent line to y = x2 when x = −1/3 as shown in Figure 6.8:4. We know dy = 2x dx and
x = −1/3, so the slope is 2 · (−1/3) = −2/3. When x = −1/3, y = x2 = 1/9, so the line goes
through (−1/3, 1/9) and has slope −2/3. Using the change form of a line (or the point-slope
formula),
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To find the (x, y) equation of the tangent line, do the following steps.

1. Compute f 0[x] by rules.

2. Substitute the fixed x = a (x = −1/3, in this case) to find the numerical value of the slope
m = f 0[x].

3. Compute the specific y value, y = f [x] at the point of tangency. This gives you a specific
point (x, y) = (a, b) that lies on both the curve and tangent line.

4. Change the local equation of the line dy = m dx to the point-slope (x, y) form of a line
y−b
x−a = m and simplify to the slope-intercept form y = mx+ i.

Figure 6.8:4: y = x2 & y = −23x−
1
9

Exercise Set 6.8

1. A Partial View of the “Bell Shaped” Curve
The derivative of the function f [x] = e−x

2
is f 0[x] = −2x · e−x2 (as you may verify using rules

of differentiation.) This question asks, So what? (or what does this tell us mathematically?)
You answer it as follows: Draw microscopic views of the graph y = e−x

2
when the microscope

is focused on the graph over the x-points, x = 0,±0.1,±1,±10. Give the numerical values of
the derivatives and sketch the slopes to scale on equal axes.

The next problem asks you to do all the steps involved in “looking” in an infinitesimal
microscope. This is a question that requires you to summarize the steps in writing. This
should help you combine the facts you have learned.
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2. Find the (x, y)-equation of the tangent to y = x3 at x = −2.
Find the (x, y)-equation of the tangent to y = Sin[x] at x = π/3.

Find the (x, y)-equation of the tangent to y = Log[x] at x = 1.

Plot these pairs of curves with the computer program Tangents.

3. Differential Approximation
Approximate 3

√
1, 000, 000, 000, 000, 002− 3

√
1, 000, 000, 000, 000, 000 using the differential in-

crement of the function f [x] = 3
√
x, x = 1, 000, 000, 000, 000, 000 and δx = 2. (Two is not

infinitesimal, but it is small compared to 1015. Computers have a very hard time with this
kind of computation because they work in fixed length decimal approximations.) We only
need a simple way to estimate f [x+ δx]−f [x], since we know f [x] = 100, 000 when x = 1015.

How many decimals of your approximation are accurate in this case? Try it with your
calculator or the computer; you’ll get the wrong answer unless you work with very very
high-precision arithmetic. The differential is very accurate.

Problem 6.11
You are interested in the accuracy of your speedometer and perform the following experiment

on a stretch of flat, straight, deserted Interstate highway. You drive at constant speed with your
speedometer reading 60 mph, crossing between two consecutive mile markers in 57 seconds as mea-
sured by your quartz watch. For constant speed, we know the formula, “distance equals rate times
time,00D=R×T , so R = D/T when the units are correct.

1. (a) Express the rate of speed R in miles per hour as a function of the distance D in miles
and the time t in seconds.

(b) Compute the differential dR =? × dt using the appropriate rules, assuming that D = 1
is measured exactly.

(c) Approximate the speed of your car in the above experiment using the differential to ap-
proximate the increment ∆R. (See Exercise 6.8.)

(d) Use the computer to compare the actual rate with the differential approximation using
your formula for r and its differential :

Summarize the idea of this problem in a few sentences.
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Figure 6.8:5: Rate and Approximation

Problem 6.12

1. Sketch a pair of (x, y)-axes and plot the point (1,−1). Let x run from 0 to 3, and y run from
−2 to 1.

2. The point (x, y) = (1,−1) lies on the explicit curve y = x2Cos[π/x]. Verify this.

3. Add a pair of (dx, dy)-axes at the (x, y)-point (1,−1). How are these axes related to the (x, y)
axes?

4. Use rules of calculus to show that

y = x2Cos[π/x] ⇒ dy = (2x Cos[π/x] + π Sin[π/x]) dx

5. Substitute x = 1 into your differential to show that

dy = −2 dx

at the (x, y)-point (1,−1) or the (dx, dy)-point (0, 0).

6. Plot the line dy = −2 dx on your (dx, dy)-axes.

7. What would you see if you looked at the graph of y = x2Cos[π/x] under a very powerful
microscope?

8. Use the computer NoteBook Micro1D to plot the function and its differential and to make
an animation of a microscope zooming in on the graph at the (x, y)-point (1,−1).

9. Explain how the Differential cell of theMicro1D NoteBook is actually solving parts (2) - (7)
of this exercise. How does calculus let us “see” a graph in a powerful microscope?
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Problem 6.13
What is wrong with the following “general formula” for the tangent to y = x2 at the point

x = a? We have dy = 2xdx and we know that dx = x−a, while dy = y−a2. So (false conclusion),
the equation of the tangent line is ∆y

∆x =
y−a2
x−a = 2x and we can simplify to the form y = mx+ b.

The (x, y) equation of the tangent is often not needed (if you plot in (dx, dy) coordinates), but
the idea of working in the correct coordinates is important. Here is another kind of example of
tangency and keeping track of all the variables. A circle of radius 1 centered on the y axis is moved
down the axis until it touches the parabola y = x2, as shown in the next figure. Since the circle
just touches the parabola, both curves are tangent at the point of contact.

Problem 6.14 Tangent Curves
Write the equation of a circle of radius 1 centered on the y axis in terms of a parameter c for

the unknown y coordinate of the center.
Calculate the differential of the equation of your circle, using the unknown parameter. Solve for

dy
dx , and write the equation that says

“the slope of the circle at (x, y) equals the slope of the parabola at (x, y)”

Write the system of three equations that say “(x, y) is the point of tangency”:

y = x2 “ (x, y) lies on the parabola”

? = ? “ (x, y) lies on the circle through (0, c) ”

? = ? “the circle and parabola have the same slope at (x, y) ”

Finally, solve the three equations in three unknowns, using the computer if you like.
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Figure 6.8:6: A circle tangent to a parabola

Here is a sample of the use of the computer to solve a set of equations:
equns = { y == x∧2 , x∧2 + (y - c)∧2 == 1 , x == 2 x (c - y) }
Solve[ equns , { x , y , c } ]

Problem 6.15 More Tangent Curves
A circle with center (0, 1) is expanded until it just touches the parabola y = x2. What is it’s

radius? Where does it make contact?
A line passes through the origin and is tangent to y = x2 + 1. What is the point of tangency?

Figure 6.8:7: Tangent curves
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6.9 Projects

6.9.1 Functional Identities

The Mathematical Background chapter on Functional Identities (on the CD) may help you under-
stand the role of unknown functions in mathematics. It is important for you to see the Product
Rule and the Chain Rule as identities in unknown functions.


