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Original motivation: apply mathematics to the composition of
music.

Mathematics Focus:

Some geometry of the n-dimensional permutahedron.

Visualization Focus

Higher dimensional visualization including braids used as a
visualization tool.
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Two very different musical examples:

@ change ringing

@ Nomos Alpha of Xenankis




From Change Ringing by Wilfrid G. Wilson
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The Art and Science of Change Ringing
on Church and Hand Bells

| .
‘WILFRID G. WILSON |
‘ Maste of the London County Associatio of Change Ringers
1963-65
| Vice President o the Orford Diocesan Guild
i of Church Bell Ri
| Member of the Central Council of Church Bell Ringers

OCTOBER HOUSE INC.
New York
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CHAPTER FIVE |
Plain Bob—The Method

The simplest of the even bell methods and the one best suited for use
as an introduction to the inexhaustible complexities and problems of
change ringing is Plain Bob. The basis of the method is the plain hunt
(see Chapter Four) and the variations from it are the simplest possible
by which to produce additional changes. A thorough knowledge of
Plain Bob is essential to a study of other aspects of change ringing.

On Four Bells
Very little change ringing is practised on four bells but the whole
principle of Plain Bob can be seen clearly and concisely on this |
number, thus making it casie to understand the method on the higher |
numbers of bells.
Starting from rounds (x 2 3 4) write out a phin hunt on four bells i
(a5 on p. 14) until che first lead of the treble (number 1) is reached.
Then, while the treble leads twice, lt the bell which is second strike
twice in that position. This is called making second place. Itis then
impossible without clashing for che bells in the third and fourth
positions to retur to their original positions as they otherwise would,
50 they dodge with each other. Each of thse two bells takes a step |

backward in its hunting course. This block of changes from the time | "
the treble left the front uniil it got back to it again i called 4 lead, and ke
the backstroke row when the treble i leading i called the lead cnd * lad
Wenow haveanew lead end 1 3 4 2-sce tow A p. 19, -

From this new lead end write out a plain hunt again until the treble | have
i leading. As these ch 1342 insteadof o
f{om )‘ 2 3 4 they will be dn(‘fcrenm‘ncs. Then at the x::co‘nd lead of Sing
place and the other two bells dodge with each other in 3-4 (ic. the :}",‘:
third and fourth positions). This completes another lead and pro- othe
duces another lead end, 1 4 2 3, marked B. N

Fornot o thisse . 7. will

|
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Ringing by Wilfrid G. Wilson

PLAIN BOB — THE METHOD

1234

34 C
From this new lead end write out another plain hunt unil the treble
reaches the front again. Make similar variations to those at the other
lead ends and we are back at rounds (row C). We have produced all
the possible 24 changes on four bells we have no repetitions and we
have missed none out. This block of changes (three complete leads)
is alled a phin course of Plain Bob Minimus, sometimes Plain Bob
Singles. The major factor in this plin course is the continued plain
hunting of the treble and you will find that there is a whole large class
of methods in which the treble plain hunts continually among the
other bells - however many there may be.
Now on the table of 24 changes draw a line through all the 2's. It
will be this shape, though less squashed up:

19




From Formal Music by |I. Xenakis—Nomos Alpha
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Formalized Music

THOUGHT AND MATHEMATICS IN COMPOSITION |

Revised Edition

Tannis Xenakis

Additional material compiled and edited
by Sharon Kanach

HARMONOLOGIA SERIES No. 6

PENDRAGON PRESS
HILLSDALE, NY
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o Misie Towards a Philosophy of Music 223
Organization In-Time.

re mapped n
in the order &, B, 3, @, .. . after each three substitutions of the cube.

of sound-

ascending

of siding
ascending
Ta quasi
erences,

tices of a

organizer IIL The same is true for the cube of the letters G,

Vi = Rt Pt Fe
Vo= Gnt Grr O3+05
AR e te s |

O O

Fig. VIli-8
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organization In-Time

V. The products K; x €y and K, x G are the rsul of the product

i iell The mapping

* product
Cof wayy

o two graphs of closed transormations of the cube i
o e s oneto-one and sounded succesively; fo example:
G lﬂﬂp" (D,?,,?
K temph (D Q)

(See Figs. VITL-9, 10)

zello

- Cop 8.
high and
of H'is Fig. V-9
£ the pre-
in terms

b C, is mapped onto one of the cells of H x X according to
e i (minimum repetition), and maximum
See Fig. VITI-IL)

tively in-
perations two principles: maximum expansion

contrast or maximum resemblance. (




Music and Mathematics
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A musical composition is a family of sequences of related
musical events.

Time and voices

Progression in time is related to succession in a sequence; each
sequence represents a ‘“voice”.

The mathematical objects we chose are permutations.

Construct families of sequences length k of permutations of
order n , where k and n are independent.
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Permutahedron

Permutations Geometrically: the Permutahedron

The Permutahedron

© Take the n! permutations S, to be all permutations of
(1,2,...,n)
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The Permutahedron

© Take the n! permutations S, to be all permutations of
(1,2,...,n)

Permutahedron
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Permutations Geometrically: the Permutahedron

The Permutahedron

© Take the n! permutations S, to be all permutations of
(1,2,...,n)
© They are n-tuples—plot them as points in R".
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The Permutahedron

© Take the n! permutations S, to be all permutations of
(1,2,...,n)
@ They are n-tuples—plot them as points in R".

Permutahedron




Permutations Geometrically: the Permutahedron
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The Permutahedron

© Take the n! permutations S, to be all permutations of
(1,2,...,n)

@ They are n-tuples—plot them as points in R".

© Take the convex hull.

Permutahedron




Permutations Geometrically: the Permutahedron

Geometric
generation of
permutation

sequences

The Permutahedron

© Take the n! permutations S, to be all permutations of
(1,2,...,n)

@ They are n-tuples—plot them as points in R".

© Take the convex hull.

Permutahedron




Permutations Geometrically: the Permutahedron
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The Permutahedron

© Take the n! permutations S, to be all permutations of
(1,2,...,n)

@ They are n-tuples—plot them as points in R".

© Take the convex hull.

@ The resulting polytope is the permutahedron P(n)

Permutahedron
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Permutahedron Some EXampleS:
@ P(2) is the line segment in R? with endpoints (1,2) and
(2.1) .
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Permutahedron Some Exam p|eS:

@ P(2) is the line segment in R? with endpoints (1,2) and
(2,1) , a subset of the line x +y =1+ 2.
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Permutahedron Some Exam p|eS:

@ P(2) is the line segment in R? with endpoints (1,2) and
(2,1) , a subset of the line x + y = 3.
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Permutahedron Some EXampleS:

@ P(2) is the line segment in R? with endpoints (1,2) and
(2,1).

@ P(3) is a hexagon in R? in the plane .
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Some Examples:

@ 7P(2) is the line segment in R? with endpoints (1,2) and
(2,1) .

@ P(3) is a hexagon in R3 in the plane subset of the plane
X+y+z=6.

Permutahedron




Low Dimensional Cases

Geometric
generation of
permutation

sequences

Roseman

Permutahedron il Some Examples:

@ P(2) is the line segment in R? with endpoints (1,2) and
(2,1) .

@ P(3) is a hexagon in R® in the plane .

© 7P(4) is a truncated octahedron in R3 .
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Permutahedron

Low Dimensional Cases

Some Examples:

@ 7P(2) is the line segment in R? with endpoints (1,2) and
(2,1).

@ P(3) is a hexagon in R3 in the plane .

© 7P(4) is a truncated octahedron in R3 subset of the
hyperplane x + y + z + w = 10.




The Permutahedron of order 2
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Figure: The two permutations (1,2) and (2,1) : a line segment in R?
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The Permutahedron of order 3

Figure: Hexagon in R3 of the six permutations of order 3:
(1,2,3),(2,1,3),(3,1,2),(3,2,1),(2,3,1),(1,3,2),(1,2,3)



The Permutahedron of order 4
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Permutahedron

Figure: The 24 permutations of order 4 determine a truncated
octahedron in R* which we show in R®




Change Ringing n bells
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A sequence X of permutations is a change ringing

Change composition if

e @ Y begins and ends with the identity permutation of S,

@ Otherwise each of the n! order n permutations occurs
exactly one time

@ Two consecutive permutations of ¥ differ by switching
two consecutive integers.




Ringing Changes on Three Bells
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Ringing

Table: One way to ring changes on 3 bells; the second reverses the
order.




Ringing Changes Geometrically
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Figure: The change Double Canterbury Pleasure Minimus
corresponds to a Hamiltonian path in the edge set of P(4)
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Critique of Change Ringing

@ Change ringing is very limited—hard to get non-trivial
Change examples.

Ringing
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Critique of Change Ringing

@ Change ringing is very limited—hard to get non-trivial

Change examp|e5.
Ringing

@ There is no relationship between one change and another
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Critique of Change Ringing
@ Change ringing is very limited—hard to get non-trivial
Change examp|e5.

Ringing ) i i
@ There is no relationship between one change and another

@ Each permutation is treated equally. Musically one expects
to make choices.
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Critique of Change Ringing

@ Change ringing is very limited—hard to get non-trivial

Change examp|e5.
Ringing

@ There is no relationship between one change and another

@ Each permutation is treated equally. Musically one expects
to make choices.

@ There is a fixed length to a ring of changes
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Critique of Change Ringing

@ Change ringing is very limited—hard to get non-trivial

Change examp|e5.
Ringing

@ There is no relationship between one change and another

@ Each permutation is treated equally. Musically one expects
to make choices.

@ There is a fixed length to a ring of changes

@ The difficulty of calculation increases rapidly with n
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A new way to get a sequences of permutations

Bouncing a light in a mirrored P(4)




A new way to get a sequences of permutations
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@ Build room in the shape of P(4) with all walls made of
mirror.

Bouncing




A new way to get a sequences of permutations
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mirror.

@ From inside the room shine a “generic’ laser beam from
point xgp in direction Ag.

Bouncing




A new way to get a sequences of permutations

Geometric
generation of
permutation

sequences Bouncing a light in a mirrored P(4)

Dennis

Roseman @ Build room in the shape of P(4) with all walls made of
mirror.

@ From inside the room shine a “generic’ laser beam from
point xgp in direction Ag.

Bouncing

@ The beam as it reflects will hit successive walls giving a
sequence of points xi, xo, . . ..




A new way to get a sequences of permutations
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@ Build room in the shape of P(4) with all walls made of
mirror.

@ From inside the room shine a “generic’ laser beam from
point xgp in direction Ag.

Bouncing

@ The beam as it reflects will hit successive walls giving a
sequence of points xi, xo, . . ..

@ Since the beam is generic there will be a unique vertex
(permutation) ; of P(4) nearest to x;.




A new way to get a sequences of permutations
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@ Build room in the shape of P(4) with all walls made of
mirror.

@ From inside the room shine a “generic’ laser beam from

o point xgp in direction Ag.

ouncing

@ The beam as it reflects will hit successive walls giving a
sequence of points xi, xo, . . ..

@ Since the beam is generic there will be a unique vertex
(permutation) ; of P(4) nearest to x;.

@ Thus we generate our sequence of permutations
S(X07 )‘0) = (7T1v T2y )




Bounce points
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Definition

The points x3, xp, . .. are called either intersection points
(they are calculated as an intersection of a ray and 9P(n)) or
Bouncing bounce points (since our beam bounces there).

Bouncing for P(n)

Cleary we can define this process for permutations of order n.




bounce

Geometric
generation of
permutation

sequences

Bouncing

Figure: An example of 16 bounces




0
c
.2
4+
(]
4+
=)
£
—
(]
o
G
(@)
Q
O
=
Q
=3
(on
()
(0p)]
a0
=
e
(=
o
o
0
()
—
—
(@)
)

sequences
eman

Dennis
Ros

Geometric
generation of
permutation

Bouncing



bounce

Geometric
generation of
permutation

sequences

Dennis
Roseman

Bouncing

Figure: Another example of 16 bounces




The numbers we use are not necessarily pitches
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Bouncing

Figure: Any knob or input/output on the Control Panel of this Moog
corresponds to a number. Photo by Kevin Lightner




Bouncing, Ringing
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Comparing Bouncing to Change Ringing
B o Change ringing: finite number of possibilities
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B @ Bouncing:infinite number of possibilities
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Comparing Bouncing to Change Ringing

o Bouncing:infinite number of possibilities

Bouncing

@ Change ringing is hard is it to calculate.
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Comparing Bouncing to Change Ringing

o Bouncing:infinite number of possibilities

Bouncing

@ Bouncing is easy to calculate
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Comparing Bouncing to Change Ringing

o Bouncing:infinite number of possibilities

Bouncing

@ Bouncing is easy to calculate as we will see
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Comparing Bouncing to Change Ringing

@ Bouncing:infinite number of possibilities

Bouncing @ Bouncing is easy to calculate

@ Change Ringing—no relationship between one change
and another
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Comparing Bouncing to Change Ringing

@ Bouncing:infinite number of possibilities

Bouncing @ Bouncing is easy to calculate

@ Bouncing: if one varies x and A one gets related
permutation sequences S(x, \)
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Comparing Bouncing to Change Ringing

@ Bouncing:infinite number of possibilities

@ Bouncing is easy to calculate

Bouncing

o Bouncing: if one varies x and A one gets related
permutation sequences S(x, \)

o Change Ringing: each permutation is treated equally
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Comparing Bouncing to Change Ringing

@ Bouncing:infinite number of possibilities

@ Bouncing is easy to calculate

Bouncing

o Bouncing: if one varies x and A one gets related
permutation sequences S(x, \)

@ Bouncing: distinct sequences have distinct characteristics
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Comparing Bouncing to Change Ringing

@ Bouncing:infinite number of possibilities

@ Bouncing is easy to calculate

Bouncing e Bouncing: if one varies x and A one gets related
permutation sequences S(x, A)

Bouncing: distinct sequences have distinct characteristics

Change Ringing: difficulty of calculation increases rapidly
with n

o’




Bouncing, Ringing

Geometric
generation of
permutation

sequences

Comparing Bouncing to Change Ringing

@ Bouncing:infinite number of possibilities

@ Bouncing is easy to calculate

Bouncing

@ Bouncing: if one varies x and A one gets related
permutation sequences S(x, \)

Bouncing: distinct sequences have distinct characteristics

Bouncing: calculation is quadratic with respect to n




The rest of the talk: mathematics and visualization
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Questions we now address

© How fast can we calculate the bouncing path for fairly
high orders—38, 12, 16, 327

@ How can we visualize the calculational process and the

results?
Problem List

© What is the geometry of a high dimensional
permutahedron?

@ How does the geometry of the permutahedron change
with n?




Basic approach
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@ Construct a special polygonal path in the wireframe of a
permutahedron.

@ The sequence of vertices on that path is the desired
permutation sequence.

v
Bouncing, an alternative

© Take a generically generated generic path in R" that
avoids the wireframe

Problem List

@ Obtain the sequence of permutations by “digitizing” to
permutations near the path.




Vertices of the Permutahedron
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There are n! vertices in P(n).

All vertices of P(n) all lie on an (n — 2)-sphere with center Cp,
the centroid of P(n), and radius pp,.

Definition

Cell Structure

| \

This sphere is the permutahedral sphere of order n and p,
the permutahedrdal radius. The distance between C, and the
centroid of Y, is the inner permutahedrdal radius.




Generators of the Symmetric Group
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Definition

An elementary transposition is a permutation that
interchanges consecutive integers,

Cell Structure

This is interchange of consecutive integers (wherever they are)
not interchange of integers in consecutive positions (whatever
the integers are).




Edges of the Permutahedron

Geometric 5 oo
generation of Definition
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sequences The union of edges of P(n) is called the wireframe of P(n)

The four edges from (1,2,3,4,5) go to (2,1,3,4,5),
(1,3,2,4,5), (1,2,4,3,5), and (1,2,3,5,4).

Cell Structure



Edges of the Permutahedron
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The four edges from (1,2,3,4,5) go to (2,1,3,4,5),
(1,3,2,4,5), (1,2,4,3,5), and (1,2,3,5,4).

Basic general edge facts

@ Two permutations are connected by an edge if and only if
coordinates differ by a switch of two coordinates of
consecutive value.

Cell Structure




Edges of the Permutahedron
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The four edges from (1,2,3,4,5) go to (2,1,3,4,5),
(1,3,2,4,5), (1,2,4,3,5), and (1,2,3,5,4).

Basic general edge facts

@ Two permutations are connected by an edge if and only if
coordinates differ by a switch of two coordinates of
consecutive value.

Cell Structure

@ Thus any edge corresponds to an elementary transposition.




Edges of the Permutahedron
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The four edges from (1,2,3,4,5) go to (2,1,3,4,5),
(1,3,2,4,5), (1,2,4,3,5), and (1,2,3,5,4).

Basic general edge facts

@ Two permutations are connected by an edge if and only if
coordinates differ by a switch of two coordinates of
consecutive value.

Cell Structure

@ Thus any edge corresponds to an elementary transposition.
@ Thus all edges have length v/2.




Edges of the Permutahedron
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The four edges from (1,2,3,4,5) go to (2,1,3,4,5),
(1,3,2,4,5), (1,2,4,3,5), and (1,2,3,5,4).

Basic general edge facts

@ Two permutations are connected by an edge if and only if
coordinates differ by a switch of two coordinates of
consecutive value.

Cell Structure

@ Thus any edge corresponds to an elementary transposition.
@ Thus all edges have length /2.

@ The order of any vertex is (n — 1).




Visualizing the edges
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Rotate and project to low dimensions

Dennis

We can generically rotate a wireframe of any order
permutahedron then project homemorphically into R3.

We can generically rotate a wireframe of any order
permutahedron then project non-homemorphically into R? and
still get a meaningful image.

coloring edges

Color the edges

We can use (n — 1) colors on the edges to code the
corresponding transpositions.




Coloring Edges: Order
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coloring edges




D Coloring Edges: Order 5




Coloring Edges:
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coloring edges

Order 6




Cells of the Permutahedron
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permutation Proposition
An k-cell of P(n) is either subgroup which is a product of k
symmetric groups or a coset of one of such subgroup. Here

P(0) = {1}.

sequences

Definition

Let Yo ={(x1,...,xn) € Sp: x1 =1} and

Yo ={(x1,...,%n) € Sp: xo = n}. We call Y, the first Young
subgroup of S,,Y,, the last Young subgroup of S,,.

Y, and Y, are isomorphic to S,_1 \




Re-examining P(4)
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coloring edges

Figure: The edges of one color are all the cosets of a Young subgroup
of order two. The hexagons are all cosets of the two Young subgroups
isomorphic to P(3). The squares are cosets of P(2) x P(2).
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coloring edges

Figure: The edges of one color are all the cosets of a Young subgroup
of order two. The hexagons are all cosets of the two Young subgroups
isomorphic to P(3). The squares are cosets of P(2) x P(2).



Re-examining P(4)
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coloring edges

Figure: The edges of one color are all the cosets of a Young subgroup
of order two. The hexagons are all cosets of the two Young subgroups
isomorphic to P(3). The squares are cosets of P(2) x P(2).



Facets of the Permutahedron
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The facets are the the (n — 2)-cells of P(n) .

Proposition
P(n) has 2" — 2 facets

So P(8) has 254 facets and P(12) has 4094.

Implication
The number of facets is exponential in n. Our light beam
calculation should not be based on examination of all facets.




A duality of facets and edges
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Transposition colors for facets

At a vertex v of facet F you see (n — 1) edges all of distinct
colors.

One of these colors is not an edge of F.

This color will identify our corresponding elementary
coloring facets transposition.




Coloring the facets
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coloring facets

Figure: Here we color the three generators: o1 02 03
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coloring facets

Figure: Here we color the three generators: red green blue
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coloring facets

Figure: Here we color the three generators: o1 07 03
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coloring facets

Figure: Here we color the three generators: o1 02 03 The facet

color is the unique color not an edge color of the facet.
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— Generators: 01,...,0,_1
Roseman Re|ati0ns:

e giogj=ocjoiif j#£ix1

@ 0i0i+10; = 0410041

Presentation of Order n Symmetric Group

Generators: o1,...,0,_1
Relations:

Braids

-1
o U;:UI-

@ gigj=ojo;ifjAiEt1l

@ 0j0j4+10j = 0j+10i0j+1




Inverses and elementary transpositions
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A finite sequence of elementary transpositions 71,72, ..., 7T
corresponds to a word in the symmetric group:

T1 T2 *** Tp.

But if (somehow) we can distinguish elementary transpositions
from their inverses we would obtain a word in the braid group:

Braids
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Signs for transpositions: one of many methods
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generation of
permutation

A braid sign convention is a function that associates to any
bounce point x; of any bouncing path e(x;) = £1.

Example

Let N be the vector from the identity permutation to the

reverse of the identity. Define the sign at x; to be the sign of
—

the dot product x;_1x; - N. Think of the identity as the “south

Braids

pole ". Positive means we were heading north before we
“bounced”; negative means heading “south”.




A bouncing path braid
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Definition

Given a bouncing path xg, x1, x2, X3 . .. and a braid sign
convention we obtain a bounce path braid— the braid given
by the word in the braid group:

o(x1)? o(x)? o(x3)= -

Braids



Example of Bounce Braid for Order 4

Geometric
generation of
permutation

sequences

O RS RO SRR T

Braids



Example of Bounce Braid for Order 8
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Example of Bounce Braid for Order 12
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Example of Bounce Braid for Order 16
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Bounce Braids
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Braid as an Aid

In general we need to look at the bounce permutations
together with the bounce braid.

The bounce path indicates where the bounce occurs, the braid
tells us something about how the “type” of bounce.

Braids



The nearest permutation to a point
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permutation Deflnltlon
sequences

A generic point z = (zi, ..., z,) of R” will have n distinct
Dennis

Resamen coordinate values.

The rank of z;, denoted r(z), is one plus the number of
coordinates of z smaller than z;.

Definition

The rank vector p(z) = (r(z1),...,r(zn))

In other words:

Beam

Calculation Simply Put: The rank of z is the closest permutation to z.

Or not: A generic point is mapped to a chamber of the real
n-braid arrangement




Finding the intersection of a ray and 9P(n)
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Focus on the plane P that contains the three points
@ the centroid C of P(n),
@ the initial point xg

© the tip of our vector xp + A.
We then project the wireframe of P(n) onto this plane.

Beam
Calculation



D Projection wireframe P(5)




D Projection wireframe P(5)




D Projection wireframe P(5)
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Projection wireframe P(5)
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Projection wireframe P(6)
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Projection wireframe P(
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Projection wireframe P(7)
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Projection wireframe P(7)
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Projection wireframe P(7)
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Projection wireframe P(7)
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Observations

Geometric
generation of
permutation

sequences

@ The higher permutahedra are not round.
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@ The higher permutahedra are not round.
(This is important since if we do our bouncing inside a
round ball, the path will be planar)

Beam
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@ The higher permutahedra are not round.
(This is important since if we do our bouncing inside a
round ball, the path will be planar)

@ There seems to be some structure there that is evident
from the projections.
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@ The higher permutahedra are not round.
(This is important since if we do our bouncing inside a
round ball, the path will be planar)

@ There seems to be some structure there that is evident
from the projections.
(Some will be clearer with a colored wireframe)
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Observations
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@ The higher permutahedra are not round.
(This is important since if we do our bouncing inside a
round ball, the path will be planar)

@ There seems to be some structure there that is evident
from the projections.

(Some will be clearer with a colored wireframe)

@ The “central” portion of figures is hard to understand but

the area around the edge is much clearer.

Beam
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Observations
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@ The higher permutahedra are not round.
(This is important since if we do our bouncing inside a
round ball, the path will be planar)

@ There seems to be some structure there that is evident
from the projections.
(Some will be clearer with a colored wireframe)

@ The “central” portion of figures is hard to understand but
the area around the edge is much clearer.
(In fact the bounding polygonal path of the projection is
Beam the projection of a simple closed polygonal path of P(n)
edges )



Creating great path
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. projection to the plane P




Same as previous figure
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after rotation in R3




A Great Path Method

Geometric
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A Great Path Method
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A Great Path Method
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generation of @ Let P be the plane through points: xp, xp + A and the

permutation

—— centroid of P(n).
Q Let mo = p(xo0).

© Consider the projection ¢ of the wireframe W of P(n)
onto P. Let D be the convex hull of ¢(W).
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A Great Path Method
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generation of @ Let P be the plane through points: xg, xp + A and the

permutation

—— centroid of P(n).

F[j“lyv‘w‘m e Let o = P(XO)

© Consider the projection ¢ of the wireframe W of P(n)
onto P. Let D be the convex hull of ¢(W).

@ Each edge of 9D is a projection of a single edge of W.
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A Great Path Method
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—— centroid of P(n).
Denpis @ Let mp = p(x0)-

Roseman
© Consider the projection ¢ of the wireframe W of P(n)
onto P. Let D be the convex hull of ¢(W).

@ Each edge of 0D is a projection of a single edge of W.

© A union of these edges which form a polygonal arc in P(n)
is called a great path.
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A Great Path Method
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generation of @ Let P be the plane through points: xg, xp + A and the

permutation

—— centroid of P(n).
Denpis @ Let mp = p(x0)-

Roseman
© Consider the projection ¢ of the wireframe W of P(n)
onto P. Let D be the convex hull of ¢(W).

@ Each edge of 0D is a projection of a single edge of W.

@ A union of these edges which form a polygonal arc in P(n)
is called a great path.

@ From mg, follow this great path in the general direction of
A obtaining vertex sequence po, p1, - - ..

Beam
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A Great Path Method

Geometric

generation of @ Let P be the plane through points: xg, xp + A and the

permutation

—— centroid of P(n).
Dennis e Let T = P(XO)

Roseman
© Consider the projection ¢ of the wireframe W of P(n)
onto P. Let D be the convex hull of ¢(W).

@ Each edge of 0D is a projection of a single edge of W.

@ A union of these edges which form a polygonal arc in P(n)
is called a great path.

@ From m, follow this great path in the general direction of
A obtaining vertex sequence po, p1, - - ..

Beam
Calculation

@ At each p; find the intersection point of the ray with
hyperplanes determined by facets at p;.



A Great Path Method

Geometric

generation of @ Let P be the plane through points: xg, xp + A and the

permutation

—— centroid of P(n).
: @ Let mp = p(x0)-

© Consider the projection ¢ of the wireframe W of P(n)
onto P. Let D be the convex hull of ¢(W).

@ Each edge of 0D is a projection of a single edge of W.

@ A union of these edges which form a polygonal arc in P(n)
is called a great path.

@ From m, follow this great path in the general direction of
A obtaining vertex sequence po, p1, - - ..

Beam

o @ At each p; find the intersection point of the ray with
hyperplanes determined by facets at p;.

@ By convexity of P(n) the closest such intersection point is
our bounce point.



Yet more braids!
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A braid from edges, not facets

© Put together the great paths used in calculating a bounce
sequence.

@ This sequence of edges of 9P(n) gives a sequence of
elementary transpositions.

© There are ways to define signs to this sequence giving yet
more braids. )

Beam
Calculation



Very briefly—one way to get signs
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@ Consider the polygonal path 3 = PN dP(n)
@ orient 3 using A
@ orient the (n — 3)-cells of OP(n)

@ use intersection numbers of the 5 with those cells to get
our sign

Note:

There is a quick indirect way to calculate this from the
construction of the great path.

Beam
Calculation




Sorting networks
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A connection to topic in computer science

There is a relationship between a colored great path which
joins two antipodal permutations and the concept of a sorting
network.

Beam
Calculation



A different bouncing braid
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A braid based on edges near bounce

@ Take bounce points xi, X2, . . . X, where x; lies in facet F;

@ Let ¢ be the edge of F; closest to x; with associated an
elementary transposition X(x;)

© There are a number of ways to assign a braid sign
convention ¢;

@ This gives a braid word

Y(x1) X (x)? .. X (xn) "

Edges in layers



A different bouncing braid

Geometric
generation of
permutation

sequences

There is not time to go into detail ...

To give a sense that the color of an edge tells something about
the nature of the bounce consider the following graphics.

Edges in layers



D A projection of labeled wireframe of P(5)







A projection
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A projection of labeled wireframe of P(7)




An alternative to bouncing: permutahedral tiles
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R™ can be tiled with translated copies P(n) I

Tiling



A black and white tiling of the plane by hexagons



D Fitting two adjacent P(4)s




D Fitting three adjacent P(4)s




D Fitting four adjacent P(4)s




D A “black and white tiling of R® by P(4)s




D A “black and white tiling of R® by P(4)s
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© How fast can we calculate the bouncing path for fairly
high orders—38, 12, 16, 327

@ How can we visualize the calculational process and the
results?

© What is the geometry of a high dimensional
permutahedron?

© How does the geometry of the permutahedron change
with n?

Tiling
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© How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32? Quadratic, not exponential.

@ How can we visualize the calculational process and the
results?

© What is the geometry of a high dimensional
permutahedron?

© How does the geometry of the permutahedron change
with n?

Tiling
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© How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32? Quadratic, not exponential.

@ How can we visualize the calculational process and the
results? Projections, color code, braids.

© What is the geometry of a high dimensional
permutahedron?

© How does the geometry of the permutahedron change
with n?

Tiling
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© How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32? Quadratic, not exponential.

@ How can we visualize the calculational process and the
results? Projections, color code, braids.

© What is the geometry of a high dimensional
permutahedron? Related to Young subgroups and cosets.

© How does the geometry of the permutahedron change
with n?

Tiling
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Our Questions: and

Dennis

@ How fast can we calculate the bouncing path for fairly
high orders—8, 12, 16, 32? Quadratic, not exponential.

@ How can we visualize the calculational process and the
results? Projections, color code, braids.

© What is the geometry of a high dimensional
permutahedron? Related to Young subgroups and cosets.

© How does the geometry of the permutahedron change
with n? It does not become rounder. In fact in some
directions it “flattens out”.

Tiling
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