22m:033 Notes:
 6.3 Orthogonal Projections

Dennis Roseman
University of Iowa
Iowa City, IA
http://www.math.uiowa.edu/~roseman

April 26, 2010

1 A more general view of orthogonal projection

In the previous section we discussed projection of a vector \vec{y} onto a line L. We could then write $\vec{y}=\operatorname{proj}_{L} \vec{y}+\vec{z}$ where $\operatorname{proj}_{L} \vec{y}$ is orthogonal to \vec{z}.

In this section we generalize this-instead of only considering a one dimensional subspace L we consider a general subspace W and obtain a similar result.

Definition 1.1 Let W be a subspace of $R^{n},\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots, \overrightarrow{u_{p}}\right\}$ be an orthogonal basis of W, and $\vec{y} \in R^{n}$. The orthogonal projection of y onto W is defined to be

$$
\operatorname{proj}_{W} \vec{y}=\frac{\vec{y} \cdot \overrightarrow{u_{1}}}{\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}} \overrightarrow{u_{1}}+\frac{\vec{y} \cdot \overrightarrow{u_{2}}}{\overrightarrow{u_{2}} \cdot \overrightarrow{u_{2}}} \overrightarrow{u_{2}}+\cdots+\frac{\vec{y} \cdot \overrightarrow{u_{p}}}{\overrightarrow{u_{p}} \cdot \overrightarrow{u_{p}}} \overrightarrow{u_{p}}
$$

Remark 1.2 Although our definition seems to rely on a choice of basis, it can be shown that it does not.

Proposition 1.3 Let W be a subspace of R^{n}. Then each $\vec{y} \in R^{n}$ can be written uniquely

$$
\vec{y}=\operatorname{proj}_{W} \vec{y}+\vec{z}
$$

where proj$_{W} \vec{y}$ is orthogonal to \vec{z}.

Remark 1.4 The text uses notation $\widehat{\mathbf{y}}$. In the class notes and tests we use \vec{y} to represent vectors rather than our text style wich uses bold font, \mathbf{y}. But if we were to use the "hat" symbol for projection it would look awkward as $\widehat{\vec{y}}$ or $\overrightarrow{\hat{y}}$. We will avoid this and use the commonly used notation $\operatorname{proj}_{W} \vec{y}$.

Example 1.5 Suppose we consider

$$
\overrightarrow{u_{1}}=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right), \overrightarrow{u_{2}}=\left(\begin{array}{l}
5 \\
1 \\
4
\end{array}\right) \text { and } \vec{y}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

We note that u_{1} and u_{2} are orthogonal. Let W be the space spanned by u_{1} and u_{2}. Then we calculate:

$$
\begin{aligned}
& \vec{y} \cdot \overrightarrow{u_{1}}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)=5 \\
& \vec{y} \cdot \overrightarrow{u_{2}}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
5 \\
1 \\
4
\end{array}\right)=11
\end{aligned}
$$

$$
\begin{gathered}
\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)=14 \\
\overrightarrow{u_{2}} \cdot \overrightarrow{u_{2}}=\left(\begin{array}{l}
5 \\
1 \\
4
\end{array}\right) \cdot\left(\begin{array}{l}
5 \\
1 \\
4
\end{array}\right)=42
\end{gathered}
$$

So the projection of y onto W is given by
$\operatorname{proj}_{W} \vec{y}=\frac{5}{14} \overrightarrow{u_{1}}+\frac{11}{42} \overrightarrow{u_{2}}=\frac{5}{14}\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)+\frac{11}{42}\left(\begin{array}{c}5 \\ 1 \\ 4\end{array}\right)=\left(\begin{array}{c}\frac{5}{3} \\ \frac{4}{3} \\ \frac{1}{3}\end{array}\right)$
Example 1.6 Next we consider the same basis u_{1}, u_{2} with a different y

$$
\overrightarrow{u_{1}}=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right), \overrightarrow{u_{2}}=\left(\begin{array}{l}
5 \\
1 \\
4
\end{array}\right) \text { and } \vec{y}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

Let W be the space spanned by u_{1} and u_{2}. Then we calculate:

$$
\vec{y} \cdot \overrightarrow{u_{1}}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)=7
$$

$$
\begin{aligned}
& \vec{y} \cdot \overrightarrow{u_{2}}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
5 \\
1 \\
4
\end{array}\right)=21 \\
& \overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)=14 \\
& \overrightarrow{u_{2}} \cdot \overrightarrow{u_{2}}=\left(\begin{array}{l}
5 \\
1 \\
4
\end{array}\right) \cdot\left(\begin{array}{l}
5 \\
1 \\
4
\end{array}\right)=42
\end{aligned}
$$

So the projection of y onto W is given by
$\operatorname{proj}_{W} \vec{y}=\frac{1}{2} \overrightarrow{u_{1}}+\frac{1}{2} \overrightarrow{u_{2}}=\frac{1}{2}\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}5 \\ 1 \\ 4\end{array}\right)=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$
So the projection of the vector to W is the vector itself. How is this possible? Hint: Think about $\frac{1}{2} \overrightarrow{u_{1}}+\frac{1}{2} \overrightarrow{u_{2}}$ as linear combination and recall the definition of subspace.

2 The Best Approximation Theorem

Proposition 2.1 Let W be a subspace of R^{n}, and $\vec{y} \in R^{n}$ any vector. Then $\operatorname{proj}_{W} \vec{y}$ is the closest
point in W to \vec{y} in the sense that

$$
\begin{aligned}
& \left\|\vec{y}-\operatorname{proj}_{W} \vec{y}\right\|<\|\vec{y}-\vec{v}\| \\
& \text { for any } \vec{v} \in W \text { with } \vec{v} \neq \operatorname{proj}_{W} \vec{y} .
\end{aligned}
$$

The text introduces the next definition in Example 4 page 399

Definition 2.2 The distance between a point \vec{y} and subspace W is $\left\|\vec{y}-\operatorname{proj}_{W} \vec{y}\right\|$

Example 2.3 Refering to Example 1.5 we calculate the distance from the vector to the subspace:

$$
\vec{y}-\operatorname{proj}_{W} \vec{y}=\left(\begin{array}{c}
-\frac{2}{3} \\
\frac{2}{3} \\
\frac{2}{3}
\end{array}\right)
$$

So

$$
\left\|\vec{y}-\operatorname{proj}_{W} \vec{y}\right\|=\frac{2}{\sqrt{3}}
$$

In Example 1.6 we calculate this distance to be 0, as it should be since $\vec{y} \in W$.

