22m:033 Notes: 6.3 Orthogonal Projections

Dennis Roseman University of Iowa Iowa City, IA

 $http://www.math.uiowa.edu/{\sim}roseman$

April 26, 2010

1

1 A more general view of orthogonal projection

In the previous section we discussed projection of a vector \overrightarrow{y} onto a line L. We could then write $\overrightarrow{y} = proj_L \overrightarrow{y} + \overrightarrow{z}$ where $proj_L \overrightarrow{y}$ is orthogonal to \overrightarrow{z} .

In this section we generalize this—instead of only considering a one dimensional subspace L we consider a general subspace W and obtain a similar result.

Definition 1.1 Let W be a subspace of \mathbb{R}^n , $\{\overrightarrow{u_1}, \overrightarrow{u_2}, \ldots, \overrightarrow{u_p}\}$ be an orthogonal basis of W, and $\overrightarrow{y} \in \mathbb{R}^n$. The orthogonal projection of y onto W is defined to be

$$proj_W \overrightarrow{y} = \frac{\overrightarrow{y} \cdot \overrightarrow{u_1}}{\overrightarrow{u_1} \cdot \overrightarrow{u_1}} \overrightarrow{u_1} + \frac{\overrightarrow{y} \cdot \overrightarrow{u_2}}{\overrightarrow{u_2} \cdot \overrightarrow{u_2}} \overrightarrow{u_2} + \dots + \frac{\overrightarrow{y} \cdot \overrightarrow{u_p}}{\overrightarrow{u_p} \cdot \overrightarrow{u_p}} \overrightarrow{u_p}$$

Remark 1.2 Although our definition seems to rely on a choice of basis, it can be shown that it does not.

Proposition 1.3 Let W be a subspace of \mathbb{R}^n . Then each $\overrightarrow{y} \in \mathbb{R}^n$ can be written uniquely

$$\overrightarrow{y} = proj_W \overrightarrow{y} + \overrightarrow{z}$$

where $proj_W \overrightarrow{y}$ is orthogonal to \overrightarrow{z} .

Remark 1.4 The text uses notation $\hat{\mathbf{y}}$. In the class notes and tests we use \overrightarrow{y} to represent vectors rather than our text style wich uses bold font, \mathbf{y} . But if we were to use the "hat" symbol for projection it would look awkward as \overrightarrow{y} or \overrightarrow{y} . We will avoid this and use the commonly used notation $proj_W \overrightarrow{y}$.

Example 1.5 Suppose we consider

$$\overrightarrow{u_1} = \begin{pmatrix} 1\\ 3\\ -2 \end{pmatrix}, \overrightarrow{u_2} = \begin{pmatrix} 5\\ 1\\ 4 \end{pmatrix} \text{ and } \overrightarrow{y} = \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix}$$

We note that u_1 and u_2 are orthogonal. Let W be the space spanned by u_1 and u_2 . Then we calculate:

$$\overrightarrow{y} \cdot \overrightarrow{u_1} = \begin{pmatrix} 1\\2\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\3\\-2 \end{pmatrix} = 5$$
$$\overrightarrow{y} \cdot \overrightarrow{u_2} = \begin{pmatrix} 1\\2\\1 \end{pmatrix} \cdot \begin{pmatrix} 5\\1\\4 \end{pmatrix} = 11$$

$$\overrightarrow{u_1} \cdot \overrightarrow{u_1} = \begin{pmatrix} 1\\ 3\\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1\\ 3\\ -2 \end{pmatrix} = 14$$
$$\overrightarrow{u_2} \cdot \overrightarrow{u_2} = \begin{pmatrix} 5\\ 1\\ 4 \end{pmatrix} \cdot \begin{pmatrix} 5\\ 1\\ 4 \end{pmatrix} = 42$$

So the projection of y onto W is given by

$$proj_W \overrightarrow{y} = \frac{5}{14} \overrightarrow{u_1} + \frac{11}{42} \overrightarrow{u_2} = \frac{5}{14} \begin{pmatrix} 1\\3\\-2 \end{pmatrix} + \frac{11}{42} \begin{pmatrix} 5\\1\\4 \end{pmatrix} = \begin{pmatrix} \frac{5}{3}\\\frac{4}{3}\\\frac{1}{3} \end{pmatrix}$$

Example 1.6 Next we consider the same basis u_1, u_2 with a different y

$$\overrightarrow{u_1} = \begin{pmatrix} 1\\ 3\\ -2 \end{pmatrix}, \overrightarrow{u_2} = \begin{pmatrix} 5\\ 1\\ 4 \end{pmatrix} \text{ and } \overrightarrow{y} = \begin{pmatrix} 3\\ 2\\ 1 \end{pmatrix}$$

Let W be the space spanned by u_1 and u_2 . Then we calculate:

$$\overrightarrow{y} \cdot \overrightarrow{u_1} = \begin{pmatrix} 3\\2\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\3\\-2 \end{pmatrix} = 7$$

$$\overrightarrow{y} \cdot \overrightarrow{u_2} = \begin{pmatrix} 3\\2\\1 \end{pmatrix} \cdot \begin{pmatrix} 5\\1\\4 \end{pmatrix} = 21$$
$$\overrightarrow{u_1} \cdot \overrightarrow{u_1} = \begin{pmatrix} 1\\3\\2 \end{pmatrix} \cdot \begin{pmatrix} 1\\3\\-2 \end{pmatrix} = 14$$
$$\overrightarrow{u_2} \cdot \overrightarrow{u_2} = \begin{pmatrix} 5\\1\\4 \end{pmatrix} \cdot \begin{pmatrix} 5\\1\\4 \end{pmatrix} = 42$$

So the projection of y onto W is given by

$$proj_W \overrightarrow{y} = \frac{1}{2} \overrightarrow{u_1} + \frac{1}{2} \overrightarrow{u_2} = \frac{1}{2} \begin{pmatrix} 1\\ 3\\ -2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 5\\ 1\\ 4 \end{pmatrix} = \begin{pmatrix} 3\\ 2\\ 1 \end{pmatrix}$$

So the projection of the vector to W is the vector itself. How is this possible? Hint: Think about $\frac{1}{2}\overrightarrow{u_1} + \frac{1}{2}\overrightarrow{u_2}$ as linear combination and recall the definition of subspace.

2 The Best Approximation Theorem

Proposition 2.1 Let W be a subspace of \mathbb{R}^n , and $\overrightarrow{y} \in \mathbb{R}^n$ any vector. Then $proj_W \overrightarrow{y}$ is the closest

point in W **to** \overrightarrow{y} in the sense that $||\overrightarrow{y} - proj_W \overrightarrow{y}|| < ||\overrightarrow{y} - \overrightarrow{v}||$ for any $\overrightarrow{v} \in W$ with $\overrightarrow{v} \neq proj_W \overrightarrow{y}$.

The text introduces the next definition in Example 4 page 399

Definition 2.2 The distance between a point \vec{y} and subspace W is $||\vec{y} - proj_W \vec{y}||$

Example 2.3 Referring to Example 1.5 we calculate the distance from the vector to the subspace:

$$\overrightarrow{y} - proj_W \overrightarrow{y} = \begin{pmatrix} -\frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$$

So

$$||\overrightarrow{y} - proj_W \overrightarrow{y}|| = \frac{2}{\sqrt{3}}$$

In Example 1.6 we calculate this distance to be 0, as it should be since $\overrightarrow{y} \in W$.