22m:033 Notes:
 5.2 The Characteristic Equation

Dennis Roseman
University of Iowa
Iowa City, IA
http://www.math.uiowa.edu/~roseman

April 15, 2010

1 Finding eigenvalues: an example

Example 1.1 Let us try to find the eigenvalues (if any) for $A=\left(\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right)$. So we are looking for values λ such that

$$
(A-\lambda I) \vec{x}=\overrightarrow{0}
$$

has non trivial solutions and this will happen if and only if the $\operatorname{det}(A-\lambda I)=0$

$$
\begin{align*}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left(\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right)-\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right) \tag{1}\\
& =\operatorname{det}\left(\left(\begin{array}{cc}
3-\lambda & 0 \\
8 & -1-\lambda
\end{array}\right)\right) \tag{2}\\
& =(3-\lambda)(-1-\lambda) \tag{3}
\end{align*}
$$

So we must have either $\lambda=-1$ or $\lambda=3$.
Now lets see what eigenvectors correspond to $\lambda=3$.
We look for the eigenspace of $A-3 I=\left(\begin{array}{cc}0 & 0 \\ 8 & -4\end{array}\right)$.
This is the same as the null space of $\left(\begin{array}{cc}0 & 0 \\ 8 & -4\end{array}\right)$ which is
the same as the nulspace of $\left(\begin{array}{cc}2 & -1 \\ 0 & 0\end{array}\right)$. Now as before we view $\vec{x}=\binom{x}{y}$. We have one free variable, expressed say as $y=t$. then $2 x-t=0$ or $x=\frac{t}{2}$ and we see the null space is all vectors of the form

$$
\binom{\frac{t}{2}}{t}=t\binom{\frac{1}{2}}{1} .
$$

So the eigenspace associated with $\lambda=3$ is one dimensional with basis $\binom{\frac{1}{2}}{1}$

Lets check this:

$$
\left(\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right)\binom{\frac{1}{2}}{1}=\binom{\frac{3}{2}}{3}=3\binom{\frac{1}{2}}{1}
$$

So we see that $\binom{\frac{1}{2}}{1}$ is, indeed, an eigenvector with eigenvalue 3 .

Next we look at the eigenvalue $\lambda=-1$. We need to look at the null space of

$$
A-(-1) I=A+I=\left(\begin{array}{ll}
4 & 0 \\
8 & 0
\end{array}\right)
$$

This matrix row reduces to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
Letting $y=t$ we see that the eigenvectors corresponding to this eigenvalue are the vectors $t\binom{0}{1}$.

2 More generally...

Definition 2.1 Given a square matrix A the characteristic polynomial of A with variable λ is

$$
\operatorname{det}(A-\lambda I)
$$

What we have discussed may be summed up as follows:

Proposition 2.2 A number λ is an eigenvalue for matrix A if and only if it is a zero of the characteristic polynomial of A.

Remark 2.3 I have "good news" and I have "bad news".
The "good news" is that by the above result all we have to do to find eigenvalues is to find zeros of a polynomial.

The "bad news" is that finding exact zeros is not a simple matter. This can be hard if the polynomial is a cubic, difficult if it is a degree 4 polynomial and "not possible by any one formula" if it is a polynomial of degree 5 or more.

Example 2.4 Lets try and find eigenvalues for $A=$ $\left(\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5\end{array}\right)$. Then the characteristic polynomial is $\operatorname{det}\left(\left(\begin{array}{ccc}1-\lambda & 2 & -1 \\ 1 & -\lambda & 1 \\ 4 & -4 & 5-\lambda\end{array}\right)\right)=\lambda^{3}-6 \lambda^{2}+11 \lambda-6$

So all we have to do is to find the roots of $\lambda^{3}-6 \lambda^{2}+$ $11 \lambda-6$. It is probably time to crack open the old algebra book.

3 Algebra review: roots of polynomials

For some relatively simple polynomials here is a result that can be very helpful.

Proposition 3.1 Suppose $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+$ a_{0} is a polynomial with all of the a_{i} integers. If a rational number $\frac{p}{q}$ is a zero then q divides a_{n} evenly and p divides a_{0} evenly.

Also " if r is a root then $(x-r)$ is a factor":

Proposition 3.2 If $p(x)$ is a polynomial with zero r then we can write $p(x)=(x-r) p_{1}(x)$ where $p_{1}(x)$ is a polynomial.

Example 3.3 Consider the polynomial of Example 2.4, $\lambda^{3}-6 \lambda^{2}+11 \lambda-6$. If this has a rational zero $\frac{p}{q}$ then q must divide $a_{3}=1$ evenly and so $q= \pm 1$. Also p must divide 6 . So the possible zeros are: $\pm 1, \pm 2, \pm 3, \pm 6$.

Lets try -1 . We see that -1 is not a zero since

$$
(-1)^{3}-6(-1)^{2}+11(-1)-6=-1-6-11-6 \neq 0
$$

We next try +1 and find that +1 is a zero since

$$
(+1)^{3}-6(+1)^{2}+11(+1)-6=1-6+11-6=0 .
$$

So $(\lambda-1)$ must be a factor of our polynomial. We can find our p_{1} by long division of polynomials.

When we do we find that

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=(\lambda-1)\left(\lambda^{2}-5 \lambda+6\right)
$$

recalling how to factor quadratics we now see that

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=(\lambda-1)(\lambda-2)(\lambda-3) .
$$

We conclude that our matrix has three eigenvalues: 1,2 and 3.

Remark 3.4 We note that finding eigenvalues for triangular matrices is very easy. If A is triangular then $A-\lambda I$ is also triangular and we have seen that the determinant of a triangular matrix is the product of the diagonal entries. This provides us a characteristic polynomial already completely factored.

Example 3.5 If $A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10\end{array}\right)$ when we calculate $\operatorname{det}(A-\lambda I)$ we see that
$\operatorname{det}\left(\left(\begin{array}{cccc}1-\lambda & 2 & 3 & 4 \\ 0 & 5-\lambda & 6 & 7 \\ 0 & 0 & 8-\lambda & 9 \\ 0 & 0 & 0 & 10-\lambda\end{array}\right)\right)=(1-\lambda)(5-\lambda)(8-\lambda)(10-\lambda$

And so our matrix has eigenvalues $1,5,8$ and 10 .

4 Similarity

The following definition is a natural one if one thinks about linear transformations associated with a square matrix. We will see this later. At the moment it just appears in the text without motivation.

Definition 4.1 Suppose A and B are $n \times n$ matrices. We say A is similar to B if there is an $n \times n$ invertible matrix P such that

$$
B=P^{-1} A P .
$$

Remark 4.2 It is not hard to show that if A is similar to B then B is similar to A.

If $B=P^{-1} A P$ then $A=P B P^{-1}$. If we write $Q=$ P^{-1} then Q is invertible, $Q^{-1}=\left(P^{-1}\right)^{-1}=P$ and so we can write $B=Q^{-1} A Q$ showing that B is similar to A.

An important property of similar matrices is:

Proposition 4.3 If A and B are similar matrices, then they have the same characteristic polynomial.

The proof of this uses some matrix algebra and properties of determinants: Suppose B is similar to A. we calculate the characteristic polynominal of B as:

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\operatorname{det}\left(P^{-1} A P-\lambda\left(P^{-1} P\right)\right)= \\
\operatorname{det}\left(\left(P^{-1}(A-\lambda I) P\right)\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P)= \\
\left(\operatorname{det}\left(P^{-1}\right) \operatorname{det}(P)\right) \operatorname{det}(A-\lambda I)=(1) \operatorname{det}(A-\lambda I)=\operatorname{det}(A-\lambda I)
\end{gathered}
$$

5 Problems

1. Factor $x^{3}-8 x^{2}+17 x-4$
2. Factor $x^{4}+x^{3}-7 x^{2}-x+6$ Hint: $x=-3$ is one root.
3. Write the long division calculation needed in Example 2.4 that shows:

$$
\frac{\lambda^{3}-6 \lambda^{2}+11 \lambda-6}{\lambda-1}=\lambda^{2}-5 \lambda+6 .
$$

4. In Example 2.4 find a basis for the eigenspace corresponding to $\lambda=2$.
