22m:033 Notes: 2.9 Dimension and Rank

Dennis Roseman
University of Iowa
Iowa City, IA
http://www.math.uiowa.edu/~roseman

March 11, 2010

1 Coordinate systems

Because of linear independence provision of a basis, it follows that if $B=\left\{\overrightarrow{b_{1}}, \ldots, \overrightarrow{b_{p}}\right\}$ is a basis for a subspace H that every vector \vec{x} in H can be written uniquely as a linear combination of the basis vectors

$$
\vec{x}=c_{1} \overrightarrow{b_{1}}+\cdots+c_{p} \overrightarrow{b_{p}} .
$$

Example 1.1 Suppose $B=\left\{\overrightarrow{b_{1}}, \overrightarrow{b_{2}}\right\}$ is a basis and we have two ways of writing

$$
\begin{aligned}
& \vec{v}=c_{1} \overrightarrow{b_{1}}+c_{2} \overrightarrow{b_{2}} \\
& \vec{v}=k_{1} \overrightarrow{b_{1}}+k_{2} \overrightarrow{b_{2}}
\end{aligned}
$$

Then

$$
\begin{aligned}
c_{1} \overrightarrow{b_{1}}+c_{2} \overrightarrow{b_{2}} & =k_{1} \overrightarrow{b_{1}}+k_{2} \overrightarrow{b_{2}} \text { or } \\
\left(c_{1}-k_{1}\right) \overrightarrow{b_{1}}+\left(c_{2}-k_{2}\right) \overrightarrow{b_{2}} & =\overrightarrow{0}
\end{aligned}
$$

By definition of linear independence we must have $\left(c_{1}-k_{1}\right)=0$ and $\left(c_{2}-k_{2}\right)=0$, so $c_{1}=k_{1}$ and $c_{2}=k_{2}$ ।

Definition 1.2 The column matrix $\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{p}\end{array}\right)$ is called
the coordinate vector of \vec{x} with respect to basis B and denoted by $(\vec{x})_{B}$

2 Dimension of a subspace

Proposition 2.1 If H is a subspace of R^{n} with one basis consisting of p vectors, then every basis for H also consists of p vectors.

This allows us to make the following important definitions:

Definition 2.2 The dimension of any non-zero subspace H of R^{n} is the number of vectors in any basis for H. The dimension of a zero subspace is defined to be 0 .

Definition 2.3 The rank of a matrix A is the dimension of the column space.

Proposition 2.4 (The Rank Theorem) If A is a matrix with n columns then

$$
\operatorname{rank} A+\operatorname{dim} N u l A=n .
$$

Proposition 2.5 (The Basis Theorem) If H is pdimensional subspace of R^{n}, any linearly independent set of p vectors of H will be a basis for H.

Also any set of p vectors of H that span H are a basis for H. 1

3 Yet more on inverses

Proposition 3.1 (The Invertible Matrix Theorem Continued) Let A be an $n \times n$ matrix then the following are equivalent to the statement that A is an invertible matrix:

1. the columns of A form a basis for R^{n}
2. $\operatorname{Col} A=R^{n}$
3. $\operatorname{dimCol} A=n$
4. $\operatorname{rank} A=n$
5. $N u l A=\{\overrightarrow{0}\}$
6. $\operatorname{dim} N u l A=0$

4 The Rank Theorem and linear transformations

The contents of much of the last two sections have some important interpretations in terms of linear transformation.

Remark 4.1 Consider a linear transformation $T: R^{n} \rightarrow$ R^{m} given by $T(\vec{x})=A \vec{x}$. The column space of A is the same as the range(image) of T. A basis for the column space is therefore a basis for the range of T.

Example 4.2 Suppose

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

This is already in reduced echelon form and we see that rank of A is 2 .

We could describe the transformation T by $T(x, y, z)=$ $(x, y, 0)$. Here $T: R^{3} \rightarrow R^{3}$. It is clear that the range P of T is two dimensional. It is the $x y$-coordinate plane in R^{3}, namely the plane with equation $z=0$.

The dimension of the column space of A is 2 . It is easy to calculate the null space of A. It is the z-axis which has vector equation $t\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

Given any point $\vec{b}=(x, y, 0) \in P, T^{-1}(\vec{b})$ is the line $L_{\vec{b}}$ with vector equation

$$
\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)+t\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

So we can say the the map T maps R^{3} onto P by "collapsing each line $L_{\vec{b}}$ to a point-namely \vec{b}.

Example 4.3 Suppose

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Here $T: R^{3} \rightarrow R^{3}$.
We get A into echelon form. First add -4 times row 1 to row 2 , then add -7 times row 1 to row 3 and we get:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right)
$$

Finally multiply row 2 by 2 and add to row 3 and we end up with:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right)
$$

From this we conclude that the column space has basis

$$
B=\left\{\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right),\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right)\right\}
$$

So the range of T is two dimensional (that is a plane); lets call it P. In particular T is not an onto map.

Now let us turn our attention to the null space of A. To get this we continue and get the row reduced form of A which is:

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) .
$$

Writing the solutions of $A(\vec{x})=\overrightarrow{0}$ in vector parametric form we see that the solutions are:

$$
t\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

. So the null space is a line N. This null space can be thought of as $T^{-1}(\overrightarrow{0})$.

We can say that what T does is "collapse this line N to the point $\overrightarrow{0}$.

What about any other point $\vec{b} \in P$. What can we say about $T^{-1}(\vec{b})$? Equivalently $T^{-1}(\vec{b})$ is the solution set of the non-homogeneous equations $A \vec{x}=\vec{b}$. As we have learned this will be a line in R^{3} parallel to N. So we can say that T collapses lines parallel to N to points of P.

