22m:033 Notes:
 2.1 Matrix Operations
 Dennis Roseman
 University of Iowa
 Iowa City, IA
 http://www.math.uiowa.edu/~roseman

February 10, 2010

1 Sums and scalar multiples

In a sense, a vector is a matrix with one column.

We can add vectors and multiply by a scalar.
We can extend these operations to matrices in the "obvious way".

NOTATION: For a matrix M, the entry in the i-th row and j-th column is denoted by $m_{i j}$

Example 1.1 If $M=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ then $m_{12}=2, m_{21}=$ $4, m_{23}=6$ but there is no such thing as m_{32}.

Definition 1.2 If A and B are two $m \times n$ matrices, $M=A+B$ is the matrix so that $m_{i j}=a_{i j}+b_{i j}$

If A is a matrix and c is a number then $M=c A$ the matrix so that $m_{i j}=c a_{i j}$.

Example 1.3

$$
M=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)+\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2 \\
5 & 5 & 8
\end{array}\right)
$$

$$
2\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right)
$$

and

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)+\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \text { is not defined. }
$$

Definition 1.4 An $m \times n$ matrix M with $m_{i j}=0$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$ is called the $m \times n$ zero matrix.

Definition 1.5 An $n \times n$ matrix M with $m_{i i}=1$ for all $0 \leq i \leq n$ and $m_{i j}=0$ if $i \neq j$ is called the $n \times n$ identity matrix. This is denoted by I_{n}.

Example 1.6 So $I_{4}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

Definition 1.7 For any matrix A, we define $-A=$ $(-1) A$.

The properties of scalar multiplication for matrices,
and addition of matrices (See Theorem 1 page 108) satisfies all the rules we established for vectors which said:

Proposition 1.8 Suppose $\vec{u}, \vec{v}, \vec{w}$ are vectors in R^{n} and c, d are numbers.

1. $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
2. $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
3. $\vec{u}+\overrightarrow{0}=\overrightarrow{0}+\vec{u}=\vec{u}$
4. $\vec{u}+(-\vec{u})=-\vec{u}+\vec{u}=\overrightarrow{0}$
5. $c(\vec{u}+\vec{v})=c \vec{u}+c \vec{v}$
6. $(c+d) \vec{u}=c \vec{u}+d \vec{u}$
7. $c(d \vec{u})=(c d) \vec{u}$
8. $1 \vec{u}=\vec{u}$

We just replace this using matricides (of appropriate size) instead of these particular (column) matrices:

Proposition 1.9 Suppose A, B, C are $n \times m$ matrices and c, d are numbers and 0 denotes the $n \times m$ zero matrix.

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$
3. $A+0=0+A=A$
4. $A+(-A)=-A+A=0$
5. $c(A+B)=c A+c B$
6. $(c+d) A=c A+d A$
7. $1 A=A$

2 Matrix multiplication

Here is when things get interesting

Definition 2.1 Suppose A is a $m \times n$ matrix and B is an $n \times p$ matrix. We can define a product $M=A B$ by

$$
m_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots a_{i n} b_{n j} .
$$

Remark 2.2 Note that this formula for the computation of $m_{i j}$ involves the i-th row on the left and the j-th row on the right.

Example 2.3

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & -2 \\
0 & 1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{cc}
7 & 3 \\
16 & 3
\end{array}\right)
$$

On the other hand note that

$$
\left(\begin{array}{cc}
1 & -2 \\
0 & 1 \\
2 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)=\left(\begin{array}{ccc}
-7 & -8 & -9 \\
4 & 5 & 6 \\
6 & 9 & 12
\end{array}\right)
$$

Example 2.4 IN THE SPECIAL CASE OF SQUARE MATRICES WE CAN MULTIPLY IN ANY ORDER BUT GENERALLY THE ORDER MAKES A DIFFERENCE:

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 3
\end{array}\right)
$$

but

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
3 & 4 \\
-1 & -2
\end{array}\right)
$$

In other words, for square $n \times n$ matrices A and B, we generally have

$$
A B \neq B A
$$

3 Matrix multiplication and composition of linear transformations

In the section on linear transformations, we noted that if

$$
T: R^{n} \rightarrow R^{m}
$$

is a linear transformation and

$$
S: R^{m} \rightarrow R^{k}
$$

, is a linear transformation, then the composite

$$
T \circ S: R^{n} \rightarrow R^{k}
$$

is a linear transformation.

We also mentioned the important fact that every linear transformation corresponds to a matrix.

The statement and explanation of the following Proposition is found on page 109 and to top of page 110 of our text.

Proposition 3.1 If A is the matrix of T and if B is the matrix for S then the matrix of $T \circ S$ is the matrix product $A B$.

Remark 3.2 Recall some facts about compositions of ordinary real valued functions $f(x)$ and $g(x)$.

First of all the composition is not automatically definedwe need a match up between image of f and the domain of g.

For example if $f(x)=\sqrt{x}$ and $g(x)=\sin x, f \circ g(x)=$ $\sqrt{\sin x}$ is not defined for many values of x such as $(\pi, 2 \pi)$, $(3 \pi, 4 \pi)$ since the square root of a negative number is not a real number.

But more important, we do not in general have $f \circ g=$ $g \circ f$. In our example we see that the functions $\sqrt{\sin x}$ and $\sin \sqrt{x}$ are not the same.

Similarly we do not generally have $T \circ S$ the same transformation as $S \circ T$ and consequently we should expect the matrix products $A B$ and $B A$ not to be equal.

4 Properties of Matrix Multiplication

Proposition 4.1 For matrices A, B, C for the proper size that which multiplication as shown is defined:

$$
\begin{aligned}
A(B C) & =(A B) C \\
A(B+C) & =A B+A C \\
(B+C) A & =B A+C A \\
r(A B) & =(r A) B \text { for any scalar } r \\
r(A B) & =A(r B) \text { for any scalar } r \\
I_{m} A & =A I_{n}
\end{aligned}
$$

5 Powers of a Matrix

Definition 5.1 If A is $n \times n$ matrix then
$A^{0}=I_{n}, A^{2}=A A$, and generally A^{k} is obtained by multiplying together k copies of A.

6 Transpose of a matrix

Definition 6.1 If M is an $m \times n$ matrix then the transpose $X=M^{T}$ of M is the matrix produced by switching rows and columns. Specifically, $x_{i j}=m_{j i}$

Example 6.2 The transpose of $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ is $\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$

The basic properties of the transpose for matrices A, B, C of appropriate size and scalar r. Pay close attention to the order of multiplication in the last equation.

Proposition 6.3

$$
\begin{aligned}
\left(A^{T}\right)^{T} & =A \\
(A+B)^{T} & =A^{T}+B^{T} \\
(r A)^{T} & =r\left(A^{T}\right) \\
(A B)^{T} & =B^{T} A^{T}
\end{aligned}
$$

7 Problems for homework

Question 7.1 Let

$$
M=\left(\begin{array}{ccc}
1 & 2 & -1 \\
-3 & 0 & 1 \\
0 & 1 & 3
\end{array}\right)
$$

and

$$
N=\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 2 & 3 \\
1 & -1 & 1
\end{array}\right)
$$

Calculate:

$$
M N, N M, M-N, M-I_{3}, M-N^{T}
$$

Question 7.2 An important example of a linear transformation of the plane is rotation about the origin. This is explained on page 84 of text, a section we skip over.

IMPORTANT FACT: For a fixed θ consider the matrix

$$
M_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin (-\theta) \\
\sin \theta & \cos \theta
\end{array}\right)
$$

The linear transformation corresponding to M_{θ} is counterclockwise rotation of angle θ

Verify the following for any angles α and β :

1. $M_{\alpha} M_{\beta}=M_{\beta} M_{\alpha}$
2. $M_{\alpha} M_{\beta}=M_{\alpha+\beta}$
3. Explain these two equations in terms of the corresponding transformations.

Hint: I see trigonometric identities in your future.

