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Abstract. We develop new computational tests for existence and uniqueness
of representing measures µ in the Truncated Complex Moment Problem:

γij =

Z
z̄izj dµ (0 ≤ i + j ≤ 2n).(TCMP)

We characterize the existence of finitely atomic representing measures in
terms of positivity and extension properties of the moment matrix M(n)(γ)

associated with γ ≡ γ(2n): γ00, . . . , γ0,2n, . . . , γ2n,0, γ00 > 0 (Theorem 1.5).
We study conditions for flat (i.e., rank-preserving) extensions M(n + 1) of
M(n) ≥ 0; each such extension corresponds to a distinct rank M(n)-atomic
representing measure, and each such measure is minimal among representing
measures in terms of the cardinality of its support. For a natural class of
moment matrices satisfying the tests of recursive generation, recursive consis-
tency, and normal consistency, we reduce the existence problem for minimal
representing measures to the solubility of small systems of multivariable alge-
braic equations (Theorem 2.7). In a variety of applications, including cases of
the quartic moment problem (n = 2; Theorem 1.10), we apply these tests so
as to construct flat extensions and minimal representing measures. In other
examples, we use these tests to demonstrate the non-existence of representing
measures or the non-existence of minimal representing measures.

Key words and phrases. Truncated complex moment problem, moment matrix extension
block, flat extensions of positive matrices, recursively generated relations, algebraic variety of a
moment sequence.
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CHAPTER 1

Introduction

Consider a collection of complex numbers γ ≡ γ(2n): γ00, γ01, γ10, . . . , γ0,2n,
γ1,2n−1, . . . , γ2n−1,1, γ2n,0, with γ00 > 0 and γji = γij . The truncated complex
moment problem (TCMP) entails finding a positive Borel measure supported in the
complex plane C such that γij =

∫
z̄izj dµ (0 ≤ i + j ≤ 2n); γ is called a truncated

moment sequence (of order 2n) and µ is called a representing measure for γ.
In the present paper we provide new necessary or sufficient conditions for the

existence of representing measures, particularly those which are minimal in the
sense of being finitely atomic with the fewest atoms possible. In a variety of exam-
ples, including the so–called quartic moment problem (Theorem 1.10), we explicitly
construct minimal representing measures, or we establish the existence of minimal
representing measures via the theory of flat extensions of moment matrices (The-
orem 2.7). We also identify new computational tests that can be used to prove
the non-existence of representing measures, or the non-existence of finitely atomic
representing measures. These tests are used to illustrate, in very concrete terms,
new phenomena, associated with higher-dimensional moment problems, that do not
appear in the classical one-dimensional moment problem. We exhibit the failure
of recursive consistency in Example 2.2, and we demonstrate the absence of nor-
mal consistency in Example 2.5; either phenomenon implies the non-existence of
finitely atomic representing measures. In Examples 4.4–4.7 we illustrate the variety
obstruction to the existence of any representing measure. All of our results (both
positive and negative) indicate very explicitly why multivariable moment problems
are so intractable; even in the positive cases, the existence of minimal measures for
TCMP reduces to the solubility of small systems of multivariable algebraic equa-
tions, systems for which there is at present no definitive theory.

TCMP is closely related to several other moment problems: the full com-
plex moment problem prescribes moments of all orders, i.e., γ = (γij)∞i,j=0 ([Akh],
[ShT]); the K-moment problem (truncated or full) prescribes a closed set K ⊆ C

which is to contain the support of the representing measure ([AK], [Akh], [Atz],
[Hau], [KrN], [Pu1], [Sch2], [ShT]); and the multidimensional moment prob-
lem extends each of these problems to measures supported in Ck ([Ber], [BCJ],
[Hav1], [Hav2], [Sch1], [Fug], [McG], [StSz4]). Moreover, the k-dimensional
complex moment problem is equivalent to the 2k-dimensional real moment prob-
lem [CuF4, Section 6]. All of the above mentioned problems generalize classical
power moment problems on the real line, whose study was initiated by Stieltjes,
Riesz, Hamburger, and Hausdorff ([AK], [Akh], [Hau], [KrN], [Lan], [Rez1],
[Sar], [ShT]). Recently, in response to our question, J. Stochel [Sto] proved that a
solution to the multidimensional truncated K-moment problem actually implies a
solution to the corresponding full K-moment problem. TCMP is also related to sub-
normal operator theory, the study of unbounded subnormal operators, polynomial
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2 1. INTRODUCTION

hyponormality and joint hyponormality (see [Cu1], [Cu2], [Cu3], [CuF1], [CuF2],
[CuP1], [CuP2], [JeL], [Li], [McCY], [Pu1], [Pu3], [Pu4], [Pu5], [Pu6], [Sar],
[SeS], [StSz1], [StSz2], [StSz3], [StSz4], [Sza1], [Sza2]).

A classical theorem of Hamburger ([Akh], [Lan], [Sar], [ShT]) gives neces-
sary and sufficient conditions for the solution of the full moment problem on the
line, that is, K = R: a real sequence β ≡ (βi)∞i=0 with β0 > 0 has a represent-
ing measure supported in R if and only if for each k ≥ 0, the Hankel matrix
H(k) := (βi+j)0≤i+j≤2k is positive semi-definite. Hamburger’s Theorem serves as
a prototype for much of moment theory because it provides a concrete criterion
closely related to the moments; nevertheless, when K = Rn (n > 1), the most
direct analogue of Hamburger’s Theorem is false ([BCJ], [Sch1]), and the K = Rn

full moment problem (including the full complex moment problem for K = C)
remains unsolved (cf. [Atz], [Ber], [BeM], [Cas], [CuP2], [Fug], [Pu3], [Sch2]).

In a different direction, M. Riesz ([ShT], [Akh]) proved that β (as above) has
a representing measure supported in a closed set K ⊆ R if and only if, whenever
a polynomial a0 + a1t + · · · + antn (with complex coefficients) is nonnegative on
K, then a0β0 + a1β1 + · · · + anβn ≥ 0. Haviland ([Hav1], [Hav2]) subsequently
extended this result to the multivariable full K-moment problem. Although Riesz’s
Theorem solves the full moment problem in principle, it is very difficult to verify
the Riesz criterion for a particular sequence β.

In the sequel we are concerned with concrete tests for existence and uniqueness
in TCMP. In ([CuF4], [CuF5], [Fia1]) we initiated an approach to TCMP based
on positivity and extension properties of the moment matrix M(n) ≡ M(n)(γ)
associated with a truncated moment sequence γ (see below for terminology and
notation). If µ is any representing measure for γ, then card suppµ ≥ rankM(n) (cf.
(1.5) below); the main result of [CuF4] characterizes the existence of representing
measures µ which are minimal in the sense that card suppµ = rankM(n).

Theorem 1.1. [CuF4, Theorem 5.13] γ has a rankM(n)-atomic represent-
ing measure if and only if M(n) ≥ 0 and M(n) admits a flat extension M(n + 1),
i.e., M(n) can be extended to a positive moment matrix M(n + 1) satisfying
rankM(n + 1) = rankM(n).

In view of Theorem 1.1, a minimal representing measure for γ(2n) corresponds
to a solution of the following system of (n+1)(2n+1) polynomial equations in the
2 · rankM(n) unknowns ak > 0, zk ∈ C (1 ≤ k ≤ r ≡ rankM(n)):

γij =
r∑

k=1

akz̄i
kzj

k (0 ≤ i + j ≤ 2n).

In the sequel we show how to reduce the existence problem for minimal representing
measures to solubility of much smaller systems. For example, consider the quartic
moment problem (n = 2) with rankM(2) = 5 and with the fifth column of M(2)
dependent on the first three columns. In this case, the above system consists of 15
equations in 10 unknowns, but in Theorem 1.10(iv) we reduce the flat extension
problem for this M(2) to solubility of a single equation of the form

α + βz + γz̄ + δ|z|2 = 0,

where α, β, γ, δ are computable algebraic expressions in the moments γij (0 ≤ i+j ≤
2).
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The present work is primarily devoted to providing computational criteria for
the existence of flat moment matrix extensions. Before we discuss our results in
detail, it is useful to recall the truncated Hamburger moment problem (THMP),
the truncated moment problem for one real variable. Let β ≡ β(2n): β0, . . . , β2n

denote a collection of real numbers with β0 > 0, and let H(n) ≡ H(n)(β) denote
the Hankel matrix (βi+j)0≤i+j≤2n. For 0 ≤ j ≤ n, let T j := (βj , . . . , βj+n)T

denote the j-th column of H(n) (and set 1 = T 0). In case H(n) is singular, we
set r := min{j : T j ∈

〈
1 , . . . , T j−1

〉
}; then 1 ≤ r ≤ n and there exist unique real

scalars a0, . . . , ar−1 such that T r = a01 + · · · + ar−1T
r−1. We say that H(n) is

recursively generated if it is nonsingular, or if it is singular (as above) and

T r+s = a0T
s + · · · + ar−1T

r+s−1 (0 ≤ s ≤ n − r).(1.1)

(We remark that the structure theorem for positive Hankel matrices [CuF3, The-
orem 2.4] shows that a positive singular Hankel matrix always satisfies the identity
in (1.1) for 0 ≤ s ≤ n − r − 1, so a positive singular H(n) is recursively generated
if and only if T n = a0T

n−r + · · · + ar−1T
n−1.)

The following results of [CuF3] characterize the existence and uniqueness of
representing measures for β and provide a procedure for explicitly constructing
representing measures.

Theorem 1.2. (THMP-Existence; Even Case) [CuF3, Theorem 3.9] The fol-
lowing statements are equivalent.

(i) There exists a positive Borel measure µ, with suppµ ⊆ R, such that βj =∫
tj dµ (0 ≤ j ≤ 2n);

(ii) β has a finitely atomic representing measure;
(iii) β has a rankH(n)-atomic representing measure;
(iv) H(n) admits a positive extension H(n + 1);
(v) H(n) ≥ 0 and H(n) admits a flat (i.e., rank-preserving) extension H(n+1);
(vi) H(n) ≥ 0 and H(n) is recursively generated.

(Note that (vi) in Theorem 1.2 is a concrete condition that can be checked just
by using elementary linear algebra.)

Theorem 1.3. (THMP-Uniqueness; Even Case) [CuF3, Theorem 3.10] Sup-
pose β ≡ β(2n) admits a representing measure.

(i) If H(n) is singular, let p(t) := tr−(a0+ · · ·+ar−1t
r−1); then p has r distinct

real roots t0, . . . , tr−1, and the unique representing measure for β is of the
form

µ =
r−1∑
i=0

ρiδti ,

where δti is the atomic measure with support {ti}, and the densities ρ0, . . . ,
ρr−1 are uniquely determined by the Vandermonde equation

V (t0, . . . , tr−1)(ρ0, . . . , ρr−1)T = (β0, . . . , βr−1)T .

(ii) If H(n) is nonsingular, then to each choice of β2n+1 ∈ R there exists a
unique flat extension H(n + 1)[β2n+1] which is positive and recursively gen-
erated; thus, the corresponding moment problem for H(n + 1)[β2n+1] has a
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unique representing measure (as described above), which is an (n+1)-atomic
representing measure for β.

In [CuF4] we introduced the moment matrix M(n)(γ) in order to study the
extent to which TCMP admits analogues of Theorems 1.2 and 1.3 (with γ replacing
β and M(n)(γ) replacing H(n)(β)). Given n ≥ 1, let m ≡ m(n) := (n+1)(n+2)/2.
We introduce the following lexicographic order on the rows and columns of complex
matrices of size m: 1 , Z, Z̄, Z2, Z̄Z, Z̄2, . . . , Zn, . . . , Z̄n; rows or columns indexed by
1 , Z, . . . , Zn are said to be analytic. Let γ: γ00, . . . , γ0,2n, . . . , γ2n,0 be a truncated
moment sequence, and for 0 ≤ i, j ≤ n define the (i + 1) × (j + 1) matrix M [i, j]
whose entries are the moments of order i + j:

M [i, j] :=


γi,j γi+1,j−1 · · · γi+j,0

γi−1,j+1 γi,j · · · γi+j−1,1

...
...

. . .
...

γ0,i+j γ1,i+j−1 · · · γj,i

 .(1.2)

We now define the moment matrix M(n) ≡ M(n)(γ) via the block decomposition
M(n) := (M [i, j])0≤i,j≤n. For example, if n = 1, the quadratic moment problem for
γ ≡ γ(2): γ00, γ01, γ10, γ02, γ11, γ20 corresponds to

M(1) =
(

M [0, 0] M [0, 1]
M [1, 0] M [1, 1]

)
=

γ00 γ01 γ10

γ10 γ11 γ20

γ01 γ02 γ11

 .

Let Pn ⊆ C[z, z̄] denote the polynomials in z and z̄ of total degree at most n.
For p ∈ Pn, p(z, z̄) ≡

∑
0≤i+j≤n aij z̄

izj , let p̂ := (a00, a01, a10, . . . , a0n, . . . , an0)T ∈
Cm(n). For M ∈ Mm(n)(C) and p, q ∈ Pn, let 〈p, q〉M := (Mp̂, q̂). The basic
connection between the moment matrix M(n) and any representing measure µ is
provided by the identity

∫
pq̄ dµ = 〈p, q〉M(n) (p, q ∈ Pn) [CuF4]; in particular,

(M(n)p̂, p̂) =
∫
|p|2 dµ ≥ 0, so if γ admits a representing measure, then M(n) ≥ 0.

The main example of [CuF4] concerns a close analogue of Theorems 1.2–1.3 in
case M(n) ≥ 0 and γ is of flat data type, i.e., rankM(n) = rankM(n − 1).

Theorem 1.4.

(i) [CuF4, Theorem 4.7] Let M ≡ M(∞) be a finite-rank positive infinite mo-
ment matrix (of the form (M [i, j])∞i,j=0), and let r := rankM . Then M has
a unique representing measure µ, which is r-atomic, and there exist unique
scalars a0, . . . , ar−1 such that Zr = a01 + a1Z + · · ·+ ar−1Z

r−1 in CM , the
column space of M . If p(z) := zr − (a0 + · · · + ar−1z

r−1), then p has r

distinct roots, z0, . . . , zr−1, and µ =
∑r−1

i=0 ρiδzi , where

V (z0, . . . , zr−1)(ρ0, . . . , ρr−1)T = (γ0,0, . . . , γ0,r−1)T .(1.3)

(ii) [CuF4, Theorem 5.4 and Corollary 5.12] If γ is of flat data type and M(n) ≡
M(n)(γ) ≥ 0, then M(n) admits a unique flat extension M(n + 1). Thus,
M(n) also admits a unique flat extension M(∞) ≥ 0. In this case, γ admits
a unique representing measure, as described in (i). (If rankM(n) > 2n + 1,
the auxiliary moments γ0,2n+1, . . . , γ0,r−1 needed in (1.3) are located in the
flat extension M(r).)
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Despite Theorem 1.4, there are significant differences between TCMP and
THMP. For the quadratic moment problem, positivity of M(1) implies the exis-
tence of rankM(1)-atomic representing measures [CuF4, Theorem 6.1]; however,
for the singular case with rankM(1) = 2, we proved in [CuF4, Theorem 6.1] that
γ(2) has infinitely many 2-atomic representing measures, so there is no close ana-
logue of Theorem 1.3(i) for uniqueness in TCMP.

A more striking distinction between TCMP and THMP concerns the role of
flat extensions. Recently, J.E. McCarthy [McC] proved that there exist truncated
moment sequences γ admitting representing measures, but having no rankM(n)(γ)-
atomic representing measures (see Chapter 5 below); thus, by Theorem 1.1, for these
sequences γ, M(n)(γ) admits no flat extension M(n + 1). McCarthy’s result shows
that TCMP has no close analogue of Theorem 1.2(i)⇔(v); however, the following
result provides a TCMP partial analogue of Theorem 1.2(i)⇔(ii).

Theorem 1.5. For γ ≡ γ(2n), the following statements are equivalent.

(i) γ has a representing measure with moments up to order 2(n + 1);
(ii) γ has a representing measure with moments of all orders;
(iii) γ has a compactly supported representing measure;
(iv) γ has a finitely-atomic representing measure (in this case, there is some

representing measure with at most (n + 2)(2n + 3) atoms);
(v) M(n)(γ) ≥ 0 and for some k ≥ 0, M(n) admits a positive extension M(n+k)

which in turn admits a flat extension M(n+k+1) (in this case, we can take
k ≤ 2n2 + 6n + 6);

(vi) M(n)(γ) ≥ 0 and the semi-inner product 〈 · , · 〉M(n)(γ) induced by M(n)(γ)
on Pn admits an isometric extension to a semi-inner product on C[z, z̄]
compatible with the structure of a finite-rank infinite moment matrix.

Theorem 1.5 is proved in Chapter 5, and it evolved from a Numerical Methods
course taught by the second-named author in Fall 1994; during this course we
recognized that a classical theorem of multivariable quadrature due to V. Tchakaloff
[Tch] could be adapted to prove (iii)⇒(iv). After informally communicating this
result to several colleagues, we learned from J. McCarthy of an alternate proof of
(iii)⇒(iv) that uses convexity theory. Subsequently, in response to our question,
M. Putinar [Pu7] generalized Tchakaloff’s Theorem so as to prove (i)⇒(iv).

The preceding discussion makes clear the distinction between TCMP and THMP
with respect to uniqueness and flat extensions. Another important distinction can
be found in the role played by positivity and recursiveness. For THMP, the exis-
tence of representing measures is equivalent to the condition H(n) ≥ 0 and H(n)
recursively generated (Theorem 1.2(i)⇔(vi)). The analogue of this result for TCMP
is decidedly false, as we next explain.

For M ∈ Mm(n)(C), let CM denote the column space of M, i.e., CM :=〈
1 , Z, Z̄, . . . , Zn, . . . , Z̄n

〉
⊆ Cm(n). For p ∈ Pn, p(z, z̄) ≡

∑
i,j aij z̄

izj, we de-
fine p(Z, Z̄) :=

∑
i,j aijZ̄

iZj ∈ CM ; thus, for p, q ∈ Pn, we have Mp̂ = p(Z, Z̄)
and 〈p, q〉M = (Mp̂, q̂) = (p(Z, Z̄), q̂). We recall from [CuF4, Theorem 2.1] that
M ∈ Mm(n)(C) is of the form M(n)(γ) for some truncated moment sequence γ if
and only if M = M∗, 〈1, 1〉M > 0, 〈f, g〉M =

〈
ḡ, f̄
〉

M
(f, g ∈ Pn) (symmetric prop-

erty), 〈zf, g〉M = 〈f, z̄g〉M (f, g ∈ Pn−1), and 〈zf, zg〉M = 〈z̄f, z̄g〉M (f, g ∈ Pn−1)
(normality). The following Structure Theorem for positive moment matrices (based
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on [CuF4, Theorem 3.14]) provides the foundation for our analysis of positive ex-
tensions and representing measures; the second part of the statement does not
appear in [CuF4, Theorem 3.14], but is implicit in its proof.

Theorem 1.6. Assume M(n)(γ) ≥ 0. If p, q, pq ∈ Pn−1 and p(Z, Z̄) = 0, then
(pq)(Z, Z̄) = 0; moreover, if p, q, pq ∈ Pn and p(Z, Z̄) = 0, then [pq(Z, Z̄)](n−1) =
0.

(Here, and in the sequel, [w](d) denotes the truncation of the vector w ∈ Cm(n)

through entries of degree at most d.)
By analogy with Hankel matrices (cf. (1.1) and the subsequent remark), we say

that M(n) is recursively generated if it satisfies

p, q, pq ∈ Pn, p(Z, Z̄) = 0 =⇒ (pq)(Z, Z̄) = 0.(RG)

It follows readily from Theorem 1.6 and the Extension Principle [Fia1] (cf.
Chapter 2) that if M(n) admits a positive extension M(n+1), then M(n) is recur-
sively generated; moreover, (1.4) below implies that if γ has a representing measure,
then M(n) is recursively generated. In [CuF5], we used a difficult construction of
K. Schmüdgen [Sch1] to exhibit a positive invertible, hence recursively generated,
M(3) having no representing measure. Since a positive invertible moment matrix
always has a positive invertible extension M(n + 1), it follows from this example
that TCMP does not admit an analogue of Theorem 1.2(i)⇔(iv). In the sequel we
exhibit several new (and hopefully more transparent) examples of positive recur-
sively generated moment matrices which do not have representing measures. We
do this by identifying new obstructions to the existence of representing measures
or positive extensions; the first of these has an algebraic-geometric flavor.

Recall from [CuF4, Proposition 3.1] that if µ is a representing measure for γ,
then

For p ∈ Pn, p(Z, Z̄) = 0 ⇐⇒ suppµ ⊆ Z(p) := {z ∈ C : p(z, z̄) = 0}.(1.4)

It follows from [CuF4, Corollary 3.5] that

If µ is a representing measure for γ, then card suppµ ≥ rankM(n).(1.5)

Motivated by (1.4), we now introduce the variety of γ, defined by

V(γ) :=
⋂

p∈Pn

p(Z,Z̄)=0

Z(p).(1.6)

V(γ) is a closed (possibly empty) subset of the plane, and (1.4)–(1.5) imply

If µ is a representing measure for γ, then suppµ ⊆ V(γ), and
rankM(n) ≤ card suppµ ≤ cardV(γ).

(1.7)

Let ρ(γ) := cardV(γ) − rankM(n)(γ); from (1.7) it is clear that the condition
ρ(γ) < 0 is an obstruction to the existence of representing measures. In Chapter
4 we provide several examples which illustrate M(n)(γ) positive and recursively
generated, but ρ(γ) < 0 (e.g., Examples 4.4 and 4.6).

We consider next the case when M(n)(γ) is positive, recursively generated,
and ρ(γ) = 0. In this case, γ need not have a representing measure, as we
show in Example 2.5. If, however, γ does have a representing measure µ, then
(1.7) implies suppµ = V(γ), and M(n + 1)[µ] is a flat extension of M(n), since
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rankM(n) ≤ rankM(n + 1)[µ] ≤ card suppµ ≤ cardV(γ) = rankM(n). In addi-
tion, if r := rankM(n) ≤ 2n+1, then µ is the unique representing measure; indeed,
the Vandermonde equation (1.3) determines the densities ρ0, . . . , ρr−1 uniquely in
case the data (γ0,0, . . . , γ0,r−1)T pertains entirely to the original moment problem,
which occurs when r − 1 ≤ 2n. For a simple illustration, consider n = 1 and
M(1) ≥ 0. M(1) is recursively generated (vacuously) and rank M(1) = cardV(γ)
can occur only when r = 1, i.e., Z = α1 for some α ∈ C (cf. [CuF4, Theorem 6.1]).
The associated representing measure, µ := γ00δα, is of course unique in this case.
For a richer illustration, consider Example 4.9, in which we construct a minimal
representing measure in a case in which M(3) is positive and recursively generated,
and rankM(3) = cardV(γ) = 7. Example 4.10 illustrates a case where ρ(γ) = 0
and rankM(n) > 2n + 1, but γ again has a unique representing measure.

The case when M(n) is positive, recursively generated, and ρ(γ) > 0 also
exhibits diverse possibilities. In the example cited above of an invertible M(3)
having no representing measure, we clearly have V(γ) = C. On the other hand,
if M(1) ≥ 0 and rankM(1) = 2, then V(γ) is a straight line which parameterizes
infinitely many 2-atomic representing measures [CuF4, Theorem 6.1]; similarly,
if M(1) is positive and invertible, then V(γ) = C and there exist infinitely many
3-atomic representing measures [CuF4, Theorem 6.1].

Our next goal is to describe obstructions to positive extensions M(n+1) related
to the “functional calculus” p 7→ p(Z, Z̄) from Pn to CM(n). We first recall some
elements of the theory of positive extensions of moment matrices.

Proposition 1.7.
(i) [CuF5, Lemma 1.9] Suppose M(n)(γ) is positive and recursively generated.

If M(n + 1) is a flat extension of M(n), then M(n + 1) is positive and
recursively generated.

(ii) (cf. Theorem 1.6) Suppose M(n + 1) is a positive extension of M(n). If
p, q, pq ∈ Pn+1 and p(Z, Z̄) = 0, then [pq(Z, Z̄)](n) = 0.

Given γ ≡ γ(2n), in addition to M(n) we may also define blocks B0,n+1, . . . ,
Bn−1,n+1 via the obvious analogue of (1.2), that is,

Bi,n+1 := (γi+t−s,n+1+s−t)0≤s≤i; 0≤t≤n+1.

Now, if we are given a block B[n, n + 1] ∈ Mn+1,n+2(C), let

B :=


B0,n+1

...
Bn−1,n+1

B[n, n + 1]


and denote the successive columns of B by Zn+1, Z̄Zn, . . . , Z̄n+1, and the successive
rows by 1 , Z, Z̄, . . . , Zn, . . . , Z̄n. For 0 ≤ i + j ≤ n, k + ` = n + 1, we denote the
row Z̄iZj , column Z̄kZ` entry of B by

〈
z̄kz`, z̄izj

〉
B

; thus, for 0 ≤ i + j ≤ n − 1,
we have

〈
z̄kz`, z̄izj

〉
B

= γk+j,`+i.
Following [CuF5], we say that B[n, n + 1] is symmetric if, whenever i + j = n,

k + ` = n + 1, then
〈
z̄kz`, z̄izj

〉
B

= 〈z̄`zk, z̄jzi〉B; we also say that B[n, n + 1]
satisfies normality if, whenever i + j = n, k + ` = n + 1, j ≥ 1, and ` ≥ 1, then〈

z̄kz`, z̄izj
〉

B
=
〈
z̄k+1z`−1, z̄i+1zj−1

〉
B

.(1.8)
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Recall from [CuF5, (1.11)–(1.13)] that to construct a flat moment matrix extension
M(n+1) of M(n) ≥ 0 it is necessary and sufficient to construct a block B[n, n+1]
such that

B[n, n + 1] is symmetric and satisfies normality;

RanB ⊆ RanM(n), that is, B = M(n)W for some W ;

C := W ∗M(n)W is Toeplitz, i.e., constant on diagonals:
(1.9)

indeed, in this case, a flat extension M(n + 1) is defined by

[M(n); B] :=
(

M(n) B
B∗ C

)
.

If, instead, a positive extension M(n + 1) is desired, the C block in the above
matrix must be a Toeplitz matrix satisfying C ≥ W ∗M(n)W .

In [CuF5] we were able to establish (1.9) in the following two cases that are
independent of the case of flat data; both of these results play a role in our analysis
of the quartic moment problem in Chapter 3.

Theorem 1.8. [CuF5, Theorem 2.1] Assume that M(n)(γ) is positive, recur-
sively generated, and satisfies Z̄ = α1 +βZ for some α, β ∈ C. Then M(n) admits
infinitely many flat extensions M(n + 1), each corresponding to a distinct minimal
representing measure for γ.

Theorem 1.9. [CuF5, Theorem 3.1] Suppose M(n)(γ) is positive and recur-
sively generated. If 1 ≤ k ≤ [n

2 ] + 1 and Zk = p(Z, Z̄) for some p ∈ Pk−1, then
M(n) admits a unique flat extension M(n + 1), which corresponds to the unique
minimal representing measure for γ.

We show in Example 2.14 below that the restriction on k in Theorem 1.9 is neces-
sary.

Suppose now that 0 ≤ i + j ≤ n and 0 ≤ k + ` ≤ n, and suppose that there
exist p ∈ Pi+j−1, q ∈ Pk+`−1 such that Z̄iZj = p(Z, Z̄) and Z̄kZ` = q(Z, Z̄).
Suppose also that there exist r, s, t, u ≥ 0 such that i + r = k + t, j + s = ` + u,
and i + r + j + s = n + 1. If M(n) admits a recursively generated extension
M(n+1), then in CM(n+1) we must have (z̄rzsp)(Z, Z̄) = Z̄i+rZj+s = Z̄k+tZ`+u =
(z̄tzuq)(Z, Z̄). In Example 2.2 we exhibit a positive, recursively generated M(4) for
which (z̄rzsp)(Z, Z̄) 6= (z̄tzuq)(Z, Z̄) in CM(4); it follows from Proposition 1.7(ii)
that this lack of recursive consistency is an obstruction to the existence of any
positive extension M(5). Hence, such an M(4) does not admit any finitely atomic
representing measure (by Theorem 1.5).

Now assume that M(n) is positive, recursively generated and recursively con-
sistent. Assume also that i + j = n and that there exists p ∈ Pn−1 such that

Z̄iZj = p(Z, Z̄).(1.10)

Proposition 1.7(ii) implies that if M(n) has a positive extension M(n+1), then we
must have

[Z̄iZj+1](n) = [(zp)(Z, Z̄)](n)

and

[Z̄i+1Zj ](n) = [(z̄p)(Z, Z̄)](n).
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Thus, (
(zp)(Z, Z̄), ̂̄zkz`

)
=
(
(z̄p)(Z, Z̄), ̂z̄k+1z`−1

)
for k ≥ 0, ` ≥ 1, and k+` = n (by (1.8)). In Example 2.5 (with n = 4) we construct
a positive, recursively generated, recursively consistent M(4) for which there exists
a relation as in (1.10), and there exist k ≥ 0, ` ≥ 1 with k + ` = n, such that
((zp)(Z, Z̄), ̂̄zkz`) 6= ((z̄p)(Z, Z̄), ̂z̄k+1z`−1). This lack of normal consistency is an
obstruction to any positive extension M(5): it is impossible to construct a block
B[n, n + 1] satisfying (1.8) if M(n + 1) is to be a positive extension.

Our main technical result, Theorem 2.7, establishes a natural class of moment
matrices M(n) for which positivity, recursive generation, recursive consistency and
normal consistency imply

There exists a block B[n, n + 1] that is symmetric and satisfies
normality, and for which RanB ⊆ RanM(n).

(1.11)

If (1.11) holds, then (from (1.9)) to construct a flat extension M(n + 1), it suffices
to verify that the corresponding self-adjoint block C is Toeplitz. In principle, this
entails (n+1)(n+2)/2 verifications of diagonal relations of the form Ci,j = Ci+1,j+1,
but in practice a much smaller number of tests suffices. The class of moment
problems that we consider in Theorem 2.7 is defined as follows:

There is a basis for CM(n) of the form {Z̄kZ`}k,`∈I such that if
0 ≤ i + j ≤ n and (i, j) /∈ I, then Z̄iZj =

∑
`+k<i+j
(`,k)∈I

a`kZ̄`Zk.
(1.12)

In the sequel we also present examples which do not satisfy (1.12) but for which we
can nevertheless establish (1.11) and, further, prove the existence of flat extensions
(e.g., Examples 4.9 and 4.10). Among the results outside the scope of Theorem 2.7
is also the following partial solution to the quartic moment problem that we prove
in Chapter 3.

Theorem 1.10. Suppose M(2)(γ) is positive and recursively generated. Then
γ has a rankM(2)-atomic representing measure in each of the following cases:

(i) {1 , Z, Z̄, Z2} is linearly dependent in CM(2);
(ii) {1 , Z, Z̄, Z2} is a basis for CM(2), Z̄Z ∈

〈
1 , Z, Z̄

〉
, and the moments γij are

all real, with the possible exception of γ04;
(iii) {1 , Z, Z̄, Z2} is a basis for CM(2), Z̄Z ∈

〈
1 , Z, Z̄

〉
, and the reduced C-block

test C11 = C22 passes;
(iv) {1 , Z, Z̄, Z2, Z̄2} is a basis for CM(2), Z̄Z ∈

〈
1 , Z, Z̄

〉
, and the reduced C-

block test C11 = C22 passes for some choice of γ05.

In an Appendix we include a table summarizing many of the examples and
theorems of the present work and of [CuF4] and [CuF5]. Analysis of this table
leads us to observe that for fixed n, as the number of recursive relations in CM(n)

increases, the easier it is to determine whether or not M(n) admits a flat extension
M(n + 1). Indeed, each such relation is of the form Z̄iZj = p(Z, Z̄), with deg p <
i + j ≤ n; as the relation propagates recursively, it uniquely determines various
columns of any proposed moment matrix extension block B which is to satisfy
(1.11). Assuming such a block B exists, the recursively determined columns of
B also serve to simplify the test for normality in the C block of [M(n); B] (cf.
Proposition 2.6).
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CHAPTER 2

Flat Extensions for Moment Matrices

In this chapter we develop conditions for the existence of flat extensions M(n + 1)
of a positive, recursively generated moment matrix M(n) ≡ M(n)(γ). The main
result, Theorem 2.7, leads to a computational procedure for constructing flat ex-
tensions using only elementary linear algebra.

Throughout this chapter M(n) denotes a positive, recursively generated mo-
ment matrix; by a positive structured extension of M(n) we mean a positive matrix
M ∈ M (n+2)(n+3)

2
(C) which admits a block decomposition

M =
(

M(n) B
B∗ C

)
,(2.1)

where

B =


B0,n+1(γ)

...
Bn−1,n+1(γ)
B[n, n + 1]

 , B[n, n + 1] ∈ Mn+1,n+2(C),(2.2)

and

C ∈ Mn+2,n+2(C).(2.3)

We refer to block B in (2.2) as an extension block for M(n). If, additionally,
B[n, n+1] has the form of a moment matrix block, then we refer to B as a moment
matrix extension block.

More generally, for a positive matrix A, an extension of A is a block matrix of
the form

Ã ≡
(

A B
B∗ C

)
.

A result of Smul’jan [Smu] implies that Ã ≥ 0 if and only if (i) A ≥ 0, (ii) there
exists a matrix W such that B = AW (equivalently, RanB ⊆ RanA [Dou]), and
(iii) C ≥ W ∗AW . (Note that in this case W ∗AW is independent of W satisfying
AW = B.) The Extension Principle [Fia1] shows that if Ã ≥ 0, then each depen-
dence relation in the columns of A extends to a corresponding dependence relation
in the columns of Ã.

By a flat extension of A we mean an extension Ã satisfying rank Ã = rankA.

Proposition 2.1. Let A ≥ 0. Ã is a flat extension of A if and only if B = AW
and C = W ∗AW for some matrix W , in which case Ã ≥ 0.

11
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A positive structured extension M (as in (2.1)–(2.3)) is flat if rankM =
rankM(n); from Proposition 2.1, this entails

(
B
C

)
=
(

M(n)
B∗

)
W(2.4)

or, equivalently, B = M(n)W and C = W ∗M(n)W . Thus, a flat extension M
is completely determined by the choice of a block B[n, n + 1] satisfying Ran B ⊆
RanM(n); we denote such an extension by

M ≡ [M(n); B].

Constructing [M(n); B] so that it is a moment matrix is by no means straight-
forward. To construct a flat moment matrix extension M(n + 1) of M(n) it is
necessary and sufficient to identify new moments of order 2n + 1,

γ̃ : γ0,2n+1, . . . , γ2n+1,0, γij = γji,

such that the block B[n, n + 1] ≡ Bn,n+1(γ̃) satisfies

RanB ⊆ RanM(n)(2.5)

and

the C block of [M(n); B] is Toeplitz.(2.6)

Let M(n+ 1) denote a positive moment matrix extension of a (positive) recur-
sively generated moment matrix M(n). Suppose that there exist i, j ≥ 0, i+ j = n,
and polynomials p, q ∈ Pn−1 such that

Z̄iZj = p(Z, Z̄) and Z̄i+1Zj−1 = q(Z, Z̄) in CM(n).

In CM(n+1) we must have

[(z̄p)(Z, Z̄)](n) = [Z̄i+1Zj](n) = [(zq)(Z, Z̄)](n)

(by Proposition 1.7(ii)); in particular,

[(z̄p)(Z, Z̄)](n) = [(zq)(Z, Z̄)](n).(2.7)

We seek to exhibit a positive, recursively generated moment matrix M(n) for which
(2.7) fails; this will lead to the notion of recursive consistency, which is necessary
for the existence of positive extensions M(n + 1). We first introduce a family of
moment matrices that will be used in several examples in the sequel.
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Define M(4) by

1 1 2
1 2

1 2
2 5

1 2 5
2 5

5 β
2 5 β

2 5 β
5 β

β α δ
5 β α

2 5 α
5 β α

β δ α



,(2.8)

where α, β and δ are real parameters whose values will be specified later, and where
all blanks represent zeros. Write M(4) in block form as(

M(3) B
B∗ C

)
.

To show that M(4) ≥ 0, we prove that M(3) ≥ 0, B = M(3)W for some W , and
C ≥ W ∗B. The Nested Determinants Test shows at once that M(3) is positive and
invertible (in symbols, M(3) > 0). Let W = M(3)−1B; a calculation shows that
4 := C − W ∗M(3)W is equal to

α − β2 0 0 0 δ

0 α −
(

25
2 + β2

5

)
0 0 0

0 0 α − 13 0 0
0 0 0 α −

(
25
2 + β2

5

)
0

δ 0 0 0 α − β2

 .

We set α = 25
2 + β2

5 and we further require α > β2 and α ≥ 13; thus if |δ| ≤ α−β2,
then 4 ≥ 0, whence M(4) ≥ 0. Note that since M(3) > 0, M(4) is automatically
recursively generated. The condition α > β2 insures that column Z4 is independent
of all columns to its left.

We also have

Z3Z̄ =
5
2
Z2+

β

5
Z̄3

and

Z̄3Z =
5
2
Z̄2+

β

5
Z3

in CM(4), so 11 ≤ rankM(4) ≤ 13.
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Example 2.2. Let α = 13, β =
√

5
2 , δ = α − β2 = 21

2 . Then M(4) ≥ 0 is
recursively generated and in CM(4) we have

Z̄Z3 =
5
2
Z2 +

1√
10

Z̄3

and

Z̄2Z2= −1+3Z̄Z.

If (2.7) were to hold, in CM(4) we would then have

5
2
Z̄Z2 +

1√
10

Z̄4 = −Z + 3Z̄Z2,

or equivalently,

Z̄4 = −
√

10Z +

√
5
2
Z̄Z2.(2.9)

However, observe that
〈
z̄4, z̄4

〉
M(4)

= α 6= β2 =
〈
−
√

10z +
√

5
2 z̄z2, z̄4

〉
M(4)

, so

(2.9) cannot hold; thus M(4) admits no positive extension M(5). (In Example 4.6
we show that γ actually admits no representing measure.)

In view of Example 2.2 we introduce the following terminology. A recursive
relation in CM(n) is a triple (i, j, p) such that i, j ≥ 0, p ∈ Pn−1, deg p < i + j ≤ n,
and

Z̄iZj = p(Z, Z̄);

we also say that Z̄iZj is recursively determined. Since M(n) is recursively gener-
ated, it then follows that for all r, s ≥ 0 with i + r + j + s ≤ n,

Z̄i+rZj+s = (z̄rzsp)(Z, Z̄).(2.10)

Let k, ` ≥ 0, k + ` = n + 1. An element v ∈ CM(n) is recursively determined
with type (k, `) if there exists a recursive relation (i, j, p) such that i ≤ k, j ≤ `,
and v = (z̄k−iz`−jp)(Z, Z̄); the set of all such vectors v will be denoted by
R(k, `). We say that v ∈ CM(n) is admissible for M(n) if v is recursively de-
termined with type (k, `) and cardR(k, `) = 1. Thus, if v is admissible and
(i, j, p) and (i′, j′, p′) are two recursive relations with i, i′ ≤ k, j, j′ ≤ `, then
(z̄k−iz`−jp)(Z, Z̄) = (z̄k−i′z`−j′p′)(Z, Z̄) = v; we denote this common value by
Z̄kZ`. In this case, if M(n + 1) is a positive moment matrix extension of M(n),
with columns labeled ¯̃ZiZ̃j , then

[ ¯̃ZkZ̃`](n) = Z̄kZ` ∈ CM(n)

(recall that [w](d) denotes the truncation of the vector w ∈ Cm(n) through entries of
degree at most d). For an admissible column Z̄kZ` and for 0 ≤ u+v ≤ n, we denote
the Z̄uZv component of Z̄kZ` by 〈z̄kz`, z̄uzv〉B . Note that for 0 ≤ u + v ≤ n − 1,

〈z̄kz`, z̄uzv〉B = γk+v,`+u

(this follows from the Proof of Theorem 1.6; cf. [CuF4, (5.2)]).
Example 2.2 shows that the following is a nontrivial necessary condition for

the existence of a positive extension M(n + 1) of a positive recursively generated
moment matrix M(n):
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If k, ` ≥ 0, k + ` = n + 1, and if R(k, `) 6= ∅, then Z̄kZ` is
admissible for M(n).

(RC)

Observe that (RC) is necessary for the existence of a representing measure with
moments up to order 2(n + 1) (cf. Theorem 1.5). If property (RC) holds for a
positive recursively generated M(n), we say that M(n) is recursively consistent. In
this case, for a recursive relation (i, j, p), each column in the set

T (i, j, p) := {Z̄iZn+1−i, . . . , Z̄n+1−jZj}(2.11)

is admissible.

Proposition 2.3. If M(n) is recursively consistent, then for each relation
(i, j, p), the successive columns T (i, j, p) given by (2.11) form a normal band, i.e.,
if t + u ≤ n, u ≥ 1, 0 ≤ r ≤ n − i, then

〈z̄i+rzn+1−i−r, z̄tzu〉B = 〈z̄i+r+1zn−i−r, z̄t+1zu−1〉B.

Proof. Since Z̄iZj = p(Z, Z̄), then

Z̄i+rZn+1−i−r = (z̄rzn+1−i−r−jp)(Z, Z̄)

and

Z̄i+r+1Zn−i−r = (z̄r+1zn−i−r−jp)(Z, Z̄).

Now r + (n + 1 − i − r − j) + deg p < n + 1, so

〈z̄i+rzn+1−i−r, z̄tzu〉B = 〈z̄rzn+1−i−r−jp, z̄tzu〉M(n)

= 〈z̄r+1zn−i−r−jp, z̄t+1zu−1〉M(n)

(by normality in M(n) [CuF4, Theorem 2.1(4)])

= 〈z̄i+r+1zn−i−r, z̄t+1zu−1〉B.

Admissibility is also invariant under “conjugation,” as the next result shows.

Proposition 2.4. Let k + ` = n + 1 and suppose Z̄kZ` is admissible. Then
Z̄`Zk is admissible, and is symmetric with respect to Z̄kZ`, i.e., for 0 ≤ u+ v ≤ n,

〈z̄kz`, z̄uzv〉B = 〈z̄`zk, z̄vzu〉B.

Proof. Suppose Z̄kZ` is recursively generated from (i, j, p), i.e., Z̄kZ` =
(z̄rzsp)(Z, Z̄) for some r, s ≥ 0. It follows readily from [CuF4, Lemma 3.10] that
Z̄`Zk is admissible and that Z̄`Zk = (z̄szrp̄)(Z, Z̄). Now

〈z̄kz`, z̄uzv〉B = 〈z̄rzsp, z̄uzv〉M(n)

= 〈z̄vzu, z̄szrp̄〉M(n)

(by symmetry in M(n) [CuF4, Theorem 2.1(2)])

= 〈z̄szrp̄, z̄vzu〉M(n)

= 〈z̄`zk, z̄vzu〉B .

Suppose M(n) is recursively consistent. Let k + ` = n+1 and suppose Z̄kZ` is
admissible. If Z̄kZ` is part of normal bands T and T ′, then it follows that T ∪ T ′

is a normal band. On the other hand, it is possible for Z̄kZ` and Z̄k+1Z`−1 to be
admissible without forming a normal band, as the next example illustrates.
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Example 2.5. We define M(4) via (2.8) using α = 143
10 , β = 3, δ = 5. We have

α > β2, α > 13, and δ < α − β2, whence M(4) ≥ 0 and rankM(4) = 13. The only
recursive relations in M(4) are

Z̄Z3 =
5
2
Z2 +

3
5
Z̄3 and Z̄3Z =

5
2
Z̄2 +

3
5
Z3.

These relations propagate consistently to the admissible columns

Z̄2Z3 :=
5
2
Z̄Z2 +

3
5
Z̄4

and

Z̄3Z2 :=
5
2
Z̄2Z +

3
5
Z4.

Direct calculation shows that

〈z̄2z3, z4〉B =
3
5
δ 6= 0 = 〈z̄3z2, z̄z3〉B,

so Z̄2Z3 and Z̄3Z2 are not normal with respect to each other. Thus M(4) admits
no positive extension M(5), and, in particular, no flat moment matrix extension.
(In Example 4.7 we show that γ actually admits no representing measure.)

In view of this example, the following property is a nontrivial necessary con-
dition for positive extensions of positive recursively generated moment matrices
(or, more generally, for representing measures with moments up to order 2(n + 1)
[CuF4, Corollary 3.4], [Fia1]; cf. Theorem 1.5).

If k, ` ≥ 0, k + ` = n + 1, and Z̄kZ` and Z̄k+rZ`−r are admissible,
then they are normal with respect to each other, i.e.,

(NC)

〈z̄kz`, z̄szt〉B = 〈z̄k+rz`−r, z̄s+rzt−r〉B
whenever s + t ≤ n with s, t, s + r, s − r ≥ 0.

(The identity in (NC) always holds for s + t ≤ n − 1 [CuF4, (5.1), (5.2)].)
If property (NC) holds for all pairs of admissible columns Z̄kZ` and Z̄k+rZ`−r,
then we say that M(n) is normally consistent. The next result shows that normal
consistency propagates to the C block of [M(n); B].

Proposition 2.6. Let k + ` = n + 1, ` ≥ 1, suppose Z̄iZj = p(Z, Z̄) in CM(n)

with deg p < i + j ≤ n, and suppose (i, j, p) ∈ R(k, `) ∩ R(k + 1, ` − 1). Assume
further that Z̄kZ` := (z̄k−iz`−jp)(Z, Z̄) and Z̄k+1Z`−1 := (z̄k−i+1z`−j−1p)(Z, Z̄)
belong to an extension block B for which B[n, n+1] satisfies normality and such that
RanB ⊆ RanM(n). Then in the C block of M ≡ [M(n); B], ˜̄ZkZ̃` and ˜̄Zk+1Z̃`−1

are normal with respect to each other.

Proof. Let r ≥ 0, s ≥ 1 be such that Z̄kZ` = (z̄rzsp)(Z, Z̄) and Z̄k+1Z`−1 =
(z̄r+1zs−1p)(Z, Z̄), and let d := deg p; we have p(z, z̄) =

∑
0≤u+v≤d

auv z̄
uzv. Let x+ y =

n + 1, y ≥ 1; we must show that

〈z̄kz`, z̄xzy〉M = 〈z̄k+1z`−1, z̄x+1zy−1〉M .

Now

〈z̄kz`, z̄xzy〉M =
〈∑

u,v

auv z̄u+rzv+s, z̄xzy
〉

M
=
∑
u,v

auv〈z̄u+rzv+s, z̄xzy〉M ,
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where

u + r + v + s ≤ d + r + s < i + r + j + s = n + 1.

Since the blocks Bj,n+1 satisfy normality (j = 0, . . . , n), the blocks Bn+1,j ≡ B∗
j,n+1

also satisfy normality; thus

〈z̄u+rzv+s, z̄xzy〉M = 〈z̄u+r+1zv+s−1, z̄x+1zy−1〉M ,

whence

〈z̄kz`, z̄xzy〉 =
∑
u,v

auv〈z̄u+r+1zv+s−1, z̄x+1zy−1〉M

= 〈z̄r+1zs−1p, z̄x+1zy−1〉M = 〈z̄k+1z`−1, z̄x+1zy−1〉M .

Recall that if B is a moment matrix extension block satisfying RanB ⊆ RanM(n),
then [M(n); B] is a moment matrix if and only if the C block satisfies normality,
i.e., is constant on diagonals. In principle, establishing this property entails (n+1)2

tests of the form Ci,j = Ci+1,j+1, but several factors serve to reduce this number:

(i) C is self-adjoint, so it suffices to consider the main diagonal and the lower
diagonals;

(ii) C is a symmetric block [CuF4, Proposition 2.3], so within each diagonal
elements that are symmetric with respect to the diagonal midpoint are equal;

(iii) as described in Proposition 2.6, normal bands in the B block propagate to
normal bands in the C block.

Conditions (i)–(iii) thus lead to a reduced C-block test for normality. To il-
lustrate this test, consider M(3) ≥ 0 satisfying (RG), (RC), (NC), and suppose
Z̄Z2 = p(Z, Z̄), where deg p ≤ 2. Suppose in addition that there exists a moment
matrix extension block B satisfying RanB ⊆ RanM(3). To establish normal-
ity in the C block of [M(3);B] it suffices to focus on the diagonals C11, . . . , C55,
C21, . . . , C54, C31, . . . , C53, and C41, . . . , C52 (Condition (i)). From Condition (ii),
we have C11 = C55, C22 = C44, C21 = C54, C32 = C43, C31 = C53, and C41 = C52.
The relation Z̄Z2 = p(Z, Z̄) leads to a normal band Z̄Z3, Z̄2Z2, Z̄3Z (Proposition
2.3), which propagates into the C block (Proposition 2.6), yielding C22 = C33 =
C44, C32 = C43 = C54, and C42 = C53 (Condition (iii)). Thus the reduced C-block
test for this moment problem is C11 = C22.

The main result of this chapter, which follows, establishes moment matrix
extension blocks B, with RanB ⊆ RanM(n), for a large class of positive moment
matrices M(n) which satisfy (RG), (RC), (NC). For this class, M(n) has a flat
extension if and only if [M(n); B] satisfies the reduced C-block test.

Theorem 2.7. Let M(n) be positive, singular, recursively generated, recur-
sively consistent, and normally consistent. Suppose either that Z̄kZ` is admis-
sible for every k + ` = n + 1, or that there is a basis {Z̄pZq}(p,q)∈I for CM(n)

such that if (r, s) /∈ I, then Z̄rZs is recursively determined by basis elements of
lower degree. Then there exists a moment matrix extension block B satisfying
RanB ⊆ RanM(n); if the C block of [M(n); B] satisfies normality, then M(n)
has a flat extension M(n + 1) :=

(
M(n) B
B∗ C

)
.
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Remark 2.8. We will actually give a complete parameterization of the mo-
ment matrix extension blocks {Bα}α∈A satisfying RanBα ⊆ RanM(n); thus M(n)
admits a flat extension M(n + 1) if and only if for some α ∈ A, the C block of
[M(n), Bα] is Toeplitz. Normality in the C block can be verified using the reduced
C-block test, as we illustrate in several examples. Theorem 2.7 also leads to a
new proof that a flat, positive moment matrix M(n) has a unique flat extension
M(n + 1) (Proposition 2.12 below).

Proof of Theorem 2.7. Let T := {(i, j) : i + j = n + 1}, R := {(i, j) ∈
T : Z̄iZj is admissible}, and S := T \R. If R = T , then the existence of a
unique moment matrix extension block B satisfying RanB ⊆ RanM(n) follows
from recursive consistency, normal consistency, and symmetry (Proposition 2.4).
We may therefore assume R 6= T ; since M(n) is singular, we must have R 6= ∅.
(Note that for (i, j) ∈ R and 0 ≤ r + s ≤ n − 1, 〈z̄izj, z̄rzs〉B = γi+s,j+r .) Our
aim is to define a moment matrix extension block B, with RanB ⊆ RanM(n), by
using {Z̄iZj}(i,j)∈R and by propagating these columns using normal consistency
and symmetry.

We use an inductive procedure to define the non-admissible columns in such
a way that the resulting moment matrix extension block B satisfies RanB ⊆
RanM(n). Let S′ = {(i, j) ∈ S : Z̄iZj has been defined} (S′ is initially empty).
Our inductive assumption is that the columns of R∪S′ are consistent with moment
matrix structure, and we show how to extend this structure to a column Z̄iZj ∈
RanM(n) with (i, j) ∈ S\S′. We define Z̄iZj by specifying all its components
〈z̄izj, z̄rzs〉B (0 ≤ r + s ≤ n), and we consider three cases for (r, s).

(i) For (r, s) ∈ I, 0 ≤ r + s ≤ n − 1, let 〈z̄izj, z̄rzs〉B := γi+s,j+r ; it follows
from [CuF4, (5.1), (5.2)] that this is consistent with any value that could be
assigned this entry by normal propagation from previously defined columns
(admissible or non-admissible).

(ii) For (r, s) ∈ I with r + s = n, if 〈z̄izj, z̄rzs〉B is not already normally deter-
mined from some previously defined column, then this entry is free and we
assign a value γi+s,j+r arbitrarily.

(iii) For every (r, s) /∈ I, we will show that 〈z̄izj, z̄rzs〉B is normally determined
from some admissible column; of course, if r + s ≤ n − 1, this implies
〈z̄izj , z̄rzs〉B := γi+s,j+r .

Let MI denote the compression of M(n) to the rows and columns indexed by I;
MI > 0. Let V = [Z̄iZj]I (as defined above in (i) and (ii)); since MI is invertible,
there exist unique scalars ak` ((k, `) ∈ I) such that

V =
∑

(k,`)∈I

ak`[Z̄kZ`]I ,

i.e., for (p, q) ∈ I,

〈z̄izj, z̄pzq〉B =
∑

(k,`)∈I

ak`γk+q,p+`.(2.12)

Thus, to complete Z̄iZj (consistent with moment matrix block structure for
block B) so that Z̄iZj ∈ RanM(n), it is sufficient to establish the following.
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Claim. For 0 ≤ r + s ≤ n, (r, s) /∈ I, 〈z̄izj, z̄rzs〉B is normally determined
(from some admissible column), and equals

τ :=
∑

(k,`)∈I

ak`〈z̄kz`, z̄rzs〉M(n) =
∑

(k,`)∈I

ak`γk+s,`+r.(2.13)

Suppose 0 ≤ r + s ≤ n, (r, s) /∈ I. In CM(n), we have the relation

Z̄rZs =
∑

0≤p+q<r+s
(p,q)∈I

αpqZ̄
pZq,(2.14)

whence

Z̄sZr =
∑

0≤p+q<r+s
(p,q)∈I

αpqZ̄
qZp.(2.15)

Thus, for 0 ≤ k + ` ≤ n,

γs+k,r+` = 〈z̄szr, z̄`zk〉M(n)

=
∑
p,q

αpq〈z̄qzp, z̄`zk〉M(n) =
∑
p,q

αpqγq+k,p+`.

Now,

τ =
∑

(k,`)∈I

ak`γk+s,`+r

=
∑

(k,`)∈I

ak`

∑
0≤p+q<r+s

(p,q)∈I

αpqγq+k,p+`

=
∑

0≤p+q<r+s
(p,q)∈I

αpq

∑
(k,`)∈I

ak`γq+k,p+`

=
∑

0≤p+q<r+s
(p,q)∈I

αpq〈z̄izj, z̄pzq〉B (by (2.12))

=
∑

0≤p+q<r+s
(p,q)∈I

αpqγi+q,j+p (by case (i));

thus

τ =
∑

0≤p+q<r+s
(p,q)∈I

αpqγi+q,j+p.(2.16)

Since M(n) is recursively consistent, (2.15) implies

Z̄s+vZr+u =
∑

0≤p+q<r+s
(p,q)∈I

αpqZ̄
q+vZp+u(2.17)

whenever u, v ≥ 0 satisfy r + u + s + v = n + 1. Suppose u and v can additionally
be chosen so that

0 ≤ u ≤ j and 0 ≤ v ≤ i.(2.18)
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Let L := j−u, M := i−v; note that L+M = (i+j)−(u+v) = n+1−(u+v) ≤ n,
since (r + s) + (u + v) = n + 1 implies u + v ≥ 1. Now

〈z̄s+vzr+u, z̄LzM 〉B =
∑
p,q

αpq〈z̄q+vzp+u, z̄LzM 〉M(n)

=
∑
p,q

αpqγq+v+M,p+u+L

=
∑
p,q

αpqγq+i,p+j = τ (from (2.16)).

Define h := s − M ; since r + s + u + v = i + j, then s − i + v = j − r − u, whence
h = j−r−u. Similarly, s+v−h = i and h+r = L. Thus τ (= 〈z̄s+vzr+u, z̄LzM 〉B)
normally generates

〈z̄s+v−hzr+u+h, z̄L−hzM+h〉B = 〈z̄izj, z̄rzs〉B .

Thus, to complete the inductive definition of Z̄iZj, it remains to choose u and
v satisfying (2.18). Let P := (n + 1) − (r + s) (≥ 1). Since M(n) is recursively
consistent, the band of columns Zr+P Z̄s, . . . , ZrZ̄s+P is admissible; we distinguish
whether Z̄iZj (which is non-admissible) is to the left or right of this band within
B.

(i) Z̄iZj is to the left of the band; equivalently, s > i and j > r + P . Let
u := n + 1 − (r + s) (> 0), v := 0. Then u + v + r + s = n + 1; since i < s,
then i < r + s, whence u = (n + 1) − (r + s) = (i + j) − (r + s) < j.

(ii) Z̄iZj is to the right of the band; equivalently, r > j and i > s + P . Let
u := 0, v := (n + 1) − (r + s). Since r > j, v = i + j − (r + s) < i.

Thus (2.13) is established. The completed column Z̄iZj is consistent with
moment matrix structure and satisfies Z̄iZj ∈ RanM(n); thus, Z̄iZj is added to
S ′, which completes the induction step.

Before we proceed with some applications of Theorem 2.7, we present a result
which can help establish normal consistency for an extension block B[n, n+1]. This
result shows that if M(n) is recursively consistent, then each admissible column
possesses a degree of “internal symmetry.” Note that since M(n) is recursively
generated, then up to a symmetry, we can represent each admissible column as
Z̄iZj+1, where i + j = n and Z̄iZj = p(Z, Z̄) for some p ∈ Pn−1.

Proposition 2.9. Suppose M(n) is recursively consistent, and suppose that
i + j = n, i ≥ 1, and Z̄iZj = p(Z, Z̄) for some p ∈ Pn−1. Then for r + s = n,
s ≥ j, and r ≥ i − 1, we have 〈z̄izj+1, z̄rzs〉B = 〈z̄izj+1, z̄s+i−j−1zr+j+1−i〉B.

It is easy to see that the preceding identity holds in any moment matrix
M(n + 1); this follows from normality and symmetry.

Proof of Proposition 2.9. Write p(z, z̄) ≡
∑

0≤k+`≤n−1

ak`z̄
kz`; then Z̄iZj+1 =∑

ak`Z̄
kZ`+1, so

〈z̄izj+1, z̄rzs〉B =
∑

ak`〈z̄kz`+1, z̄rzs〉M(n)

=
∑

ak`γk+s,`+1+r.
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Also,

〈z̄izj+1, z̄s+i−j−1zr+j+1−i〉B =
∑

ak`〈z̄kz`+1, z̄s+i−j−1zr+j+1−i〉M(n)

=
∑

ak`γk+r+j+1−i,`+s+i−j ,

so

〈z̄izj+1, z̄s+i−j−1zr+j+1−i〉B =
∑

ak`γ`+s+i−j,k+r+j+1−i.(2.19)

Since s ≥ j, ` + s + i − j = i + (` + s − j) ≥ i; since r ≥ i − 1, k + r + j + 1 − i =
j+(k+r+1−i) ≥ j. Also, `+s−j+k+r+1−i = (k+`+1)+(r+s)−(i+j) ≤ n;
thus

γi+(`+s−j),j+(k+r+1−i) = 〈z̄izj, z̄k+r+1−iz`+s−j〉M(n)

=
∑

0≤p+q≤n−1

apq〈z̄pzq, z̄k+r+1−iz`+s−j〉M(n)

=
∑

apqγp+`+s−j,q+k+r+1−i.

Then, from (2.19),

〈z̄izj+1, z̄s+i−j−1zr+j+1−i〉B =
∑

ak`

∑
apqγp+`+s−j,q+k+r+1−i

=
∑

apq

∑
ak`γp+`+s−j,q+k+r+1−i

=
∑

apq

∑
ak`γ`+(p+s−j),k+(q+r+1−i)

=
∑

apqγp+s,q+r+1

(since Z̄jZi =
∑

ak`Z̄
`Zk and γj+x,i+y =

∑
ak`γ`+x,k+y)

=
∑

apq〈z̄pzq+1, z̄rzs〉M(n)

= 〈z̄izj+1, z̄rzs〉B .

The next two examples illustrate Proposition 2.9.

Example 2.10. Suppose M(4) ≥ 0 is recursively consistent and Z̄Z3 = p(Z, Z̄)
for some p ∈ P3. Recursively generate Z̄Z4 := (zp)(Z, Z̄), and denote this vector
by (x, y, w, u, v)t. Apply Proposition 2.9 with n = 4, i = 1, j = 3, r = 0, and s = 4
(observe that s > j and r = i − 1). Then

x = 〈z̄z4, z4〉B = 〈z̄z4, z̄z3〉B = ȳ.

We may also recursively generate Z3Z̄2 = (z̄p)(Z, Z̄); by Proposition 2.3, Z4Z̄ and
Z3Z̄2 form a normal band. Similarly, Z̄4Z and Z̄3Z2 form a normal band generated
from the relation

Z̄3Z = p̄(Z, Z̄).
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Thus, the proposed Bn,n+1 block of any flat extension of M(4) must be of the form
Z5 Z̄Z4 Z̄2Z3 Z̄3Z2 Z̄4Z Z̄5

∗ x z ū v̄ ∗
∗ x̄ x w̄ ū ∗
∗ w x̄ x w̄ ∗
∗ u w x̄ x ∗
∗ v u z̄ x̄ ∗

 .

Thus Z4Z̄, Z3Z̄2, Z2Z̄3, ZZ̄4 form a normal band if and only if z = w̄. Example
2.5 shows that in general, z 6= w̄, and that there need not be a positive extension.

Example 2.11. Suppose M(3) is recursively consistent and suppose Z3 =
p(Z, Z̄) for some p ∈ P2. We generate Z3Z̄ ≡ (z̄p)(Z, Z̄) and claim that 〈z̄z3, z3〉B =
〈z̄z3, z̄z2〉B . Indeed, we have Z̄3 = p̄(Z, Z̄) and ZZ̄3 = (zp̄)(Z, Z̄). Apply Propo-
sition 2.9 with n = 3, i = 3, j = 0, r = 2, and s = 1 to conclude that〈
z̄3z, z̄2z

〉
B

= 〈z̄3z, z̄3〉B; now apply symmetry in block B (Proposition 2.4).

Our first application of the preceding results on consistency is a new proof
of the fact that a positive flat moment matrix M(n) has a unique flat extension
M(n + 1).

Proposition 2.12. [CuF4, Theorem 5.4] If M(n) ≥ 0 and rankM(n) =
rankM(n − 1), then M(n) has a unique flat extension M(n + 1).

Proof. Theorem 1.6 implies that M(n − 1) is recursively generated. Since,
by hypothesis, M(n) is a flat extension of M(n − 1), Proposition 1.7 implies that
M(n) is recursively generated. Further, [CuF4, Lemma 5.9] implies that M(n)
is recursively consistent. For each i + j = n, we have Z̄iZj = pij(Z, Z̄) with
pij ∈ Pn−1. Thus Z̄iZj+1 ≡ (zpij)(Z, Z̄) and Z̄i+1Zj ≡ (z̄pij)(Z, Z̄) are ad-
missible, and are normal with respect to each other by Proposition 2.3. Since
(z̄pij)(Z, Z̄) = (zpi+1,j−1)(Z, Z̄), it follows that the B block is normal, and Propo-
sition 2.4 readily implies that B is symmetric. Since Ran B ⊆ RanM(n), it now
follows from Proposition 2.6 that the C block of M ≡ [M(n); B] is Toeplitz, so M
is the unique flat extension of M(n) of the form M(n + 1).

We next apply Theorem 2.7 to a flat extension problem for M(3) in which Z3

is recursively determined.

Example 2.13. Assume M(3) ≥ 0 and CM(3) has basis I ≡ {1 , Z, Z̄, Z2, Z̄Z,
Z̄2, Z̄Z2, Z̄2Z}. Assume further that there exists p ∈ P2 such that Z3 = p(Z, Z̄)
(whence Z̄3 = p̄(Z, Z̄)). It follows readily that M(3) is recursively generated and
recursively consistent, with admissible columns Z4, Z̄Z3, Z̄3Z, Z̄4. We claim
that M(3) is normally consistent. Proposition 2.3 implies that Z4, Z̄Z3 and Z̄3Z,
Z̄4 are each normal bands, so to establish normal consistency it suffices to ver-
ify 〈z̄z3, z̄z2〉B = 〈z̄3z, z̄3〉B (since, by symmetry, this also implies 〈z̄z3, z3〉B =
〈z̄3z, z̄2z〉B). An application of Proposition 2.9 with n = 3, i = 1, j = 2, r = 0,
s = 3 shows that 〈z̄z3, z3〉B = 〈z̄z3, z̄z2〉B, and symmetry between Z̄Z3 and Z̄3Z

yields 〈z̄z3, z3〉B = 〈z̄3z, z̄3〉B; thus normality is established.
We now use normality to define Z̄2Z2 via Z̄3Z and Z̄Z3. Theorem 2.7 insures

that the resulting block B is a moment matrix block satisfying RanB ⊆ RanM(3).
From Proposition 2.6, we see that Z̃4 and ˜̄ZZ̃3 form a normal band in the C block
of [M(3);B]. Thus, using the reduced C-block test, M(3) has a flat extension if and
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only if C22 = C33; in this case the flat extension would be unique. To perform this
test, let α := M−1

I [Z3Z̄]I and let β := M−1
I [Z̄2Z2]I ; then a flat extension exists if

and only if

(2.20) α1γ31 + α2γ32 + α3γ41 + α4γ33 + α5γ42 + α6γ51 + α7γ43 + α8γ52

= β1γ22 + β2γ23 + β3γ32 + β4γ24 + β5γ33 + β6γ42 + β7γ34 + β8γ43.

To date, we have found no case in which (2.20) is valid.

Our next example illustrates a case in which (2.20) fails, so there is no flat
extension.

Example 2.14. We present an example of M(3) positive, recursively gener-
ated, with Z3 = αZ̄2, but with no flat extension M(4). This shows that the
hypothesis k ≤ [n

2 ] + 1 in Theorem 1.9 is necessary. (Here we have n = 3,
k = 3 > 2 = [32 ] + 1.) Let M(3) be given by

1 0 0 0 1 0 0 0 0 0
1 0 δ

1 0 δ 0
0 δ 0 0 0 c̄
1 δ 0
0 δ c

0 0 0 c̄ |c|2
δ

δ 0 |c|2
δ

0 δ 0 |c|2
δ

0 c |c|2
δ


,(2.21)

where δ > 1 and |c| > δ3/2. Then M(3) satisfies all the conditions of Example 2.13,
with

Z3 =
( c

δ

)
Z̄2.

If we further specify δ = 4, c = 9, then (2.20) fails, so M(3) has no flat extension.
We shall see in Example 4.4 that M(3) does not admit a representing measure.

We next begin an analysis of the flat extension problem for M(3) in which Z̄Z2

is recursively determined.

Example 2.15. Assume M(3) ≥ 0 and CM(3) has basis {1 , Z, Z̄, Z2, Z̄Z, Z̄2,
Z3, Z̄3}. Assume there exists p ∈ P2 such that Z̄Z2 = p(Z, Z̄) (whence Z̄2Z =
p̄(Z, Z̄)). M(3) is recursively generated and we assume that M(3) is recursively
consistent, i.e., (z̄p)(Z, Z̄) = (zp̄)(Z, Z̄). The admissible columns are Z̄Z3, Z̄2Z2,
Z̄3Z, and it follows from Proposition 2.3 that these comprise a normal band; thus
M(3) is normally consistent. Theorem 2.7 permits us to define Z4 ∈ RanM(3)
(with a free choice for γ07), and we define Z̄4 by symmetry. The resulting B block
is a moment matrix block with RanB ⊆ RanM(3). Proposition 2.6 implies that
in the C block of [M(3);B], ˜̄ZZ̃3, ˜̄Z2Z̃2 and ˜̄Z3Z̃ are normal with respect to each
other. Thus, by the reduced C-block test, M(3) has a flat extension if and only if
C11 = C22 for some choice of γ07. In Example 4.8 we illustrate a case in which a
flat extension does exist and we explicitly compute the corresponding representing
measure.
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We conclude this chapter with a reduction in the flat extension problem for
M(2).

Example 2.16. Assume M(2) ≥ 0 and CM(2) has basis {1 , Z, Z̄, Z2, Z̄2}. As-
sume there exists p ∈ P1 such that Z̄Z = p(Z, Z̄). Then M(2) is recursively
generated and is recursively consistent (with Z̄Z2 and Z̄2Z admissible). Propo-
sition 2.3 implies that M(2) is normally consistent. Theorem 2.7 implies that we
may define Z3 ∈ RanM(2) (in moment matrix form, with γ05 free), and we may
then define Z̄3 by symmetry. It follows from the reduced C-block test that M(2)
has a flat extension if and only if there is some γ05 for which C11 = C22 in the
C block of [M(2);B]. We pursue this question in more detail in Chapter 3, and
obtain positive results in certain cases.



CHAPTER 3

The Singular Quartic Moment Problem

We devote this chapter to the proof of Theorem 1.10; thus, we will study in
detail the truncated moment problem for n = 2, with an associated 6 × 6 mo-
ment matrix M(2) which is singular. Henceforth, we assume that M(2) is positive
and recursively generated. If M(1) is singular, then, without loss of generality,
Z̄ ∈ 〈1 , Z〉 ([CuF4, Lemma 3.10] and [Fia1, Proposition 2.4]), so Theorem 1.8
implies that M(1) has a flat extension; we may thus assume that det M(1) > 0,
or, equivalently, that {1 , Z, Z̄} is linearly independent. If Z2 ∈

〈
1 , Z, Z̄

〉
, then it

follows from Theorem 1.9 (with n = k = 2) that M(2) has a unique flat extension;
we may thus assume in the sequel that {1 , Z, Z̄, Z2} is linearly independent. The
remainder of this chapter is devoted to analyzing the case Z̄Z ∈

〈
1 , Z, Z̄

〉
.

Consider the column Z̄Z, and assume that

Z̄Z = c11 + c2Z + c3Z̄.(3.1)

By [CuF4, Lemma 3.10], (3.1) gives rise to

Z̄Z = c̄11 + c̄3Z + c̄2Z̄,

and therefore c1 ∈ R and c3 = c̄2. Let us make some preliminary observations
concerning V(γ) (defined in (1.6)). Let p(z, z̄) := zz̄ − c1 − c2z − c̄2z̄. Then
z ≡ x+ iy ∈ Z(p) if and only if |z− c̄2|2 = c1 + |c2|2. If c1 + |c2|2 ≤ 0, then ρ(γ) < 0
by (1.7). We may thus assume that c1 + |c2|2 > 0.

Our approach to the singular quartic moment problem with {1 , Z, Z̄, Z2} in-
dependent and M(2) subject to (3.1) is divided into two aspects: (i) conditions
on the data that guarantee the positivity of M(2), and (ii) the actual search for
flat moment matrix extensions, assuming M(2) ≥ 0. To simplify somewhat our
calculations, we shall focus attention primarily on finite collections γ: γ00, . . . , γ40

such that γij ∈ R for 0≤ i + j ≤ 3, that is,

M(2) ≡


a b b c d c
b d c e e f
b c d f e e
c e f g h1 − ih2 u − iv
d e e h1 + ih2 g h1 − ih2

c f e u + iv h1 + ih2 g

 .(3.2)

We first analyze conditions on a, b, c, d, e, f that ensure the positivity of M(2).
For A a positive N × N matrix, let us denote by [A]k the compression of A to the
first k rows and columns; similarly, the first k entries of a column C will be denoted
by [C]k. More generally, if 1 ≤ n1 < · · · < nk ≤ N we let [A]{n1,...,nk} denote the
compression of A to the rows and columns indexed by {n1, . . . , nk}. We begin with
a characterization of [M(2)]4 > 0 in terms of the matrix entries.

25



26 3. THE SINGULAR QUARTIC MOMENT PROBLEM

Proposition 3.1. [M(2)]4 is positive and invertible if and only if a > 0, d > c,

a(c + d) > 2b2(3.3)

and

g >
(
c e f

)
M(1)−1

(
c e f

)T
.(3.4)

Proof. By the Nested Determinant Test and Choleski’s Algorithm, [M(2)]4 is
positive and invertible if and only if det[M(2)]1 > 0, det[M(2)]2 > 0, det[M(2)]3 >
0, and det[M(2)]4 > 0, that is, a > 0,

ad − b2 > 0,(3.5)

d >
(
b c

)(a b
b d

)−1(
b
c

)
(3.6)

and g >
(
c e f

)
M(1)−1

(
c e f

)T . A calculation shows that if we assume
(3.5), then (3.6) holds if and only if d > c and a(c + d) − 2b2 > 0. Conversely, if
d > c and (3.3) holds, then (3.5) holds, whence (3.6) holds.

Due to (3.1), M(2) is a flat extension of [M(2)]{1,2,3,4,6}. Thus, the positivity
of M(2) is equivalent to that of [M(2)]{1,2,3,4,6} (by Proposition 2.1), which, under
the assumption [M(2)]4 > 0, is equivalent to det[M(2)]{1,2,3,4,6} ≥ 0 (again, by the
Nested Determinant Test). To study this condition, we first obtain a result which
describes some intrinsic structure present in M(2).

Proposition 3.2. Assume M(2) satisfies (3.1), with M(1) invertible. Then g
and h can be written in terms of a, b, c, d, e, f , namely

g =
(
d e e

)
M(1)−1

(
d e e

)T(3.7)

and

h =
(
c f e

)
M(1)−1

(
d e e

)T
.(3.8)

As a consequence, h must also be real.

Proof. We know that [Z̄Z]3 = c1[1 ]3 + c2[Z]3 + c̄2[Z̄]3, and since M(1) is
invertible, we must have

(
c1 c2 c̄2

)T = M(1)−1
(
d e e

)T . Observe now that
g and h are the fifth and sixth entries of Z̄Z, which must also obey (3.1). The
result is now obvious.

Returning now to the positivity of [M(2)]{1,2,3,4,6}, (3.7) together with (3.4)
forces (

d e e
)
M(1)−1

(
d e e

)T
>
(
c e f

)
M(1)−1

(
c e f

)T
,(3.9)

which gives rise to a quadratic form in f , whose discriminant is positive if and only
if

−2b2cd + ac2d − b2d2 + 2acd2 + ad3 + 4b3e − 2abce − 4abde + a2e2 > 0.(3.10)

This expression in turn is a quadratic form in e, whose discriminant is given
by 4(b2 − ad)(−2b2 + a(c + d))2, which is negative by (3.5); since the coeffi-
cient of e2 is positive, (3.10) will hold (for every real value of e!) if and only if
F (a, b, c, d) := −2b2cd + ac2d − b2d2 + 2acd2 + ad3 > 0. Observe, however, that
F (a, b, c, d) = d{[a(c + d) − 2b2](c + d) + b2d}, which is positive by (3.3). We thus
arrive at the following positivity criterion for [M(2)]4, solely in terms of M(1).
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Proposition 3.3. Assume that the Z̄Z column of M(2) is given by (3.1) and
that M(1) is positive and invertible. Then for every choice of e and for g given by
(3.7), there exists an open interval of values of f which make [M(2)]4 positive and
invertible.

We can now obtain a criterion for the positivity of [M(2)]{1,2,3,4,6}.

Proposition 3.4. Assume that values for a, b, c, d, e and f have been chosen
so that M(2) satisfies (3.1) and [M(2)]4 > 0, with g and h given by (3.7) and (3.8),
respectively. Then [M(2)]{1,2,3,4,6} ≥ 0 if and only if u + iv belongs to the closed
disc with center

c0 :=
(
c f e

)
M(1)−1

(
c e f

)T
and radius

r :=
(
d e e

)
M(1)−1

(
d e e

)T −
(
c e f

)
M(1)−1

(
c e f

)T
.

Moreover,

rank[M(2)]{1,2,3,4,6} = 4 ⇐⇒ |u + iv − c0| = r

and

rank[M(2)]{1,2,3,4,6} = 5 ⇐⇒ |u + iv − c0| < r.

Proof. Observe that [M(2)]{1,2,3,4,6} =
(

M(1) B
B∗ C

)
, where B :=

(
c e f
c f e

)T

and
C :=

(
g u−iv

u+iv g

)
. By the result of Smul’jan discussed in the paragraph preceding

(2.4), the positivity of [M(2)]{1,2,3,4,6} is equivalent to the matrix inequality(
g −

(
c e f

)
M(1)−1

(
c e f

)T
u − iv − c̄0

u + iv − c0 g −
(
c f e

)
M(1)−1

(
c f e

)T
)

= C − B∗M(1)−1B ≥ 0.

Since the (1, 1)-entry of the above matrix is positive by (3.9), and since a direct
calculation shows that the (2, 2)-entry equals the (1, 1)-entry, the result now follows
via Choleski’s Algorithm.

To summarize, we can build moment matrices M(2) ≥ 0 satisfying (3.1) and
[M(2)]4 > 0 as follows.

Algorithm 3.5.
(i) Choose a > 0, b arbitrary, and c arbitrary;
(ii) Select d > max{c, 2b2

a − c};
(iii) Pick e arbitrary and define g by (3.7);
(iv) Choose f in the positivity interval of (3.9);
(v) Define h by (3.8);
(vi) Finally, select u + iv according to Proposition 3.4 (to make rankM(2) = 4

or rankM(2) = 5).

Example 3.6. Let a = 1, b = 0, c = −1. Then d must be chosen bigger than
1, say for instance d = 2. Let e := −2; by (3.7), g = 12. In this case, the positivity
interval for (3.9) is [1−3

√
6

2 , 1+3
√

6
2 ]; choose, for instance, f := 1. By (3.8), h = 0.

It then follows that c0 = 0 and r = 9. To make rankM(2) = 4 take for instance
u := 0, v := 9; to have rankM(2) = 5, let u := 0, v := 0.
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We now turn our attention to the problem of building a flat moment matrix
extension M(3) of M(2), given as just described. First, observe that M(2) is clearly
recursively generated. Since the only recursively determined column is Z̄Z, it is
also clear that M(2) is recursively consistent, and Proposition 2.3 implies that
M(2) is normally consistent. We also notice that the relation (3.1) must induce in
a proposed flat extension M(3) the relation

Z̄Z2 = c1Z + c2Z
2 + c̄2Z̄Z,(3.11)

so the entries γ23 and γ14 are fully determined, namely,

γ23 = c1e + c2h + c̄2g(3.12)

and

γ14 = c1f + c2(u + iv) + c̄2h.(3.13)

It follows that in any proposed flat extension M(3), the Z3 column must satisfy
the condition [Z3]6 =

(
γ03 γ13 γ04 γ23 γ14 γ05

)
, where γ23 and γ14 are given

by (3.12) and (3.13), respectively, and where γ05 is not yet determined. Moreover,
[Z3]6 must be in the range of M(2), and since [M(2)]4 is invertible, two cases arise,
which we consider separately.

1. rankM(2) = 4. (Proof of Theorem 1.10(ii)) The basis for CM(2) is
{1 , Z, Z̄, Z2}, and observe that this implies that Z̄2 /∈ {1 , Z, Z̄}, for otherwise
Z2 ∈ {1 , Z, Z̄} by [CuF4, Proposition 3.10]. Thus, M(2) does not satisfy the
hypotheses of Theorem 2.7; in this case we will prove the existence of flat extensions
by an independent but related argument. To define Z3 so that it is normal with
respect to Z̄Z2 we must have [Z3]4 = v :=

(
f h u + iv γ23

)T , with γ23 given
by (3.12). Since [M(2)]4 > 0, there exist unique scalars k1, k2, k3, k4 such that
[M(2)]4

(
k1 k2 k3 k4

)T = v. To ensure that Z3 ∈ RanM(2), we are thus

forced to define Z3 := M(2) ·
(
k1 k2 k3 k4 0 0

)T . Note that this relation
defines γ05, and “redefines” γ14. To ensure normality, the fifth entry of [Z3]6 and
the sixth entry of [Z̄Z2]6 must coincide, i.e.,(

d e e h
) (

k1 k2 k3 k4

)T = γ14.(3.14)

Using (3.13) and symbolic manipulation, we verify (3.14), a fact that can also be
derived from the proof of Theorem 2.7 (see Example 2.16). As for the rest of the B
block of a proposed M(3), we observe that Z̄2Z := c1Z̄ + c̄2Z̄

2 + c2Z̄Z is normal
with respect to Z̄Z2 (by Proposition 2.3). Finally, we define Z̄3 by symmetry, Z̄3 :=
k̄11 + k̄2Z̄ + k̄3Z + k̄4Z̄

2. Since {Z3, Z̄Z2} and {Z̄Z2, Z̄2Z} form normal bands,
and since Z̄2Z, Z̄3 are symmetric with respect to Z3, Z̄Z2, respectively, we can
conclude that B is symmetric and satisfies normality. Thus, we have constructed a
moment matrix extension block B satisfying RanB ⊆ RanM(2). The existence of
a flat extension now depends on the reduced C-test, that is, on whether the (1, 1)
and (2, 2) entries of the C block of [M(2); B] are equal. Our next result shows that
this is indeed the case.

Theorem 3.7. Let M(2) satisfy (3.1), assume M(2) ≥ 0, [M(2)]4 > 0 and
rankM(2) = 4 (as given by Algorithm 3.5). Then there exists a unique flat exten-
sion M(3) of M(2). Consequently, there is a unique 4-atomic representing measure
for γ.
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Proof. The reduced C-test consists of verifying that(
γ30 γ31 γ40 γ32

) (
k1 k2 k3 k4

)T =
(
γ22 γ23 γ32

) (
c1 c2 c̄2

)T
,

that is

(3.15) k1f + k2h + k3j + k4(c1e + c2h + c̄2g) − c1g

+ c2(c1e + c2h + c̄2g) + c̄2(c1e + c2h + c̄2g) = 0.

Using symbolic manipulation, one shows that (3.15) is equivalent to

− 1 + e2

1 + e2 − f2
· detM(2){1,2,3,4,6} = 0,

which follows from the fact that rankM(2) = 4. (Incidentally, notice that γ05

played no role in (3.15).)

Example 3.6 (continued). Recall that a = 1, b = 0, c = −1, d = 2, e = −2,
f = 1, g = 12, and h = 0; to make rankM(2) = 4, choose u = 0 and v = 9.
In (3.1), c1 = 2, c2 = c3 = −2, and by (3.12) and (3.13) we have γ23 = −28
and γ14 = 2 − 18i. Also, k1 = −2, k2 = −3 + 3i, k3 = 6i, and k4 = −3, from
which it follows that γ05 = −1 + 36i and γ33 = 136. Since M(3) (as defined by
Theorem 3.7) is flat, Theorem 1.1 implies that M(3) has a unique flat extension
M(4), which is recursively generated by Proposition 1.7. To obtain the unique
representing measure µ guaranteed by Theorem 3.7, we proceed as follows. (3.1)
induces (3.11) and, a fortiori,

Z̄Z3 = c1Z
2 + c2Z

3 + c̄2Z̄Z2 = 2Z2 − 2Z3 − 2Z̄Z2,(3.16)

this time in CM(4). (3.16) yields at once γ24 = 52 + 36i and γ34 = −432 −
72i. We now look at the “analytic” compression of M(3), that is [M(3)]anal :=
[M(3)]{1,2,4,7}. Observe that [M(3)]anal is positive and invertible: for, if Z3 ∈〈
1 , Z, Z2

〉
in C[M(3)]anal then the Extension Principle would force the same linear

dependence in CM(3), which would immediately place an upper bound of 3 on the
number of atoms of any representing measure (by (1.4)), contradicting Theorem 3.7.
We now use the invertibility of [M(3)]anal to express [Z4]anal in terms of [1 ]anal,
[Z]anal, [Z2]anal, [Z3]anal in C[M(3)]anal . By the Extension Principle, this relation ex-
tends to the corresponding relation in CM(4), and thus gives rise to the polynomial
equation

z4 + 5z3 + (9 − 3i)z2 + (8 + 6i)z + (4 − 12i) = 0,(3.17)

which is satisfied by every point in the support of µ, by (1.4). The roots of (3.17) are
z0 = −1+3i−(−1)3/4√6

2 , z1 = −1+3i+(−1)3/4√6
2 , z2 = −4−3i−√

15
2 and z3 = −4−3i+

√
15

2 ,
which thus become the atoms of µ. To find the densities, we form the associated
4 × 4 Vandermonde system (1.3), and obtain ρ0

∼= 0.554371, ρ1
∼= 0.0919931,

ρ2
∼= 0.0175098 and ρ3

∼= 0.346127.

Proof of Theorem 1.10(iii). The preceding rank 4 case can be generalized
to permit complex entries for the moments in M(2). We do not have an analogue
of Algorithm 3.5 to describe the most general M(2) ≥ 0 for which {1 , Z, Z̄, Z2} is a
basis for CM(2) and Z̄Z ∈

〈
1 , Z, Z̄

〉
; nevertheless, we may proceed exactly as before

to reduce the question of flat extensions to the reduced C-block test C11 = C22.

We conjecture that the latter test is always satisfied.
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2. rankM(2) = 5. (Proof of Theorem 1.10(iv)) This is a continuation of
Example 2.16, so we permit the moments in M(2) to be complex. Recall from
Example 2.16 that to each γ05 ∈ C there corresponds a unique moment matrix
extension block B ≡ B[γ05] such that RanB ⊆ RanM(2). Thus, M(2) admits a
flat extension M(3) if and only if we can choose γ05 so that the reduced C-block
test C11 = C22 is satisfied.

The preceding test now assumes the form

(3.18)(
γ30 γ31 γ40 γ32 γ50

) (
M(2){1,2,3,4,6}

)−1 (
γ03 γ13 γ04 γ23 γ05

)T
=
(
γ22 γ23 γ32

) (
c1 c2 c̄2

)T
,

where γ23 is given as in (3.12). At present, we have not been able to verify (3.18)
in general; however, in a number of cases, two of which we next illustrate, we can
establish the existence of flat extensions.

Example 3.8. Set a = 1, b = 0, c = 0, and d = 1 in (3.2). Then detM(2)4 =
1+e2−f2, which imposes the condition |f | <

√
1 + e2. To simplify the calculations,

we set f :=
√

1 + e2 − r, for 0 < r < 1 + e2. Then detM(2)4 = r and

detM(2){1,2,3,4,6} = det
(

r u − iv − 2ef
u + iv − 2ef r

)
.

Since detM(2){1,2,3,4,6} must be positive, for simplicity we assign to u+iv the value
2ef ; then detM(2){1,2,3,4,6} = r2, g = 1 + 2e2, and h = e2 + ef . Since (3.1) holds
with c1 = 1 and c2 = e, we obtain γ14 = e3 + f + 3e2f and γ23 = e(2 + 3e2 + ef).
With γ05 ≡ x ∈ R, the C-block test reduces to finding at least one value of x
satisfying the equation

(3.19) − 1 − 3e2 − 3e4 − e6 + 2f2 + 4e2f2 + 11e4f2

+ 6e3f3 − f4 + (−6e2f − 2ef2)x + x2 = 0.

Observe that the discriminant of (3.19) is 4r2(1+e2), which shows at once that there
are two values of x which fulfill the test. Thus, M(2) does admit a flat extension
M(3) in this case (and the corresponding representing measure is 5-atomic).

Proposition 3.9. In (3.2), assume a = 1, b = 0, c = 0, d = 1 and f = 0, that
is

M(2) ≡


1 0 0 0 1 0
0 1 0 e e 0
0 0 1 0 e e
0 e 0 1 + 2e2 e2 u − iv
1 e e e2 1 + 2e2 e2

0 0 e u + iv e2 1 + 2e2

 .

Assume also that rankM(2) = 5, that is u2 + v2 < (1 + e2)2 (cf. Proposition 3.4).
Then, for every choice of u and v there exist real numbers r and s such that with
γ05 := r + is, the reduced C-block test is satisfied. In other words, M(2) does admit
a flat extension M(3).
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Proof. Direct calculation shows that in this case the reduced C-block test is
equivalent to

(3.20) F (r, s) := −1 − 4e2 − 6e4 − 4e6 − e8 + r2 + e2r2 + s2 + e2s2

− 6eru − 6e3ru + 2u2 + 13e2u2 + 11e4u2 − u4

− 6esv − 6e3sv + 2v2 + 13e2v2 + 11e4v2 − 2u2v2 − v4 = 0.

Close inspection of (3.20) reveals that

F (r, s) = ar

(
r +

br

2ar

)2

+ as

(
s +

bs

2as

)2

−
((

1 + e2
)2 − u2 − v2

)2

,

where ar ≡ as := 1 + e2, br := −6eu − 6e3u and bs := −6ev − 6e3v. Moreover,
we observe that detM(2){1,2,3,4,6} = (1 + e2)2 − u2 − v2. It then follows that

F (r, s) = 0 precisely when (r, s) is in the circle centered at
(
− br

2ar
,− bs

2as

)
and of

radius
detM(2){1,2,3,4,6}√

ar
. This completes the proof of Proposition 3.9.

Remark 3.10. Notice that the proof of Proposition 3.9 shows that in case
detM(2){1,2,3,4,6} = 0 (i.e., rankM(2) = 4), the above circle reduces to the point(
− br

2ar
,− bs

2as

)
, and γ05 is then uniquely determined, as we already observed in

Theorem 3.7.



CHAPTER 4

The Algebraic Variety of γ

In Examples 2.2 and 2.5 we used the criteria of recursive consistency and normal
consistency to prove that certain positive, recursively generated moment matrices
M(n)(γ) do not admit positive extensions M(n + 1). In view of Theorem 1.5,
this implies that γ has no finitely atomic representing measure. Does γ have a
representing measure with infinite support? In Examples 4.6 and 4.7 below, we use
the variety of γ to show that no such representing measure exists. In Example 2.14
we used the reduced C-block test to prove the nonexistence of flat extensions for
that moment problem, but we left open the possibility that γ has some representing
measure µ with card suppµ > rankM(n)(γ). In Example 4.4 we use the variety of
γ to show that, in fact, no such measure exists. By contrast, in Examples 4.8–4.10
we employ variety techniques to construct certain minimal representing measures;
of these examples, the last two have added interest because they fall outside the
scope of Theorem 2.7.

For an arbitrary truncated moment problem with moment matrix M(n)(γ),
recall that the variety of γ is given by

V(γ) :=
⋂

p∈Pn

p(Z,Z̄)=0

Z(p).

V(γ) is a closed (possibly empty) subset of C, satisfying suppµ ⊆ V(γ) and
rankM(n) ≤ card suppµ ≤ cardV(γ) for every representing measure µ ((1.6) and
(1.7)); we also let ρ(γ) := cardV(γ) − rankM(n)(γ). (We mention in passing
that the variety concept was implicitly used in [CuF4, Example 3.2] and [CuF5,
Example 3.3] to determine the support of potential representing measures.)

We begin by recording several general facts concerning the size and location of
the support of a representing measure.

Proposition 4.1. (cf. [CuF4, Proposition 3.1]) Let µ, ν be representing mea-
sures for γ, and assume that suppµ is contained in some algebraic curve Z(p) with
p ∈ Pn. Then supp ν ⊆ Z(p).

Proposition 4.2. An algebraic curve Z(p) contains no set of positive planar
measure.

Proof. This is a straightforward application of Fubini’s Theorem.

Corollary 4.3. Let µ be a representing measure for γ whose support contains
a set of positive planar measure, and let ν be another representing measure for γ.
Then supp ν is not contained in any algebraic curve of degree at most n; moreover,
V(γ) = ∅ and M(n)(γ) is invertible.

32
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In Example 2.14 we studied a moment matrix M(3) with Z3 = αZ̄2, and
showed that there is no flat extension M(4). We next prove that there is actually
no representing measure, by showing that ρ(γ) < 0.

Example 4.4. (Example 2.14 revisited) The relation z3 = αz̄2, α ∈ R, has at
most two roots. For, if we write z ≡ x + iy, a straightforward calculation shows
that the given relation is equivalent to the two (real) relations{

x3 − 3xy2 − α(x2 − y2) = 0

y(2αx − 3x2 + y2) = 0.
(4.1)

From the second equation we see that two cases arise: y = 0 (which leads to x = 0
and x = α) and y 6= 0. In the latter case, we obtain y2 = 3x2 − 2αx from the
second equation, and when we substitute this into the first equation, we get x = 0,
x = α

2 . If x = 0 we get y = 0 (a contradiction), and if x = α
2 we obtain y2 = −α2

4
(again a contradiction). As a result, the only roots of (4.1) are (0, 0) and (α, 0).
Since rankM(3) = 8, we have ρ(γ) = −6, so there is no representing measure.

The variety test given by Proposition 4.1 can also be used as a detector of
column relations of lower degree, when one relation is known, as the following
example illustrates.

Example 4.5. Let M(n) be a moment matrix in which Z̄Z = 1 + Z2. If
M(n) admits a representing measure, then detM(1) = 0. For, the associated real
algebraic curves are 2y2 = 1 and xy = 0, from which one gets at once V(γ) ⊆
{(0,−

√
2

2 ), (0,
√

2
2 )}. Thus, rankM(n) ≤ 2, which forces detM(1) = 0. For n = 2,

with M(2) as in (3.2), the relation Z̄Z = 1 + Z2 and the moment matrix structure
actually determine all the moments in terms of a ≡ γ00. For, in M(2), Z̄Z = 1 +Z2

implies d = a + c, e = b + e, e = b + f , h = c + g, g = d + h, h = c + (u + iv), from
which we get at once b = 0, f = e, u + iv = g and c + d = 0 (which further implies

a+2c = 0). Then M(1) =
(

a 0 0
0 a

2 − a
2

0 − a
2

a
2

)
, which exhibits the relation Z̄ = −Z. That

in turn forces e = 0, g = a
4 , h = −a

4 and u + iv = a
4 .

In Example 2.2 we exhibited a positive recursively generated M(4)(γ), with
Z̄Z3 and Z̄2Z2 recursively determined, having no positive extension M(5). We
now show that V(γ) = ∅, so γ has no representing measure.

Example 4.6. In Example 2.2, columns Z̄Z3, Z̄2Z2, Z̄3Z and Z̄4 are linear
combinations of the preceding eleven columns, giving rise to the following three
relations:

z̄z3 =
5
2
z2 +

1√
10

z̄3,(4.2)

z̄2z2 = −1 + 3z̄z(4.3)

and

z̄4 = −
√

10z +
√

10z̄ +

√
5
2
z̄z2 −

√
5
2
z̄2z + z4.(4.4)

We now switch to real and imaginary parts. The imaginary part of (4.2) is

y(−25x + 3

√
5
2
x2 + 10x3 −

√
5
2
y2 + 10xy2) = 0,
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which gives rise to two main cases: y = 0 and y 6= 0. In the former case, the real part
of (4.2) becomes x2(−25−√

10x+10x2

10 ) = 0, so two subcases arise: if x = 0, then the
real part of (4.3) becomes 0 = −1, a contradiction. We must, therefore, have x 6= 0.
Looking at the real parts of (4.2) and (4.3) we then obtain −25−

√
10x +10x2 = 0

and (x2 + x− 1)(x2 − x− 1) = 0, which admit no common solutions. Thus, we are
led to examine the case y 6= 0. Looking now at the imaginary parts of (4.2) and
(4.4), it follows that y2 = 50x−3

√
10x2−20x3

20x−√
10

and y2 =
√

10x2+8x3−2
√

10
8x−√

10
, respectively.

Placing these values into the expression for the real part of (4.2), we obtain two
equations, which must simultaneously hold:

x(−125
√

10 − 100x + 608
√

10x2 − 160x3 − 320
√

10x4)
(20x −

√
10)2

= 0(4.5)

and

2(25 − 85
√

10x − 145x2 + 170
√

10x3 + 40x4 − 48
√

10x5)
5(8x −

√
10)2

= 0.(4.6)

Direct calculation of the roots of these equations reveals that (4.5) and (4.6) each
have five real roots, but the two sets of roots are disjoint. We have thus established
that V(γ) = ∅. Thus, M(4) admits no representing measure.

We next return to the special M(4) problem considered in Example 2.5.

Example 4.7. We have seen in Example 2.5 that on occasion, admissible
columns, even when they arise from conjugate relations, need not be normal with
respect to one another. That the relation Z̄Z3 = 5

2Z2 + 3
5 Z̄3 gives rise to admis-

sible columns forming a non-normal band is sufficient to show that M(4) admits
no positive extension, and that therefore no 13-atomic representing measure exists
(Theorem 1.1). More generally, the lack of normal consistency implies (via The-
orem 1.5) the non-existence of finitely atomic representing measures. One might
wonder about the existence of non-atomic representing measures. We shall now use
the variety test in Proposition 4.1 to see that the moment matrix in Example 2.5
admits no representing measure whatsoever. We shall do this by explicitly showing
that V(γ) has exactly 11 points, so ρ(γ) < 0. As usual, let z ≡ x+ iy. The relation
z̄z3 = 5

2z2 + 3
5 z̄3 implies that

−25x2 − 6x3 + 10x4 + 25y2 + 18xy2 − 10y4 = 0(4.7)

and

y(−25x + 9x2 + 10x3 − 3y2 + 10xy2) = 0.(4.8)

If y = 0, (4.7) gives rise to the three values x = 0, x ∼= −1.30935 and x ∼= 1.90935.
If y 6= 0, then (4.8) forces

y2 =
25x − 9x2 − 10x3

10x− 3
.(4.9)

When this value of y2 is replaced into (4.7) we obtain the five values x = 0, x ∼=
−1.54469, x ∼= −0.404611, x ∼= 0.590021 and x ∼= 1.05928. Since y 6= 0, (4.9) forces
x 6= 0, and each of the remaining four x-values gives rise to two y-values via (4.9),
for a total of 11 different points in V(γ).
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In Example 2.15 we used Theorem 2.7 to reduce an M(3) flat extension problem
(with Z̄Z2 recursively determined) to the C-block test C11 = C22. We now wish to
study a case of this example in which we can find a flat extension of M(3).

Example 4.8. For g, k ∈ R, let

M(3) :=



1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 g 0 0
0 0 1 0 0 0 0 0 g 0
0 0 0 g 0 0 0 0 0 k
1 0 0 0 g 0 0 0 0 0
0 0 0 0 0 g k 0 0 0
0 0 0 0 0 k g2 0 0 0
0 g 0 0 0 0 0 g2 0 0
0 0 g 0 0 0 0 0 g2 0
0 0 0 k 0 0 0 0 0 g2


.

One checks that [M(3)]6 > 0 if and only if g > 1, that det[M(3)]7 = g(g−1)(g3−k2)
and that det[M(3)]{1,2,3,4,5,6,7,10} = (g − 1)(g3 − k2)2. Thus, the conditions g > 1,
g3 > k2 are sufficient to guarantee that rankM(3) ≥ 8. Moreover, a straightforward
calculation shows that

Z̄Z2 = gZ(4.10)

and

Z̄2Z = gZ̄,(4.11)

so rankM(3) = 8 when g3 > k2. (From (4.10) we see that V(γ(6)) is determined by
the single relation z(|z|2−g) = 0, whence cardV(γ(6)) = ∞.) It follows readily from
(4.10) and (4.11) that Z̄Z3 := gZ2, Z̄2Z2 := gZ̄Z, and Z̄3Z := gZ̄2 are admissible
for M(3), and Proposition 2.3 implies that they form a normal band. Since (4.11)
is obtained from (4.10) by conjugation, we can restrict attention to (4.10). In a flat
extension M(4) of M(3), observe that (4.10) immediately implies

[Z̄Z3]10 = g[Z2]10 = (0, 0, 0, g2, 0, 0, 0, 0, 0, gk)T ,(4.12)

which forces [Z4]10 = (0, 0, k, 0, 0, 0, 0, 0, gk, w)T by normality, where w is a free
parameter. But [Z4]10 = k[Z̄]10 − kw

g3−k2 [Z2]10 + gw
g3−k2 [Z̄3]10, so by the Extension

Principle, the same linear combination must hold in CM(4), that is

Z4 = kZ̄ − kw

g3 − k2
Z2 +

gw

g3 − k2
Z̄3.(4.13)

If we define Z̄4 via symmetry, then it follows that the resulting block B is a moment
matrix extension block satisfying RanB ⊆ RanM(3). According to Example 2.15,
the necessary and sufficient condition for the existence of a flat extension M(4) is
equality of the (1, 1) and (2, 2) entries of the C block of [M(3); B], that is,

kγ50 −
kw

g3 − k2
γ42 +

gw̄

g3 − k2
γ70 = gγ33.(4.14)

Equivalently, k2 + g
g3−k2 |w|2 = g3, so that |w|2 = (g3−k2)2

g , which means that w can
be chosen anywhere on the circle centered at the origin with radius g3−k2

√
g . (We note

in passing that each value of w gives rise to a distinct representing measure, so γ
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admits infinitely many 8-atomic representing measures.) We conclude this example
by showing how variety techniques can be used to explicitly compute a representing
measure in a special case.

To simplify the remaining calculations, we let g := u2, k := u3

2 , and w := 3
4u5.

Let M [w] be the associated flat extension. With z ≡ x + iy, (4.10) and (4.13)
imply that the variety associated with M [w] is obtained as the intersection of the
following four algebraic curves:

x(x2 + y2 − u2) = 0,(4.15)

y(x2 + y2 − u2) = 0,(4.16)

x4 + y4 − 6x2y2 − u3

2
x +

u2

2
(x2 − y2) − u(x3 − 3xy2) = 0,(4.17)

and

4x3y − 4xy3 +
u3

2
y + u2xy + 3ux2y − uy3 = 0.(4.18)

One checks that only the following eight points satisfy (4.15), (4.16), (4.17) and
(4.18) simultaneously:

(x0, y0) = (0, 0), (x1, y1) = (u, 0),

(x2, y2) =

(
−u

2
−

√
2

4
u,

√
5 − 2

√
2

2
√

2
u

)
, (x3, y3) =

(
−u

2
−

√
2

4
u,−

√
5 − 2

√
2

2
√

2
u

)
,

(x4, y4) =

(
−u

2
+

√
2

4
u,

√
5 + 2

√
2

2
√

2
u

)
, (x5, y5) =

(
−u

2
+

√
2

4
u,−

√
5 + 2

√
2

2
√

2
u

)
,

(x6, y6) =

(
u

2
,

√
3

2
u

)
(x7, y7) =

(
u

2
,−

√
3

2
u

)
.

To calculate the densities associated with the atoms whose real and imaginary parts
are given by these eight points, we consider the corresponding Vandermonde matrix
V (u), built using the complex numbers zk := xk + iyk (0 ≤ k ≤ 7). A calculation
reveals that with

ρ :=

(
1 − 1

u2
,

3
17u2

,
16 + 3

√
2

119u2
,
16 + 3

√
2

119u2
,
16 − 3

√
2

119u2
,
16 − 3

√
2

119u2
,

1
7u2

,
1

7u2

)
,

we have

V (u)ρT =
(

1, 0, 0, 0, 0,
1
2
u3, 0,

3
4
u5

)
= (γ00, γ01, γ02, γ03, γ04, γ05, γ06, γ07)T ,

so µ :=
∑7

k=0 ρkzk is the desired representing measure.

We next turn to moment problems that fall outside the scope of Theorem 2.7.
We first consider a flat extension problem for M(3) in which {1 , Z, Z̄, Z2, Z̄Z, Z̄2, Z3}
is a basis for CM(3), Z̄Z2 and Z̄2Z are recursively determined, but Z̄3 = Z3 (so
that Theorem 2.7 does not apply).
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Example 4.9. Let

M ≡ M(3) :=



1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 α 0 0
0 0 1 0 0 0 0 0 α 0
0 0 0 α 0 0 0 0 u 0
1 0 0 0 α 0 u 0 0 u
0 0 0 0 0 α 0 u 0 0
0 0 0 0 u 0 β 0 0 δ
0 α 0 0 0 u 0 β 0 0
0 0 α u 0 0 0 0 β 0
0 0 0 0 u 0 δ 0 0 β


,

with α, β, δ and u real numbers. We observe at once that with α > 1 we guarantee
det[M ]6 > 0, and that the additional condition β > u2

α−1 implies [M ]7 positive and
invertible. We next impose the column relation

Z̄Z2 = αZ +
u

α
Z̄2,(4.19)

which implies [M ]8 ≥ 0. Thus,

α2 +
u2

α
= β ( >

u2

α − 1
),(4.20)

whence

0 < u <
√

α3(α − 1)(4.21)

and

α2 < β < α3.(4.22)

We also have

Z̄2Z = αZ̄ +
u

α
Z2(4.23)

which, together with the positivity of [M ]8 and Smul’jan’s Criterion [CuF1, Propo-
sition 2.3], implies [M ]9 ≥ 0. Let p(z, z̄) := αz + u

α z̄2. Recursive consistency for
M is equivalent to (z̄p)(Z, Z̄) = (zp̄)(Z, Z̄), which reduces to the condition β = δ.
With this condition, we automatically have Z̄3 = Z3, so M ≥ 0 (by the positivity
of [M ]9 and Smul’jan’s Criterion once again).

Thus, with β = δ, we have M positive, recursively generated, and recursively
consistent. In constructing a flat moment matrix extension block B, the admissible
columns are

Z̄Z3 = αZ2 +
u

α
Z̄2Z,(4.24)

Z̄2Z2 = αZ̄Z +
u

α
Z̄3,(4.25)

and

Z̄3Z = αZ̄2 +
u

α
Z̄Z2.(4.26)
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These columns form a normal band, so M is normally consistent. Calculations
using (4.24), (4.25) and (4.26) show that the block B34 is of the form

s 0 αu + βu
α 0 v̄

x 0 0 αu + βu
α ȳ

y αu + βu
α 0 0 x̄

v 0 αu + βu
α 0 s̄

 .

Now Z4 in block B must be of the form r ≡ (0, u, 0, 0, 0, β, s, x, y, v)T . Let I denote
the basis for CM given by {1 , Z, Z̄, Z2, Z̄Z, Z̄2, Z3}, and let [r]I := (0, u, 0, 0, 0, β, s)T .
To ensure normality in B, we require s = 0, whence [r]I = u[Z]I + β

α [Z̄2]I ; thus,
we are forced to define

Z4 := uZ +
β

α
Z̄2.

Now

x ≡
〈
z4, z̄z2

〉
B

= uγ22 +
β

α
γ41 = αu +

β

α
u =

〈
z̄z3, z̄2z

〉
B

,

y ≡
〈
z4, z̄2z

〉
B

= uγ13 +
β

α
γ32 = 0 =

〈
z̄z3, z̄3

〉
B

,

and

v ≡
〈
z4, z̄3

〉
B

= uγ04 +
β

α
γ23 = 0.

Thus, there exists a unique moment matrix extension block B satisfying RanB ⊆
RanM . Since the admissible columns are Z̄Z3, Z̄2Z2 and Z̄3Z, Proposition 2.6
implies that the C block of [M ; B] is Toeplitz if and only if C11 = C22. This is
equivalent to

uγ41 +
β

α
γ60 = αγ33 +

u

α
γ52,

or

u2 +
β2

α
= αβ +

u

α
(αu +

βu

α
),

and the latter identity follows from (4.20). Thus M has a unique flat moment
matrix extension.

A calculation shows that z̄z2 = αz + u
α z̄2 has exactly 7 (= rankM) solutions,

which thus provide the support of the unique representing measure; these solutions
are as follows:

z0 = 0;

z1 =
u +

√
u2 + 4α3

2α
; z2 =

u −
√

u2 + 4α3

2α
;

z3 = −z2

2
+ i

√
α2 − 2uz2 − αz2

2

α
; z4 = z̄3;

z5 = −z1

2
+ i

√
α2 − 2uz1 − αz2

1

α
; z6 = z̄5.
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Since M(4) is a flat extension of M(3), we may now find the corresponding densities
via (1.3). These densities are

ρ0 = 1 − β

α3
;

ρ1 = ρ5 = ρ6 =
β

6α3
− u(β + 2α2)

6α3
√

u2 + 4α3
;

ρ2 = ρ3 = ρ4 =
β

6α3
− u(β + 2α2)

6α3
√

u2 + 4α3

(observe that by (4.22), β
α3 < 1, so 0 < ρ0 < 1; similarly, an easy calculation shows

that ρ1 and ρ2 are positive, in keeping with Theorem 1.4).

For our last example we consider an M(4) flat extension problem in which the
first 12 columns form a basis for CM(4), Z̄2Z2 is recursively determined, but Z̄3Z

and Z̄4 are not recursively determined, so Theorem 2.7 does not apply.

Example 4.10. We consider the moment problem for

M(4) ≡



1 0 0 0 1 0 0 0 0 0 0 0 α 0 0
0 1 0 0 0 0 0 α 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 α 0 0 0 0 0 0
0 0 0 α 0 0 0 0 0 0 0 β 0 0 0
1 0 0 0 α 0 0 0 0 0 0 0 β 0 0
0 0 0 0 0 α 0 0 0 0 0 0 0 β 0
0 0 0 0 0 0 β 0 0 0 0 0 0 0 0
0 α 0 0 0 0 0 β 0 0 0 0 0 0 0
0 0 α 0 0 0 0 0 β 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 β 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 δ 0 0 u 0
0 0 0 β 0 0 0 0 0 0 0 δ 0 0 u
α 0 0 0 β 0 0 0 0 0 0 0 δ 0 0
0 0 0 0 0 β 0 0 0 0 u 0 0 δ 0
0 0 0 0 0 0 0 0 0 0 0 u 0 0 δ



.

With α > 1, β > α2 and δ > β2

α , the Nested Determinants Test implies that M(4)12
is positive and invertible. With δ = α3−2αβ+β2

α−1 (> β2

α ), we have

Z̄2Z2 =
α2 − β

α − 1
1 +

β − α

α − 1
Z̄Z;(4.27)

moreover, detM(4)13 = 0, so M(4)13 ≥ 0. With u =
√

δ(δ − β2

α ) we have

Z̄3Z =
β

α
Z̄2 +

u

δ
Z4(4.28)

and

Z̄4 = − βδ

αu
Z2 +

δ

u
Z̄Z3;(4.29)

since rankM(4) = rankM(4)13 = 12, it follows that M(4) ≥ 0 (by Proposition
2.1).

We next proceed to define a moment matrix extension block B satisfying
RanB ⊆ RanM(4). To construct a flat extension of M(4), notice that in view
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of (4.28) and (4.29), any recursively generated moment matrix extension of M(4)
must satisfy

Z̄4Z =
β

α
Z̄3 +

u

δ
Z̄Z4(4.30)

and

Z̄4Z = − βδ

αu
Z3 +

δ

u
Z̄Z4,(4.31)

respectively. From (4.30) and (4.31) we see that

Z̄Z4 =
δ

β
Z3 +

u

β
Z̄3.(4.32)

Our strategy is then to define Z̄Z4 in block B by (4.32). At the same time, (4.27)
allows us to define Z̄2Z3 by the formula

Z̄2Z3 :=
α2 − β

α − 1
Z +

β − α

α − 1
Z̄Z2,(4.33)

and a straightforward calculation shows that Z̄Z4 and Z̄2Z3 form a normal band
in B. Using normality, we can generate [Z5]I from Z̄Z4, where I denotes the basis
for CM(4) consisting of the first 12 columns. A calculation reveals, however, that

[Z5]I = − αu

β − α2
[Z̄]I +

u

β − α2
[Z̄2Z]I .

Of course, this leads us to define

Z5 := − αu

β − α2
Z̄ +

u

β − α2
Z̄2Z,(4.34)

and another calculation shows that Z5 is then normal with respect to Z̄Z4 in B.
The remaining columns of block B are defined by symmetry (cf. Proposition 2.3
and [CuF4, Lemma 3.10]); the resulting moment matrix extension block B clearly
satisfies RanB ⊆ RanM(4), and is the unique such block. (Incidentally, observe
that B54 = 0.)

We next consider the C block of [M(4); B]; since Z̄2Z3 and Z̄3Z2 form a normal
band of admissible columns in B, the reduced C-block test implies that C is Toeplitz
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if and only if C11 = C22 = C33, C21 = C32, and C41 = C52. Now,

C11 = C22 ⇐⇒
〈
z5, z5

〉
C

=
〈
z̄z4, z̄z4

〉
C

⇐⇒
〈
− αu

β − α2
z̄ +

u

β − α2
z̄2z, z5

〉
B∗

=
〈

δ

β
z3 +

u

β
z̄3, z̄z4

〉
B∗

(using (4.34) and (4.32), respectively)

⇐⇒ u2

β − α2
=

δ2 + u2

β

⇐⇒ δ =
αβ2

2α2 − β

(since δ > 0, this entails 2α2 > β)

⇐⇒ α3 − 2αβ + β2

α − 1
=

αβ2

2α2 − β

⇐⇒ (β2 − 3αβ + 2α3)(β − α2) = 0

⇐⇒ β =
α(3 ±

√
9 − 8α)

2
.(4.35)

These values require 1 < α < 9
8 and do satisfy α2 < β < 2α2. Next, from (4.33)

and (4.32) we have

C22 = C33 ⇐⇒ α2 − β + (β − α)δ
α − 1

=
δ2 + u2

β
,

and this condition is equivalent to (4.35). Similarly, from (4.32) and (4.34) we see
that

C41 = C52 ⇐⇒ u(−αβ + δ)
β − α2

=
2uδ

β
;

this reduces to δ = αβ2

2α2−β , which is equivalent to (4.35). We also have C21 = C32 =
0. Thus, (4.35) implies that M(4) has a unique flat extension.

In summary, with α > 1, β > α2, δ = α3−2αβ+β2

α−1 , u =
√

δ(δ − β2

α ), M(4)
is positive, recursively generated, and recursively and normally consistent. There
exists a unique moment matrix extension block B satisfying RanB ⊆ RanM(4),
but M(4) has a flat extension (necessarily unique, namely [M(4); B]) if and only if
1 < α < 9

8 and β = α(3±√
9−8α)

2 .
Under the conditions just described, γ has a unique 12-atomic representing

measure. Does γ admit other representing measures? To resolve this question, we
next compute V(γ). In CM(4) we have the following relations:

Z̄2Z2 = −β − α2

α − 1
1 +

β − α

α − 1
Z̄Z,(4.36)

Z̄3Z =
β

α
Z̄2 +

u

δ
Z4,(4.37)

and

Z̄4 = − βδ

αu
Z2 +

δ

u
Z̄Z3;(4.38)
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from symmetry, it follows that (4.37) and (4.38) are equivalent, so for the purposes
of computing V(γ) we consider only (4.37). Let θ := −β−α2

α−1 , η := β−α
α−1 , z ≡ x + iy;

(4.36) becomes (x2 + y2)2 = θ + η(x2 + y2), or

x2 + y2 =
η ±

√
4θ + η2

2
.(4.39)

Note that 4θ + η2 > 0 for α > 1; indeed, if p(β) := β2 + (4 − 6α)β + 4α3 − 3α2

(≡ 4θ+η2), the discriminant of p is −16(α−1)3 < 0, and since p(0) = α2(4α−3) > 0,

we see that p > 0 everywhere. Now define r1 := η+
√

4θ+η2

2 and r2 := η−
√

4θ+η2

2 .
Since θ < 0, it follows that 0 < r2 < r1, so V(γ) is contained in the union of the
two circles centered at the origin of radii

√
r1 and

√
r2; for notational convenience,

we shall represent the union of these two circles by the equation

x2 + y2 = r.(4.40)

Next, (4.37) is equivalent to the real system

α(δ − u)x4 − βδx2 + 6αux2y2 + βδy2 − α(δ + u)y4 = 0(4.41)

and

xy(βδ − α(δ + 2u)x2 + α(2u − δ)y2) = 0.(4.42)

If x2 + y2 = r with x 6= 0, y 6= 0, then (x, y) satisfies (4.42) if and only if y2 =
αr(δ+2u)−βδ

4αu . It follows that for r = r1 (and x 6= 0, y 6= 0), there are at most 4
points satisfying (4.40) and (4.42), and similarly for r = r2. Thus V(γ) contains at
most 8 points with nonzero x and y coordinates. When x = 0, (4.40) implies that
y 6= 0, and (4.41) reduces to y2 = βδ

α(δ+u) , contributing two more points to V(γ).

Finally, if y = 0 then (4.40) says that x 6= 0, and (4.41) implies that x2 = βδ
α(δ−u) .

(Incidentally, since βδ
α(δ+u) < βδ

α(δ−u) , (4.40) and the previous argument show that

r1 = βδ
α(δ−u) and r2 = βδ

α(δ+u) .)
We can thus conclude that cardV(γ) ≤ 12 = rankM(4), so it follows from

[CuF4] and (1.7) that if γ admits a representing measure, then it has to be unique,
with support V(γ). At the same time, such a representing measure must arise
from a flat moment matrix extension M(5) of M(4). In other words, γ admits
a representing measure µ if and only if [M(4); B], as constructed above, is a flat
moment matrix extension, in which case µ is 12-atomic. As we know, this happens
if and only if 1 < α < 9

8 and β = α(3±√
9−8α)

2 .
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We next compute the atoms in the case β =
α(3+√

9−8α)
2 . The 12 atoms of the

unique representing measure µ are zj := xj + iyj (0 ≤ j ≤ 11), where

(x0, y0) := (0,
√

r2) , (x1, y1) := (0,−√
r2) ,

(x2, y2) := (
√

r1, 0) , (x3, y3) := (−√
r1, 0) ,

y4 ≡ y5 :=

√
αr1(δ + 2u) − βδ

4αu
, x4 :=

√
r1 − y2

4 , x5 := −x4

y6 ≡ y7 := −
√

αr1(δ + 2u) − βδ

4αu
, x6 :=

√
r1 − y2

6 , x7 := −x6

y8 ≡ y9 :=

√
αr2(δ + 2u) − βδ

4αu
, x8 :=

√
r2 − y2

8 , x9 := −x8

y10 ≡ y11 := −
√

αr2(δ + 2u) − βδ

4αu
, x10 :=

√
r2 − y2

10, x11 := −x10.

Our next goal is to compute the densities ρ0, . . . , ρ11 of µ via (1.3). To this
end, we must first calculate certain high-order analytic moments of µ which are not
part of the initial data γ, namely γ0,9[µ], γ0,10[µ] and γ0,11[µ]. Let s1 := − αu

β−α2

and s2 := u
β−α2 ; (4.34) shows that Z5 = s1Z̄ + s2Z̄

2Z in M ′ ≡ M(5)(γ[µ]) :=
[M(4);B], so γ0,9[µ] = (s1Z̄ + s2Z̄

2Z, ˆ̄z4) = s1γ14 + s2γ25 = 0, and γ0,10[µ] =
(s1Z̄ + s2Z̄

2Z, ˆ̄z5) = s1γ15 + s2γ26 = 0. From Theorem 1.4(ii), M ′ has a flat
extension to M ′′ ≡ M(6){γ[µ]}, and in CM ′′ we have Z6 = s1Z̄Z + s2Z̄

2Z2; thus,
γ0,11[µ] = (s1Z̄Z + s2Z̄

2Z2, ˆ̄z5) = s1γ16 + s2γ27 = 0 (since B45 = 0).
Now let

t := (γ0,0, . . . , γ0,8, γ0,9[µ], γ0,10[µ], γ0,11[µ])T = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T,

and let V denote the Vandermonde matrix V (z0, . . . , z11); then ρ := (ρ0, . . . , ρ11)
is uniquely determined by the equation V ρ = t. This system is parameterized by
a choice of α, 1 < α < 9

8 . We are unable to solve the system explicitly in terms
of α due to the overwhelming complexity of the algebraic expressions present in
V . Even in a numerical example, special care is needed because V appears to be
poorly conditioned as α → 9

8 . We conclude with a Mathematica calculation for
α = 1.05. We compute β ∼= 1.98166, δ ∼= 18.4624, u ∼= 16.4867, r1

∼= 17.6363 and
r2

∼= 0.996995. The support of µ, calculated using the above formulas, is given
by z0

∼= 0.998496i, z1 = −z0, z2
∼= 4.19956, z3 = −z2, z4

∼= 2.09976 + 3.63692i,
z5 = −z̄4, z6 = z̄4, z7 = −z4, z8

∼= 0.864723 + 0.499248i, z9 = −z̄8, z10 = z̄8

and z11 = −z8. The densities are then computed from the Vandermonde matrix as
ρ0

∼= 0.166637, ρ2
∼= 0.0000301043, ρ1 = ρ8 = ρ9 = ρ10 = ρ11 = ρ0, ρ3 = ρ4 = ρ5 =

ρ6 = ρ7 = ρ2. Note that all atoms in the circle x2 + y2 = r1 have the same density,
and similarly for the atoms in x2 + y2 = r2.



CHAPTER 5

J.E. McCarthy’s Phenomenon and the Proof of

Theorem 1.5

At the very beginning of our study of TCMP, and motivated by the analogies
with THMP, our working conjecture was that to solve TCMP for γ ≡ γ(2n) one
had to find a flat extension for M(n) [CuF4, 1.1 Main Conjecture]. As evidence
began to mount on the substantial differences between TCMP and THMP, the pos-
sibility of finding truncated moment sequences γ admitting representing measures,
but not having rankM(n)-representing measures, became more tangible. Through
an ingenious counting argument, J.E. McCarthy finally established this [McC].
We reproduce here, with permission, his unpublished result; first, we need some
notation.

Let X be a nonempty finite set, let M(X) be the Banach space of signed real
measures on X , and let P(X) be the positive cone of measures which assign positive
mass to every point of X . As a subset of M(X), P(X) is open and nonempty. For
f a real-valued function on X , let Lf : M(X) → R be given by µ 7→

∫
f dµ, and

for f ≡ (f1, . . . , fN ), let Lf := (Lf1 , . . . , LfN ).

Lemma 5.1. Let X ⊆ R2 be a finite set and let f1, . . . , fN be N linearly in-
dependent real-valued functions on X. Then Lf (P(X)) has nonempty interior in
RN .

Proof. We first claim that the map Lf is onto. Since {f1, . . . , fN} is lin-
early independent on X ≡ {x1, . . . , xp}, the column rank of the matrix f(X) :=
(fj(xi))1≤i≤p, 1≤j≤N is N . Then the row rank of f(X) must also be N , so there
exists a subset x ≡ {xp1 , . . . , xpN } ⊆ X such that f(x) := (fj(xpi ))N

i,j=1 is invert-
ible. Given a vector (y1, . . . , yN)T ∈ RN , we can then find scalars λ1, . . . , λN ∈ R

such that y1

...
yN

 = f(x)

λ1

...
λN

 = λ1

 f1(xp1)
...

fN(xp1 )

+ · · · + λN

 f1(xpN )
...

fN(xpN )

 = Lf

(
N∑

i=1

λiδxi

)
,

that is, (y1, . . . , yN)T ∈ Lf (M(X)).
Since Lf is onto, the Open Mapping Theorem guarantees that Lf is open, which

implies that Lf (P(X)) is open and nonempty.

Theorem 5.2. [McC] There exists a moment sequence γ ≡ γ(10) : γ00, . . . ,
γ0,10, . . . , γ10,0 admitting a representing measure, but not admitting a rankM(5)-
atomic representing measure.

Proof. Observe first that rankM(5) ≤ 21, and that specifying the complex
moments γ00, . . . , γ0,10, . . . , γ10,0 of a proposed rankM(5)-atomic representing mea-
sure is equivalent to specifying the integrals (over the support of that measure) of

44
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the 66 real-valued functions fij(x, y) := xiyj , 0 ≤ i+j ≤ 10 (cf. [CuF4, Subsection
6.2]). Next, the set M21(R2) of purely atomic real signed measures on the plane,
having 21 or fewer atoms, can be put in one-to-one correspondence with R63 via
the map µ ≡

∑20
i=0 ρiδ(xi,yi) 7→ (ρ0, x0, y0, . . . , ρ20, x20, y20). Let f ≡ (fij)0≤i+j≤10;

the map µ 7→ Lf (µ) can thus be regarded as a polynomial mapping from R63 to
R66, whose range Lf (M21(R2)) must therefore have topological dimension at most
63. On the other hand, the 66 functions {fij}0≤i,j≤10 are linearly independent on
R2, so there must exist a finite subset X ⊆ R2 such that {fij}0≤i,j≤10 is linearly
independent on X . By the first part of the proof of Lemma 5.1, we can choose
X to have exactly 66 points. For this particular choice of X , we can now apply
Lemma 5.1 to g := {fij|X}0≤i,j≤10 and conclude that Lg(P) (⊆ Lg(M(X))) has
topological dimension 66 (by virtue of being a nonempty open set). This shows
that Lg(P) 6⊆ Lf (M21(R2)), so there exist sequences in Lg(P) which cannot be
represented with positive measures of 21 or fewer atoms.

Remark 5.3. Observe that for a given n, the number of real moments derived
from γ(2n) is (n + 1)(2n + 1), while rankM(n) ≤ (n+1)(n+2)

2 . Thus, n = 5 produces
the first instance in which 3 times the rank of M(n) (i.e., the number of real “degrees
of freedom” allowed by a rankM(n)-atomic representing measure in the plane) is
less than the number of real moments associated with the given γ. Thus, in a
certain sense, n = 5 is extremal. Whether for TCMP with n ≤ 4 the existence of
a representing measure implies the existence of a rankM(n)-atomic representing
measure is an open problem. We know that the answer is affirmative for n = 1
([CuF4, Theorem 6.1]), and we have partial affirmative results for n = 2 (Chapter
3) and n = 3, 4 (Chapter 2), but we have no definite conclusion in general.

McCarthy’s result might suggest that no invertible M(5) can admit a 21-atomic
representing measure. Our next example shows that there do exist sequences γ(10)

with M(5) invertible and having 21-atomic representing measures.

Example 5.4. The following 21-atomic measure gives rise to an invertible
M(5). We have obtained the atoms and densities by a simulation using Mathemat-
ica’s Random. On our machine with 40 MB of RAM, the Mathematica calculation
of detM(5) did not terminate. To establish the invertibility of M(5) we instead
used Choleski’s Algorithm, first establishing that det M(3) > 0, and then checking
that det(C − B∗M(3)−1B) > 0, where M(5) =

(
M(3) B
B∗ C

)
.

(On the list below, atoms are labeled zi, densities are labeled ρi.)

z1 = i/3 ρ1 = 3 z2 = −i/2 ρ2 = 2 z3 = 1 ρ3 = 2

z4 = 2/3 + 3i/2 ρ4 = 3 z5 = −1 ρ5 = 1 z6 = i ρ6 = 3

z7 = 1/2 + i/3 ρ7 = 2 z8 = 3i/4 ρ8 = 2 z9 = 2 + 2i/3 ρ9 = 2

z10 = 1 + i ρ10 = 2 z11 = 2/3 + i/3 ρ11 = 1 z12 = 2 + 3i/2 ρ12 = 2

z13 = 3/4 + i ρ13 = 2 z14 = 1 + i/2 ρ14 = 2 z15 = 1/3 + i/4 ρ15 = 2

z16 = 1/4 + i/3 ρ16 = 2 z17 = 3/2 + i/2 ρ17 = 3 z18 = 1/4 ρ18 = 2

z19 = −i ρ19 = 3 z20 = −1 + i/2 ρ20 = 2 z21 = 1 + 2i/3 ρ21 = 2



46 5. J.E. MCCARTHY’S PHENOMENON AND THE PROOF OF THEOREM 1.5

We now turn to the proof of Theorem 1.5. Let K denote a closed subset of R2.
Given n > 0, let

βij =
∫∫

K

xiyj dxdy (0 ≤ i + j ≤ n).(5.1)

The (real) 2-dimensional quadrature problem ([DaR], [Rez1], [Str]) entails finding
nodes (x1, y1), . . . , (xm, ym) ∈ K and nonnegative weights a1, . . . , am such that

βij =
m∑

`=1

a`x
i
`y

j
` (0 ≤ i + j ≤ n);(5.2)

if such a representation exists, one also seeks to find a representation for which m is
minimal ([CoR], [DaR], [Rez1], [Str]). The analogous 1-dimensional quadrature
problem with K = [a, b] ⊆ R was solved by C.F. Gauss, who established a minimal
quadrature rule with n nodes to interpolate the 2n − 1 moments

∫ b

a xi dx (0 ≤ i ≤
2(n − 1)) (Gaussian Quadrature [Ral]).

Relatively few results are known concerning minimal rules for (5.1), but the
following fundamental result of V. Tchakaloff [Tch] does establish the existence of
quadrature rules as in (5.2) for K compact.

Theorem 5.5. [Tch] Let K be a compact subset of R2 with positive planar
measure. Then there exist N ≤ (n+1)(n+2)

2 nodes (x1, y1), . . . , (xN , yN) ∈ K and
nonnegative weights a1, . . . , aN such that∫∫

K

p(x, y) dxdy =
N∑

`=1

a`p(x`, y`)

for every p ∈ R[x, y] with deg p ≤ n.

Tchakaloff also proved that in some cases N = (n+1)(n+2)
2 is minimal, and he

also formulated corresponding results for quadrature problems in Rd with d > 2.
Using the correspondence between the truncated real moment problem for R2n and
TCMP for Cn [CuF4, Section 7], it is straightforward to reformulate Tchakaloff’s
result as follows. In the sequel, we say that a linear functional F : Pn → C is
K-positive if

p ∈ Pn, p|K ≥ 0 =⇒ F (p) ≥ 0.

Proposition 5.6. Let K be a compact subset of C. If F : Pn → C is K-
positive, then there exist N ≤ m(n) points z1, . . . , zN ∈ K and nonnegative numbers
a1, . . . , aN such that F (p) =

∑N
`=1 a`p(z`, z̄`), p ∈ Pn.

As an immediate consequence of Proposition 5.6 we can prove Theorem 1.5(iii)⇒(iv).

Proposition 5.7. Suppose γ ≡ γ(2n) has a representing measure with compact
support K. Then there exist M ≤ m(2n+2) ≡ (n+2)(2n+3) points z1, . . . , zM ∈ K,
and nonnegative weights a1, . . . , aM such that γij =

∑M
`=1 a`z̄

i
`z

j
` (0 ≤ i + j ≤ 2n).

Proof. Let µ denote a representing measure such that K ≡ suppµ is compact.
Apply Proposition 5.6 to the functional F : P2n → C defined by F (p) :=

∫
p dµ.
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In [Mys] I.P. Mysovskikh generalized Tchakaloff’s Theorem to the case where
K ⊆ R2 is closed but possibly unbounded, and where dxdy is replaced by ρ(x, y)dxdy
for a nonnegative weight function ρ; moreover, the results of [Mys] are valid for
quadrature problems in Rd with d > 2. Recently, in response to our question,
M. Putinar [Pu7] extended Tchakaloff’s Theorem further, to the case of unbounded
closed K ⊆ Rd and moments of arbitrary positive Borel measures. Putinar’s results
have the following consequences for TCMP.

Proposition 5.8. (cf. [Pu7]) If γ ≡ γ(2n) has a representing measure µ such
that P2n+2 ⊆ L1(µ), then there exist M ≤ m(2n + 2) ≡ (n + 2)(2n + 3) points
z1, . . . , zM ∈ suppµ and positive numbers a1, . . . , aM such that∫

p dµ =
M∑

`=1

a`p(z`, z̄`) (p ∈ P2n+1);

in particular γij =
∑M

`=1 a`z̄
i
`z

j
` (0 ≤ i + j ≤ 2n).

Proposition 5.8 immediately yields Theorem 1.5(i)⇒(iv); thus, in Theorem 1.5
we already have the equivalence of (i), (ii), (iii) and (iv). We next prove (iv)⇔(v).

Proposition 5.9. γ ≡ γ(2n) has a finitely atomic representing measure if and
only if there exists k ≥ 0 such that M(n) admits a positive extension M(n + k)
which in turn admits a flat extension M(n + k + 1).

Proof. Suppose M(n+k) ≥ 0 has a flat extension M(n+k+1). Theorem 1.1
implies that the M(n+k) moment problem has a rankM(n+k)-atomic representing
measure; this is also a finitely atomic representing measure for γ.

Conversely, suppose γ has an r-atomic representing measure µ; then

M(n) ≥ 0, Pn ⊆ L2(µ), and {1, z, . . . , zr−1} is a basis for L2(µ)
[CuF4, Lemma 3.6].

(5.3)

Two cases arise.
Case 1: r ≤ n. Here (5.3) and (1.4) imply that {1 , Z, . . . , Zr−1} is a basis for

CM(n). Thus M(n) ≥ 0 is flat, and has a flat extension M(n + 1) by
Theorem 1.4.

Case 2: r > n. Consider M(r)[µ], which is a positive extension of M(n). From
(5.3) and (1.4), it follows that {1 , Z, . . . , Zr−1} spans CM(r), so M(r)[µ]
is flat and thus has a flat extension M(r + 1).

In Theorem 1.5, the estimates on the number of atoms (iv) and the size of k
(v) follow immediately from Proposition 5.8 and the preceding argument.

To complete the proof of Theorem 1.5, we next prove (iv)⇔(vi); this yields an
operator-theoretic criterion for the existence of finitely-atomic representing mea-
sures for γ(2n). Suppose M(n)(γ) ≥ 0; then 〈 · , · 〉M(n)(γ) defines a semi-inner

product on Pn which we abbreviate by 〈 · , · 〉γ , i.e., 〈f, g〉γ := (M(n)(γ)f̂ , ĝ)
(f, g ∈ Pn). Let N := {f ∈ Pn : 〈f, f〉γ = 0} and note that N = kerM(n).

Indeed, for f ∈ N , 0 = 〈f, f〉γ = (M(n)(γ)f̂ , f̂) =
∥∥∥(M(n)(γ))1/2f̂

∥∥∥2

; thus

(M(n)(γ))1/2f̂ = 0 whence M(n)(γ)f̂ = 0.

Proposition 5.10. γ ≡ γ(2n) has a finitely atomic representing measure if and
only if M(n)(γ) ≥ 0 and 〈 · , · 〉γ extends to a semi-inner product 〈 · , · 〉 on C[z, z̄]
such that
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(i) M := {f ∈ C[z, z̄] : 〈f, f〉γ = 0} is an ideal in C[z, z̄];
(ii) H := C[z, z̄]/M, with the inner product induced by 〈 · , · 〉γ , is a finite-

dimensional Hilbert space; and
(iii) the operator Mz : H → H defined by Mz([f ]) := [zf ] (f ∈ C[z, z̄]) is normal.

Proof. Suppose the desired extension exists; it then follows exactly as in the
proof of [CuF4, Theorem 4.7] that γ has a representing measure µ with supp µ ⊆
σ(Mz) (the spectrum of Mz); thus card suppµ ≤ cardσ(Mz) ≤ dimH < ∞.

Conversely, suppose γ has a finitely atomic representing measure. It follows
from Proposition 5.9 that there exists k ≥ 0 such that M(n) admits a positive
extension M(n+k), which in turn has a flat extension M(n+k+1). Thus [CuF4,
Corollary 5.12] implies that there exists a unique positive flat moment matrix ex-
tension M(∞) of M(n + k); we can then let 〈f, g〉 := (M(∞)f̂ , ĝ). Exactly as in
the proof of [CuF4, Theorem 4.7], it now follows that 〈 · , · 〉 satisfies (i)–(iii).

Added in Proof. In forthcoming papers [CuF6] [Fia2] we apply the extension theory
of moment matrices to the truncated K-moment problem and the multivariable
quadrature problem. Given M(n) ≡ M(n)(γ), k ≤ n, and a polynomial p(z, z̄)
of degree 2k or 2k − 1, there exists a unique matrix Mp(n) ≡ Mp(n)(γ) (of size
(n−k+1)(n−k+2)

2 ) such that

(Mp(n)f̂ , ĝ) = Λ(pf ḡ) (f, g ∈ Pn−k),

where Λ is the Riesz functional on P2n defined by Λ
(∑

aij z̄
izj
)

:=
∑

aijγij . Mp(n)
may be computed as a certain linear combination of compressions of M(n). The
following result characterizes the existence of a minimal representing measure sup-
ported in a prescribed semi-algebraic set.

Let P ≡ {p1, . . . , pm}, with pi ∈ C[z, z̄], let ki := deg pi, and let KP := {z :
pi(z, z̄) ≥ 0 (1 ≤ i ≤ m)}. Recall from [CuF4] that if M(n) ≥ 0 admits a
flat extension M(n + 1), then M(n + 1) admits unique successive flat (positive)
extensions M(n + 2), M(n + 3), . . . .

Theorem. [CuF6] There exists a rankM(n)-atomic (minimal) representing
measure for γ(2n) supported in KP if and only if M(n) admits a flat extension
M(n + 1) for which Mpi(n + ki) ≥ 0 (1 ≤ i ≤ m).

[CuF6] also contains a thorough analysis of the quadratic moment problem for
the disk. In [Fia2] the preceding theorem and [CuF4] are used to develop new
minimal quadrature rules for the disk, square, triangle, and annulus.



APPENDIX

Summary of Results

Notations and Abbreviations. In all cases, the underlying moment ma-
trix M(n) is assumed to be positive and recursively generated. Results are semi-
numerical or numerical unless designated General (G), in which case the result
includes the most general (positive, recursively generated) moment matrix with the
indicated relations and/or properties.

r: rankM(n).
c: cardV(γ).
ρ: ρ(γ).

Rel/Prop: Column relations and/or additional properties satisfied by M(n).
MMEB: Does M(n) admit a moment matrix extension block B such that

RanB ⊆ RanM(n)? Y and N stand for Yes and No, respectively;
the label T indicates that Theorem 2.7 could be used to obtain a
moment matrix extension block B, even though we may have used
some other result in the reference cited.

C-Test: What equations are required for the reduced C-test?
FE: How many flat extensions does M(n) have?

FRM: How many finitely atomic representing measures does M(n) admit?
Ref: Reference to the result listed.

Entries for which we do not have information have been left blank.
Under C-Test, NA stands for “not applicable” (this appears when the corre-

sponding entry under MMEB is N).

n = 1

r c ρ Rel/Prop MMEB C-Test FE FRM Ref

1 1 0 (G)
Z = α1

YT ∅ 1 1 [CuF4, Theorem 6.1]

2 ∞ ∞ (G)
Z̄ = α1 + βZ

Y C11 = C22 ∞ ∞ [CuF4, Theorem 6.1]

3 ∞ ∞ (G) Y C11 = C22 ∞ ∞ [CuF4, Theorem 6.1]

49
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n = 2

r c ρ Rel/Prop MMEB C-Test FE FRM Ref

4 4 0 Z2 = αZ + βZ̄ Y ∅ 1 1 [CuF4,
Example

3.3]

4 4 0 (G)
Z̄Z = α + β̄Z + βZ̄

real moments
{1 , Z, Z̄, Z2} basis

Y C11 = C22 1 1 Theorem
3.7

5 ∞ ∞ (G)
Z̄Z = α + β̄Z + βZ̄

Y (Th2.7) C11 = C22 1 1 Example
2.16

5 ∞ ∞ Z̄Z = α + β̄Z + βZ̄ Y (Th2.7) C11 = C22 ∞ ∞ Example
3.8

5 ∞ ∞ Z̄Z = α + β̄Z + βZ̄ Y (Th2.7) C11 = C22 ∞ ∞ Proposition
3.9

n = 3

r c ρ Rel/Prop MMEB C-Test FE FRM Ref

7 7 0 Z̄3 = Z3

Z̄Z2 ∈ P2

{1 , . . . , Z̄2, Z3} basis

YT C11 = C22 1 1 Example
4.9

8 (G)
Z3 ∈ P2

YT C22 = C33 Example
2.1

8 2 −6 special case of
Z3 ∈ P2

YT C22 = C33 None None Examples
2.14, 4.4

8 (G)
Z̄Z2 ∈ P2

YT C11 = C22 Example
2.15

8 ∞ ∞ special case of
Z̄Z2 ∈ P2

YT C11 = C22 ∞ ∞ Example
4.8

10 ∞ ∞ M(3) > 0 Y C11 = C22

C21 = C32

None None [CuF5,
Section 4]
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n = 4

r c ρ Rel/Prop MMEB C-Test FE FRM Ref

11 ≤ r ≤ 13 {1 , . . . , Z̄3, Z4}
l.i.

Z̄Z3, Z̄3Z ∈ P3

N NA None
(No NC)

None Examples
2.2, 2.5,

4.6

11 0 −11 the preceding
with

Z̄2Z2 ∈ P3

N NA None
(No RC)

None Examples
2.2, 4.6

12 12 0 Z̄2Z2 ∈ P3

Z̄3Z ∈
〈
Z̄2, Z4

〉
Z̄4 ∈

〈
Z2, Z̄Z3

〉 Y C11 = C22 = C33

C21 = C32

C31 = C42

1 1 Example
4.10

13 13 0 special instance
of 11 ≤ r ≤ 13

case

N NA None
(No NC)

None Examples
2.5, 4.7

n = 5

r c ρ Rel/Prop MMEB C-Test FE FRM Ref

21 > 0 M(5) > 0 Y C11 = C22 = C33

C21 = C32 = C43

C31 = C42

C41 = C52

None ≥ 1 Theorem 5.2

21 M(5) > 0 Y same as preceding ≥ 1 ≥ 1 Example 5.4

General n

Rel/Prop MMEB C-Test FE FRM Ref

Rank M(n) = Rank M(n − 1)
(Flat data)

YT ∅ 1 1 [CuF4, Theorem 5.3]

Z̄ = α1 + βZ Y ∅ ∞ ∞ [CuF5, Theorem 2.1]

Zk = p(Z, Z̄), deg p ≤ [n
2 ] + 1 YT ∅ 1 ≥ 1 [CuF5, Theorem 3.1]

{1 , Z, Z2, . . . , Zn} spans CM(n)

M(2) > 0
Y ∅ 1 1 [CuF4,

Corollary 5.16]
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