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Abstract

We introduce a matricial approach to the truncated complex moment problem,
and apply it to the case of moment matrices of flat data type, for which the columns
corresponding to the homogeneous monomials in z and z̄ of highest degree can be
written in terms of monomials of lower degree. Necessary and sufficient conditions
for the existence and uniqueness of representing measures are obtained in terms of
positivity and extension criteria for moment matrices. We discuss the connection
between complex moment problems and the subnormal completion problem for
2-variable weighted shifts, and present in detail the construction of solutions for
truncated complex moment problems associated with monomials of degrees one and
two. Finally, we present generalizations to multivariable moment and completion
problems.
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CHAPTER 1

Introduction

Given a doubly indexed finite sequence of complex numbers γ : γ00, γ01, γ10,
. . . , γ0,2n, . . . , γ2n,0, with γ00 > 0 and γji = γ̄ij , the truncated complex moment
problem entails finding a positive Borel measure µ supported in the complex plane
C such that

(1.1) γij =
∫
z̄izjdµ (0 ≤ i+ j ≤ 2n);

µ is called a representing measure for γ. In this paper we study truncated moment
problems (in one or several variables) using an approach based on matrix positivity
and extension, combined with a new “functional calculus” for the columns of the
associated moment matrix. We show that when the truncated moment problem is of
flat data type (a notion which generalizes the concept of recursiveness for positive
Hankel matrices), a solution always exists; this is compatible with our previous
results for measures supported on the real line, nonnegative real line, or some
prescribed finite interval (Hamburger, Stieltjes and Hausdorff truncated moment
problems [CF3]), and for measures supported on the circle (Toeplitz truncated
moment problems [CF3]). Along the way we develop new machinery for analyzing
truncated moment problems in one or several real or complex variables.

The full complex moment problem (in which γ is defined as an infinite mo-
ment sequence {γij}i,j≥0, γ00 > 0, γji = γ̄ij) has been considered by A. Atzmon
[Atz], M. Putinar [P1], K. Schmüdgen [Sch], and others ([Ber], [Fug], [Sza]).
Atzmon showed that a full moment sequence γ has a representing measure µ sup-
ported in the closed unit disk D̄ if and only if two natural positivity conditions
hold for a kernel function associated to γ. One positivity condition allows for
the construction of an inner product on C[z], and an additional positivity hy-
pothesis on γ forces the operator Mz, multiplication by the coordinate function
z, to be a subnormal contraction on C[z]; the spectral measure of the minimal
normal extension of Mz then induces the representing measure µ. On the other
hand, Putinar [P1] used hyponormal operator theory to solve a closely related
moment problem. More generally, the full K-moment problem γij =

∫
z̄izjdµ

(i, j ≥ 0), suppµ ⊆ K ⊆ C, has been solved for the case when K is a prescribed
compact semi-algebraic set [Cas], [CP2], [McG], [P3], [Sch2]. For other sets,
including K = C, the full moment problem is unsolved [Fug].

A theorem of M. Riesz [Akh, Theorem 2.6.3, page 71] for K ⊆ R shows
that theK-moment problem for a sequence β ≡ {βn}∞n=0 is solvable if and only if the
functional ϕ : p(t) ≡

∑
k akt

k 7→ ϕ(p) :=
∑

k akβk is positive, i.e.,
p |K≥ 0 ⇒ ϕ(p) ≥ 0. This result was extended to Rn by Haviland [Hav1,2];
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2 RAÚL E. CURTO AND LAWRENCE A. FIALKOW

however, for many sets, including K = R2, the description of the positive polyno-
mials is incomplete ([Sch1,2], [P3], [McG], [BM]), and the Riesz criterion does
not always lead to a concrete criterion for solvability which can be expressed easily
in terms of the moments.

For the truncated complex moment problem (1.1), it is only possible to define
Atzmon’s inner product on the space of polynomials of degree at most n, but since
this space is not invariant under Mz, the rest of the argument is obstructed. Per-
haps for this reason, there appears to be little literature on the truncated complex
moment problem (1.1), although the problem is apparently known to specialists.
Apart from its intrinsic interest, the truncated complex moment problem has a
direct impact on the full moment problem. Indeed, [St] proved that if K ⊆ C is
closed, if γ = {γij} is an infinite moment sequence, and if for each n ≥ 1 there
exists a representing measure µn for {γij}0≤i+j≤2n such that suppµn ⊆ K, then by
a weak compactness argument, there exists a subsequence of {µn} that converges
to a representing measure µ for γ with suppµ ⊆ K (cf. [Lan, p. 5]). (On the
other hand, a solution of the full moment problem does not imply a solution of the
truncated moment problem [CF3].)

To illustrate this principle, consider the full moment problem for K = [0, 1].
A refinement of Riesz’s Theorem due to Hausdorff ([ShT, Theorem 1.5, page
9], [Hau]) shows that for a real sequence β ≡ {βj}∞j=0, there exists a positive
Borel measure µ supported in [0, 1] such that βj =

∫
tj dµ (j ≥ 0) if and only if

the functional ϕ is positive when restricted to the family of polynomials pm,n(t) ≡
tm(1−t)n (m,n ≥ 0). To obtain a more concrete solution (expressed solely in terms
of β) consider the truncated Hausdorff moment problem for β(n) := {βj}2n+1

j=0 . Krein
and Nudel’man [KrN] proved that β(n) admits a representing measure if and only
if L(n) := (βi+j)ni,j=0 and M(n) := (βi+j+1)ni,j=0 satisfy L(n) ≥ M(n) ≥ 0. It
thus follows from [St] that β admits a representing measure if and only if L(n) ≥
M(n) ≥ 0 for every n ≥ 0.

Our goal in this work is to obtain concrete criteria for the existence of repre-
senting measures, analogous to those in [Akh], [KrN] and [ShT]. One feature of
our study is that in cases in which we are able to solve the truncated moment prob-
lem theoretically, we also have algorithms to provide finitely-atomic representing
measures whose atoms and densities can be explicitly computed (cf. [CF3], [Fia]);
moreover, these calculations are quite feasible using readily available mathematical
software.

Our approach requires a detailed study of the matrix positivity induced by a
representing measure, which we now begin. For notational simplicity, our discussion
here focuses on the truncated moment problem in one complex variable, but in
Chapter 7 we give the appropriate generalizations to several variables. Let µ be
a positive Borel measure on C, assume that C[z, z̄] ⊆ L1(µ), and for i, j ≥ 0
define the (i, j)-power moment of µ by γij :=

∫
z̄izj dµ(z̄, z). Given p ∈ C[z, z̄],
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p(z, z̄) ≡
∑

ij aij z̄
izj,

(1.2) 0 ≤
∫
| p(z, z̄) |2 dµ(z, z̄)

=
∑
ijk`

aij āk`

∫
z̄i+`zj+k dµ(z, z̄) =

∑
ijk`

aij āk`γi+`,j+k.

To understand the matricial positivity associated with γ := {γij} via (1.2),
we first introduce the following lexicographic order on the rows and columns of
infinite matrices: 1 ,Z , Z̄,Z

2
, Z̄Z , Z̄

2
,Z3, Z̄Z

2
, Z̄2Z , Z̄

3
, . . . ; e.g., the first column is

labeled 1 , the second column is labeled Z , the third Z̄ , the fourth Z2, etc.; this order
corresponds to the graded homogeneous decomposition of C[z, z̄]. For m,n ≥ 0, let
M [m,n] be the (m+1)×(n+1) block of Toeplitz form (i.e., with constant diagonals)
whose first row has entries given by γm,n, γm+1,n−1, . . . , γm+n,0 and whose first
column has entries given by γm,n, γm−1,n+1, . . . , γ0,n+m (as a consequence, the
entry in the lower right-hand corner of M [m,n] is γn,m). The moment matrix M ≡
M(γ) is then built as follows:

M :=


M [0, 0] M [0, 1] M [0, 2] . . .
M [1, 0] M [1, 1] M [1, 2] . . .
M [2, 0] M [2, 1] M [2, 2] . . .
. . . . . . . . . . . .

 .

It is now not difficult to see that the positivity condition on γ inherent in (1.2) is
equivalent to the condition M ≥ 0, where M is considered as a quadratic form on
Cω. The idea of organizing the initial data into moment matrices is perhaps implicit
in [Atz], [Fug] (where the notion of moment sequence is somewhat different from
ours), but our plan of studying the truncated complex moment problem from a
matricial viewpoint seems to be new.

The truncated complex moment problem (1.1) corresponds to the case when
only an initial segment of moments is prescribed. It seems natural to assume (as
we always do) that such an initial segment has the form γ ≡ {γij}0≤i+j≤2n for
some n ≥ 1, with γ00 > 0 and γji = γ̄ij ; thus, the initial data consist of a whole
corner of M, namely M(n)(γ) := (M [i, j])0≤i,j≤n. In the sequel we refer to such a
sequence γ as a truncated moment sequence, and we refer to M(n) ≡ M(n)(γ) as
the moment matrix associated to γ. We denote the successive columns of M(n) by
1 ,Z , Z̄, . . . ,Zn, . . . , Z̄n. For a polynomial p(z, z̄) ≡

∑
0≤i+j≤n aij z̄

izj we define an
element p(Z , Z̄) in the column space of M(n) by p(Z , Z̄) :=

∑
aij Z̄

iZj .
The use of functional headings for the columns of M(n) is deliberately sugges-

tive; as we show in the sequel, a necessary condition for the existence of a represent-
ing measure is that the columns of M(n) behave like the monomials naming them
(in a sense to be made precise); moreover, in a number of cases described herein,
such function-like behavior is actually sufficient to insure the existence of repre-
senting measures. This perspective, which seems to be new in moment problems,
captures the essence of the notion of recursiveness that we introduced in [CF1,2,3].

Our approach to the truncated complex moment problem builds on two distinct
strategies that we employed in solving single-variable truncated moment problems
in [CF1,3]; we briefly recall these methods. The Stieltjes (power) moment problem
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asks for a characterization of those sequences of positive numbers β ≡ {βi}∞i=0

for which there exist positive Borel measures µ supported in [0,+∞) such that
βi =

∫
ti dµ(t) (i ≥ 0); Stieltjes proved that such a measure µ exists if and only if

the Hankel matrices H(∞) := (βi+j)i,j≥0 and K(∞) := (βi+j+1)i,j≥0 are positive
as quadratic forms on Cω [ShT]. In [CF1] we solved the truncated Stieltjes moment
problem corresponding to initial data {βi}ni=0, n < ∞. In the case when n is odd,
n = 2k + 1, a representing measure exists if and only if H(k) := (βi+j)0≤i,j≤k
and K(k) := (βi+j+1)0≤i,j≤k are positive, and vk+1 := (βk+1, . . . , β2k+1)T belongs
to the range of H(k). The proof of this result in [CF1] entails extending H(k)
and K(k) to positive Hankel forms H(∞) and K(∞), respectively, and in then
constructing a representing measure from the spectral measure of a normal operator
acting on an infinite dimensional Hilbert space associated to H(∞).

In the sense that we were using infinite dimensional techniques to solve a finite
interpolation problem, we were dissatisfied with the proof in [CF1]. In contrast
to this approach, in [CF3] we developed algorithms for solving truncated moment
problems which entail only “finite” techniques, e.g., the solution of finite systems
of linear equations, Lagrange interpolation, and finite dimensional operator the-
ory, particularly an extension theory for positive Hankel and Toeplitz matrices.
Not only is this approach aesthetically satisfying, but by restricting ourselves to
finite extensions we were able to describe all finitely atomic solutions of the trun-
cated moment problems of Hamburger, Stieltjes, Hausdorff, and Toeplitz. In par-
ticular, for the Hamburger problem (even case), given n = 2k and real numbers
β:β0, . . . , β2k, with β0 > 0, there exists a positive Borel measure µ, suppµ ⊆ R,
such that βj =

∫
tj dµ(t) (0 ≤ j ≤ 2k) if and only if H(k) admits a positive Hankel

extension H(k + 1).
The latter condition can be explained in concrete terms using the notion of

“recursiveness.” Denote the columns of H(k) by 1 ,T, . . . ,Tk. If H(k) is singular,
let r := min{i : Ti ∈ 〈1 ,T, . . . ,Ti−1〉}; in this case, 1 ≤ r ≤ k, and there exist
unique scalars a0, . . . , ar−1 such that Tr = a01 + · · ·+ar−1Tr−1. H(k) ≥ 0 admits
a positive extension H(k + 1) if and only if H(k) is invertible, or H(k) is singular
and recursively generated, i.e.,

(1.3) Tr+s = a0Ts + · · ·+ ar−1Tr+s−1 (0 ≤ s ≤ k − r).

In this case, we need not invoke the infinite dimensional spectral theorem to
construct a representing measure. Instead, we proved in [CF3] that the polynomial
tr−(a0 +· · ·+ar−1t

r−1) has r distinct real roots, t0, . . . , tr−1; these roots may serve
as the atoms of a representing measure, with corresponding densities ρ0, . . . , ρr−1

determined by the Vandermonde equation

V (t0, . . . , tr−1)(ρ0, . . . , ρr−1)T = (β0, . . . , βr−1)T .

That the measure µ :=
∑r−1

i=0 ρiδti fully interpolates β follows from (1.3).
In the present work we introduce an analogue of (1.3) which will serve as our

notion of recursiveness for truncated complex moment sequences. We say that γ is
recursively generated if M(n)(γ) satisfies the following property:

(RG) If p, q ∈ C[z, z̄], deg pq ≤ n, and p(Z , Z̄) = 0, then (pq)(Z , Z̄) = 0.

Our goal is to study the following conjecture.
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1.1. Main Conjecture. Let γ be a truncated moment sequence. The fol-
lowing assertions are equivalent.

(i) γ has a representing measure;
(i′) γ has a representing measure with moments of all orders;
(ii) γ has a compactly supported representing measure;
(iii) γ has a finitely atomic representing measure;
(iv) γ has a rankM(n)-atomic representing measure;
(v) M(n) admits a positive extension M(n+ 1);
(vi) M(n) ≥ 0 and M(n) admits a flat (i.e., rank-preserving) extension

M(n+ 1);
(vii) M(n) ≥ 0 and M(n) satisfies property (RG).

It is clear that (iv)⇒(iii)⇒(ii)⇒(i′)⇒(i), and that (vi)⇒(v) (since flat ex-
tensions of positive matrices are positive). In the sequel we establish (i)⇒(vii),
(ii)⇒(v)⇒(vii) and (iv)⇔(vi). Thus, to prove the equivalence of (i)–(vii) it suffices
to prove (vii)⇒(vi). The main result of this paper, Theorem 5.13, is the equivalence
of (iv) and (vi), which results from a combination of the results in Chapters 2, 3 and
4. For the case of the truncated moment problem when Z = Z̄ (which is equivalent
to the truncated Hamburger moment problem (Theorem 3.19, cf. [Fia])), the Main
Conjecture is fully established in [CF3, Section 3]. In the present work we fully
affirm Conjecture 1.1 under the following hypothesis: M(n) ≥ 0 and every col-
umn corresponding to homogeneous monomials in z and z̄ of total degree n can be
obtained as a linear combination of columns corresponding to monomials of lower
degree. (This is equivalent to saying that M(n) is a flat extension of M(n−1), i.e.,
rankM(n) = rankM(n− 1); cf. the remarks following Proposition 2.2.)

Our method depends heavily on an intrinsic characterization of moment ma-
trices (Theorem 2.1) and on the Structure Theorem for positive moment matrices
(Theorem 3.14). The latter result is based on a study in Chapter 3 of “recursive-
ness” in positive moment matrices, which shows that the conclusion of property
(RG) holds whenever deg(pq) ≤ n − 1. In Chapter 3 we also show that if γ has a
representing measure µ, then the linear map from the column space of M(n) into
L2(µ), induced by Z̄ iZj 7→ z̄izj, is an important tool in analyzing the size and
location of suppµ. In Chapter 4 we construct representing measures for finite-rank
positive infinite moment matrices. In Theorem 4.7 we use a normal operator con-
struction to prove that a positive infinite moment matrix of finite rank r has a
unique representing measure, which is r-atomic.

The flat data case of the truncated complex moment problem is carried out in
Chapter 5. The main technical result, Theorem 5.4, states that if M(n) is a flat,
positive extension of M(n− 1), then M(n) admits a unique flat, positive extension
of the form M(n + 1); consequently, M(n) also admits a unique positive moment
matrix extension of the form M(∞), and this is a flat extension (Corollary 5.12).
Combining these results with Theorem 4.7, we prove in Corollary 5.14 that if γ is
flat and M(n) ≥ 0, then γ has a unique compactly supported representing measure,
which is rankM(n)-atomic. Although this result is proved using an extension of
M(n) to M(∞), the extension is carried out in such a way that the corresponding
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Atzmon space is finite dimensional; thus we only invoke the spectral theorem in a
finite dimensional setting, in keeping with our “finite” philosophy.

As an application of these results we solve the truncated complex moment prob-
lem in the case when the analytic columns of M(n), 1 ,Z , . . . ,Zn, are dependent. In
this case, there exists a minimal r, 1 ≤ r ≤ n, such that Zr = a01 + · · ·+ar−1Zr−1.
In Corollary 5.15 we prove that, under this hypothesis, γ has a representing mea-
sure if and only if M(n) ≥ 0 and {1 ,Z , . . . ,Zr−1} spans the column space of M(n);
in this case, γ has a unique representing measure, whose support consists of the r
distinct roots of the polynomial zr − (a0 + · · ·+ ar−1z

r−1).
The case of the truncated complex moment problem in which the analytic

columns are independent is unsolved and, in particular, the case when M(n) is
positive and invertible (in symbols, M(n) > 0) is open for n > 1. If M(1) > 0, then
γ has infinitely many 3-atomic representing measures, as we show in Chapter 6. This
is part of the quadratic moment problem, which we discuss later in this section.

The main obstruction to obtaining a full proof of Conjecture 1.1 concerns the
criteria for flat extensions of positive moment matrices, which we plan to study in
detail elsewhere. The difficulty here can best be explained by analogy with the real
case. Using the notation preceding (1.3), a positive singular Hankel matrix H(k)
always satisfies

Tr+s = a0Ts + · · ·+ ar−1Tr+s−1 (0 ≤ s ≤ k − r − 1)

[CF3], so the criterion for a positive Hankel extension H(k + 1) is simply

(1.4) Tk = a0Tk−r + · · ·+ ar−1Tk−1;

in this case, there is a unique flat extension H(k + 1), determined by

Tk+1 := a0Tk−r+1 + · · ·+ ar−1Tk.

In the nonsingular case, we may produce flat extensions by choosing β2k+1 arbi-
trarily, but then β2k+2 is uniquely determined from β and β2k+1 by the flatness
requirement.

For a positive moment matrixM(n) satisfying (RG), to produce a flat extension
M(n + 1) we must choose an entire block M [n, n + 1] compatible with positivity,
and in such a way that M [n + 1, n + 1] (which is then uniquely determined by
the flatness requirement) is a Toeplitz matrix. The results of Chapter 5 show how
to make such a choice under a hypothesis analogous to (1.4): whenever i+ j = n,
Z̄ iZj ∈ 〈Z̄rZs〉0≤r+s≤n−1. In Chapter 6 we also show how to produce flat extensions
for the quadratic moment problem, which we discuss next.

The quadratic moment problem is the case of the truncated complex moment
problem when n = 1; we start with an initial segment of the form γ : γ00, γ01, γ10, γ02, γ11, γ20,
γ00 > 0, γij = γ̄ij , and we let r := rankM(1). We show in Theorem 6.1 that the
following conditions are equivalent:

(i) γ has a representing measure;
(ii) γ has an r-atomic representing measure;
(iii) M(1) ≥ 0.

Since property (RG) is vacuously satisfied in the quadratic moment problem,
this result is consistent with Conjecture (1.1). Indeed, Theorem 5.13 and the equiv-
alence of (ii) and (iii) imply that if M(1) ≥ 0, then M(1) admits a flat extension
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M(2). When r = 1, then µ := ρδw (ρ := γ00, w := γ01/γ00) is the unique represent-
ing measure. When r = 2, the 2-atomic representing measures are parameterized by
the points of a straight line in the complex plane. The existence of infinitely many
representing measures for a singular truncated complex moment problem contrasts
with the real case, where singular moment problems have unique solutions [CF3].
For the case when r = 3, flat extensions exist, and we partially parameterize the
3-atomic representing measures by a circle. We conjecture that, more generally,
flat extensions always exist in case M(n) is positive and invertible (since property
(RG) is satisfied vacuously in this case).

The results of Chapter 6 provide a good illustration of our dualistic approach
to moment problems. The cases r = 1 and r = 2 are proved using the viewpoint of
[CF3], by directly constructing a polynomial whose roots serve as the support of
a representing measure. By contrast, the case r = 3 is proved as a corollary of the
results of Chapter 5, and hence depends on a flat extension to M(∞) ≥ 0.

Moment problems have been traditionally studied using tools and techniques
from a variety of subjects, including real analysis, analytic function theory, contin-
ued fractions, operator theory, and the extension theory for positive linear func-
tionals on convex cones in function spaces (see for instance [Akh], [AK], [BM],
[KrN], [Lan], [Sar], [St], [Sza]). The above mentioned results of Atzmon, Putinar
and Schmüdgen illustrate the use of operator theory in constructing representing
measures. The interplay between moment problems and operator theory goes in
both directions. Indeed, Atzmon’s results were motivated by a reformulation of the
invariant subspace problem for subnormal operators; in [CF1] we solved Stampfli’s
subnormal completion problem for unilateral weighted shifts by first solving the
truncated Stieltjes moment problem; and in [CP1,2] techniques from the theory
of moments played a central role in establishing the existence of a non-subnormal
polynomially hyponormal operator.

By way of analogy with our strategy in [CF1], we shall show in Chapter 6
that the subnormal completion problem for 2-variable weighted shifts is intimately
related to the truncated complex moment problem, in such a way that a solution
to the latter immediately produces a solution to the former. This can be intuitively
anticipated, since the subnormal completion problem ought to be related to the
classical bidimensional real moment problem, and this in turn is isomorphic to the
complex moment problem.

To study multidimensional truncated moment problems in several real or com-
plex variables, we can define moment matrices subordinate to lexicographic order-
ings of the several variables; in the case of one real variable, such moment matrices
are the familiar Hankel matrices H(k). We show in Chapter 7 that many of the
results in Chapters 2 through 6 extend to these more general moment matrices; the
main difficulty in obtaining these generalizations is notational, not conceptual.

Some of the calculations in Chapter 6, and many of the ideas in this paper, were
first obtained through computer experiments using the software tool Mathematica
[Wol].
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the topics in this paper, and to the referee for several helpful suggestions. Special
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CHAPTER 2

Moment Matrices

In this chapter we associate to a moment sequence γ the moment matrix
M(n)(γ), which plays a central role in our analysis of the truncated moment prob-
lem. The main result of this chapter is an abstract characterization of moment
matrices which will be used in the sequel to construct representing measures.

We begin with some notation. For m ≥ 0, Mm(C) denotes the algebra of m×m
complex matrices. For n ≥ 0, let m ≡ m(n) := (n+1)(n+2)/2. For A ∈Mm(C) we
denote the successive rows and columns according to the following lexicographic-
functional ordering: 1 , Z , Z̄ , Z2, ZZ̄, Z̄2, . . . , Zn, Zn−1Z̄ , . . . , ZZ̄

n−1, Z̄n. For
0 ≤ i+ j ≤ n, 0 ≤ ` + k ≤ n, we denote the entry of A in row Z̄`Zk and column
Z̄ iZj by A(`,k)(i,j). (In the notation 0 ≤ i+j ≤ n it is always implicit that i, j ≥ 0.)
For 0 ≤ i, j ≤ n, A[i, j] denotes the (i + 1)× (j + 1) rectangular block in A whose
upper left-hand entry is A(0,i)(0,j). We define a basis {eij}0≤i+j≤n for Cm as follows:
eij ≡ e(m)

ij is the vector with 1 in the Z̄ iZj entry and 0 in all other positions.
Let Pn denote the vector space of all complex polynomials in z, z̄ of total

degree ≤ n. Each p ∈ Pn has a unique representation p(z, z̄) =
∑

0≤i+j≤n aij z̄
izj

(aij ∈ C); p̄ then denotes the conjugate function
∑
āij z̄

jzi. For p ∈ Pn, let
p̂ =

∑
aijeij ∈ Cm. We define a sesquilinear form 〈·, ·〉A on Pn by 〈p, q〉A := 〈Ap̂, q̂〉

(p, q ∈ Pn). In particular, 〈z̄izj, z̄kz`〉A = 〈Aeij , ek`〉 = A(k,`)(i,j). Note that if A is
self-adjoint, then 〈·, ·〉A is hermitian, i.e., 〈p, q〉A = 〈q, p〉A.

Let γ be a truncated moment sequence: γ = (γij)0≤i+j≤2n, γij = γ̄ji. We de-
fine the moment matrix M(n) ≡ M(n)(γ) ∈ Mm(C) as follows: for 0 ≤ i + j ≤ n,
0 ≤ ` + k ≤ n, M(n)(`,k)(i,j) = γi+k,j+`; thus 〈z̄izj, z̄kz`〉M(n) = (M(n)eij , ek`) =
M(n)(k,`)(i,j) = γi+`,j+k. SinceM(n)∗(`,k)(i,j) = M(n)(i,j)(`,k) = γ̄j+`,i+k = γi+k,j+` =
M(n)(`,k)(i,j), M(n) is self-adjoint. For 0 ≤ i, j ≤ n, note that M(n)[i, j] has the
form

(2.1) Bij :=


γi,j γi+1,j−1 · · · γi+j , 0

γi−1,j+1 γi,j γi+1,j−1 · · ·
... γi−1,j+1

...
γ0,j+i · · · γj,i

 ,

where Bij has the Toeplitz-like property of being constant on each diagonal; in
particular, Bii is a self-adjoint Toeplitz matrix. Now M(n) admits the block de-
composition (Bij)0≤i,j≤n. For 0 ≤ i + j ≤ 2n, i + j denotes the degree of γij ;
thus Bij contains all of the moments of degree i+ j, and M(n) has the Hankel-like
property that the cross-diagonal blocks . . . Bij , Bi−1,j+1, Bi−2,j+2, . . . each contain
the same elements (those of degree i+ j), though arranged in differing patterns.

9
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We note for future reference that the auxiliary blocks B0,n+1, . . . , Bn−1,n+1

may also be defined by (2.1). More generally, if γ is a full moment sequence, i.e.,
with moments γij of all orders, we define M(n)(γ) via (2.1) for every n ≥ 0 and set
M(∞) ≡M(∞)(γ) := (Bij)0≤i,j . In particular, if µ is a measure with moments of
all orders, and if γ(µ) := (γij)0≤i,j denotes the moment sequence of µ, then we set
M(n)[µ] := M(n)(γ(µ)) and M(∞)[µ] := M(∞)(γ(µ)).

The main result of this chapter is the following intrinsic characterization of
moment matrices.

Theorem 2.1. Let n ≥ 0 and let A ∈ Mm(n)(C). There exists a truncated
moment sequence γ ≡ (γij)0≤i+j≤2n, γij = γ̄ji, γ00 > 0, such that A = M(n)(γ) if
and only if

0) 〈1, 1〉A > 0;
1) A = A∗;
2) 〈p, q〉A = 〈q̄, p̄〉A (p, q ∈ Pn);
3) 〈zp, q〉A = 〈p, z̄q〉A (p, q ∈ Pn−1);
4) 〈zp, zq〉A = 〈z̄p, z̄q〉A (p, q ∈ Pn−1).

We refer to 2) as the symmetric property of 〈·, ·〉A; 2) is related to establishing
that a candidate γ for realizing A as M(n)(γ) satisfies γij = γ̄ji; 3) is used to estab-
lish the above mentioned Hankel-type property for A. A quadratic form satisfying
4) is said to be normal ; we use normality to establish the Toeplitz-like property
of the blocks A[i, j]. Note also that if 1)–3) hold, then 3′) 〈z̄p, q〉A = 〈p, zq〉A
(p, q ∈ Pn−1): 〈z̄p, q〉A = 〈q̄, zp̄〉A = 〈zp̄, q̄〉A = 〈p̄, z̄q̄〉A = 〈zq, p〉A = 〈p, zq〉A.

Proof of Theorem 2.1. Suppose first that A = M(n)(γ) for some truncated
moment sequence γ. Note that 〈1, 1〉A = A(0,0)(0,0) = γ00 > 0, so 0) holds. For
0 ≤ i+j ≤ n, 0 ≤ k+` ≤ n, Ā(`,k)(i,j) = γ̄i+k,j+` = γj+`,i+k = A(i,j)(`,k), soA = A∗,

establishing (1). Similarly, 〈z̄izj, z̄kz`〉A = γi+`,j+k = γ`+i,k+j = 〈z̄`zk, z̄jzi〉A, so
sesquilinearity implies that 〈p, q〉A = 〈q̄, p̄〉A (p, q ∈ Pn), proving (2). To establish
(3) and (4) it suffices to consider p = z̄izj (0 ≤ i + j ≤ n − 1) and q = z̄`zk

(0 ≤ k + ` ≤ n− 1). Then

〈zp, q〉A = (M(n)ei,j+1, e`,k) = γi+k,j+`+1

= (M(n)eij , e`+1,k) = 〈p, z̄q〉A,

which establishes (3); similarly,

〈zp, zq〉A = (M(n)ei,j+1, e`,k+1) = γi+k+1,j+1+`

= (M(n)ei+1,j , e`+1,k) = 〈z̄p, z̄q〉A,

proving (4).
For the converse, assume A ∈ Mm(n)(C) satisfies 0)–4); we seek to define a

truncated moment sequence γ = (γij)0≤i+j≤2n, γij = γ̄ji, γ00 > 0, such that
A = M(n)(γ). Note that if 0 ≤ i+ j ≤ 2n, then there exist `, k, p, q ≥ 0 such that

(2.2) i = `+ p, j = k + q, 0 ≤ `+ k ≤ n, 0 ≤ p+ q ≤ n.
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For,

(i, j) =

 (i, 0) + (0, j) 0 ≤ i, j ≤ n
(i, j − n) + (0, n) 0 ≤ i ≤ n, n < j ≤ 2n
(i− n, j) + (n, 0) n < i ≤ 2n, 0 ≤ j ≤ n

.

We now define γij := A(k,`)(p,q), and we claim that γ := (γij)0≤i+j≤2n is a well-
defined truncated moment sequence, i.e., γij is independent of the decomposition
in (2.2), and γij = γ̄ji, γ00 > 0. Note that this readily implies that A = M(n)(γ):
For 0 ≤ k + ` ≤ n, 0 ≤ p + q ≤ n, M(n)(k,`)(p,q) = γ`+p,k+q = A(k,`)(p,q) (using
i = `+ p, j = k + q in (2.2)).

To complete the proof of Theorem 2.1, we show that γ is a well-defined moment
sequence, and to this end we introduce some notation. For 0 ≤ i+ j ≤ 2n, let

Sij := {v = (k, `, p, q) ∈ Z4
+ : i = `+ p, j = k + q, 0 ≤ k + ` ≤ n, 0 ≤ p+ q ≤ n}.

For v ∈ Sij , let α(v) := A(k,`)(p,q) = 〈z̄pzq, z̄kz`〉A. We define the block-type of v
by β(v) := (k + `, p+ q); thus α(v) is an element of the block A[k + `, p+ q]. For
v′ := (k′, `′, p′, q′) ∈ Sij , define δ(v, v′) := |k′ − k+ `′ − `| (= |q′ − q + p′ − p|); thus
δ(v, v′) measures the distance between the blocks of v and v′, and δ(v, v′) = 0 ⇔
β(v) = β(v′).

To show that γ is well-defined we must show that if v, v′ ∈ Sij , then α(v) =
α(v′). We first consider the case when v and v′ have the same block type, i.e.,
β(v) = β(v′). Note that k = k′ ⇒ q = q′ ⇒ p = p′ ⇒ ` = `′ ⇒ v = v′; we may thus
assume that s := k′ − k > 0.

Claim. ψ(v) := (k+1, `−1, p+1, q−1) ∈ Sij , α(ψ(v)) = α(v), and β(ψ(v)) =
β(v).

To prove that ψ(v) ∈ Sij , note first that if q = 0, then k = k′+ q′ > k+ q′ ≥ k;
thus q > 0 and q−1 ≥ 0. Since k < k′, then k+1 ≤ k′ ≤ n; also, since β(v) = β(v′),
` = k′−k+`′ > `′ ≥ 0, whence `−1 ≥ 0; similarly, p = `′−`+p′ < p′ ≤ n, so p+1 ≤
n. Thus ψ(v) ∈ Sij ; now β(ψ(v)) = ((k+1)+(`−1), (p+1)+(q−1)) = (k+`, p+q) =
β(v), and α(ψ(v)) = 〈z̄p+1zq−1, z̄k+1z`−1〉A = 〈z̄pzq, z̄kz`〉A = α(v) (normality). It
follows inductively that ψr(v) ∈ Sij (0 ≤ r ≤ s) and that β(ψr(v)) = β(ψr+1(v)),
α(ψr(v)) = α(ψr+1(v)) (0 ≤ r ≤ s − 1); thus α(v) = α(ψs(v)). Denote ψs(v)
by (K,L, P,Q); then K = k + s = k′, L = ` − s, P = p + s, Q = q − s. Now
k + q = k′ + q′ = k + s + q′ ⇒ q′ = q − s = Q; k + ` + s = k′ + `′ + s ⇒ k′ + ` =
k′+`′+s⇒ `′ = `−s = L; `−s+p= `′−s+p′⇒ `′+p = `′−s+p′⇒ p′ = p+s = P .
Thus ψs(v) = v′, whence α(v) = α(v′).

We next consider the case when v and v′ correspond to different blocks of
A (β(v) 6= β(v′)). We will show that there exists w ∈ Sij such that δ(w, v′) =
δ(v, v′) − 1 and α(w) = α(v). Using an inductive argument, we can then assume
that δ(v, v′) = 0, whence it follows from the previous case that α(v) = α(v′).

To prove the existence of the desired element w, consider the following maps
from Sij to Z4:

ρ1(k, `, p, q) := (k, `− 1, p+ 1, q),
ρ2(k, `, p, q) := (k − 1, `, p, q + 1),
ρ3(k, `, p, q) := (k + 1, `, p, q − 1),
ρ4(k, `, p, q) := (k, `+ 1, p− 1, q).
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Now δ(v, v′) > 0, and we assume first that d := k′ + `′ − k − ` > 0. Since
p′+ q′ = p+ q−d, we may view the block of v′ as below and to the left of the block
of v (larger row number, smaller column number). In this case we will use either
ρ3 or ρ4 to produce an element w of Sij whose block distance to v′ is reduced by 1
and for which α(w) = α(v). Note that either p > 0 or q > 0, for if p = q = 0, then
p′ + q′ = p+ q − d = −d < 0.

Suppose p > 0. Then p− 1 ≥ 0, whence n ≥ p+ q− 1 ≥ 0. Since n ≥ k′ + `′ >
k + ` ≥ `, then k + ` + 1 ≤ n and ` + 1 ≤ n; thus w ≡ ρ4(v) ∈ Sij and α(w) =
α(k, `+ 1, p− 1, q) = 〈z̄p−1zq, z̄kz`+1〉A = 〈z̄(p−1)+1zq, z̄kz(`+1)−1〉A (property 3′))
= α(v). Now δ(w, v′) = |k′ − k + `′ − (` + 1)|= |(k′ + `′)− (k + `+ 1)|= δ(v, v′)−
1, so w satisfies our requirements. If q > 0, a similar argument shows that we may
use w := ρ3(v). In the case when d < 0, we use either w := ρ1(v) or w := ρ2(v).
The proof that γ is well-defined is now complete.

We conclude the proof of Theorem 2.1 by verifying that γij = γ̄ji and γ00 > 0.
Suppose i = ` + p, j = k + q, 0 ≤ ` + k ≤ n, 0 ≤ p + q ≤ n, so that γij =
A(k,`)(p,q) = 〈z̄pzq, z̄kz`〉A. Now set i′ = j, j′ = i, `′ = k, p′ = q, k′ = `, q′ = p,
so that 0 ≤ `′ + k′ ≤ n, 0 ≤ p′ + q′ ≤ n. Then γji = γi′j′ = 〈z̄p′zq′ , z̄k′z`′〉A =
〈z̄qzp, z̄`zk〉A, whence γ̄ji = 〈z̄`zk, z̄qzp〉A = 〈z̄pzq, z̄kz`〉A (by (2)) = γij . Finally,
γ00 = A(0,0)(0,0) = 〈1, 1〉A > 0. �

We conclude this chapter with an introduction to the extension problem for
positive moment matrices. For k, ` ∈ Z+, let A ∈ Mk(C), A = A∗, B ∈ Mk,`(C),
C ∈M`(C); we refer to any matrix of the form

(2.3) Ã ≡
(
A B
B∗ C

)
as an extension of A (this differs from the usual notion of extension for opera-
tors). The general theory of flat extensions for (not necessarily positive) Hankel
and Toeplitz matrices was developed by Iohvidov [Ioh].

Proposition 2.2 [Smu]. For A ≥ 0, the following are equivalent:

1) Ã ≥ 0;
2) There exists W ∈Mk,`(C) such that AW = B and C ≥W ∗AW .

In case Ã ≥ 0, the matrix V ∗AV is independent of the choice of V satisfying
AV = B; moreover, rank Ã = rankA ⇔ C = W ∗AW for some W such that
B = AW . Conversely, if A ≥ 0, any extension Ã satisfying rank Ã = rankA
is necessarily positive ([CF1, Proposition 2.3], [Smu]). We refer to a rank-
preserving extension of A as a flat extension. If A ≥ 0 and B is prescribed with
RanB ⊆ RanA, there is a unique flat extension of the form (2.3), which we denote
by [A;B].

Flat extensions of positive Hankel matrices play an important role in the treat-
ment of the truncated Hamburger moment problem in [CF3]: Given γj ∈ R
(0 ≤ j ≤ 2k), there exists a positive Borel measure µ, suppµ ⊆ R, such that∫
tj dµ = γj (0 ≤ j ≤ 2k) if and only if the Hankel matrix H(k) := (γi+j)0≤i,j≤k

admits a positive flat extension of the form H(k + 1). In the sequel we will obtain
partial analogues of this result for the truncated complex moment problem. In
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particular, the next result will prove useful in obtaining flat extensions M(n + 1)
of positive moment matrices M(n).

Let A = M(n) ≥ 0 and let

B ≡ B(n) =


B0,n+1

...
Bn−1,n+1

Bn,n+1

 ,

where Bn,n+1 is the moment matrix block (2.1) corresponding to a choice of mo-
ments of degree 2n+1. To construct a positive flat extension of the form M(n+1) =
[M(n);B(n)] we require a choice of Bn,n+1 such that RanB ⊆ RanA (so that
B = AW for some W ) and such that C := W ∗AW is Toeplitz (constant on diago-
nals). The next result shows that a certain degree of Toeplitz structure is inherited
by C from the Toeplitz structures of the blocks Bij (0 ≤ i ≤ n, 0 ≤ j ≤ n + 1)
regardless of the choice of Bn,n+1 satisfying RanB ⊆ RanA.

Proposition 2.3. If RanB(n) ⊆ RanM(n), then M := [M(n);B(n)] satisfies
M(p,q)(r,s) = M(s,r)(q,p) for all choices of p, q, r, s ≥ 0 such that p+q = r+s = n+1.

Proposition 2.3 can be formulated equivalently as follows: M satisfies the sym-
metric property 〈p, q〉 = 〈q̄, p̄〉 (p, q ∈ Pn+1).

Example 2.4. Consider M(1) > 0 (i.e., M(1) is positive and invertible). For
each choice of γ1,2 and γ0,3 used to define B1,2, RanB(1) ⊆ RanM(1), so by
Proposition 2.3, in C := (cij)1≤i,j≤3 = [M(1);B(1)][2, 2] we have c11 = c33, c21 =
c32, c12 = c23, and C = C∗. To construct a flat extension M(2), it is therefore
equivalent to find choices for γ1,2 and γ0,3 such that c11 = c22; we resolve this
question in Chapter 5.

Proof of Proposition 2.3. Let A = M(n), B = B(n). We denote the
columns of the rectangular block matrix (A,B) by Z̄ iZj (0 ≤ i + j ≤ n + 1) and
we denote the columns of Ã := [A;B] by W̄ iW j (0 ≤ i + j ≤ n+ 1). For r, s ≥ 0,
r + s = n+ 1, there exist scalars aij(r, s) (0 ≤ i+ j ≤ n) such that

(2.4) Z̄rZs =
∑

0≤i+j≤n
aij(r, s)Z̄ iZj

(equivalently, for 0 ≤ p+m ≤ n, γr+p,s+m =
∑

0≤i+j≤n aij(r, s)γi+p,j+m).
For p + q = r + s = n + 1, we seek to show that Ã(p,q)(r,s) = Ã(s,r)(q,p). The

rank-preserving construction of [A;B] implies that

Ã(p,q)(r,s) =
∑

0≤i+j≤n
aij(r, s)γi+q,j+p.

(2.4) implies that in W̄ qW p we have

γq+i,p+j =
∑

0≤k+`≤n
ak`(q, p)γk+i,`+j ,

whence Ã(p,q)(r,s) =
∑

0≤i+j≤n,0≤k+`≤n aij(r, s)ak`(q, p)γk+i,`+j .
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Similarly, Ã(s,r)(q,p) =
∑
aij(q, p)ak`(r, s)γk+i,`+j ; in this sum, we replace i by

k, j by `, k by i, ` by j and conclude that Ã(p,q)(r,s) = Ã(s,r)(q,p). �



CHAPTER 3

Positive Moment Matrices
and Representing Measures

The main result of this chapter is a structure theorem for finite positive moment
matrices. This result is analogous to the recursive structure theorems for positive
Hankel and Toeplitz matrices [CF3] and will be used in the sequel in obtaining our
existence theorems for representing measures. We begin this chapter by describing
relationships between M(n)(γ) and representing measures for γ; in particular, we
will show that dependence relations in the columns of M(n) correspond to planar
algebraic curves containing the support of any representing measure for γ. We use
this result to prove that the support of any representing measure for γ contains at
least rankM(n) elements.

The basic connection between M(n)(γ) and any representing measure µ for γ
is provided by the identity

(3.1)
∫
f ḡ dµ = 〈f, g〉M(n) = (M(n)f̂ , ĝ) (f, g ∈ Pn).

Indeed, for 0 ≤ i + j ≤ 2n, γi,j =
∫
z̄izj dµ; thus for 0 ≤ p+ q ≤ n, 0 ≤ k + ` ≤ n,

we have 〈z̄pzq, z̄kz`〉M(n) = γp+`,q+k =
∫
z̄p+`zq+k dµ =

∫
(z̄pzq)(z̄kz`) dµ, whence

(3.1) follows by sesquilinearity. In particular, 0 ≤
∫
|f |2 dµ =

(
M(n)f̂ , f̂

)
(f ∈

Pn), so we have the following fundamental necessary condition for the existence of
representing measures:

(3.2) If γ has a representing measure, then M(n)(γ) ≥ 0.

In M(n), for 0 ≤ i + j ≤ n, Z̄ iZj denotes the unique column whose initial
element is γij . Let CM(n) denote the column space of M(n), i.e., the subspace of
Cm(n) spanned by {Z̄ iZj}0≤i+j≤n. For v ∈ CM(n), the successive elements will be
denoted by vr,s (0 ≤ r + s ≤ n) in the following order:

v0,0, v1,0, v0,1, . . . , vn,0, vn−1,1, . . . , v1,n−1, v0,n;

we refer to vr,s as the (r, s) element of v; note that this subscript ordering is “con-
jugate” to the lexicographic ordering of {eij}0≤i+j≤n.

Our next result is useful in helping locate the support of a representing mea-
sure. For p ∈ Pn, p ≡

∑
aij z̄

izj, let p(Z , Z̄) :=
∑
aijZ̄

iZj ∈ CM(n), and let Z(p) :=
{z ∈ C : p(z, z̄) = 0}. Note that for 0 ≤ r+s ≤ n, the (r, s) element of v := p(Z, Z̄)
is equal to vr,s = 〈v, es,r〉 = 〈p, z̄szr〉M(n) =

∑
0≤i+j≤n aij〈z̄izj, z̄szr〉M(n) =∑

0≤i+j≤n aijγi+r,j+s.

15
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Proposition 3.1 (Cf. [StSz, Proposition 1]). Suppose µ is a representing
measure for γ. For p ∈ Pn, suppµ ⊆ Z(p)⇔ p(Z , Z̄) = 0.

Proof. Suppose first that p(Z , Z̄) = 0, i.e.,

(3.3) 0 =
∑

0≤i+j≤n
aij Z̄

iZj .

Since µ is a positive Borel measure, to prove suppµ ⊆ Z(p), it suffices to show that∫
|p|2 dµ = 0. Now

(3.4) |p|2 =
∑

0≤i+j≤n,0≤r+s≤n
aij ārsz̄

i+szj+r,

so

(3.5)
∫
|p|2 dµ =

∑
0≤i+j≤n,0≤r+s≤n

aij ārsγi+s,j+r .

For r, s fixed, 0 ≤ r+s ≤ n, the (s, r) element in (3.3) is
∑

0≤i+j≤n aijγi+s,j+r = 0,
whence ∫

|p|2 dµ =
∑

0≤r+s≤n
ārs

∑
0≤i+j≤n

aijγi+s,j+r = 0.

For the converse, suppose p ≡ 0 on suppµ. For 0 ≤ r + s ≤ n, the (s, r)
element of p(Z , Z̄) is

∑
0≤i+j≤n aijγi+s,j+r =

∫
z̄szrp(z, z̄) dµ =

∫
0 dµ = 0, so

p(Z , Z̄) = 0. �

Example 3.2. Consider the moment problem for

1 Z Z̄ Z2 ZZ̄ Z̄2

M(2) :=


1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

 .

Note that the Z̄ = Z2 and ZZ̄ = 1 . If there exists a representing measure µ, then
Proposition 3.1 implies that on suppµ, z3 = z(z2) = zz̄ = 1. If z0, z1, z2 denote
the distinct cube roots of unity, then suppµ ⊆ {z0, z1, z2}, and it is easy to verify
that v := (1/3)(δz0 + δz1 + δz2) is a representing measure. We will show below that
v is actually the unique representing measure.

Suppose µ is a representing measure for γ: (3.5) implies that Pn ⊆ L2 (µ). Let
p ∈ Pn; since p is continuous on suppµ, it follows that p = 0 as an element of L2(µ)
if and only if p |suppµ≡ 0. We next define mappings ψ ≡ ψ(γ) : CM(n) → L2 (µ),
ρ : CM(n) → Pn |suppµ, and ι : Pn |suppµ→ L2 (µ) by

ψ(p(Z , Z̄)) := p(z, z̄),
ρ(p(Z , Z̄)) := p(z, z̄) |suppµ

and
ι(p(z, z̄) |suppµ) := p(z, z̄)
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(p ∈ Pn), respectively.

Proposition 3.3.

i) ψ, ρ and ι are well-defined, linear, and one-to-one, ρ is an isomorphism, and
ψ = ι ◦ ρ;

ii) If f, g, fg ∈ Pn, then ψ((fg)(Z , Z̄)) = ψ(f(Z , Z̄))ψ(g(Z , Z̄));
iii) If f ∈ Pn, then ψ(f̄(Z , Z̄)) = ψ(f(Z , Z̄)).

Proof. i) follows directly from Proposition 3.1; ii) and iii) are immediate
consequences of i). �

Corollary 3.4. Let µ be a representing measure for γ. If f, g, fg ∈ Pn and
f(Z , Z̄) = 0, then (fg)(Z , Z̄) = 0.

Proof. Since f(Z , Z̄) = 0, then ψ(f(Z , Z̄)) = 0 (Proposition 3.3-i). Now
ψ((fg)(Z , Z̄)) = ψ(f(Z , Z̄))ψ(g(Z , Z̄)) = 0, whence (fg)(Z , Z̄) = 0 by the injectiv-
ity of ψ. �

Corollary 3.5. dimL2 (µ) ≥ rankM(n).

Proof. From Proposition 3.3-i), rankM(n) = dim CM(n) ≤ dimL2 (µ). �

Lemma 3.6. Let µ be a finitely atomic positive measure on C, with k :=
card suppµ. Then {1, z, . . . , zk−1} is a basis for L2 (µ).

Proof. Lagrange interpolation implies that {1, . . . , zk−1} spans L2 (µ). If
there exist scalars c0, . . . , ck−1 such that p(z) ≡ c0 + · · ·+ ck−1z

k−1 satisfies p = 0
in L2 (µ), then suppµ ⊆ Z(p), whence card suppµ ≤ k − 1; this contradiction
implies that {1, . . . , zk−1} is a basis for L2(µ). �

Corollary 3.7. If µ is a representing measure for γ, then card suppµ ≥
rankM(n).

Proof. Straightforward from Corollary 3.5 and Lemma 3.6. �

Returning to Example 3.2, we know that for any representing measure µ,
suppµ ⊆ {z0, z1, z2}; on the other hand, Corollary 3.7 shows that card suppµ ≥
rankM(2) = 3. Thus suppµ = {z0, z1, z2}, and it follows readily that µ :=
(1/3)(δz0 + δz1 + δz2) is the unique representing measure. Since M(2) is clearly
a flat extension of M(1), this example is an illustration of Corollary 5.14 (below).

By an interpolating measure for γ we mean a (not necessarily positive) Borel
measure µ such that

∫
z̄izj dµ = γi,j for 0 ≤ i+ j ≤ 2n.

Proposition 3.8. Let µ be a k-atomic interpolating measure for γ, k ≤ n+1.
If M(n) ≥ 0, then µ ≥ 0.

Proof. An interpolating measure satisfies (3.1). Let µ =
∑

1≤i≤k ρiδwi , where
suppµ = {wi}ki=1. For 1 ≤ j ≤ k, there exists an analytic polynomial fj of degree
k − 1(≤ n) such that fj(wj) = 1 and fj(wi) = 0 (i 6= j). Then by (3.1) and the
positivity of M(n), 0 ≤ (M(n)f̂j , f̂j) =

∫
|fj|2 dµ = ρj ; thus µ ≥ 0. �
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We next present several preliminary results leading to the structure theorem
for positive moment matrices. For A ∈ Mk+1(C), A := (aij)0≤i,j≤k, let vj :=
(aij)0≤i≤k, denote the j-th column vector (0 ≤ j ≤ k). For 0 ≤ ` ≤ k, let
A(`) := (aij)0≤i,j≤` ∈ M`+1(C) and let v(j, `) denote the j-th column vector of
A(`) (0 ≤ j ≤ `). The following result is closely related to the structure of positive
2× 2 operator matrices [Smu] (cf. Proposition 2.2).

Proposition 3.9 (Extension Principle) [Fia, Proposition 2.4]. Let A ∈
Mk+1(C), A ≥ 0. If there exist p, 0 ≤ p ≤ k, and scalars c0, . . . , cp such that
c0v(0, p) + · · ·+ cpv(p, p) = 0, then c0v0 + · · ·+ cpvp = 0.

The referee has pointed out that a more direct proof of Proposition 3.9 can be
based on the fact that if A ≥ 0 and (Ax, x) = 0, then Ax = 0.

Lemma 3.10. Let M(n) be a moment matrix and let p ∈ Pn. If p(Z , Z̄) = 0,
then p̄(Z , Z̄) = 0.

Proof. Let p(z, z̄) =
∑

0≤i+j≤n aij z̄
izj. Now p(Z , Z̄) = 0 ⇔

∑
aijZ̄

iZj =
0⇔ for all r, s, 0 ≤ r+s ≤ n,

∑
0≤i+j≤n aijγi+r,j+s = 0⇔ for all r, s, 0 ≤ r+s ≤ n,∑

0≤i+j≤n āijγj+s,i+r = 0⇔
∑

0≤i+j≤n āij Z̄
jZ i = 0⇔ p̄(Z , Z̄) = 0. �

Lemma 3.11. LetM(n) ≥ 0. If p ∈ Pn−2 and p(Z ,Z̄) = 0, then (zp)(Z , Z̄) = 0.

Proof. We have p(z, z̄) =
∑

0≤i+j≤n−2 aij z̄
izj , so

0 = Y :=
∑

0≤i+j≤n−2

aijZ̄
iZj ;

thus for 0 ≤ r + s ≤ n, the (r, s) entry of Y is
∑

0≤i+j≤n−2 aijγi+r,j+s = 0. Let
W := (zp)(Z , Z̄) =

∑
0≤i+j≤n−2 aij Z̄

iZj+1. Since i + j + 1 ≤ n − 1, each of the
columns of M(n) used in computing W has degree ≤ n − 1 and thus extends a
column of M(n − 1). The entries of W corresponding to degree ≤ n − 1 may be
described as follows: for 0 ≤ r + s ≤ n− 1, the (r, s) entry of W is

(3.5)
∑

0≤i+j≤n−2

aijγi+r,j+1+s.

This expression coincides with the (r, s + 1) entry of Y , whence W(r,s) = 0 for
0 ≤ r + s ≤ n− 1. In CM(n−1) we thus have (zp)(Z , Z̄) = 0, and since M(n) ≥ 0,
it follows from Proposition 3.9 that (zp)(Z , Z̄) = 0 in CM(n). �

Lemma 3.12. If M(n) ≥ 0 and p ∈ Pn−2 satisfies p(Z , Z̄) = 0, then
(z̄p)(Z , Z̄) = 0.

Proof. We have, successively, p̄(Z , Z̄) = 0 (Lemma 3.10), (zp̄)(Z , Z̄) = 0
(Lemma 3.11), and (z̄p)(Z , Z̄) = 0 (Lemma 3.10). �

Lemma 3.13. If M(n) ≥ 0, p ∈ Pn satisfies p(Z , Z̄) = 0 and r, s ≥ 0 satisfy
r + s+ deg p ≤ n− 1, then (z̄rzsp)(Z , Z̄) = 0.
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Proof. Successive application of Lemmas 3.11 and 3.12. �

Repeated application of Lemma 3.13 now yields the structure theorem for pos-
itive moment matrices.

Theorem 3.14 (Structure Theorem). Let M(n) ≥ 0. If f, g, fg ∈ Pn−1 and
f(Z , Z̄) = 0, then (fg)(Z , Z̄) = 0.

Remark 3.15.

i) If γ has a representing measure µ, the conclusion of Theorem 3.14 holds if we
merely assume that fg ∈ Pn. Indeed, under this hypothesis, f(Z , Z̄) = 0⇒
f ≡ 0 ∈ L2 (µ) (Proposition 3.3-i) ⇒ fg ≡ 0 ∈ L2 (µ) ⇒ (fg)(Z , Z̄) = 0
(Proposition 3.3-i). This establishes (i)⇒(vii) in Conjecture 1.1.

ii) Using Theorem 3.14, we can show that the following condition is necessary
for the existence of a positive extension M(n+ 1) of M(n):

(RG) f, g, fg ∈ Pn, f(Z , Z̄) = 0⇒ (fg)(Z , Z̄) = 0.

Indeed, suppose M(n + 1) ≥ 0 exists and let f , g, fg be in Pn
with f(Z , Z̄) = 0 in CM(n). The Extension Principle implies that
f(Z , Z̄) = 0 in CM(n+1). Since deg(fg) ≤ n < n+ 1, Theorem 3.14 (applied
toM(n+ 1)) implies that (fg)(Z , Z̄) = 0 in CM(n+1), whence (fg)(Z , Z̄) = 0
in CM(n).

Note that the preceding argument proves the implication (v)⇒(vii) of Conjec-
ture 1.1; note also that condition (RG) requires that Jγ := {p ∈ Pn : p(Z , Z̄) = 0}
behave like an “ideal” in the polynomial space Pn; thus (RG) imposes restrictions
on the possible values of rankM(n).

Conjecture 3.16 [Fia]. For M(n)(γ) ≥ 0, the following are equivalent:
i) There exists an extension M(n+ 1) ≥ 0;
ii) There exists a flat extension M(n+ 1);
iii) There exist flat extensions M(n+ k) for every k ≥ 1;
iv) M(n) satisfies condition (RG).

An affirmation of Conjecture 3.16 would provide (RG) as a “concrete” condition
equivalent to (v) of the Main Conjecture; when combined with the results of Chapter
4, a proof of Conjecture 3.16 would yield the equivalence of (ii)-(vii) of the Main
Conjecture. As we outline below, results of [Fia] show that Conjecture 3.16 is true
in case Z = Z̄ . The results of Chapter 5 show that Conjecture 3.16 is also true if
rankM(n) = rankM(n − 1); moreover, Chapter 6 (together with Theorem 5.13)
shows that Conjecture 3.16 is true for n = 1.

Using Theorem 3.14 it is possible to recover the recursive structure theorems for
positive singular Hankel and Toeplitz matrices and to thereby solve the truncated
complex moment problem in two important special cases. This development will
be presented in detail elsewhere [Fia], so here we merely discuss the results.

In the first case, given the truncated moment sequence γ, we assume that
Z = Z̄; equivalently, there exists a sequence β0, . . . , β2n (of necessarily real scalars)
such that γij = βi+j (0 ≤ i+ j ≤ 2n). This is the case in which, for each block Bij
of M(n), the entries of Bij are all equal to γij(= βi+j). We will show that this case
is equivalent to the truncated Hamburger moment problem for β0, . . . , β2n. Let
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H(n) ≡ H(n)(β) denote the Hankel matrix (βi+j)0≤i,j≤n and let HM(n) denote
M(n)(γ) in this case.

Proposition 3.17 [Fia]. H(n) ≥ 0⇔ HM(n) ≥ 0.

Let 1 , T, . . . , Tn denote the successive columns of H(n). Assume H(n) is pos-
itive and singular and let r = min{j : Tj ∈ 〈1 , T, . . . , T j−1〉}. Then 1 ≤ r ≤ n
and there exist unique scalars c0, . . . , cr−1 such that Tr = c01 + · · · + cr−1Tr−1.
Using Theorem 3.14 and Proposition 3.17 we can recover the structure theorem for
positive singular Hankel matrices.

Proposition 3.18 [CF3]. If H(n) is positive and singular, then

Tr+s = c0Ts + · · ·+ cr−1Tr−1+s (0 ≤ s ≤ n− r − 1);

equivalently, βj = c0βj−r + · · ·+ cr−1βj−1 (r ≤ j ≤ 2n− 1).

We can now formulate a solution to the Z = Z̄ case of the truncated complex
moment problem as follows; this result and Proposition 3.17 readily imply that
Conjectures 1.1 and 3.16 are true in the case Z = Z̄ .

Theorem 3.19 [Fia]. Suppose γ is a truncated complex moment sequence and
γij = βi+j (0 ≤ i+ j ≤ 2n). The following are equivalent.

i) γ has a representing measure;
ii) HM(n) admits a positive extension HM(n+ 1);
iii) H(n) admits a positive extension H(n+ 1);
iv) H(n) ≥ 0, and either H(n) is invertible or T n = c0T

n−r + · · · + cr−1T
n−1

(i.e., β2n = c0β2n−r + · · ·+ cr−1β2n−1).
In this case, there exists a rank H(n)-atomic representing measure; if H(n) is

singular, there is a unique representing measure, which has support equal to the r
distinct real roots of tr − (c0 + · · ·+ cr−1t

r−1).

For n > 1, we next consider a moment sequence γ for which ZZ̄ = 1; equiva-
lently, there exists a sequence {βk}−2n≤k≤2n such that γij = βj−i (0 ≤ i+ j ≤ 2n).
In this case we denote M(n)(γ) by TM(n) and we let T (2n) ≡ T (2n)(β) denote the
Toeplitz matrix (βj−i)0≤i,j≤2n. For n > 1, the next result reduces the moment prob-
lem for γ to the following truncated trigonometric moment problem: βk =

∫
zk dµ

(0 ≤ k ≤ 2n), µ ≥ 0, suppµ ⊆ {z : |z| = 1}. Indeed, since ZZ̄ = 1, any repre-
senting measure must have support contained in the unit circle, as required in the
trigonometric moment problem [CF3, Section 6].

Proposition 3.20 [Fia]. TM(n) ≥ 0⇔ T (2n) ≥ 0.

Let 1 ,Z , . . . ,Zn denote the successive columns of T (2n). Assume T (2n) is
positive and singular and let r = min{j : Zj ∈ 〈1 , . . . ,Zj−1〉}; there exist unique
scalars c0, . . . , cr−1 such that Zr = c01 + · · · + cr−1Zr−1. The recursive structure
theorem for T (2n) [CF3] now assumes the form: Zr+s = c0Zs + · · ·+ cr−1Zr+s−1

(0 ≤ s ≤ n − r). We can thus formulate a solution of the ZZ̄ = 1 case of the
truncated complex moment problem which establishes the equivalence of i), ii), iii)
and v) of the Main Conjecture for the case ZZ̄ = 1.

Proposition 3.21 [Fia]. Let n > 1 and suppose the moment sequence γ
satisfies γij = βj−i (0 ≤ i+ j ≤ 2n). The following are equivalent:
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i) γ has a representing measure;
ii) TM(n) ≥ 0;
iii) T (2n) ≥ 0;
iv) γ has a rank T (2n)-atomic representing measure.

Under the conditions of Proposition 3.21, there exists a unique representing
measure for γ if and only if T (2n) is singular, in which case the support of the
representing measure consists of the r distinct roots of zr −

(
c0 + · · ·+ cr−1z

r−1
)
.

For n = 1, the preceding analysis does not apply; indeed TM(1) is an arbitrary
moment matrix of the form M(1) and representing measures need not have support
on the unit circle in this case. The M(1) moment problem is solved in Chapter 6.



CHAPTER 4

Existence of Representing Measures

The purpose of this chapter is to prove that every positive finite-rank infinite
moment matrix admits a finitely atomic representing measure.

Let M be an infinite matrix, and let CM denote its associated column space,
generated by columns labeled 1 , Z , Z̄ , Z2, ZZ̄, Z̄2, . . . . We regard M as a linear
map on Cω0 := {v ≡ (vij)i,j≥0 ∈ Cω : vij = 0 for all but finitely many pairs (i, j)},
so that CM = RanM. For k ≥ 1, let Pk denote the projection of Cω0 onto the first
k coordinates. We define rankM = dim CM . We state without proof the following
result.

Lemma 4.1. Let n1 < n2 < · · · be an increasing sequence of nonnegative
integers. Then rankM = sup

k
rankPnkMPnk .

The map ϕ : C[z, z̄]→ CM is defined by ϕ(z̄izj) := Z̄ iZj , i, j ≥ 0. It is straight-
forward to check that ϕ(p) = Mp̂ = p(Z , Z̄) =

∑
aijZ̄

iZj , where as usual p̂ := (aij)
for a given polynomial p(z, z̄) =

∑
i,j aij z̄

izj. Let N := {p ∈ C[z, z̄] : 〈Mp̂, p̂〉 = 0},
and let kerϕ := {p ∈ C[z, z̄] : ϕ(p) = 0}. It is not difficult to see that kerϕ ⊆ N .
Our next lemma shows that this containment is indeed an equality.

Lemma 4.2. Let M be a positive infinite matrix. Then N = kerϕ.

Proof. Let p ∈ N , i.e., 〈Mp̂, p̂〉 = 0. To show that Mp̂ = 0, it suffices to prove
that for every q ∈ C[z, z̄], 〈Mp̂, q̂〉 = 0. Let q ∈ C[z, z̄]. Choose k ≡ k(p, q) such
that p̂, q̂ ∈ RanPk, and set Mk := PkMPk. Since 〈Mp̂, p̂〉 = 0, then

‖
√
Mkp̂‖2 = 〈Mkp̂, p̂〉 = 〈MPkp̂, Pkp̂〉 = 〈Mp̂, p̂〉 = 0,

so that Mkp̂ = 0. Now 〈Mp̂, q̂〉 = 〈MPkp̂, Pk q̂〉 = 〈Mkp̂, q̂〉 = 0. �

We now proceed to consider the quotient spaceC[z, z̄]/N , in caseM is a positive
infinite moment matrix. We define a sesquilinear form on C[z, z̄] by 〈p, q〉M =
〈Mp̂, q̂〉 (p, q ∈ C[z, z̄]); thus γij = 〈zj, zi〉M .

The following analogue of Theorem 3.14 gives the structure of a positive infinite
moment matrix.

Proposition 4.3. Let M be a positive infinite moment matrix. Then kerϕ is
an ideal of C[z, z̄].

Proof. Let p ∈ kerϕ, q ∈ C[z, z̄], let K := deg pq and let k ≥ K. In CM(k+1),

p(Z , Z̄) = 0, so Theorem 3.14 implies that (pq)(Z , Z̄) = 0 in CM(k+1). Since k ≥ K
is arbitrary, then (pq)(Z , Z̄) = 0 in CM , i.e., pq ∈ kerϕ. �

22
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Lemma 4.2 and Proposition 4.3 imply that N is an ideal of C[z, z̄], so the
operator of multiplication by z acting on C[z, z̄] factors through N to give rise
to an induced multiplication on C[z, z̄]/N , which we will denote by Mz. More-
over, C[z, z̄]/N admits a natural inner product, namely 〈f +N ,g+N〉:=〈f, g〉M =
〈Mf̂, ĝ〉, for f, g ∈ C[z, z̄]. Using Lemma 4.2, it is straightforward to verify that 〈·, ·〉
is well-defined, sesquilinear, and positive semi-definite, and clearly 〈f+N ,f+N〉 =
0 implies f ∈ N .

Lemma 4.4. Let M be a finite-rank positive infinite moment matrix. Then
C[z, z̄]/N is a finite dimensional Hilbert space and dimC[z, z̄]/N = rankM .

Proof. Consider the map Φ : CM → C[z, z̄]/N defined by Φ(p(Z , Z̄)) :=
p + N , p ∈ C[z, z̄]. If q ∈ C[z, z̄] and q(Z , Z̄) = p(Z , Z̄), then q − p ∈ kerϕ = N ,
so q + N = p + N ; thus Φ is well-defined. Φ is clearly linear and surjective;
if Φ(p(Z , Z̄)) = 0, then p ∈ N = kerϕ, so p(Z , Z̄) = ϕ(p) = 0. Thus Φ is an
isomorphism, so dimC[z, z̄]/N = dimCM = rankM <∞, and therefore C[z, z̄]/N
is a complete pre-Hilbert space. �

In the next result we use the elementary fact (valid for arbitrary matrices M)
that if p, q ∈ C[z, z̄] and p̂, q̂ ∈ RanPk, then 〈p, q〉M = 〈p, q〉PkMPk|RanPk .

Lemma 4.5. Let M be a finite-rank positive infinite moment matrix. Then
Mz, acting on C[z, z̄]/N , is normal.

Proof. We shall first verify that M∗z = Mz̄. Let f, g ∈ C[z, z̄] and let k :=
1 + max{deg f, deg g}. Then

〈M∗z (f +N ), g +N〉
= 〈f +N , z(g +N )〉 = 〈f +N , zg +N〉
= 〈f, zg〉M = 〈f, zg〉M(k) = 〈z̄f, g〉M(k) (by Theorem 2.1(iii))

= 〈z̄f, g〉M = 〈z̄f +N , g +N〉 = 〈z̄(f +N ), g +N〉.

A similar argument using Theorem 2.1(iv) implies that 〈zf, zg〉M = 〈z̄f, z̄g〉M
for all f, g ∈ C[z, z̄], from which it follows that

〈z(f +N ), z(g +N )〉 = 〈zf +N , zg +N〉 = 〈zf, zg〉M
= 〈z̄f, z̄g〉M = 〈z̄f +N , z̄g +N〉
= 〈z̄(f +N ), z̄(g +N )〉

(f, g ∈ C[z, z̄]). Therefore, ‖Mz(f +N )‖2=‖Mz̄(f +N )‖2=‖M∗z (f +N )‖2, i.e., Mz

is normal. �

Proposition 4.6. Let M be an infinite moment matrix with representing
measure µ. Then card suppµ = rankM.

Proof. For each n > 0, since µ is a representing measure for M(n), Corollary
3.7 implies that k := card suppµ ≥ rankM(n). Lemma 4.1 implies that r :=
rankM = sup rankM(n), so k ≥ r. Assume k > r, let m be an integer such that
k ≥ m > r, and let w1, . . . , wm be m distinct points in suppµ. By Lagrange
interpolation, there exist analytic polynomials f1, . . . , fm (of degree m − 1) such
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that fi(wj) = δij (1 ≤ i, j ≤ m). Since {f1, . . . , fm} is linearly independent in
Pm−1 |suppµ, Proposition 3.3-i) implies that {f1(Z , Z̄), . . . , fm(Z , Z̄)} is linearly
independent in CM(m−1). Therefore rankM(m − 1) ≥ m, which forces r ≥ m, a
contradiction; thus, k = r. �

Theorem 4.7. Let M be a finite-rank positive infinite moment matrix. Then
M has a unique representing measure, which is rankM -atomic. In this case, let
r := rankM ; there exist unique scalars α0, . . . , αr−1 such that Zr = α01 + · · · +
αr−1Zr−1. The unique representing measure for M has support equal to the r
distinct roots z0, . . . , zr−1 of the polynomial zr−(α0+· · ·+αr−1z

r−1), and densities
ρ0, . . . , ρr−1 determined by the Vandermonde equation

V (z0, . . . , zr−1)(ρ0, . . . , ρr−1)T = (γ00, . . . , γ0,r−1)T .

Proof. Lemma 4.5 shows that Mz, acting on C[z, z̄]/N , is normal. By the
Spectral Theorem, C∗(Mz) ∼= C(σ(Mz)), and the linear functional η(f) := 〈f(Mz)(1+
N ), 1 +N〉 (f ∈ C(σ(Mz))) is positive. Thus, the Riesz Representation Theorem
implies that there exists a positive Borel measure µ, with suppµ ⊆ σ(Mz), such
that η(f) =

∫
fdµ. Then∫

z̄izjdµ = η(z̄izj) = 〈M∗iz M j
z (1 +N ), 1 +N〉

= 〈zj +N , zi+N〉 = 〈zj, zi〉M = γij .

Thus µ is a representing measure for M. Proposition 4.6 implies that

card suppµ = rankM = r <∞.

By Lemma 3.6, {1, z, . . . , zr−1} is a basis for L2(µ), and hence, by Proposition 3.3-
i), {1 ,Z , . . . ,Zr−1} is independent in CM(r−1); thus {1 ,Z , . . . ,Zr−1} is independent
in CM . Since r = rankM = dim CM , then {1 ,Z , . . . ,Zr−1} is a basis for CM . Thus
there exist unique scalars α0, . . . , αr−1 such that Zr = α01 + · · · + αr−1Zr−1 in
CM . In CM(r) we thus have the same relation, so Proposition 3.1 implies that
suppµ ⊆ Z(p), where p(z) := zr − (α0 + · · ·+ αr−1z

r−1). Now r = card suppµ ≤
cardZ(p) ≤ r, so p has exactly r distinct roots, say z0, . . . , zr−1, and suppµ = Z(p).
Thus µ is of the form µ =

∑r−1
i=0 ρiδzi , and since µ interpolates γ0i (0 ≤ i ≤

r− 1), then ρ0, . . . , ρr−1 are uniquely determined from the Vandermonde equation
V (z0, . . . , zr−1)(ρ0, . . . , ρr−1)T = (γ00, . . . , γ0,r−1)T . �

We remark that, in the last proof, σ(Mz) = Z(p). Indeed, Z(p) = suppµ ⊆
σ(Mz) and r = cardZ(p) = card suppµ ≤ cardσ(Mz) ≤ dimC[z, z̄]/N = rankM =
r. Note also that r = min{j : Zj ∈ 〈1, . . . ,Zj−1〉}.

We also note that an infinite-rank positive moment matrix need not have a
representing measure. Indeed, for the full moment problem in two real variables,
Berg-Christensen-Jensen [BCJ] and Schmüdgen [Sch1] independently proved the
existence of a positive definite multisequence β for which there is no representing
measure [Fug], [Ber]; since the 2-dimensional real moment problem is equivalent
to the complex moment problem (see Chapter 6), β gives rise to a complex moment
sequence γ such that M(∞)(γ) ≥ 0 and such that γ has no representing measure.
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This pathology is a genuinely multidimensional phenomenon; indeed, Hamburger’s
Theorem implies that if M(∞)(γ) ≥ 0 and Z = Z̄ , then γ does have a representing
measure.



CHAPTER 5

Extension of Flat Positive Moment Matrices

In this chapter, we shall see that every finite flat positive moment matrix can
be extended in a unique way to an infinite positive moment matrix, which has the
same rank. By combining this result with those in the preceding chapter, we derive
that for such matrices, the truncated moment problem always admits a solution.

Definition 5.1. Let M(n) ≡ M(n)(γ) be a finite moment matrix, with
columns labeled 1 ,Z , Z̄, . . . ,Z

n
, . . . , Z̄

n
. We say that M(n) (and therefore γ) is

flat if there exist polynomials pij ∈ Pn−1 such that z̄izj − pij(z, z̄) ∈ kerϕ for all
i, j with i+ j = n, where ϕ is the map defined in Chapter 4 (i.e., Z̄ iZj = pij(Z , Z̄)
in CM(n)).

The remarks following Proposition 2.2 make it clear that if M(n) ≥ 0, flatness
is equivalent to the condition rankM(n) = rankM(n − 1) (i.e., M(n) is a flat
extension of M(n− 1)). In order to construct a positive extension M(n+ 1) whose
rank equals that of M(n), we shall make use of Smul’jan’s Theorem (Proposition
2.2). Thus, we will be searching for a moment matrix M(n+ 1) of the form

Ã =
(
A B
B∗ C

)
,

where A = M(n), B = AW, and C = W ∗AW. The next lemma, however, does not
require that A be M(n).

Lemma 5.2. Let A, B, C and Ã be as above, let V1, . . . , Vm be the columns of
A, let Vm+1, . . . , Vm+p be the columns of B, and let Ṽ1, . . . , Ṽm, Ṽm+1, . . . , Ṽm+p

be the columns of Ã. Assume that Ã ≥ 0.
(i) If there exist scalars a1, . . . , am such that

∑m
i=1 aiVi = 0, then∑m

i=1 aiṼi = 0.
(ii) If Ã is a flat extension of A and

∑m+p
i=1 aiVi = 0, then

∑m+p
i=1 aiṼi = 0.

Proof. (i) follows from the Extension Principle (Proposition 3.9).
(ii) Let a := (a1, . . . an)T , b := (am+1, . . . , am+p)T , and x :=

(
a
b

)
. Then Aa +

Bb = 0, and by the positivity and flatness of Ã there exists W such that B = AW
and C = W ∗B. Then B∗a +Cb = W ∗Aa +W ∗Bb = 0, which readily implies that
Ãx = 0, and the result follows. �

When A = M(n)(γ), we shall, as usual, denote the columns of A by
{Z̄ iZj}0≤i+j≤n; we shall also use {Z̄ iZj}0≤i+j≤n+1 to denote the columns of (A B),

and use {Z̃
i

Z̃j}0≤i+j≤n+1 to denote the columns of Ã. If V is in the column space

26
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of Ã, we denote by [V ]p the truncation of V through monomials of degree p in the
lexicographic ordering of the rows of Ã; we use similar notation for the truncation
of general vectors in Cm(n) and Cm(n+1).

Let [M(n)]n−1 := (Bij)0≤i≤n−1,0≤j≤n, let [B]n−1 := (Bi,n+1)0≤i≤n−1, and let
{V̄ iV j}0≤i+j≤n+1 denote the columns of the block S := ([M(n)]n−1 [B]n−1). An
obvious adaptation of the proof of Lemma 3.10 shows:

(5.1) If p ∈ Pn+1 and p(V, V̄ ) = 0 in CS, then p̄(V, V̄ ) = 0.

Similarly, an adaptation of the proof of Theorem 3.14 shows:

(5.2) If p, q ∈ Pn, pq ∈ Pn+1, then
p(Z , Z̄) = 0 in CM(n) ⇒ (pq)(V, V̄ ) = 0 in CS .

We shall assume in the sequel that γ satisfies the following flatness requirement:

(5.3) For all i, j ≥ 0 with i+ j = n,
there exists pij ∈ Pn−1 such that Z̄ iZj = pij(Z , Z̄).

Lemma 5.3. Assume that Ã ≥ 0.

(i) pij(Z̃ , Z̃) = Z̃
i

Z̃j

(ii) p̄ij(Z̃ , Z̃) = Z̃
j

Z̃ i.

Proof. (i) Use Lemma 5.2(i). (ii) Combine Lemma 5.2(i) and Lemma 3.10.�

Assume that A ≡ M(n) is positive and satisfies (5.3). We now proceed to
define the matrix B for the proposed flat extension Ã ≡ M(n+ 1); we denote the
columns of B by Zn+1, . . . , Z̄n+1. Let k, ` be such that k + ` = n+ 1.

Case 1. k ≥ 1
Z̄kZ` := ϕ(z̄pk−1,`).
To check that Z̄kZ` is well-defined, suppose p ∈ Pn−1 satisfies Z̄k−1Z` =

p(Z , Z̄); (5.2) implies (z̄pk−1,`)(V, V̄ ) = (z̄p)(V, V̄ ). Since z̄pk−1,`, z̄p ∈ Pn and
M(n)(≥ 0) is a flat extension of M(n−1), Lemma 5.2-ii) implies (z̄pk−1,`)(Z , Z̄) =
(z̄p)(Z , Z̄).

Case 2. k = 0 (⇒ ` = n+ 1)
Zn+1 := ϕ(zp0,n) (the proof that Zn+1 is well-defined is similar to the argument

used in Case 1).
The argument used to prove that B is well-defined can also be used to verify

that M(n) satisfies property (RG). Having constructed B, which is obviously of the
form AW for some W, we let C := W ∗AW and Ã := [A;B]. We note for future
reference that for p, q ∈ Pn+1,

〈p, q〉Ã ≡ 〈Ãp̂, q̂〉 = 〈p(Z̃ , Z̃), q̂〉 = 〈p̂, q(Z̃ , Z̃)〉

(since Ã is self-adjoint). Moreover, if p, q ∈ Pn, then 〈p(Z̃ , Z̃), q̂〉 = 〈p(Z , Z̄), [q̂]n〉 =
〈p, q〉A; thus

(5.4) 〈p, q〉Ã = 〈p, q〉A (p, q ∈ Pn).



28 RAÚL E. CURTO AND LAWRENCE A. FIALKOW

Theorem 5.4. If γ is flat and M(n) ≥ 0, then M(n) admits a unique flat
extension of the form M(n+ 1).

To prove Theorem 5.4, we will establish that
(i) Ã is a moment matrix;
(ii) Ã is an extension of M(n);
(iii) Ã is flat;
(iv) Ã is the unique flat extension of M(n) of the form M(n+ 1).

The proof of (i) will be the result of a series of lemmas and propositions, aimed
at establishing four conditions in Theorem 2.1, namely:

(a) Ã is self-adjoint;
(b) 〈p, q〉Ã = 〈q̄, p̄〉Ã (p, q ∈ Pn+1);
(c) 〈zp, q〉Ã = 〈p, z̄q〉Ã (p, q ∈ Pn);
(d) 〈zp, zq〉Ã = 〈z̄p, z̄q〉Ã (p, q ∈ Pn).
(ii) Since Ã(i,j)(k,`) = 〈z̄kz`, z̄izj〉Ã, we need to check that 〈z̄kz`, z̄izj〉Ã =

γk+j,`+i for k + ` = n+ 1 and i+ j ≤ n− 1. As before, there are two cases, k ≥ 1
and k = 0. When k ≥ 1 and i+ j ≤ n− 1,

〈z̄kz`, z̄izj〉Ã = 〈Ã ̂̄zkz`, ̂̄zizj〉 = 〈[Ã ̂̄zkz`]n, [̂̄zizj]n〉 (since i+ j < n)

= 〈(z̄pk−1,`)(Z̄ ,Z), [̂̄zizj]n〉
= 〈A ̂(z̄pk−1,`), ̂̄zizj〉
= 〈z̄pk−1,`, z̄

izj〉A = 〈pk−1,`, z̄
izj+1〉A (by Theorem 2.1)

= 〈z̄k−1z`, z̄izj+1〉A = γ(k−1)+(j+1),`+i (since A = M(n))

= γk+j,`+i.

For k = 0, ` = n+ 1, i+ j ≤ n− 1,

〈zn+1, z̄izj〉Ã = 〈[Z̃n+1]n, [̂̄zizj]n〉 = 〈zp0,n, z̄
izj〉A

= 〈p0,n, z̄
i+1zj〉A = 〈zn, z̄i+1zj〉A = γj,n+i+1 = γk+j,`+i.

(iii) Ã is flat by construction.
(iv) will be proved after (i) is completed.
For (i) we must consider the four above-mentioned conditions in Theorem 2.1;

(a) is clear from the definition of Ã, but the other three conditions require some
arguments involving the flatness of γ. In verifying these conditions, the sesquilin-
earity of the inner product will allow us to restrict attention to monomials of the
form z̄kz`. We begin with condition (b). It is clear that there is no loss of generality
in assuming that the degrees of p and q are not simultaneously less than n+ 1 (see
the remark immediately preceding Theorem 5.4). Thus, the proof will be divided
into two cases, one corresponding to the top degrees (to be given later) and one to
the case when exactly one of p and q has degree n+ 1. This case, in turn, will be
split into two subcases: first we establish that if 〈z̄kz`, z̄izj〉Ã = 〈ziz̄j, zkz̄`〉Ã for
k + ` = n + 1 and 0 ≤ i + j ≤ n − 1, then the same is true when k + ` = n + 1
and i + j = n. We then show that 〈z̄kz`, z̄izj〉Ã = 〈ziz̄j, zkz̄`〉Ã does indeed hold
for k + ` = n+ 1 and 0 ≤ i+ j ≤ n− 1.
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Lemma 5.5 Condition (b), Case deg p = n+1, deg q ≤ n, First Subcase). Assume
that 〈z̄kz`, z̄izj〉Ã = 〈ziz̄j, zkz̄`〉Ã whenever k + ` = n+ 1 and i+ j ≤ n− 1. Then

〈z̄kz`, z̄izj〉Ã = 〈ziz̄j, zkz̄`〉Ã holds for k + ` = n+ 1 and i+ j = n.

Proof. We have

〈z̄kz`, z̄izj〉Ã = 〈 ̂̄zkz`, Z̃ iZ̃j〉 = 〈 ̂̄zkz`, pij(Z̃ , Z̃)〉 = 〈z̄kz`, pij(z, z̄)〉Ã

(where we have used the definition of 〈·, ·〉Ã and Lemma 5.3–(i))

= 〈p̄ij(z, z̄), zkz̄`〉Ã = 〈p̄ij(Z̃ , Z̃), ẑkz̄`〉

= 〈Z̃
j

Z̃ i, ẑkz̄`〉 (by Lemma 5.3–(ii)) = 〈ziz̄j, zkz̄`〉Ã.�

Lemma 5.6 (Condition (b), Case deg p = n + 1, deg q ≤ n, Second Sub-
case). Let k + ` = n+ 1 and i+ j ≤ n− 1. Then 〈z̄kz`, z̄izj〉Ã = 〈ziz̄j, zkz̄`〉Ã.

Proof. Assume first that k ≥ 1. Since Z̄k−1Z` = pk−1,`(Z , Z̄), then (5.2)
implies V̄ kV ` = (z̄pk−1,`)(V, V̄ ). Also, Lemma 5.2-(ii) and (ii) (above) imply

[Z̃
k
Z̃`]n−1 = [Z̄kZ`]n−1 = V̄ kV `; thus [Z̃

k
Z̃`]n−1 = (z̄pk−1,`)(V, V̄ ). From (5.1)

we have V̄ `V k = (zp̄k−1,`)(V, V̄ ) and (as just before) [Z̃
`
Z̃k]n−1 = V̄ `V k, so

[Z̃
`

Z̃k]n−1 = (zp̄k−1,`)(V, V̄ ). Now,

〈z̄kz`, z̄izj〉Ã = 〈Z̃
k

Z̃`, ̂̄zizj〉 = 〈[Z̃
k

Z̃`]n−1, [̂̄zizj]n−1〉
= 〈(z̄pk−1,`)(V , V̄ ), [̂̄zizj ]n−1〉 = 〈[(z̄pk−1,`)(Z , Z̄)]n−1, [̂̄zizj]n−1〉
= 〈z̄pk−1,`, z̄

izj〉A = 〈z̄jzi, zp̄k−1,`〉A
= 〈[̂̄zjzi]n−1, (zp̄k−1,`)(V , V̄ )〉

= 〈[̂̄zjzi]n−1, [Z̃
`

Z̃k]n−1〉 = 〈̂̄zjzi, Z̃`Z̃k〉 = 〈z̄jzi, z̄`zk〉Ã.

The case when k = 0, ` = n + 1 is somewhat simpler; we leave the details to
the reader. �

Proposition 5.7 (Condition (b), Case deg p = deg q = n + 1). If k + ` =
i+ j = n+ 1, then 〈z̄kz`, z̄izj〉Ã = 〈ziz̄j, zkz̄`〉Ã.

We shall need the following lemma.

Lemma 5.8. If k + ` = n+ 1, then there exists a polynomial rk,` ∈ Pn−1 such

that Z̃
k

Z̃` = rk,`(Z̃ ,Z̃) and Z̃
`

Z̃k = r̄k,`(Z̃ ,Z̃).

Proof. Assume first that k, ` ≥ 1. From (5.3), there exists pk−1,` ∈ Pn−1

such that Z̄k−1Z` = pk−1,`(Z , Z̄), so Z̄kZ` in block B is defined by Z̄kZ` :=
(z̄pk−1,`)(Z , Z̄). Since z̄pk−1,` ∈ Pn, (5.3) implies that there exists rk,` ∈ Pn−1

such that Z̄kZ` = rk,`(Z , Z̄), whence V̄ kV ` = rk,`(V, V̄ ); (5.1) now implies that
V̄ `V k = r̄k,`(V, V̄ ). Similarly, since ` ≥ 1, there exists s`,k ∈ Pn−1 such that
Z̄`Zk = s`,k(Z , Z̄), whence s`,k(V, V̄ ) = V̄ `V k = r̄k,`(V, V̄ ). Thus s`,k(V, V̄ ) =
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r̄k,`(V, V̄ ) in CM(n−1); since M(n) ≥ 0, the Extension Principle implies that Z̄`Zk =
s`,k(Z , Z̄) = r̄k,`(Z , Z̄). Since Ã is a flat extension of M(n), it now follows from

Lemma 5.2-(ii) that Z̃
k
Z̃` = rk,`(Z̃ , Z̃) and Z̃

`
Z̃k = r̄k,`(Z̃ , Z̃).

Let k = 0, ` = n + 1. There exists p0,n ∈ Pn−1 such that Zn = p0,n(Z , Z̄),
whence Z̄n = p̄0,n(Z , Z̄) (Lemma 3.10). Now, by definition, Zn+1 = (zp0,n)(Z , Z̄)
and Z̄n+1 = (z̄p̄0,n)(Z , Z̄). Since zp0,n ∈ Pn, (5.3) implies that there exists r0,n ∈
Pn−1 such that r0,n(Z , Z̄) = (zp0,n)(Z, Z̄), whence Lemma 3.10 implies r̄0,n(Z , Z̄) =
(z̄p̄0,n)(Z , Z̄); thus Zn+1 = r0,n(Z , Z̄) and Z̄n+1 = r̄0,n(Z , Z̄).

The case when k = n+ 1, n = 0 is handled similarly; we omit the details. �

Proof of Proposition 5.7.

〈z̄kz`, z̄izj〉Ã = 〈Z̃
k

Z̃`, ̂̄zizj〉 = 〈rk,`(Z̃ ,Z̃),̂̄zizj〉 (by Lemma 5.8)

= 〈rk,`, z̄izj〉Ã = 〈z̄jzi, r̄k,`〉Ã (by Lemma 5.6)

= 〈̂̄zjzi, r̄k,`(Z̃ ,Z̃)〉 = 〈̂̄zjzi, Z̃`Z̃k〉Ã (by Lemma 5.8)

= 〈ziz̄j, zkz̄`〉Ã.�

The proof of Condition (b) is now complete. We turn to Condition (c); we
require an auxiliary result.

Lemma 5.9. Assume that i+j = n and that Z̄ iZj = p(Z , Z̄) for some p ∈ Pn−1.

Then Z̄ iZj+1 = (zp)(Z , Z̄) and Z̃
i

Z̃j+1 = (zp)(Z̃ ,Z̃).

Proof. Assume first that i ≥ 1. Observe that Z̄ iZj = p(Z , Z̄) readily im-
plies Z̄jZ i = p̄(Z , Z̄) (Lemma 3.10), and by the definition of Z̄j+1Z i in block B,
we have Z̄j+1Z i = (z̄p̄)(Z , Z̄), whence V̄ j+1V i = (z̄p̄)(V, V̄ ). Thus (5.1) implies
that V̄ iV j+1 = (zp)(V, V̄ ). Now zp ∈ Pn, so there exists r ∈ Pn−1 such that
(zp)(Z , Z̄) = r(Z , Z̄). Also, Z̄ i−1Zj+1 = s(Z , Z̄) for some s ∈ Pn−1, so Z̄ iZj+1 =
(z̄s)(Z , Z̄); moreover, there exists t ∈ Pn−1 such that (z̄s)(Z , Z̄) = t(Z , Z̄). Now
t(V, V̄ ) = V̄ iV j+1 = (zp)(V, V̄ ) = r(V, V̄ ) in CM(n−1). The Extension Principle
thus implies t(Z , Z̄) = r(Z , Z̄), whence Z̄ iZj+1 = (z̄s)(Z , Z̄) = t(Z , Z̄) = r(Z , Z̄) =

(zp)(Z , Z̄); Lemma 5.2-(ii) now implies Z̃
i

Z̃j+1 = (zp)(Z̃, Z̃).
For the case i = 0, j = n, Zn = p(Z , Z̄) for some p ∈ Pn−1, so by definition

Zn+1 = (zp)(Z , Z̄), whence Z̃n+1 = (zp)(Z̃, Z̃). We leave the case i = n, j = 0 to
the reader. �

Proposition 5.10 (Condition (c)). For k + ` ≤ n and i+ j ≤ n,

〈z(z̄kz`), z̄izj〉Ã = 〈z̄kz`, z̄(z̄izj)〉Ã.

Proof. First observe that 〈z̄p, q〉Ã = 〈p, zq〉Ã for all p, q ∈ Pn implies that
〈zp, q〉Ã = 〈p, z̄q〉Ã for all p, q ∈ Pn. For,

〈zp, q〉Ã = 〈q̄, z̄p̄〉Ã (by Condition (b))

= 〈z̄p̄, q̄〉Ã = 〈p̄, zq̄〉Ã (by the above mentioned assumption)
= 〈zq̄, p̄〉Ã = 〈p, z̄q〉 (again by Condition (b)).
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We shall therefore establish that 〈z̄(z̄kz`), z̄izj〉Ã = 〈z̄kz`, z(z̄izj)〉Ã. For k +
`, i+ j ≤ n− 1,

〈z̄k+1z`, z̄izj〉Ã = 〈z̄k+1z`, z̄izj〉A = 〈z̄kz`, z̄izj+1〉A = 〈z̄kz`, z̄izj+1〉Ã.

For i+ j ≤ n− 1, k + ` = n,

〈z̄k+1z`, z̄izj〉Ã = 〈z̄pk,`, z̄izj〉Ã = 〈pk,`, z̄izj+1〉Ã (by the previous case)

= 〈z̄kz`, z̄izj+1〉Ã.

Assume now that k + ` ≤ n and i + j = n. We have

〈z̄(z̄kz`), z̄izj〉Ã
= 〈z̄k+1z`, pi,j〉Ã = 〈z̄kz`, zpi,j〉Ã (by the previous cases)

= 〈 ̂̄zkz`, (zpi,j)(Z̃ ,Z̃)〉 = 〈 ̂̄zkz`, Z̃ iZ̃j+1〉 (by Lemma 5.9)

= 〈z̄kz`, z(z̄izj)〉Ã.�

Proposition 5.11 (Condition (d)). For k + ` ≤ n and i+ j ≤ n,

〈z(z̄kz`), z(z̄izj)〉Ã = 〈z̄(z̄kz`), z̄(z̄izj)〉Ã.

Proof. It is easy to see that the result holds when k+ `, i+ j ≤ n−1. Assume
now that k + ` = n, i + j ≤ n − 1, and write Z̄kZ` as pk,`(Z , Z̄). By Lemma 5.9,

Z̃
k

Z̃`+1 = (zpk,`)(Z̃ ,Z̃). Then

〈z(z̄kz`), z(z̄izj)〉Ã = 〈z̄kz`+1, z̄izj+1〉Ã = 〈Z̃
k

Z̃`+1, ¯̂zizj+1〉

= 〈(zpk,`)(Z̃ ,Z̃), ¯̂zizj+1〉 = 〈zpk,`, z̄izj+1〉Ã
= 〈zpk,`, z(z̄izj)〉A (by (5.4))

= 〈z̄pk,`, z̄(z̄izj)〉A (by the “normality” of A)

= 〈z̄pk,`, z̄i+1zj〉Ã = 〈(z̄pk,`)(Z̃ ,Z̃), ¯̂zi+1zj〉

= 〈Z̃
k+1

Z̃`, ¯̂zi+1zj〉
= 〈z̄k+1z`, z̄i+1zj〉Ã = 〈z̄(z̄kz`), z̄(z̄izj)〉Ã.

Finally, for k + ` = n, i + j = n we have 〈z(z̄kz`), z(z̄izj)〉Ã = 〈z̄kz`+1, zpij〉Ã
(by Lemma 5.9) = 〈z̄k+1z`, z̄pij〉Ã (by the previous case) = 〈z̄k+1z`, z̄i+1zj〉Ã (by
the definition of Z̄ i+1Zj and Lemma 5.2-(ii)).

(iv) For uniqueness, suppose

Ã′ ≡
(
M(n) B′

B′∗ C′

)
is a flat extension of M(n) of the form M(n + 1). Let {Ȳ iY j}0≤i+j≤n+1 denote
the columns of (M(n) B′) and let {Ỹ iỸ j}0≤i+j≤n+1 denote the columns of Ã′.
For i + j = n, in CM(n) we have Ȳ iY j = Z̄ iZj = pij(Z , Z̄) = pij(Y, Ȳ ); thus

the Extension Principle implies Ỹ iỸ j = pij(Ỹ , Ỹ ). An adaptation of the proof
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of Lemma 3.11 now implies that (z̄pij)(Y, Ȳ ) = Ȳ i+1Y j . Since Z̄ i+1Zj in B is
defined to equal (z̄pij)(Z , Z̄), it follows that Ȳ i+1Y j = Z̄ i+1Zj . Similarly, Y n ≡
p0,n(Y, Ȳ ) ⇒ Ỹ n = p0,n(Ỹ , Ỹ ) ⇒ Y n+1 = (zp0,n)(Y, Ȳ ) ⇒ Zn+1≡ (zp0,n)(Z , Z̄) =
(zp0,n)(Y, Ȳ ) = Y n+1. Thus B′ = B and so Ã′ = [M(n);B′] = [M(n);B] = Ã. �

The proof of Theorem 5.4 is now complete. We conclude this chapter by estab-
lishing a number of corollaries to Theorem 5.4.

Corollary 5.12. If γ is flat and M(n) ≥ 0, then M(n) admits a unique
positive extension of the form M(∞), and this is a flat extension of M(n).

Proof. The unique flat extension of the form M(∞) may be constructed by
successive application of Theorem 5.4, which yields unique flat extensionsM(n+ 1),M(n+ 2), . . . .
It thus suffices to prove that if M ≡ M(∞) is a positive infinite moment matrix
extension of M(n), then M is a flat extension; however, this follows readily from
the hypothesis that γ is flat via Proposition 4.3. �

We are now able to prove the equivalence of (iv) and (vi) of Conjecture 1.1.

Theorem 5.13. The truncated moment sequence γ has a rankM(n)-atomic
representing measure if and only if M(n) ≥ 0 and M(n) admits a flat extension
M(n+ 1).

Proof. Suppose M(n) ≥ 0 and M(n) admits a flat extension M(n + 1).
Corollary 5.12 implies that M(n + 1) (and hence M(n)) admits a flat extension
M ≡M(∞). Theorem 4.7 implies that M has a rankM -atomic representing mea-
sure µ, and µ is clearly also a rankM(n)-atomic representing measure for γ. Con-
versely, suppose µ is a rankM(n)-atomic representing measure for γ. Consider
M(n + 1)[µ]; then rankM(n) = card suppµ ≥ rankM(n + 1)[µ] (by Corollary
3.7, since µ is a representing measure for M(n + 1)[µ]) ≥ rankM(n), and thus
M(n+ 1)[µ] is a flat extension of M(n). �

We remark that there is no uniqueness in the preceding result; in Chapter 6
we show that if M(1) ≥ 0 and rankM(1) = 2, then there exist infinitely many
2-atomic representing measures. By contrast, in the presence of flatness, we do
have uniqueness.

Corollary 5.14. If γ is flat and M(n) ≥ 0, then there exists a unique rep-
resenting measure having moments of all orders, and this measure is rankM(n)-
atomic.

Proof. Corollary 5.12 implies that M(n) has a unique positive moment ma-
trix extension M ≡ M(∞) and that rankM = rankM(n). Theorem 4.7 im-
plies that M has a unique representing measure µ, which is rankM -atomic; thus
M = M(∞)[µ] and µ is a rankM(n)-atomic representing measure for γ. Sup-
pose ν is a representing measure for γ with moments of all orders, and let N :=
M(∞)[ν]. Corollary 5.12 implies that N = M , whence Theorem 4.7 implies
ν = µ. �
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Corollary 5.15. Assume M(n) ≥ 0 and that the analytic columns of M(n)
are linearly dependent. Let r := min{k ≥ 1 : Zk ∈ 〈1 , . . . ,Zk−1〉}. Then γ has a
representing measure if and only if {1, . . . ,Zr−1} spans CM(n). In this case, write

Zr = a01 + · · ·+ ar−1Zr−1. Then p(z) := zr − (a0 + · · ·+ ar−1z
r−1) has r distinct

roots, z0, . . . , zr−1, and γ has a unique representing measure, which is of the form

µ =
∑r−1
i=0 ρiδzi , where V (z0, . . . , zr−1)(ρ0, . . . , ρr−1)T = (γ00, . . . , γ0,r−1)T .

Proof. Suppose {1 , . . . ,Zr−1} spans CM(n); then γ is flat, so by Corollary
5.12, M(n) admits a flat extension M(∞), and rankM(∞) = r. The existence of
the desired measure now follows from Theorem 4.7. Conversely, suppose µ is a
representing measure. Since p(Z , Z̄) = 0, Proposition 3.1 implies suppµ ⊆ Z(p), so
from Corollary 3.7, r ≤ rankM(n) ≤ card suppµ ≤ cardZ(p) ≤ deg p = r. Thus
card suppµ = r, and {1 , . . . , zr−1} is a basis for L2(µ), by Lemma 3.6. Now the in-
jectivity of ψ : CM(n) → L2(µ) implies that {1 , . . . ,Zr−1} spans CM(n) (Proposition
3.3–(i)). For uniqueness, the preceding argument implies that if µ is a representing
measure, then suppµ = Z(p), whence µ is uniquely determined by the Vander-
monde equation. �

We pause to describe an algorithm for explicitly computing the unique rep-
resenting measure for a flat positive moment matrix M(n). Let r = rankM(n).
If r ≤ n, then {1 ,Z , . . . ,Zn} is dependent, so the unique representing measure
may be computed as in Corollary 5.15. If r > n, use linear algebra to compute
pij ∈ Pn−1 such that Z̄ iZj = pij(Z , Z̄) for i + j = n. Use the pijs and the con-
struction of this chapter to compute the unique flat extension M(n+ 1), and note
that n + 1 ≤ r = rankM(n + 1). We may thus use the flat extension method
repeatedly to extend M(n + 1) up to M(r). Since rankM(r) = r, Propositions
3.1 and 3.3 and Corollary 3.5 imply that {1 , . . . ,Zr−1} is a basis for CM(r). Thus
Zr = a01 + · · · + ar−1Zr−1 for unique scalars a0, . . . , ar−1, and the polynomial
p(z) := zr − (a0 + · · · + ar−1z

r−1) has r distinct roots. The unique representing
measure is now determined as in Corollary 5.15 by the Vandermonde equation.

Corollary 5.16. Assume M(n) ≥ 0,M(2) > 0, M(n) satisfies condition
(RG), and {1 ,Z , . . . ,Zn} spans CM(n).Then γ has a rankM(n)-atomic representing
measure, which is the unique representing measure having moments of all orders.

Proof. Since M(2) > 0, we must have n ≥ 2. Write Z̄ = a01 + . . . + anZn.
Assume first that an 6= 0. Then Zn ∈ 〈1 , . . . ,Zn−1, Z̄〉, and since {1 , . . . ,Zn}
spans CM(n), it follows that γ is flat; thus γ has a rankM(n)-atomic representing
measure by Corollary 5.14. Suppose an = 0 and let p denote the smallest index
such that aj = 0 for p ≤ j ≤ n. Since M(2) > 0, then n > p− 1 ≥ 2, whence Z̄ =
a01 + · · ·+ ap−1Zp−1 with ap−1 6= 0. Since M(n) satisfies (RG), then Z̄Zn−p+1 =
a0Zn−p+1 + · · ·+ ap−1Zn. Now ap−1 6= 0 and n− p+ 2 ≤ n− 1, so it follows that
Zn ∈ 〈Z̄ iZj〉0≤i+j≤n−1. Thus γ is flat and so has a rankM(n)-atomic representing
measure by Corollary 5.14. Uniqueness also follows from Corollary 5.14. �



CHAPTER 6

Applications

6.1. The Quadratic Moment Problem. We first present existence-
uniqueness criteria for the quadratic moment problem with data γ: γ00, γ01,
γ10, γ02, γ11, γ20. Let M(1) be the corresponding moment matrix, and let r :=
rankM(1).

Theorem 6.1. The following are equivalent:
i) γ has a representing measure;
ii) γ has an r-atomic representing measure;
iii) M(1) ≥ 0.

In this case, if r = 1 there exists a unique representing measure; if r = 2 the 2-
atomic representing measures are parameterized by a line; if r = 3 the 3-atomic
representing measures contain a sub-parameterization by a circle.

Positivity of M(1) is clearly a necessary condition for the existence of a repre-
senting measure, so in the sequel we assume M(1) ≥ 0. We divide the proof of the
existence of representing measures according to the value of r.

Proposition 6.2. If M(1) ≥ 0 and r = 1, then µ := ρδw (ρ := γ00, w :=
γ01/γ00) is the unique representing measure of γ.

Proof. Since r = 1, there exists α ∈ C such that Z = α1 , whence γ01 = αγ00

(so α = γ01/γ00), γ11 = αγ10, γ02 = αγ01. We evaluate the moments of µ:∫
1 dµ = ρ = γ00;∫
z dµ = γ00(γ01/γ00) = γ01;∫
z2 dµ = γ00γ

2
01/γ

2
00 = γ00α

2 = γ01α = γ02;∫
zz̄ dµ = γ00(γ01/γ00)(γ10/γ00) = αγ10 = γ11.

Thus µ is a 1-atomic representing measure for γ. If ν is any representing measure
for γ, then the relation Z = α1 and Proposition 3.1 imply supp ν = {w}, whence
ν = µ. �

Proposition 6.3. If M(1) ≥ 0 and r = 2, then γ has a representing measure.
The 2-atomic representing measures of γ are parameterized by a line.
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Proof. Note that in C := CM(1), Z̄ = α1 + βZ ⇔ Z = ᾱ1 + β̄Z̄ ; we may
thus assume that {1 ,Z} is a basis for C and that Z̄ = α1 + βZ for certain α,
β ∈ C, β 6= 0. To construct a 2-atomic representing measure for γ we will define a
particular quadratic polynomial z2− (a+ bz), whose distinct roots, which will form
the support of the measure, lie on the line `: z̄ = α+ βz. To this end, we need the
precise values of α and β. Since M(1) ≥ 0 and {1 ,Z} is independent,

A :=
(
γ00 γ01

γ10 γ11

)
is positive and invertible, so δ := det(A) > 0 and

(6.1)
(
α
β

)
= A−1

(
γ10

γ20

)
=
(

1
δ

)(
γ11γ10 − γ01γ20

−γ10γ10 + γ00γ20

)
.

For future reference we note also that |β| = 1. Indeed,

|β|2 =

(
|γ01|4 − γ2

10γ00γ02 − γ00γ20γ
2
01 + γ2

00|γ02|2
)

(γ00γ11 − |γ01|2)2 ,

so |β| = 1⇔ |β|2 = 1⇔

θ := γ2
10γ00γ02 + γ00γ20γ

2
01 − γ2

00|γ02|2 + γ2
00γ

2
11 − 2γ00γ11|γ01|2 = 0.

Now θ = γ00 detM(1), so r = 2⇒ detM(1) = 0⇒ θ = 0⇒ |β| = 1.

Claim A. There exist a, b, z0, z1 ∈ C, z0 6= z1, such that

aγ00 + bγ01 = γ02;(6.2)

z2
i = a+ bzi (i = 0, 1);(6.3)
z̄i = α+ βzi (i = 0, 1).(6.4)

We defer the proof of Claim A and first show how to use (6.2)–(6.4) to construct
a representing measure. Define ρ1 := (γ00z0 − γ01)/(z0 − z1), ρ0 := γ00 − ρ1, and
µ := ρ0δz0 + ρ1δz1 . Note that ρ1 is real:

ρ̄1 =
γ00(α + βz0)− γ10

β(z0 − z1)

=
γ00(α + βz0)− (αγ00 + βγ01)

β(z0 − z1)
=
γ00z0 − γ01

z0 − z1
= ρ1.

We next check the moments of µ:∫
1 dµ = ρ0 + ρ1 = γ00;∫
z dµ = ρ0z0 + ρ1z1 = ρ0z0 + ρ1z0 − γ00z0 + γ01 = γ01;∫
z2 dµ = ρ0z

2
0 + ρ1z

2
1 = ρ0(a+ bz0) + ρ1(a+ bz1)

= a(ρ0 + ρ1) + b(ρ0z0 + ρ1z1) = aγ00 + bγ01 = γ02.
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Since ρ0, ρ1 ∈ R, it follows that
∫
z̄ dµ = γ̄01 = γ10 and

∫
z̄2 dµ = γ̄02 = γ20.

Finally,∫
zz̄ dµ = ρ0z0(α+ βz0) + ρ1z1(α+ βz1)

= αρ0z0 + βρ0(a+ bz0) + αρ1z1 + βρ1(a+ bz1)
= aβγ00 + α(ρ0z0 + ρ1z1) + bβ(ρ0z0 + ρ1z1)
= aβγ00 + αγ01 + bβγ01 = αγ01 + β(aγ00 + bγ01) = αγ01 + βγ02 = γ11.

Thus µ interpolates γ. Since M(1) ≥ 0 and card suppµ ≤ 2, Proposition 3.8 implies
that µ ≥ 0. Thus µ is a representing measure; since r = 2, Corollary 3.7 implies
card suppµ = 2, i.e., ρ0 > 0, ρ1 > 0.

It remains to prove Claim A. Choose z0 on the line z̄ = α + βz, z0 6= γ01/γ00,
and define

(6.5) z1 :=
(γ02 − z0γ01)
(γ01 − z0γ00)

.

We first show that z0 6= z1. Note that τ(z) := (γ02 − zγ01)/(γ01 − zγ00) satisfies
τ(z) = z if and only if z = γ01/γ00± (γ2

01−γ02γ00)1/2/γ00. If τ(z0) = z0, then since
z0 and γ01/γ00 lie on z̄ = α + βz, it follows that λ := ±(γ2

01 − γ02γ00)1/2 satisfies
λ̄ = βλ. Now from (6.1), γ2

01−γ02γ00 = −δβ̄, so λ̄ = βλ⇔ ((−δβ̄)1/2) = β(−δβ̄)1/2

⇔ −iβ1/2 = βi((β)1/2) ⇔ −β1/2 = β(1/β1/2) (since |β| = 1) ⇔ −β = β. This
contradiction implies that with z0 chosen as above, z1 = τ(z0) 6= z0.

Let p(z) = (z−z0)(z−z1) = z2− (z0 +z1)z+z0z1, let a := −z0z1, b := z0 +z1;
thus (6.3) holds. Now (6.5) implies that aγ00+bγ01 = −z0z1γ00+z0γ01+z1γ01 = γ02,
so (6.2) holds. To prove (6.4) it suffices to check that z̄1 = α+ βz1. Now

z̄1 = (γ20 − (α+ βz0)γ10)/(γ10 − (α+ βz0)γ00)

and
α+ βz1 = (αγ01 − αz0γ00 + β(γ02 − z0γ01))/(γ01 − z0γ00).

Subtracting these expressions, adding the fractions, and simplifying the resulting
numerator yields the expression

γ01γ20 − z0γ00γ20 − γ10γ11 + z0γ
2
10 + δ(α+ βz0),

which equals 0 by (6.1). This completes the proof of Claim A.
The proof shows that to each choice of z0 on z̄ = α+ βz (z0 6= γ01/γ00), there

corresponds a distinct 2-atomic representing measure for γ. Conversely, the relation
Z̄ = α1+βZ , shows that every representing measure for γ is supported on `; thus the
representing measures we have constructed from the points of ` give a complete pa-
rameterization of the 2-atomic representing measures
for γ. �

Proposition 6.4. If M(1) > 0, there exist flat extensions M(2).
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Proof. Let γ00 = 1 and let w = γ01, u = γ02, x = γ11. Since A := M(1) > 0,
then x > |w|2 and x2 > |u|2. We will exhibit flat extensions M(2) with γ12 = 0,
γ03 = y. In B(1) we have Z2 = 〈u, 0, y〉T and Z̄Z = 〈x, 0, 0〉T . Let

(a, b, c)T := (detA)A−1Z2

= ((x2 − |u|2)u+ (wū − xw̄)y,−(w̄x− ūw)u − (ū− w̄2)y,

(w̄u− xw)u + (x− |w|2)y)T

and let

(α, β, γ)T := (detA)A−1Z̄Z = ((x2 − |u|2)x,−(w̄x− ūw)x, (w̄u− xw)x)T .

It follows from Proposition 2.3 and Example 2.4 that a flat extension of
[M(1);B(1)] corresponding to y will be of the form of a moment matrix M(2)
if and only if the proposed B2,2 block, which we denote by (cij)1≤i,j≤3 satisfies
c11 = c22. This is equivalent to the requirement

aγ20 + bγ21 + cγ30 = αγ11 + βγ12 + γγ21,

or (upon simplification)

(6.6) 2 Re((wū − xw̄)ūy) + (x− |w|2)|y|2 = (x2 − |u|2)2.

Let t := (x − |w|2)1/2 (> 0), s := (w̄u − xw)u/t, p := x2 − |u|2 (> 0). Thus (6.6)
is equivalent to |ty + s|2 = p2 + |s|2, so the solutions y are the points of the circle
C(γ) centered at −s/t with radius (p2 + |s|2)1/2/t > 0. �

Proposition 6.5. If M(1) > 0, the circle C(γ) is a sub-parameterization of
the 3-atomic representing measures for γ.

Proof. For each y ∈ C(γ), the flat extension M(2) := M(2)(y) described in
Proposition 6.4 satisfies rankM(2) = 3, CM(2) = 〈1 ,Z , Z̄〉. Thus Corollary 5.14
implies that M(2)(y) has a 3-atomic representing measure µ(y). It follows from
Proposition 3.1 that c 6= 0, so Theorem 3.14 and Proposition 3.1 imply that the
atoms of µ(y) are the 3 distinct roots of

(detA)2z3 = cα− aγ + ((detA)a+ cβ − bγ)z + (detA)(b + γ)z2.

The measures µ(y) thus provide a partial parameterization of the 3-atomic repre-
senting measures of γ. �

Theorem 6.1 results by combining Propositions 6.2, 6.3, and 6.5.
Proposition 6.4 provides positive evidence for the validity of the following

Conjecture 6.6. Assume that M(n) is positive and invertible. Then there
exists a flat extension M(n+ 1).
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6.2. 2-Variable Weighted Shifts. We conclude this chapter with an appli-
cation to the multivariable subnormal completion problem.

For α = (α1, α2) ∈ (`∞(Z2
+))2, let Wα ≡ (Wα1 ,Wα2) be the associated 2-

variable weighted shift, acting on `2(Z2
+) as follows:

Wαiek := αi(k)ek+ηi (k ∈ Z2
+, i = 1, 2),

where {ek}k∈Z2
+

is the canonical orthonormal basis for `2(Z2
+), η1 := (1, 0) and

η2 := (0, 1). Assume that αi(k+ηj)αj(k) = αj(k+ηi)αi(k) for all k ∈ Z2
+, i, j = 1, 2,

so that Wα is commuting. The generalized Berger Theorem [JL, Proposition 23]
says that Wα is subnormal if and only if there exists a compactly supported positive
Borel measure µ on R2

+ such that∫
tk dµ(t) :=

∫
tk1
1 t

k2
2 dµ(t1, t2) = γ̃k (k ∈ Z2

+),

where
(6.7)

γ̃k :=


1 k = (0, 0)
α2

1(0, 0) · . . . · α2
1(k1 − 1, 0) k1 ≥ 1, k2 = 0

α2
2(0, 0) · . . . · α2

2(0, k2 − 1) k1 = 0, k2 ≥ 1
α2

1(0, 0) · . . . · α2
1(k1 − 1, 0)α2

2(k1, 0) · . . . · α2
2(k1, k2 − 1) k1, k2 ≥ 1.

2-variable Subnormal Completion Problem. Given m ≥ 0 and a finite
collection of pairs of positive numbers C = {α(k) ≡ (α1(k), α2(k))}|k|≤m (|k| :=
k1 + k2), find necessary and sufficient conditions to guarantee the existence of a
subnormal 2-variable weighted shift whose initial weights are given by C.

We shall see now that a solution to the complex truncated moment problem
immediately provides a solution to the 2-variable subnormal completion problem.
First, let C[t1, t2]m+1 be the set of complex polynomials in t1 and t2 of total degree
at most m+ 1, and let ϕ̃ be the complex linear functional on C[t1, t2]m+1 induced
by γ̃ := {γ̃k}|k|≤m+1, i.e., ϕ̃(tk1

1 t
k2
2 ) := γ̃(k1,k2), 0 ≤ k1 + k2 ≤ m+ 1, where γ̃(k1,k2)

is defined as in (6.7).
For 0 ≤ i+ j ≤ m+ 1 define

γij := ϕ̃((t1 − it2)i(t1 + it2)j).

We pause briefly to exhibit {γij} when m = 1. Here

γ00 = ϕ̃(1) = γ̃(0,0) = 1,

γ01 = ϕ̃(t1 + it2) = ϕ̃(t1) + iϕ̃(t2) = γ̃(1,0) + iγ̃(0,1),

γ10 = γ̄01 = γ̃(1,0) − iγ̃(0,1),

γ02 = ϕ̃(t21 + 2it1t2 − t22) = ϕ̃(t21) + 2iϕ̃(t1t2)− ϕ̃(t22) = γ̃(2,0) + 2iγ̃(1,1) − γ̃(0,2),

γ11 = ϕ̃(t21 + t22) = ϕ̃(t21) + ϕ̃(t22) = γ̃(2,0) + γ̃(0,2),

and

γ20 = γ̄02 = γ̃(2,0) − 2iγ̃(1,1) − γ̃(0,2).
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Using {γij}0≤i+j≤m+1 as data, assume now that a compactly supported repre-
senting measure ν has been found, i.e.,∫

z̄izj dν(z, z̄) = γij (0 ≤ i+ j ≤ m+ 1).

Let dµ(t1, t2) := dν(t1 + it2, t1 − it2). It follows easily that µ is a compactly
supported positive Borel measure on R2

+ which interpolates γ̃, so that the associated
subnormal 2-variable weighted shift provides a solution to the subnormal completion
problem for C. To illustrate this, consider again the case whenm = 1; we shall verify
that µ interpolates γ̃11 correctly:∫

t1t2 dµ(t1, t2) =
∫
z + z̄

2
z − z̄

2i
dν(z, z̄)

=
1
4i

∫
(z2 − z̄2) dν(z, z̄) =

1
4i

(γ02 − γ20) =
1
4i

(4iγ̃11) = γ̃11.

Conversely, if there exists a subnormal completion for C, then (via [JL]) the asso-
ciated truncated complex moment problem for {γk}|k|≤m+1 admits a solution.

Example 6.7. Consider the subnormal completion problem for m = 1, where
C = {(α1(0, 0), α2(0, 0)), (α1(0, 1), α2(0, 1)), (α1(1, 0), α2(1, 0))}, with the condition
α2(0, 0)α1(0, 1) = α1(0, 0)α2(1, 0). Compatible with the previous discussion, we
define

γ00 := 1,

γ01 := α2
1(0, 0) + iα2

2(0, 0),
γ10 := γ̄01,

γ02 := α2
1(0, 0)α2

1(1, 0)− α2
2(0, 0)α2

2(0, 1) + 2iα2
1(0, 0)α2

2(1, 0),
γ20 := γ̄02,

and

γ11 := α2
1(0, 0)α2

1(1, 0) + α2
2(0, 0)α2

2(0, 1).

Theorem 6.1 now implies that C has a subnormal completion if and only if
M1(γ) ≥ 0, where γ := {γij}0≤i+j≤2.



CHAPTER 7

Generalizations to Several Variables

In this chapter we extend many of the results of Chapters 2–6 to truncated
moment problems in r > 1 complex variables. For z ≡ (z1, . . . , zr) ∈ Cr and
multi-indices i ≡ (i1, . . . , ir), j ≡ (j1, . . . , jr) ∈ Zr+, z̄izj denotes the monomial
z̄i11 · · · z̄irr z

j1
1 · · · zjrr and |i| denotes i1 + · · ·+ ir. Given n ≥ 0 and γij ∈ C (i, j ∈ Zr+,

0 ≤ |i|+ |j| ≤ 2n), γji = γ̄ij, γ00 > 0, the r-dimensional truncated complex moment
problem entails find a positive Borel measure µ on Cr such that

γij =
∫

z̄izj dµ (0 ≤ |i|+ |j| ≤ 2n).

Let M(n, r) denote the complex matrices whose rows and columns are denoted
by the lexicographic ordering of {Z̄iZj}0≤|i|+|j|≤n. For example, with n = 2, r = 2
this ordering is

1,Z1,Z2, Z̄1, Z̄2,Z
2
1 ,Z1Z2,Z1Z̄1,Z1Z̄2,Z

2
2 ,Z2Z̄1,Z2Z̄2, Z̄

2
1 , Z̄1Z̄2, Z̄

2
2 ,

so M(2, 2) corresponds to a special labeling of the rows and columns of M15(C).
(Note that we do not distinguish between commutative rearrangements of vari-
ables.) For A ∈M(n, r) and 0 ≤ i, j ≤ n, A[i, j] denotes the rectangular block in A
consisting of the intersection of rows of total degree i with columns of total degree
j. For 0 ≤ |p|+ |q| ≤ n, 0 ≤ |`|+ |k| ≤ n, A(k,`)(p,q) denotes the entry of A in row
Z̄kZ` and column Z̄pZq. Let d ≡ d(n, r) denote the number of rows (or columns)
of a matrix in M(n, r).

For 0 ≤ |i|+ |j| ≤ n, let eij denote the vector in Cd with 1 in the Z̄iZj position
and 0 elsewhere; then E ≡ {eij}0≤|i|+|j|≤n is a basis for Cd. Let P(n, r) denote the
space of complex polynomials in z1, . . . , zr, z̄1, . . . , z̄r of total degree n; each p ∈
P(n, r) admits a unique representation p ≡ p(z, z̄) =

∑
0≤|i|+|j|≤n aijz̄izj (aij ∈ C);

we define p̂ as the coordinate vector (aij) ∈ Cd relative to E. Given A ∈ M(n, r),
we define a sesquilinear form on P(n, r) via 〈p, q〉A = 〈Ap̂, q̂〉 (p, q ∈ P(n, r)). Given
a truncated moment sequence γ ≡ {γij}0≤|i|+|j|≤2n, γij = γ̄ji, γ0,0 > 0, we define
the moment matrix M ≡Mn,r(γ) by

(7.1) M(k,`)(p,q) := 〈z̄pzq, z̄kz`〉M = γ`+p,k+q.

(0 ≤ |k|+ |`| ≤ n, 0 ≤ |p|+ |q| ≤ n) (note that |`+p|+ |k+q| = |`|+ |k|+ |p|+ |q| ≤
2n). To obtain our generalization of Conjecture 1.1, it is now necessary merely to
replace Pn by P(n, r) and M(n)(γ) by Mn,r(γ) both in Conjecture 1.1 and in the
formulation of property (RG).

We begin with a characterization of moment matrices which is analogous to
Theorem 2.1.

41
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Theorem 7.1. Let n ≥ 0, r ≥ 1 and let A ∈ M(n, r). There exists a
truncated moment sequence γ ≡ (γij)0≤|i|+|j|≤2n, γij = γ̄ji, γ00 > 0, such that
A = Mn,r(γ)⇐⇒

0) 〈1, 1〉A > 0
1) A = A∗

2) 〈p, q〉A = 〈q̄, p̄〉A (p, q ∈ P(n, r))
3) 〈ztp, q〉A = 〈p, z̄tq〉A (p, q ∈ P(n− 1, r), 1 ≤ t ≤ r)
4) 〈zsp, ztq〉A = 〈z̄tp, z̄sq〉A (p, q ∈ P(n− 1, r), 1 ≤ s, t ≤ r)
5) 〈zsp, z̄tq〉A = 〈ztp, z̄sq〉A (p, q ∈ P(n− 1, r), 1 ≤ s, t ≤ r).

Proof. Suppose A = Mn,r(γ) for a truncated moment sequence γ. The proofs
of 0), 1), and 2) proceed exactly as in the proof of Theorem 2.1. To prove 3)–5)
we need some extra notation; for 0 ≤ s ≤ r, let ηs ∈ Zr+ denote the element with
1 in position s and 0 elsewhere. The proofs of 3), 4), and 5) are very similar, so
we include only the proof of 5). We may assume p = z̄izj and q = z̄kz`, where
0 ≤ |i|+ |j| ≤ n− 1 and 0 ≤ |k|+ |`| ≤ n− 1; then (7.1) implies

〈zsp, z̄tq〉A = 〈z̄izj+ηs , z̄k+ηtz`〉A
= γi+`,(j+ηs)+(k+ηt) = γi+`,(j+ηt)+(k+ηs)

= 〈z̄izj+ηt , z̄k+ηsz`〉A = 〈ztp, z̄sq〉A.

For the converse, suppose A ∈ M(n, r) satisfies 0)–5). We seek to define γij (0 ≤
|i|+ |j| ≤ 2n) such that A = Mn,r(γ). Let 0 ≤ |i|+ |j| ≤ 2n.

Claim. There exists v ≡ (p,q,k, `) ∈ (Zr+)4 such that

(7.2) i = `+ p, j = k + q, |`|+ |k| ≤ n, |p|+ |q| ≤ n.

Case 1. |i|, |j| ≤ n. Let ` = i, p = 0, q = j, k = 0.

Case 2. |i| ≤ n, |j| > n. Choose s ∈ Zr+ such that s ≤ j and |s| = n. Then
let ` = i, p = 0, q = s, k = j− s.

Case 3. |i| > n, |j| ≤ n. Exchange the roles of i and j in Case 2.

We now define γij = A(k,`)(p,q). Our aim is to prove that γij is well-defined,
i.e., γij is independent of the decomposition in (7.2); from this it will follow (as
in the proof of Theorem 2.1) that γ is a truncated moment sequence and that
A = Mn,r(γ).

For v ≡ (p,q,k, `) as in (7.2), let α(v) := A(k,`)(p,q) and let β(v) :=
(|k|+ |`|, |p|+ |q|) (the block type of v).

For v′ ≡ (p′,q′,k′, `′) satisfying (7.2) we seek to show that α(v′) = α(v). We
first consider the case when β(v′) = β(v).

Suppose that k′1 > k1; then q1 = (k′1 − k1) + q′1 > 0.

Subcase a. Suppose `m > 0 for some m, 1 ≤ m ≤ r. Consider

ṽ ≡ (k1 + 1, . . . , kr, `1, . . . , `m − 1, . . . , `r, p1, . . . , pm + 1, . . . , pr, q1 − 1, . . . , qr).
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Then ṽ satisfies (7.2), β(ṽ) = β(v), and

α(ṽ) = 〈z̄m(z̄pzq−η1), z̄1(z̄kz`−ηm)〉A
= 〈z1(z̄pzq−η1), zm(z̄kz`−ηm)〉A (by property 4))

= 〈z̄pzq, z̄kz`〉A = α(v).

Subcase b. `t = 0 (1 ≤ t ≤ r). We claim that for some m, 1 < m ≤ r, km 6= k′m
and km > 0; for otherwise,

|k|+ |`| = |k′|+ |`′| ⇒ k1 + · · ·+ kr = k′1 + · · ·+ k′r + |`′|
⇒ k1 = k′1 + K + |`′| for some K ≥ 0
⇒ k1 ≥ k′1, a contradiction.

Consider

ṽ = (k1 + 1, . . . , km − 1, . . . , kr, `1, . . . , `r, p1, . . . , pr, q1 − 1, . . . , qm + 1, . . . , qr).

Then ṽ satisfies (7.2), β(ṽ) = β(v), and

α(ṽ) = 〈zm(z̄pzq−η1), z̄1(z̄k−ηmz`)〉A
= 〈z1(z̄pzq−η1), z̄m(z̄k−ηmz`)〉A (by property 5))

= 〈z̄pzq, z̄kz`〉A = α(v).

Note that both in Case a and in Case b, in constructing ṽ we do not change
the value of kt if kt = k′t. It follows that by applying the preceding argument
finitely many times we may assume that v′ satisfies k = k′ (⇒ q = q′). Under this
assumption, assume `′1 > `1 (⇒ p1 > 0). Since |`| = |`′| it follows that for some
m > 1, `m > 0. Consider

ṽ := (k1, . . . , kr, `1 + 1, . . . , `m − 1, . . . , `r, p1 − 1, . . . , pm + 1, . . . , pr, q1, . . . , qr);

as before, ṽ satisfies (7.2), β(ṽ) = β(v) and α(ṽ) = α(v). Thus, by an inductive
argument we may conclude that ` = `′ (⇒ p = p′), whence v = v′ and α(v) =
α(v′).

For the case in which v and v′ are in different blocks, we may assume that
d := |k′| + |`′| − (|k| + |`|) > 0. Since d = |p| + |q| − (|p′|+ |q′|), we may assume
|p| > 0 or |q| > 0. We consider here the case |p| > 0; thus pj > 0 for some j,
1 ≤ j ≤ r. Note that n ≥ |k′|+ |`′| > |k|+ |`| and consider

ṽ := (k1, . . . , kr, `1, . . . , `j + 1, . . . , `r, p1, . . . , pj − 1, . . . , pr, q1, . . . , qr).

Now k1 + · · · + kr + `1 + · · · + `j + 1 + · · · + `r ≤ n and p1 + · · ·+ pj − 1 + · · · +
pr + q1 + · · ·+ qr ≥ 0; thus ṽ satisfies (7.2). Moreover,

α(ṽ) = 〈z̄p−ηjzq, zj(z̄kz`)〉A
= 〈z̄j z̄p−ηjzq, z̄kz`〉A (by property 3))

= 〈z̄pzq, z̄kz`〉A = α(v).

The case when |q| > 0 is treated similarly; we omit the details. By repeating the
preceding argument finitely many times, we may assume that v and v′ have the
same block type, whence α(v) = α(v′) by the first part of the proof. �
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The results of Chapter 3 extend to r > 1 variables in a completely straight-
forward way; we state the main results, but omit the proofs, which are virtually
identical to those in Chapter 3. If µ is a representing measure for γ, then

(7.3)
∫
f ḡ dµ = 〈f, g〉Mn,r(γ) (f, g ∈ P(n, r)).

(7.3) readily implies that Mn,r(γ) ≥ 0 and that P(n, r) ⊆ L2(µ). For p ∈ P(n, r),
p ≡

∑
0≤|i|+|j|≤n aijz̄izj, let p(Z, Z̄) :=

∑
aijZ̄iZj ∈ CMn,r(γ).

(7.4) Let p ∈ P(n, r); then suppµ ⊆ Z(p)⇔ p(Z, Z̄) = 0.

Define the map ψ ≡ ψ(γ) : CMn,r(γ) → L2(µ) by

ψ
(∑

aijZ̄iZj
)

:=
∑

aijz̄izj.

(7.4) implies that ψ is well-defined, linear, and one-to-one; in particular

(7.5) rankMn,r(γ) ≤ dimL2(µ).

If µ is k-atomic (k < ∞), then clearly L2(µ) ∼= Ck, so if µ is any representing
measure, then (7.5) implies

(7.6) rankMn,r(γ) ≤ card suppµ.

Note that if µ is k-atomic, with atoms

wi = (wi1, . . . , wir) (1 ≤ i ≤ k),

then the polynomials

(7.7) fj(z1, . . . , zr) ≡
∏
i6=j

‖ z−wi ‖2
‖ wj −wi ‖2

(1 ≤ j ≤ k)

form a basis for L2(µ). Note that deg fj = 2(k − 1); we thus have the following
analogue of Proposition 3.8 (with the same proof).

Proposition 7.2. Let µ be a k-atomic interpolating measure for γ, k ≤ n
2 +1.

If Mn,r(γ) ≥ 0, then µ ≥ 0.

Proposition 7.3. Let Mn,r(γ) be a moment matrix and let p ∈ P(n, r). If
p(Z, Z̄) = 0, then p̄(Z, Z̄) = 0.

Lemma 7.4. Let Mn,r(γ) ≥ 0. If p ∈ P(n − 2, r) and p(Z, Z̄) = 0, then
(zsp)(Z, Z̄) = 0 (1 ≤ s ≤ r).

Theorem 7.5 (Structure Theorem). Let Mn,r(γ) ≥ 0. If f, g, fg ∈ P(n−1, r)
and f(Z, Z̄) = 0, then (fg)(Z, Z̄) = 0.

Concerning generalizations of the results of Chapter 4, let M ≡ M∞,r denote
an infinite moment matrix in r variables. We consider again the linear map ϕ :
C[z, z̄] → CM defined by ϕ(z̄izj) := Z̄iZj, (i, j ≥ 0), and we let N := {p ∈
C[z, z̄] : 〈Mp̂, p̂〉 = 0} and kerϕ := {p ∈ C[z, z̄] : ϕ(p) = 0}. As in Chapter 4,
N = kerϕ, and kerϕ is an ideal in C[z, z̄]. Assume now that rankM is finite.
A straightforward generalization of Lemmas 4.4 and 4.5 shows that C[z, z̄]/N is
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a finite dimensional Hilbert space, that dimC[z, z̄]/N = rankM, and that the r-
tuple Mz ≡ (Mz1 , . . . ,Mzr) acting on C[z, z̄]/N is normal. Moreover, we can use
the polynomials (in z and z̄) given by (7.7) to see that m distinct points in suppµ
give rise to m linearly independent elements of P (n, r) |suppµ (∼= CMn,r). Thus, we
obtain the following analogue of Proposition 4.6.

Proposition 7.6. Let M be an infinite moment matrix in r ≥ 1 variables,
with representing measure µ. Then card suppµ = rankM .

Proof. Analogous to the proof of Proposition 4.6, except that in view of the
fact that the deg fj = 2(k− 1) in (7.7), the proper corner of M to use for the rank
estimate is not M(m− 1) but M(2m− 2). �

Since the zero set of a non-constant multivariable polynomial is never finite,
part of the proof of Theorem 4.7 cannot be generalized. We do, however, obtain
the existence portion of that result. (A similar problem will arise when we try to
extend the results of Chapter 5.)

Theorem 7.7. Let M be a finite-rank positive infinite moment matrix in r ≥ 1
variables. Then M admits a representing measure, and every representing measure
is rankM -atomic.

Proof. As in the proof of Theorem 4.7, C∗(Mz) ∼= C(σT (Mz)) (where σT
denotes Taylor spectrum) [Cu, Proposition 7.2], and the linear functional η(f) :=
〈f(Mz)(1 + N ), 1 + N〉 (f ∈ C(σT (Mz))) is positive. The Riesz Representation
Theorem again gives a positive Borel measure µ with suppµ ⊆ σT (Mz), such that
η(f) =

∫
fdµ for every f ∈ C(σT (Mz)). That µ interpolates γ follows as before,

and Proposition 7.6 gives the cardinality of suppµ. �

Proposition 7.6 and Theorem 7.7 together show that an infinite moment matrix
in r variables has a k-atomic representing measure if and only if M ≥ 0 and
k = rankM . This statement generalizes to several variables a well known fact about
the classical Hamburger moment problem in the case when the associated Hankel
matrix H is positive and finite-rank; that is, there exists a k-atomic representing
measure if and only if detH(j) > 0 (j = 0, . . . , k − 1) and detH(j) = 0 (j ≥ k)
[ShT, Theorem I.1.2]. Indeed, by [CF1, Proposition 2.14(ii)] and Lemma 4.1,
the latter condition is equivalent to the hypothesis that H ≥ 0 and rankH = k.

The definition of a flat moment matrix in the multivariable case is almost
identical to that used in Chapter 5: Mn,r(γ) is flat if there exist polynomials
pij ∈ P(n− 1, r) such that z̄izj − pij ∈ kerϕ for all i, j ∈ Zr+ with |i|+ |j| = n. The
results of Chapter 5 extend almost verbatim to the multivariable case, provided we
make the following adjustment in the definition of Z̄kZ` for |k| + |`| = n + 1. We
proceed as follows.

Case 1. |k| ≥ 1
Assume that i is the first index for which ki ≥ 1. Then we let

Z̄kZ` := ϕ(z̄ipk−ηi,`)

Case 2. k = 0 (⇒ |`| = n+ 1)
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Again, let i be the first index for which `i ≥ 1. Then we let

Z̄kZ` := ϕ(zip0,`−ηi).

Recall the ingredients of the proof of Theorem 5.4: Theorem 2.1, Theorem
3.14 and its attendant lemmas, the Extension Principle, and a series of lemmas and
propositions concerning matrix blocks corresponding to monomials of degrees n−1,
n, or n + 1. We have already seen that the results of Chapters 2 and 3 extend to
several variables, and a careful reading of Chapter 5 shows that the block matrix
results also generalize; for example, we state the analogues of Lemmas 5.8 and 5.9:

• If |k| + |`| = n + 1, then there exists a polynomial Rk,` ∈ P(n − 1, r) such

that Z̃
k

Z̃` = Rk,`(Z̃, Z̃) and Z̃
`

Z̃k = R̄k,`(Z̃, Z̃).

• Assume that |i|+ |j| = n and that Z̄iZj = p(Z, Z̄) for some p ∈ P(n− 1, r).

Then for each s, 1 ≤ s ≤ rZiZj+ηs = (zsp)(Z, Z̄) and Z̃
i

Z̃j+ηs = (zsp)(Z̃, Z̃).
In view of the preceding remarks we are now able to establish the generalization

of Theorem 5.4.

Theorem 7.8. If γ is flat and Mn,r ≥ 0, then Mn,r admits a unique flat
extension of the form Mn+1,r.

Corollary 7.9. If γ is flat and Mn,r ≥ 0, then Mn,r admits a unique positive
extension of the form M∞,r, and this is a flat extension of Mn,r.

Theorem 7.10. The truncated moment sequence γ has a rankMn,r-atomic
representing measure if and only if Mn,r ≥ 0 and Mn,r admits a flat extension
Mn+1,r.

Corollary 7.11. If γ is flat and Mn,r ≥ 0, then γ has a rankMn,r-atomic
representing measure.

We conclude this chapter by establishing a correspondence between the multi-
variable truncated complex moment problem and the subnormal completion prob-
lem for multivariable weighted shifts. In analogy with the material in Chap-
ter 6.2, given r ≥ 1 and α ≡ (α1, α2, . . . , α2r−1, α2r) ∈ (`∞(Z2r

+ ))2r, we let
Wα ≡ (Wα1 ,Wα2 , . . . ,Wα2r−1 ,Wα2r ) be the associated 2r−variable weighted shift,
defined by Wαiek := αi(k)ek+ηi , (k ∈ Z2r

+ , i = 1, . . . , 2r). As usual, one assumes
that Wα is commuting, i.e., αi(k + ηj)αj(k) = αj(k + ηi)αi(k) (k ∈ Z2r

+ , i, j = 1,
. . . , 2r); then Wα is subnormal if and only if there exists a compactly supported
positive Borel measure µ on R2r

+ such that∫
tk1
1 . . . tk2r

2r dµ = γ̃(k1,... ,k2r)

where γ̃(0,... ,0) := 1 and

γ̃(k1,... ,k2r) := α2
i (k1, . . . , ki−1, ki − 1, ki+1, . . . , k2r)γ̃(k1,... ,k2r)−ηi

whenever ki ≥ 1 [JL].
As in Chapter 6, for a given finite collection C ≡ {α1(k), . . . , α2r(k)}|k|≤m,

we define a complex linear functional ϕ̃ on C[t1, . . . , t2r]m+1 by ϕ̃(tk1
1 . . . tk2r

2r ) :=
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γ̃(k1,... ,k2r) and we set γij := ϕ̃(
∏r
s=1(t2s−1 − it2s)is(t2s−1 + it2s)js) (i, j ∈ Zr+, |i|+

|j| ≤ m + 1). Assuming an interpolating measure ν has been found for the data
{γij}|i|+|j|≤m+1, one then defines µ by

dµ(t1, . . . , t2r) := dν(t1 − it2, . . . , t2r−1 − t2r, t1 + it2, . . . , t2r−1 + it2r);

µ then interpolates the original data {γ̃(k1,... ,k2r)}0≤k1+···+k2r≤m+1. Thus, a so-
lution to the multivariable complex truncated moment problem gives at once a
solution to the subnormal completion problem for multivariable weighted shifts.
Conversely, if there exists a subnormal completion for C, then the associated trun-
cated moment problem admits a solution.

Finally, we observe that the study of completion problems for (2r− 1)-variable
weighted shifts can be reduced to that of (2r)-variable ones, via the following device:
If αi(k) are the given weights of a (2r−1)-variable shift (1 ≤ i ≤ 2r−1, k ∈ Z2r−1

+ ),
we let

α̃i(k, k2r) := αi(k) (1 ≤ i ≤ 2r − 1, k ∈ Z2r−1
+ ),

and
α̃2r(k, k2r) := 1 (k ∈ Z2r−1

+ ).
Added in Proof. We have recently shown that (vii) ⇒ (vi) in Conjecture 1.1

whenever Z̄ = α1 + βZ (α, β ∈ C) or Zk ∈
〈
Z̄ iZj

〉
0≤i+j≤k−1

(k ≤ [n2 ] + 1).
On the other hand, using [Sch1] we can exhibit an example of M(3)(γ) that is
positive and invertible (and hence satisfies property (RG)), but such that γ admits
no representing measure; in particular, via Theorem 5.13, M(3)(γ) admits no flat
extension M(4). Thus, (vii) ⇒ (vi) in Conjecture 1.1 is false for arbitrary moment
matrices. We are currently searching for the proper condition which must be added
to (RG) to guarantee the existence of a representing measure for γ. For additional
recent related results see [P3], [P4] and [StSz].



References

[AK] N.I. Ahiezer and M.G. Krein, Some Questions in the Theory of Moments, Transl. Math.
Monographs, vol. 2, Amer. Math. Soc., Providence, RI, 1962.

[Akh] N.I. Akhiezer, The Classical Moment Problem, Hafner Publ. Co., New York, 1965.
[Atz] A. Atzmon, A moment problem for positive measures on the unit disc, Pacific J. Math.

59 (1975), 317–325.
[Ber] C. Berg, The multidimensional moment problem and semigroups, Moments in Mathe-

matics, Proc. Sympos. Appl. Math. 37 (1987), 110–124.
[BCJ] C. Berg, J.P.R. Christensen and C.U. Jensen, A remark on the multidimensional moment

problem, Math. Ann. 223 (1979), 163–169.
[BM] C. Berg and P.H. Maserick, Polynomially positive definite sequences, Math. Ann. 259

(1982), 487–495.
[Cas] G. Cassier, Problème des moments sur un compact de Rn et décomposition des polynômes
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