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R. E. Curto and F.-H. Vasilescu

We first show that every γ-contractive commuting multioperator is
unitarily equivalent to the restriction of S(γ)⊕W to an invariant sub-
space, where S(γ) is a backwards multi-shift andW a γ-isometry. We
then describe γ-isometries in terms of (γ, 1)-isometries, and establish
that under an additional assumption on T ,W above can be chosen to
be a commuting multioperator of isometries. Our methods provide,
as a by-product, a new proof of the existence of a regular unitary
dilation for every (1, ..., 1)-contractive commuting multioperator.

1. Introduction. The present paper continues and completes the work in
[CuVa]; for the reader’s convenience, we recall here the terminology and some
basic facts.
Let H be a complex Hilbert space, let L(H) be the algebra of bounded linear

operators on H, and let n ≥ 1 be a fixed integer. If T = (T1, . . . , Tn) ∈ L(H)
n
is

a commuting multioperator (abbreviated c.m.), then for every γ ∈ Zn+ we set

∆γT :=
∑
α≤γ

(−1)|α|
γ!

α!(γ − α)!
T ∗αTα,(1.1)

where, as usual, |α| := α1 + · · · + αn, α! := α1! · · ·αn!, Tα := Tα11 · · ·T
αn
n , and

T ∗ := (T ∗1 , . . . , T
∗
n).

If we associate T with the commuting operators MTj : L(H) → L(H) given
by

MTj (X) := T ∗j XTj (X ∈ L(H), j = 1, . . . , n),(1.2)

then we have

∆γT = (I −MT1)
γ1 · · · (I −MTn)

γn(1),(1.3)
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where 1 is the identity on H, and I is the identity of L(H).
Let e ≡ e(n) := (1, . . . , 1) ∈ Zn+ and let γ ≥ e(n) be a multi-index, which

will remain fixed throughout the paper. In [CuVa] we began to describe the
structure of those c.m. T ∈ L(H)n with the property ∆αT ≥ 0 for all α ≤ γ, up
to the so-called polydisc isometries (a polydisc isometry W is a c.m. consisting

of contractions, and such that ∆e
(n)

W = 0). In the present work we shall give the
definitive form of this structure result, including the description of the involved
polydisc isometries.
We shall adopt the following terminology.

Definition 1.1 Let γ ≥ e(n) be given. A c.m. T ∈ L(H)n is said to be
γ-contractive if ∆αT ≥ 0 for all α ≤ γ. A γ-contractive c.m. T is said to be a

γ-isometry if ∆e
(n)

T = 0.

If T is γ-contractive, then each Ti is a contraction (i = 1, ..., n); for, if ej :=

(0, ...,
j

1, ..., 0), then ej ≤ γ, and so ∆
ej
T = 1− T ∗j Tj ≥ 0 (j = 1, . . . , n).

It is also clear that a γ-isometry is a polydisc isometry, but the converse is
not true in general. Indeed, if T1 ∈ L(H) is a contraction such that (I−MT1)

2(1)
is not positive (such operators do exist, see for instance [Agl]), and if T2 = 1,
then T = (T1, T2) is a polydisc isometry which is not a (2, 1)-isometry (since T
is not (2, 1)-contractive).
As in [CuVa], for a fixed γ ≥ e(n) we consider the standard model S(γ) defined

in the following way. Let K :=�2(Zn+,H) (the Hilbert space consisting of those
functions f : Zn+ → H such that Σα∈Zn+ ‖ f(α) ‖

2<∞), and let

(S
(γ)
j f)(α) :=

[
ργ(α)

ργ(α+ ej)

]1/2
f(α+ ej)(1.4)

(α ∈ Zn+, j = 1, . . . , n),

where

ργ(α) :=
(γ + α− e)!

α!(γ − e)!
(1.5) (α ∈ Zn+).

Then S(γ) := (S
(γ)
1 , . . . , S

(γ)
n ) is a c.m. on K, also called the backwards multi-

shift of type (n, γ) [CuVa].
We can now state the following structure result (see also [CuVa, Theorem

3.15]).

Theorem 1.2 Let T ∈ L(H)n be a c.m. The following conditions are equiv-
alent.

(1) T is γ–contractive.
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(2) T is unitarily equivalent to the restriction of S(γ) ⊕ W to an invariant
subspace, where W is a γ–isometry.

The proof of the implication (1)⇒(2) is a more refined version of the proof
of the implication (a) ⇒ (b) from [CuVa, Theorem 3.15] (where it was only
shown that W is a polydisc isometry). The proof of the implication (2)⇒ (1) is
relatively easy, via Lemma 2.3. (Theorem 3.15 in [CuVa] is slightly inaccurate at
this point, since the proof passes through a third stronger condition.) We shall
give a detailed proof of Theorem 1.2 in Section 2, along with the investigation
of the structure of γ-isometries. In Section 3 we present some related results,
together with a new proof of the existence of regular unitary dilations (see [SzFo,
Theorem I.9.1]).
We note that if n = 1 and γ = (m) (m ≥ 1), then T = (T1) is γ-contractive if

and only if T1 is an m-hypercontraction in the sense of [Agl], so Theorem 1.2 is
an extension of [Agl, Theorem 1.10]. In particular, T1 is a 1-hypercontraction if
and only if T1 is a contraction, and Theorem 1.2 also extends an assertion from
[SzFo, I.10.1] which was, in fact, the starting point of our investigations. Finally,
if n ≥ 1 is arbitrary and γ = (1, ..., 1) ∈ Zn+, then T = (T1, ..., Tn) γ-contractive
means precisely that T satisfies Brehmer’s condition for the existence of regular
dilations for commuting contractions (see [Bre] or [SzFo]).
The authors are grateful to the referee for several useful comments, especially

a suggestion which improved the presentation of Lemma 2.7 and Theorem 2.8.

2. Completing the structure theoremIn this section we refine some
auxiliary results from [CuVa] which are needed to obtain a specific decomposi-
tion of γ-isometries into simpler objects, up to unitary equivalence. The proof
of Theorem 1.2 is a by-product of these arguments. The basic operator J0,
constructed in the next lemma, is a useful tool which will permit us to decom-
pose every γ-contractive multioperator into a direct sum of two γ-contractive
multioperators of a simpler form (see also Lemma 2.2).

Lemma 2.1 Let γ ≥ e(n), let T ∈ L(H)n be γ-contractive, and let p ∈
{1, . . . , n}. Then the limit

J0h := lim
r→1−

p∏
j=1

(I − rMTj )
−γj (I −MTj )

γj (1)h(2.1)

exists for every h ∈ H, and we have 0 ≤ J0 ≤ 1. Moreover, for every β ≤ γ,

n∏
j=1

(I −MTj )
βj (J0) ≥ 0,(2.2)

n∏
j=1

(I −MTj )
βj (1− J0) ≥ 0.(2.3)
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Proof. As in the proof of [CuVa, Corollary 3.7], we have

0 ≤ s– lim
r→1−

p∏
j=1

(I − rMTj )
−γj (I −MTj )

γj (1) ≤ 1,

showing that J0 exists and 0 ≤ J0 ≤ 1 (s–lim denotes limit in the strong operator
topology of L(H)).
For a fixed β ≤ γ we have

n∏
j=1

(I −MTj )
βj ×

p∏
k=1

(I − rMTk)
−γk(I −MTk)

γk(1)(2.4)

=
∏
j>p

(I −MTj )
βj

p∏
j=1
βj �=0

(I − rMTj )
−γj (I −MTj )

βj+γj

×
p∏
j=1
βj=0

(I − rMTj )
−γj (I −MTj )

γj (1).

Note also that the limit

s- lim
r→1−

p∏
j=1
βj=0

(I − rMTj )
−γj (I −MTj )

γj (1)(2.5)

exists, as in the first part of the proof. Since

p∏
j=1
βj �=0

(I −MTj )
βj

p∏
j=1
βj=0

(I −MTj )
γj
∏
j>p

(I −MTj )
βj (1) ≥ 0

by hypothesis, it follows that
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∏
j>p

(I −MTj )
βj ×

p∏
j=1
βj �=0

(I −MTj )
βj(2.6)

×
p∏
j=1
βj=0

(I − rMTj )
−γj (I −MTj )

γj (1) ≥ 0,

by the series expansion of
∏
(I − rMTj )

−γj and the fact that the operators MTj
preserve positivity. We have only to note that

lim
r→1−

(I − rMTj )
−γj (I −MTj )

βj+γj = (I −MTj )
βj (βj �= 0)(2.7)

in the uniform topology, by an easy direct argument valid for Banach space
contractions.
Letting r → 1− in (2.4), and using (2.5), (2.6) and (2.7), as well as the

continuity of the operators MTj in the strong operator topology of L(H), we
derive (2.2). To obtain the estimate (2.3), note that

p∏
j=1
βj=0

(I −MTj )
δj (∆βT ) ≥ 0

for all δj ≤ γj , j ∈ {k : βk = 0}, by hypothesis. Therefore, by virtue of [CuVa,
Lemma 3.6],

p∏
j=1
βj=0

(I − rMTj )
−γj (I −MTj )

γj (∆βT ) ≤ ∆
β
T .(2.8)

Since the left-hand side of (2.8) has the same limit as the left-hand side of
(2.4), letting r → 1− in (2.8), we infer the estimate (2.3), which completes the
proof of the lemma. Λ

We briefly pause to recall that a contraction D ∈ L(H) is said to be of class
C0· if s− limk→∞Dk = 0 (see [SzFo]).

Lemma 2.2 Let γ ≥ e(n), let T ∈ L(H)n be γ-contractive, and let p ∈
{1, . . . , n}. Then there are two Hilbert spaces G, M, two γ-contractive c.m.
R ∈ L(G)n, Q ∈ L(M)n, and an isometry V : H → G ⊕M, with the following
properties:

(1) Given j = 1, . . . , n,
V Tj = (Rj ⊕Qj)V ;(2.9)
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(2) R1, . . . , Rp are of class C0·, and (Q1, . . . , Qp) is a γ(p)-isometry, where
γ(p) := (γ1, . . . , γp) ∈ Z

p
+;

(3) if for some k ∈ {1, . . . , n} the operator Tk is an isometry (resp. Tk ∈ C0·),
then both Rk, Qk are isometries (resp. Rk, Qk ∈ C0·).

Proof. We define an operator V0 : H → �2(Zp+,H) by the formula

(V0h)(α) :=
[
ργ(p)(α)∆

γ(p)

T (p)

]1/2
T (p)αh(2.10)

for all h ∈ H and α ∈ Zp+, where T
(p) := (T1, . . . , Tp). It is easily seen that

V ∗0 V0 = J0, where J0 is the operator (2.1) (see also [CuVa, (3.15), (3.21)]). In
particular, V ∗0 V0 ≤ 1.
We set G := V0H, V1 := (1− V ∗0 V0)

1/2, andM := V1H. Note the estimates

T ∗j V

∗
0 V0Tj ≤ V ∗0 V0

(j = 1, . . . , n),
T ∗j V

2
1 Tj ≤ V 21

(2.11)

which are particular cases of (2.2) and (2.3), respectively. By virtue of (2.11) we
may define the linear mappings


Rj · V0h := V0Tjh

(h ∈ H, j = 1, . . . , n),
Qj · V1h := V1Tjh

(2.12)

which can be continuously extended to the spaces G,M, respectively. We keep
the same notation for the extensions. It follows easily from (2.12) that R :=
(R1, . . . , Rn) ∈ L(G)n, Q := (Q1, . . . , Qn) ∈ L(M)n are c.m. In addition, if we
set V h := V0h ⊕ V1h for each h ∈ H, then V : H → G ⊕M is an isometry
satisfying (2.9), via (2.12).
We show now that R is γ-contractive. Let β ∈ Zn+ be fixed. We set, for

simplicity, cα,β := (−1)|a|β![α!(β − α)!]−1 if α ≤ β, and cα,β := 0 otherwise.
Then we have for β ≤ γ:

〈∆βRV0h, V0h〉 =
∑
α≥0

cα,β‖R
αV0h‖

2

=
∑
α≥0

cα,β‖V0T
αh‖2

=
〈 n∑
j=1

(I −MTj )
βj (V ∗0 V0)h, h

〉
≥ 0

for all h ∈ H, by virtue of (2.2), via (1.1) and (1.3). Hence ∆βR ≥ 0 for all β ≤ γ,
i.e., R is γ-contractive.



Standard Operator Models in the Polydisc, II 733

A similar argument (using (2.3) instead of (2.2)) shows that Q is γ-contract-
ive. Since we have already noticed that (2.9) holds, the assertion (i) is estab-
lished.
To obtain (ii), note that

(2.13) V0Tj = S
(γ(p))
j V0 (j = 1, . . . , p),

which follows as in ([CuVa, (3.22)]) (with S
(γ(p))
j given by (1.4)). Then, according

to [CuVa, Lemma 3.5], the operators Rj = S
(γ(p))
j |G (j = 1, . . . , p) are of class

C0· .
We must also prove that ∆e

(p)

Q(p)
= 0, where Q(p) := (Q1, . . . , Qp). Indeed, the

equality
p∏
j=1

(I −MTj )(1− V ∗0 V0) = 0,(2.14)

holds, as a consequence of [CuVa, Lemma 3.10].
Therefore,

〈∆e
(p)

Q(p)V1h, V1h〉 =
∑
α≤e(p)

(−1)|α|‖QαV1h‖
2

=
∑
α≤e(p)

(−1)|α|‖V1T
αh‖2

=
〈 p∏
j=1

(I −MTj )(1− V ∗0 V0)h, h
〉
= 0

for all h ∈ H, by (2.14). (Here we have used the equality cα,β = (−1)|α| when
β = e(p) and α ≤ β.) In other words, Q(p) is a γ(p)-isometry, and so (ii) is also
established.
Now, assume Tk is an isometry for some k. Then we have

(I −MTk)(V
∗
0 V0) = s– lim

r→1−
(I −MTk)

p∏
j=1

(I − rMTj )
−γj (I −MTj )

γj (1)

= 0,

via formula (2.1), since (I −MTk)(1) = 0. Thus, by (2.12),

‖RkV0h‖ = ‖V0Tkh‖ = ‖V0h‖

for all h ∈ H, showing that Rk is an isometry.
Next, observe that

(I −MTk)(1− V ∗0 V0) = 0,

whence we infer that Qk is also an isometry, by a similar argument.
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Finally, assume Tk of class C0·. Since

V Tmk = (Rmk ⊕Qmk )V

for every integer m ≥ 1, via (2.9), and since V is an isometry, we deduce readily
that Rmk V0h→ 0 and Qmk − V1h→ 0 as m→∞, for each h ∈ H. Then the fact
that both Rk, Qk are contractions, and the definition of the spaces G,M, imply
that Rk, Qk must be of class C0·. This establishes (iii), and concludes the proof
of the lemma. Λ

Lemma 2.3 Let H, G, M be Hilbert spaces, let T ∈ L(H)n, R ∈ L(G)n,
Q ∈ L(M)n be c.m., and let V : H → G ⊕M be an isometry such that V Tj =
(Rj ⊕Qj)V (j = 1, . . . , n). Then we have

∆βT = V ∗(∆βR ⊕∆
β
Q)V (β ∈ Zn+).(2.15)

Proof. Let cα,β be as in the proof of Lemma 2.2. We also write V h =
V0h⊕ V1h for each h ∈ H. Then we have

〈∆βTh, h〉 =
∑
α≥0

cα,β‖V T
αh‖2

=
∑
α≥0

cα,β(‖R
αV0h‖

2 + ‖QαV1h‖
2)

= 〈∆βRV0h, V0h〉+ 〈∆
β
QV1h, V1h〉

= 〈V ∗(∆βR ⊕∆
β
Q)V h, h〉

for all h ∈ H. Hence (2.15) holds. Λ

2.1. Proof of Theorem 1.2. (1)⇒ (2) This is a consequence of Lemma
2.2.2, with p = n, via (2).
(2)⇒ (1) This follows from Lemma 2.2.3, by virtue of [CuVa, Lemma 3.5].

The proof of the theorem is now complete. Λ

For additional results along the lines of Theorem 1.2 the reader is referred to
[Vas].
Unlike the spherical isometries studied in [MuVa]), the polydisc isometries,

are, in general, not subnormal (see [CuVa, p. 802]). Nevertheless, γ-isometries
possess a certain structure which seems to merit further consideration.
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Definition 2.4 Let γ ∈ Zn+, γ ≥ e(n), let p ∈ {1, . . . , n}, and let T ∈
L(H)n be a c.m. We say that T is a (γ, p)-isometry if the following conditions
are satisfied:

(1) T is γ-contractive;
(2) there are p distinct integers k1, . . . , kp in the set {1, . . . , n} such that

(Tk1 , . . . , Tkp) is a (γk1 , . . . , γkp)-isometry;
(3) If j ∈ {1, . . . , n} \ {k1, . . . , kp}, then either Tj is an isometry or Tj is of

class C0·.

Remark 2.5 (1) Every γ-isometry is a (γ, n)-isometry.
(2) If T ∈ L(H)n is a c.m. consisting of isometries, then T is a (γ, 1)-isometry

for all γ ≥ e(n).
(3) If T ∈ L(H)n is a (γ, 1)-isometry not of the form in (ii) above, then, without

loss of generality, we may suppose that T = (T1, . . . , Tq, Tq+1, . . . , Tn),
where 1 ≤ q ≤ n − 1, T1, . . . , Tq are of class C0·, and Tq+1, . . . , Tn are
isometries. We may apply Lemma 2.2.2 to this particular situation (with
p = q). Note also that the operator (2.10) is in this case an isometry, via
[CuVa, Lemma 3.9]. Consequently, T has the form

(S
(γ(q))
1 |G , . . . , S(γ

(q))
q |G , Rq+1 , . . . , Rn),(2.16)

modulo unitary equivalence, where G = V0H (V0 given by (2.10)), and
Rq+1, . . . , Rn are isometries on G, by virtue of Lemma 2.2.2.

Our goal is to describe the structure of an arbitrary γ-isometry in terms of
(γ, 1)-isometries. We need two more technical lemmas.

Lemma 2.6 Let T ∈ L(H)n be a (γ, p)-isometry, with p ≥ 2. Then there
exist Hilbert spaces Gk, c.m. R(k) ∈ L(Gk)n (k = 1, 2, 3), and an isometry
V : H → G1 ⊕ G2 ⊕ G3 such that

V Tj = (R
(1)
j ⊕R

(2)
j ⊕R

(3)
j )V (j = 1, ..., n),

where R(1) is a (γ, 1)-isometry, and R(2), R(3) are (γ, p− 1)-isometries.

Proof. Without loss of generality we may assume that T = (T1, . . . , Tp, Tp+1,
. . . , Tq,Tq+1, . . . , Tn), where T (p) := (T1, . . . , Tp) is a γ(p)-isometry (γ(p) :=
(γ1, . . . , γp)), Tp+1, . . . , Tq are isometries, and Tq+1, . . . , Tn are of class C0· (of
course, the last two kinds of operators may be absent). We shall apply Lemma
2.2.2 to γ, T , and p − 1. Let V ′0 be the operator given by (2.10). We also set
G1 := V ′0H, V

′

1 := (1 − V ′∗0 V ′0)
1/2, H′ := V ′1H, and V ′h := V ′0h ⊕ V ′1h (h ∈ H).
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According to Lemma 2.2.2, there exist c.m. R(1) ∈ L(G(1))n, T ′ ∈ L(H′)n which

are γ-contractive, such that V ′Tj = (R
(1)
j ⊕ T ′j)V

′ (j = 1, . . . , n). Moreover,

R
(1)
1 , . . . , R

(1)
p−1 are of class C0·, and (T

′
1, . . . , T

′
p−1) is a γ

(p−1)-isometry. It also

follows from Lemma 2.2.2 that R
(1)
p+1, . . . , R

(1)
q , T ′p+1, . . . , T

′
q are isometries, and

that R
(1)
q+1, . . . , R

(1)
n , T ′q+1, . . . , T

′
n are of class C0·.

Let us show now that R
(1)
p is an isometry. Indeed, since T (p) is a γ(p)-isometry,

we have

(I −MTp)(V
′∗
0 V ′0) = s– lim

r→1−

p−1∏
j=1

(I − rMTj )
−γj (I −MTj )

γj (I −MTp)(1) = 0.

Hence ‖R(1)p V ′0h‖ = ‖V
′
0Tph‖ = ‖V

′
0h‖ for all h ∈ H, via (2.12) and the remark

above, i.e., R
(1)
p is an isometry.

Consequently, R(1) is actually a (γ, 1)-isometry. We have to deal now with
the c.m. T ′ ∈ L(H′)n, in which T ′p is simply a contraction. We shall apply
Lemma 2.2.2 to γ, T ′′, 1, where

T ′′ := (T ′p, T
′
1, . . . , T

′
p−1, T

′
p+1, . . . , T

′
n).

According to Lemma 2.2.2, there are two Hilbert spaces G2,G3, two γ-contractive
c.m. R(2) ∈ L(G2)n, R(3) ∈ L(G3)n, and an isometry V ′′ : H′ → G2 ⊕ G3
such that V ′′T ′j = (R

(2)
j ⊕ R

(3)
j )V

′′ (j = 1, . . . , n). Note that (R
(2)
1 , . . . , R

(2)
p−1),

(R
(3)
1 , . . . , R

(3)
p−1) are γ

(p−1)-isometries, by Lemma 2.2.3 and the corresponding

property of (T ′1, . . . , T
′
p−1). We also have that R

(2)
p+1, . . . , R

(2)
q , R

(3)
p+1, . . . , R

(3)
q are

isometries, and that R
(2)
q+1, . . . , R

(2)
n , R

(3)
q+1, . . . , R

(3)
n are of class C0·, by Lemma

2.2.2 and the corresponding properties of T ′p+1, . . . , T
′
q, resp. T

′
q+1, . . . , T

′
n. Fi-

nally, it follows from Lemma 2.2.2 that R
(2)
p is of class C0·, and R

(3)
p is an

isometry. Therefore both R(2), R(3) are (γ, p − 1)-isometries. We have only to
note that V : H → G1 ⊕ G2 ⊕ G3, given by V := (1 ⊕ V ′′)V ′, is the required
isometry, via the properties of V ′, V ′′. This completes the proof of the lemma.
Λ

Lemma 2.7 Let T ∈ L(H)n be a (γ, p)-isometry with T (p) := (T1, . . . , Tp)
a γ(p)-isometry, γ(p) := (γ1, . . . , γp). Then there are Hilbert spaces GF , γ-
contractive c.m. RF ∈ L(GF ) (Ø �= F ⊆ {1, . . . , p}) and an isometry

V : H →
⊕

Ø�=F⊆{1,...,p}

GF(2.17)

with the following properties:
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(1) for all j = 1, . . . , n,

V Tj =
( ⊕
Ø �=F⊆{1,...,p}

RFj

)
V .(2.18)

(2) RF is an isometry if j ∈ F , and RF is of class C0· if j ∈ {1, . . . , p} \ F .
(3) RF is an isometry (resp. of class C0·) whenever Tj is an isometry (resp.
of class C0·) for all j ≥ p+ 1.

Proof. We prove the assertion by induction with respect to p ≥ 1, for an
arbitrary n ≥ p. If p = 1, T1 is an isometry; moreover, Tj is either an isometry
or of class C0· for all j ≥ 2. Hence the property holds with G{1} = H and V the
identity on H.
Now, assume that the assertion holds for p − 1 (p ≥ 2), and let us prove it

for p. Let T be as in the statement of the lemma. According to (the proof of)
Lemma 2.2.6, we can find Hilbert spaces Gp, H(1), H(2), and γ-contractive c.m.
R(p) ∈ L(Gp)n, Z(k) ∈ L(H(k))n (k = 1, 2) with the following properties:

(1) R
(p)
1 , . . . , R

(p)
p−1 are of class C0·, and R

(p)
p is an isometry;

(2) (Z
(k)
1 , . . . , Z

(k)
p−1) are γ

(p−1)-isometries (k = 1, )2, Z
(1)
p is of class C0·, and

Z
(2)
p is an isometry;

(3) R
(p)
j , Z

(k)
j are isometries (resp. of class C0·) whenever Tj is an isometry

(resp. of class C0·) for all j ≥ p+ 1, k = 1, 2;
(4) there is an isometry

V (0) : H → Gp ⊕H
(1) ⊕H(2)(2.19)

such that V (0)Tj = (R
(p)
j ⊕Z

(1)
j ⊕Z

(2)
j )V

(0) for all j = 1, . . . , n. (Note that

(Gp, R(p)) is the pair needed in (2.17), (2.18) for F = {p}.)

By the induction hypothesis, there are Hilbert spaces Gk,J , γ-contractive c.m.
Rk,J ∈ L(Gk,J) (Ø �= J ⊆ {1, . . . , p− 1}) and isometries

V (k) : H(k) →
⊕

Ø �=J⊆{1,...,p−1}

Gk,J(2.20)

such that
V (k)Z

(k)
j =

( ⊕
Ø �=J⊆{1,...,p−1}

Rk,Jj

)
V (k)

for all j = 1, . . . , n and k = 1, 2. Moreover, the Rk,Jj are isometries if j ∈ J or

j ≥ p, and Z
(k)
j is an isometry, and they are of class C0· otherwise.

Let F ⊆ {1, . . . , p}, F �= Ø. Then we set
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GF :=



Gp if F = {p},

G1,F if p /∈ F ,

G2,F\{p} if p ∈ F , F �= {p}.

We also define

RF :=



R(p) if F = {p},

R1,F if p /∈ F ,

R2,F\{p} if p ∈ F , F �= {p}.

Note that RFj is an isometry if j ∈ F , and of class C0· if j ∈ {1, . . . , p}\F .
The isometry V required for (2.18) is now easily obtained from (2.19) and (2.20).
The proof of the lemma is complete. Λ

Lemma 2.2.7 shows, in particular, that every γ-isometry is unitarily equiva-
lent to a (finite) direct sum of (γ, 1)-isometries restricted to invariant subspaces.
Combining Theorem 1.1.2 and Lemma 2.2.7, we derive the following structure

result.

Theorem 2.8 Let γ ∈ Zn+, γ ≥ e(n), and let T ∈ L(H)n be γ-contractive.
Then there exist Hilbert spaces GF , γ-contractive c.m. RF ∈ L(GF )n (F ⊆
{1, . . . , n}), and an isometry

V : H →
⊕

F⊆{1,...,n}

GF(2.21)

with the following properties:

(1) For all j = 1, . . . , n,

V Tj =
( ⊕
F⊆{1,...,n}

RFj

)
V ;(2.22)

(2) RØ1 , . . . , R
Ø
n are operators of class C0·, and for every F ⊆ {1, . . . , n}, F �=

Ø, the operators RFj are isometries if j ∈ F , and are of class C0·if j ∈
{1, . . . , n} \ F .

Proof. According to Theorem 1.1.2, there are Hilbert spaces G0, H′, γ-
contractive c.m. R(0) ∈ L(G0)n, T ′ ∈ L(H′)n, and an isometry V ′ : H → G0⊕H′

such that V ′Tj = (R
(0)
j ⊕ T ′j)V

′ (j = 1, . . . n). Moreover, R(0) consists of op-
erators of class C0· (via ([CuVa, Theorem 3.16]), and T ′ is a γ-isometry. To
complete the proof of the theorem, we define GØ := G0, R

Ø := R(0), and we
apply Lemma 2.2.7 (with p = n) to T ′. From (2.17) and (2.18) written for T ′, as
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well as using RØ, GØ and V
′, we infer readily (2.21) and (2.22), which concludes

the proof. Λ

Let us remark that if the c.m. T∈ L(H)n satisfies (2.22), with all RF γ-
contractive, then T is also γ-contractive by virtue of (an extended version of)
Lemma 2.3.

3. Some related resultsTheorem 2.8 shows that the structure of a
c.m. consisting of contractions, even if some positivity conditions are satisfied, is
in general rather complicated. Unlike the case associated with the geometry of
the unit ball (see [MuVa]), the case associated with the polydisc is unexpectedly
intricate. Besides the standard model (1.4) or those c.m. consisting of isometries,
which can be regarded as “extreme” cases, there also occur “mixed” cases. We
refer here to (γ, 1)-isometries T ∈ L(H)n (n ≥ 2) whose form (modulo a permu-
tation of indices) is T = (T1, . . . , Tq, . . . , Tn), where T1, . . . , Tq are operators of
class C0·, and Tq+1, . . . , Tn are isometries (1 ≤ q ≤ n− 1), as in Remark 2.5(iii).
Since for the extreme cases more information is available, we think it is useful
to give a version of Theorem 2.2.8 in which the “mixed” c.m. are automatically
eliminated.

Proposition 3.1 Let γ ≥ e(n) and let T ∈ L(H)n be a c.m. The following
conditions are equivalent.

(a) T is γ–contractive, and

(I −MTj )(1− J0) = 0 (j = 1, . . . , n),(3.1)

where

J0 := s− lim
r→1−

n∏
j=1

(I − rMTj )
−γj (∆γT ).(3.2)

(b) T is unitarily equivalent to the restriction of S(γ) ⊕ Q to an invariant
subspace, where Q is a c.m. consisting of isometries.

Proof. (a)⇒ (b) We follow the line of the proof of Theorem 1.1.2 (or, rather,
that of Lemma 2.2.2). We have the equality (2.9), in which R may be replaced
by S(γ) (via (2.12) and (2.13)), and Q is a γ-isometry. We have only to show
that Q1, . . . , Qn are actually isometries.
Indeed, since J0 given by (3.2) coincides with J0 given by (2.1) (for p = n),

we have, using the notation of Lemma 2.2.2, V ∗0 V0 = J0, and V
2
1 = 1−J0. Since

(3.1) can be rewritten as

T ∗j V
2
1 Tj = V 21 (j = 1, . . . , n),
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it follows from (2.12) that Q1, . . . , Qn are isometries.

(b) ⇒ (a) It follows from (b) that there are Hilbert spaces G ⊆ �2(Zn+,H)

and M, and an isometry V : H → G ⊕ M such that V Tj = (S
(γ)
j ⊕ Qj)V

(j = 1, . . . , n). Let Rj := S
(γ)
j |G for all j, and R := (R1, . . . , Rn).

Note that ∑
α≥0

ργ(α)‖(∆
γ
R)
1/2Rαg‖2 = ‖g‖2 (g ∈ G),(3.3)

by [CuVa, Lemma 3.5, (3.21) and (3.23)]. Then we have

J0h =
∑
α≥0

ργ(α)T
∗α∆γTT

αh

=
∑
α≥0

ργ(α)T
∗αV ∗(∆γR ⊕∆

γ
Q)V T

αh

= V ∗
[(∑
α≥0

ργ(α)R
∗α∆γRR

α
)
⊕ 0
]
Vh

= V ∗(1⊕ 0)Vh

for all h ∈ H, by [CuVa, (3.15)], Lemma 2.2.3, (3.3), and since ∆γQ = 0.
Therefore 1− J0 = V ∗(0⊕ 1)V , whence

(I −MTj )(V
∗(0⊕ 1)V ) = V ∗(0⊕ 1)V − T ∗j V

∗(0⊕ 1)V Tj

= V ∗(0⊕ 1)V − V ∗(R∗j ⊕Q∗j )(0⊕ 1)(Rj ⊕Qj)V

= 0

for all j, since each Qj is an isometry. Since T is clearly γ-contractive, this
establishes the implication (b)⇒ (a), which concludes the proof of the proposi-
tion. Λ

An important particular case of all previous assertions is obtained when γ =
e := e(n). According to Definition 1.1, a c.m. T ∈ L(H)n is e-contractive if
∆αT ≥ 0 for all α ≤ e. This is precisely Brehmer’s condition, which is equivalent
to the existence of a regular unitary dilation (see [Bre] or [SzFo]; see also [CuVa,
Section 4]).
The standard model S ≡ S(e) defined via (1.4), becomes

(Sjf)(α) = f(α+ ej) (f ∈ K, α ∈ Zn+, j = 1, . . . , n)(3.4)

(recall that K = �2(Zn+,H) and observe that ρe(α) ≡ 1). Since

(S∗j f)(α) = f(α− ej) if αj ≥ 1,
= 0 if αj = 0

(3.5)
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for all f ∈ K, α ∈ Zn+, j = 1, . . . , n, a simple computation shows that

(S∗jSkf)(α) = (SkS
∗
j f)(α) =

{
f(α+ ek − ej) if αj ≥ 1,

0 if αj = 0,

whenever j �= k. In other words, the c.m. S is doubly commuting. From this
observation we derive the equality

S∗αSβ = SβS∗α(3.6)

valid for all α, β ∈ Zn+ with α ◦ β = 0, where α ◦ β := (α1β1, . . . , αnβn).
Now, let L := �2(Zn,H). The space K can be naturally embedded into L

via the isometry K � f → f̃ ∈ L, where f̃(α) = f(α) if α ∈ Zn+, and f̃(α) = 0
otherwise.
The counterparts of (3.4) and (3.5) on L are, respectively,

(Ujg)(α) = g(α+ ej)(3.7)

and

(U∗j g)(α) = g(α− ej),(3.8)

for all g ∈ L, α ∈ Zn, j = 1, . . . , n. Note that U := (U1, . . . , Un) is a c.m. on L
consisting of unitary operators. Moreover, we have

U∗αj f̃ = (S∗j f)
˜ (f ∈ K, j = 1, . . . , n),

as one can easily check. Therefore

U∗αf̃ = (S∗αf)˜ (α ∈ Zn+, f ∈ K).(3.9)

As we have already mentioned, if T ∈ L(H)n is e-contractive, then T has a
regular unitary dilation (see, for instance, [SzFo, Theorem I.9.1]). In other words,
there is a Hilbert space R, an isometry W : H → R and a c.m. D ∈ L(R)n

consisting of unitary operators such that

W ∗D∗αDβW = T ∗αT β(3.10)

for all α, β ∈ Z∗+ with α ◦ β = 0. For brevity, we shall say that (R,W,D) is a
r.u.d. for T .
We shall show that our methods provide, in particular, a new proof of the ex-

istence of a regular unitary dilation for every e-contractive c.m. ([SzFo, Theorem
I.9.1]). In the remaining part of this section we shall discuss this question.

Lemma 3.2 Let T ∈ L(H)n be e-contractive. If s– limk→∞ T kj = 0 (j =
1, . . . , n), then T has a regular unitary dilation.
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Proof. We keep the notation above. By virtue of [CuVa, Theorem 3.16], we
may assume without loss of generality that Tj = Sj |G, where G ⊆ K is invariant
under Sj (j = 1, . . . , n). We shall show that (L,W,U) is a r.u.d. for T .
Indeed, let W : G → L be the isometry Wg := g̃, and let α, β ∈ Z∗+ be such

that α ◦ β = 0. Then for all g1, g2 ∈ G we have〈
W ∗U∗αUβWg1, g2

〉
=
〈
U∗αg̃1, U

∗β g̃2
〉

=
〈
S∗αg1, S

∗βg2
〉
=
〈
S∗αSβg1, g2

〉
=
〈
T ∗αT βg1, g2

〉
,

by (3.9), (3.6), and the invariance of G under S1, . . . , Sn. This shows that (3.10)
holds, i.e., (L,W,U) is a r.u.d. for T . Λ

Lemma 3.3 Let T ∈ L(H)n be a c.m. consisting of isometries. Then T
has a regular unitary dilation.

Proof. According to [SzFo, Proposition I.6.2], there is a Hilbert space R, an
isometry V : H → R, and a c.m. D ∈ L(R)n consisting of unitary operators
such that DjV = V Tj for all j. It is an easy matter to prove that

V ∗D∗αDβV = T ∗αT β(3.11)

for all α, β ∈ Zn+. Thus, (R, V,D) is a r.u.d. for T . Λ

Remark 3.4 Let T , W , D be as in (3.10). If α ∈ Zn, then α can be
uniquely written as α = α+ − α−, with α−, α+ ∈ Zn+, where α

+
j := max{αj , 0},

α−j = max{−αj , 0} for all j. Then (3.10) can be rewritten as

W ∗DαW = T ∗α
−

Tα
+

(3.12)

for all α ∈ Zn, where Dα = Dα11 · · ·D
αn
n makes sense since D1, . . . ,Dn are

unitary.

Lemma 3.5 Let T ∈ L(H)n (n ≥ 2) be an (e, 1)-isometry of the form
T = (T1, . . ., Tp, . . . Tn) (1 ≤ p ≤ n − 1), where T1, . . . , Tp are of class C0·, and
Tp+1, . . . , Tn are isometries. Then T has a regular unitary dilation.

Proof. According to [SzFo, Section I.9], it is sufficient to show that for every
function f : Zn+ → H with finite support, and all α, β ∈ Z

n
+, we have∑

α,β

〈
T ∗(α−β)

−

T (α−β)
+

f(α), f(β)
〉
≥ 0.(3.13)
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In order to show that (3.13) holds, we shall use the corresponding properties of
the c.m. T ′ := (T1, . . . , Tp), T

′′ := (Tp+1, . . . Tn). For every α ∈ Zn+ we also let
α′ := (α1, . . . , αp) ∈ Zp, α′′ := (αp+1, . . . , αn) ∈ Zn−p.
First of all notice that

T ∗(α−β)
−

T (α−β)
+

= T ′∗(α
′−β′)−T ′′∗(α

′′−β)−T ′(α
′−β′)+T ′′(α

′′−β′′)+(3.14)

for all α, β ∈ Zn+.
From the proof of Lemma 3.3 (and without loss of generality) it follows that

there exist a Hilbert space R′′ ⊇ H, and a c.m. U ′′ ∈ L(R′′)n consisting of
unitary operators, such that U ′′j |H = T ′′j (j = p+ 1, . . . , n). Then, with f as in
(3.13), we have 〈

T ∗(α−β)
−

T (α−β)
+

f(α), f(β)
〉

(3.15)

=
〈
U ′′∗β

′′

U ′′α
′′

T ′(α
′−β′)+f(α), T ′(α

′−β′)−f(β)
〉

=
〈
T ′∗(α

′−β′)−T ′(α
′−β′)+T ′′α

′′

f(α), T ′′β
′′

f(β)
〉
,

by (3.14) and (3.11) (and since U ′′ is an extension of T ′′).
Now, let U ′ ∈ L(R′)n be a regular unitary dilation of T ′, which exists by

Lemma 3.2. We may assume R′ ⊇ H. Then we can write, via (3.12),〈
T ′∗(α

′−β′)−T ′(α
′−β′)+T ′′α

′′

f(α), T ′′β
′′

f(β)
〉

(3.16)

=
〈
U ′∗β

′

U ′α
′

T ′′α
′

f(α), T ′′β
′′

f(β)
〉
.

But we have∑
α,β

〈
U ′α

′

T ′′α
′′

f(α), T ′′β
′′

f(β)
〉
=
∥∥∥∑
α

U ′α
′

T ′′α
′′

f(α)
∥∥∥2 ≥ 0;(3.17)

consequently, (3.13) holds since the left-hand side of (3.13) coincides with the
left-hand side of (3.17), via (3.14)–(3.16). This concludes the proof of the
lemma. Λ

Although our proof of Lemma 3.3.5 needs Naimark’s dilation theorem (see
[SzFo, Theorem I.7.1]), the hypothesis therein is easily verified in this particular
case.

Lemma 3.6 Let T ∈ L(H)n, R(k) ∈ L(H(k))n be c.m. (k = 1, . . . ,m), and
let V : H → H(1) ⊕ · · · ⊕ H(m) be an isometry such that

V Tj = (R
(1)
j ⊕ · · · ⊕R

(m)
j )V (j = 1, . . . , n).(3.18)

If every R(k) has a regular unitary dilation, then T has a regular unitary dilation.
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Proof. Let (R(k),Wk,D(k)) be a r.u.d. for R(k) (k = 1, . . . ,m). Define

R := R(1) ⊕ · · · ⊕ R(m) and Dj := D
(1)
j ⊕ · · · ⊕ D

(m)
j (j = 1, . . . , n), and let

Vk : H → H(k) be given by

V h = V1h⊕ · · · ⊕ Vmh (h ∈ H).

Note that
VkTj = R

(k)
j Vkk (j = 1, . . . , n, k = 1, . . . ,m).(3.19)

which follows from (3.18). Let W : H(1) ⊕ · · · ⊕ H(m) → R be the isometry
W : W1 ⊕ · · · ⊕Wn. Then WV : H → R is an isometry, and for all α, β ∈ Zn+
with α ◦ β = 0, and all h1, h2 ∈ H we have

〈
V ∗W ∗D∗αDβWV h1,h2

〉
=

〈
m⊕
k=1

D(k)βWkVkh1,

m⊕
k=1

D(k)αWkVkh2

〉

=
m∑
k=1

〈
W ∗
kD

(k)∗αD(k)βWkVkh1, Vkh2

〉

=
m∑
k=1

〈
R(k)∗αR(k)βVkh1, Vkh2

〉

=
m∑
k=1

〈
VkT

βh1, VkT
αh2
〉

=
〈
V T βh1, V T

αh2
〉

=
〈
T ∗βTαh1, h2

〉
by (3.19) and the fact that (R(k),Wk,D(k)) is a r.u.d. for R(k). Thus, (R,W,D)
is a r.u.d. for T . Λ

We can give now a new proof of the following result (see also [SzFo, Theorem
I.9.1]).

Theorem 3.7 Let T ∈ L(H)n be e-contractive. Then T has a regular uni-
tary dilation.

Proof. The assertion follows from Theorem 2.8 and Lemmas 3.2, 3.3, and
3.5. Λ
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