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Abstract. We find necessary and sufficient conditions for a Banach space operator T to satisfy
the generalized Browder’s theorem. We also prove that the spectral mapping theorem holds for
the Drazin spectrum and for analytic functions on an open neighborhood of σ(T ). As applications,
we show that if T is algebraically M -hyponormal, or if T is algebraically paranormal, then the
generalized Weyl’s theorem holds for f(T ), where f ∈ H((T )), the space of functions analytic on an
open neighborhood of σ(T ). We also show that if T is reduced by each of its eigenspaces, then the
generalized Browder’s theorem holds for f(T ), for each f ∈ H(σ(T )).

1. Introduction

In [24], H. Weyl proved, for hermitian operators on Hilbert space, his celebrated theorem on the
structure of the spectrum (Equation (1.1) below). Weyl’s theorem has been extended from hermitian
operators to hyponormal and Toeplitz operators ([12]), and to several classes of operators including
seminormal operators ([3], [4]). Recently, M. Berkani and J.J. Koliha [9] introduced the concepts
of generalized Weyl’s theorem and generalized Browder’s theorem, and they showed that T satisfies
the generalized Weyl’s theorem whenever T is a normal operator on Hilbert space. More recently,
M. Berkani and A. Arroud [8] extended this result to hyponormal operators.

In this paper we extend this result to several classes much larger than that of normal operators. We
first find necessary and sufficient conditions for a Banach space operator T to satisfy the generalized
Browder’s theorem (Theorem 2.1). We then characterize the smaller class of operators satisfying
the generalized Weyl’s theorem (Theorem 2.4). Along the way we prove that the spectral mapping
theorem always holds for the Drazin spectrum and for analytic functions on an open neighborhood
of σ(T ) (Theorem 2.7). We have three main applications of our results: if T is algebraically M -
hyponormal, or if T is algebraically paranormal, then the generalized Weyl’s theorem holds for f(T ),
for each f ∈ H(σ(T )), the space of functions analytic on an open neighborhood of σ(T ) (Theorems
4.7 and 4.14, respectively); and if T is reduced by each of its eigenspaces, then the generalized
Browder’s theorem holds for f(T ), for each f ∈ H(σ(T )) (Corollary 3.5).

As we shall see below, the concept of Drazin invertibility plays an important role for the class of
B-Fredholm operators. Let A be a unital algebra. We say that x ∈ A is Drazin invertible of degree
k if there exists an element a ∈ A such that

xkax = xk, axa = a, and xa = ax.

For a ∈ A, the Drazin spectrum is defined as

σD(a) := {λ ∈ C : a− λ is not Drazin invertible}.
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In the case of T ∈ B(X ), it is well known that T is Drazin invertible if and only if T has finite ascent
and descent, which is also equivalent to having T decomposed as T1 ⊕ T2, where T1 is invertible and
T2 is nilpotent.

Throughout this note let B(X ), B0(X ) and B00(X ) denote, respectively, the algebra of bounded
linear operators, the ideal of compact operators, and the set of finite rank operators acting on an
infinite dimensional Banach space X . If T ∈ B(X ) we shall write N(T ) and R(T ) for the null
space and range of T . Also, let α(T ) := dim N(T ), β(T ) := dim X/R(T ), and let σ(T ), σa(T ),
σp(T ), σpi(T ), p0(T ) and π0(T ) denote the spectrum, approximate point spectrum, point spectrum,
the eigenvalues of infinite multiplicity of T , the set of poles of T , and the set of all eigenvalues of T
which are isolated in σ(T ), respectively. An operator T ∈ B(X ) is called upper semi-Fredholm if it
has closed range and finite dimensional null space, and is called lower semi-Fredholm if it has closed
range and its range has finite codimension. If T ∈ B(X ) is either upper or lower semi-Fredholm,
then T is called semi-Fredholm; the index of a semi Fredholm operator T ∈ B(X ) is defined as

i(T ) := α(T )− β(T ).

If both α(T ) and β(T ) are finite, then T is called Fredholm. T ∈ B(X ) is called Weyl if it is
Fredholm of index zero, and Browder if it is Fredholm “of finite ascent and descent;” equivalently,
([17, Theorem 7.9.3]) if T is Fredholm and T − λ is invertible for sufficiently small λ 6= 0 in C. The
essential spectrum, σe(T ), the Weyl spectrum, ω(T ), and the Browder spectrum, σb(T ), are defined
as ([16],[17])

σe(T ) := {λ ∈ C : T − λ is not Fredholm},
ω(T ) := {λ ∈ C : T − λ is not Weyl},

and
σb(T ) := {λ ∈ C : T − λ is not Browder},

respectively. Evidently
σe(T ) ⊆ ω(T ) ⊆ σb(T ) = σe(T ) ∪ acc σ(T ),

where we write acc K for the accumulation points of K ⊆ C. For T ∈ B(X ) and a nonnegative
integer n we define T[n] to be the restriction of T to R(Tn), viewed as a map from R(Tn) into R(Tn)
(in particular T[0] = T ). If for some integer n the range R(Tn) is closed and T[n] is upper (resp.
lower) semi-Fredholm, then T is called upper (resp. lower) semi -B-Fredholm. Moreover, if T[n]

is Fredholm, then T is called B-Fredholm. T is called semi -B-Fredholm if it is upper or lower
semi-B-Fredholm.

Definition 1.1. Let T ∈ B(X ) and let

∆(T ) := {n ∈ Z+ : m ∈ Z+,m ≥ n ⇒ R(Tn) ∩N(T ) ⊆ R(Tm) ∩N(T )}.
The degree of stable iteration of T is defined as dis T := inf ∆(T ).

Let T be semi-B-Fredholm and let d be the degree of stable iteration of T . It follows from [11,
Proposition 2.1] that T[m] is semi-Fredholm and i(T[m]) = i(T[d]) for every m ≥ d. This enables us
to define the index of a semi -B-Fredholm operator T as the index of the semi-Fredholm operator
T[d]. Let BF (X ) be the class of all B-Fredholm operators. In [5] the author studied this class of
operators and proved [5, Theorem 2.7] that T ∈ B(X ) is B-Fredholm if and only if T = T1 ⊕ T2,
where T1 is Fredholm and T2 is nilpotent.

An operator T ∈ B(X ) is called B-Weyl if it is B-Fredholm of index 0. The B-Fredholm spectrum,
σBF (T ), and B-Weyl spectrum, σBW (T ), are defined as

σBF (T ) := {λ ∈ C : T − λ is not B-Fredholm}
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and
σBW (T ) := {λ ∈ C : T − λ is not B-Weyl} ⊆ σD(T ).

It is well known that the following equality holds [6]:

σBW (T ) =
⋂
{σD(T + F ) : F ∈ B00(X )}.

If we write iso K = K \ acc K then we let

π00(T ) := {λ ∈ iso σ(T ) : 0 < α(T − λ) < ∞}

and
p00(T ) := σ(T ) \ σb(T ).

Given T ∈ B(X ), we say that Weyl’s theorem holds for T (or that T satisfies Weyl’s theorem, in
symbols, T ∈ W) if

σ(T ) \ ω(T ) = π00(T ), (1.1)

and that Browder’s theorem holds for T (in symbols, T ∈ B) if

σ(T ) \ ω(T ) = p00(T ). (1.2)

We also say that the generalized Weyl’s theorem holds for T (and we write T ∈ gW) if

σ(T ) \ σBW (T ) = π0(T ), (1.3)

and that the generalized Browder’s theorem holds for T (in symbols, T ∈ gB) if

σ(T ) \ σBW (T ) = p0(T ). (1.4)

It is known ([18],[9]) that

gW ⊆ gB
⋂
W (1.5)

and that
gB

⋃
W ⊆ B. (1.6)

Moreover, given T ∈ gB, it is clear that T ∈ gW if and only if p0(T ) = π0(T ).
An operator T ∈ B(X ) is called isoloid if every isolated point of σ(T ) is an eigenvalue of T . If

T ∈ B(X ), we write r(T ) for the spectral radius of T ; it is well known that r(T ) ≤ ||T ||. An operator
T ∈ B(X ) is called normaloid if r(T ) = ||T ||. An operator X ∈ B(X ) is called a quasiaffinity if it
has trivial kernel and dense range. An operator S ∈ B(X ) is said to be a quasiaffine transform of
T ∈ B(X ) (in symbols, S ≺ T ) if there is a quasiaffinity X ∈ B(X ) such that XS = TX. If both
S ≺ T and T ≺ S, then we say that S and T are quasisimilar.

We say that T ∈ B(X ) has the single valued extension property (SVEP) at λ0 if for every open set
U ⊆ C containing λ0 the only analytic solution f : U −→ X of the equation

(T − λ)f(λ) = 0 (λ ∈ U)

is the zero function ([15],[20]). An operator T is said to have SVEP if T has SVEP at every λ ∈ C.
Given T ∈ B(X ), the local resolvent set ρT (x) of T at the point x ∈ X is defined as the union of all
open subsets U ⊆ C for which there is an analytic function f : U −→ X such that

(T − λ)f(λ) = x (λ ∈ U).

The local spectrum σT (x) of T at x is then defined as

σT (x) := C \ ρT (x).
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For T ∈ B(X ), we define the local (resp. glocal) spectral subspaces of T as follows. Given a set
F ⊆ C (resp. a closed set G ⊆ C),

XT (F ) := {x ∈ X : σT (x) ⊆ F}
(resp.

XT (G) := {x ∈ X : there exists an analytic function

f : C\G → X such that (T − λ)f(λ) = x for all λ ∈ C \G}).

An operator T ∈ B(X ) has Dunford’s property (C) if the local spectral subspace XT (F ) is closed
for every closed set F ⊆ C. We also say that T has Bishop’s property (β) if for every sequence
fn : U →X such that (T − λ)fn → 0 uniformly on compact subsets in U , it follows that fn → 0
uniformly on compact subsets in U . It is well known [19, 20] that

Bishop’s property (β) =⇒ Dunford’s property (C) =⇒ SVEP.

2. Structural Properties of Operators in gB and gW

Theorem 2.1. Let T ∈ B(X ). Then the following statements are equivalent:
(i) T ∈ gB;
(ii) σBW (T ) = σD(T );
(iii) σ(T ) = σBW (T ) ∪ π0(T );
(iv) acc σ(T ) ⊆ σBW (T );
(v) σ(T ) \ σBW (T ) ⊆ π0(T ).

Proof. (i) =⇒ (ii): Suppose that T ∈ gB. Then σ(T ) \ σBW (T ) = p0(T ). Let λ ∈ σ(T ) \ σBW (T ).
Then λ ∈ p0(T ), and so T − λ is Drazin invertible. Therefore λ ∈ σ(T ) \ σD(T ), and hence
σD(T ) ⊆ σBW (T ). On the other hand, since σBW (T ) ⊆ σD(T ) is always true for any operator
T , σBW (T ) = σD(T ).

(ii) =⇒ (i): We assume that σBW (T ) = σD(T ) and we will establish that σ(T ) \ σBW (T ) =
p0(T ). Suppose first that λ ∈ σ(T ) \ σBW (T ). Then λ ∈ σ(T ) \ σD(T ), and so T − λ is Drazin
invertible. Therefore T −λ has finite ascent and descent. Since λ ∈ σ(T ), we have λ ∈ p0(T ). Thus
σ(T ) \ σBW (T ) ⊆ p0(T ).

Conversely, suppose that λ ∈ p0(T ). Then T − λ is Drazin invertible but not invertible. Since
λ is an isolated point of σ(T ), [6, Theorem 4.2] implies that T − λ is B-Weyl. Therefore λ ∈
σ(T ) \ σBW (T ). Thus p0(T ) ⊆ σ(T ) \ σBW (T ).

(ii) =⇒ (iii): Let λ ∈ σ(T )\σBW (T ). Then λ ∈ σ(T )\σD(T ), and so T−λ is Drazin invertible but
not invertible. Therefore λ ∈ π0(T ). Thus σ(T ) ⊆ σBW (T )∪π0(T ). Since σBW (T )∪π0(T ) ⊆ σ(T ),
always, we must have σ(T ) = σBW (T ) ∪ π0(T ).

(iii) =⇒ (ii): Suppose that σ(T ) = σBW (T ) ∪ π0(T ). To show that σBW (T ) = σD(T ) it suffices
to show that σD(T ) ⊆ σBW (T ). Suppose that λ ∈ σ(T ) \ σBW (T ). Then T − λ is B-Weyl but
not invertible. Since σ(T ) = σBW (T ) ∪ π0(T ), we see that λ ∈ π0(T ). In particular, λ is an
isolated point of σ(T ). It follows from [6, Theorem 4.2] that T − λ is Drazin invertible, and hence
σBW (T ) = σD(T ).

(i) ⇐⇒ (iv): Suppose that T ∈ gB. Then σ(T ) \ σBW (T ) = p0(T ). Let λ ∈ σ(T ) \ σBW (T ).
Then λ ∈ p0(T ), and so λ is an isolated point of σ(T ). Therefore λ ∈ σ(T ) \ acc σ(T ), and hence
acc σ(T ) ⊆ σBW (T ).

Conversely, let λ ∈ σ(T ) \ σBW (T ). Since acc σ(T ) ⊆ σBW (T ), it follows that λ ∈ iso σ(T ) and
T −λ is B-Weyl. By [7, Theorem 2.3], we must have λ ∈ p0(T ). Therefore σ(T )\σBW (T ) ⊆ p0(T ).
For the converse, suppose that λ ∈ p0(T ). Then λ is a pole of the resolvent of T , and so λ is an
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isolated point of σ(T ). Therefore λ ∈ σ(T ) \ acc σ(T ). It follows from [7, Theorem 2.3] that
λ ∈ σ(T ) \ σBW (T ). Thus p0(T ) ⊆ σ(T ) \ σBW (T ), and so T ∈ gB.

(iv) ⇐⇒ (v): Suppose that acc σ(T ) ⊆ σBW (T ), and let λ ∈ σ(T ) \ σBW (T ). Then T − λ
is B-Weyl but not invertible. Since acc σ(T ) ⊆ σBW (T ), λ is an isolated point of σ(T ). It
follows from [7, Theorem 2.3] that λ is a pole of the resolvent of T . Therefore λ ∈ π0(T ), and hence
σ(T )\σBW (T ) ⊆ π0(T ). Conversely, suppose that σ(T )\σBW (T ) ⊆ π0(T ) and let λ ∈ σ(T )\σBW (T ).
Then λ ∈ π0(T ), and so λ is an isolated point of σ(T ). Therefore λ ∈ σ(T )\acc σ(T ), which implies
that acc σ(T ) ⊆ σBW (T ). �

Corollary 2.2. Let T be quasinilpotent or algebraic. Then T ∈ gB.

Proof. Straightforward from Theorem 2.1 and the fact that acc σ(T ) = ∅ whenever T is quasinilpo-
tent or algebraic. �

Recall that gW ⊆ gB (cf. (1.5)). However, the reverse inclusion does not hold, as the following
example shows.

Example 2.3. Let X = `p, let T1, T2 ∈ B(X ) be given by

T1(x1, x2, x3, · · · ) := (0,
1
2
x1,

1
3
x2,

1
4
x3, · · · ) and T2 := 0,

and let

T :=
(

T1 0
0 T2

)
∈ B(X ⊕ X ).

Then
σ(T ) = ω(T ) = σBW (T ) = π0(T ) = {0}

and
p0(T ) = ∅.

Therefore, T ∈ gB \ gW.

The next result gives simple necessary and sufficient conditions for an operator T ∈ gB to belong
to the smaller class gW.

Theorem 2.4. Let T ∈ gB. The following statements are equivalent.
(i) T ∈ gW.
(ii) σBW (T ) ∩ π0(T ) = ∅.
(iii) p0(T ) = π0(T ).

Proof. (i) ⇒ (ii): Assume T ∈ gW, that is, σ(T ) \ σBW (T ) = π0(T ). It then follows easily that
σBW (T ) ∩ π0(T ) = ∅, as required for (ii).

(ii) ⇒ (iii): Let λ ∈ π0(T ). The condition in (ii) implies that λ ∈ σ(T ) \ σBW (T ), and since
T ∈ gB, we must then have λ ∈ p0(T ). It follows that π0(T ) ⊆ p0(T ), and since the reverse inclusion
always hold, we obtain (iii).

(iii) ⇒ (i): Since T ∈ gB, we know that σ(T ) \ σBW (T ) = p0(T ), and since we are assuming
p0(T ) = π0(T ), it follows that σ(T ) \ σBW (T ) = π0(T ), that is, T ∈ gW. �

It is well known that σb(T ) = σe(T ) ∪ acc σ(T ). A similar result holds for the Drazin spectrum.

Theorem 2.5. Let T ∈ B(X ). Then σD(T ) = σBF (T ) ∪ acc σ(T ).
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Proof. Suppose that λ ∈ σ(T )\σD(T ). Then T −λ is Drazin invertible but not invertible. Therefore
T − λ has finite ascent and descent, and hence T − λ can be decomposed as T − λ = T1 ⊕ T2, where
T1 is invertible and T2 is nilpotent. It follows from [6, Lemma 4.1] that T − λ is B-Fredholm. On
the other hand, since T − λ has finite ascent and descent, λ is an isolated point of σ(T ). Hence
λ ∈ σ(T ) \ (σBF (T ) ∪ acc σ(T )).

Conversely, suppose that λ ∈ σ(T ) \ (σBF (T ) ∪ acc σ(T )). Then T − λ is B-Fredholm and λ is
an isolated point of σ(T ). Since T − λ is B-Fredholm, it follows from [5, Theorem 2.7] that T − λ
can be decomposed as T − λ = T1 ⊕ T2, where T1 is Fredholm and T2 is nilpotent. We consider two
cases.

Case I. Suppose that T1 is invertible. Then T − λ is Drazin invertible, and so λ /∈ σD(T ).
Case II. Suppose that T1 is not invertible. Then 0 is an isolated point of σ(T1). But T1 is a

Fredholm operator, hence it follows from the punctured neighborhood theorem that T1 is Browder.
Therefore there exists a finite rank operator S1 such that T1 +S1 is invertible and T1S1 = S1T1. Put
F := S1 ⊕ 0. Then F is a finite rank operator, TF = FT and

T − λ + F = T1 ⊕ T2 + S1 ⊕ 0 = (T1 + S1)⊕ T2

is Drazin invertible. Hence λ /∈ σD(T ). �

In general, the spectral mapping theorem does not hold for the B-Weyl spectrum, as shown by
the following example.

Example 2.6. Let U ∈ B(l2) be the unilateral shift and consider the operator

T := U ⊕ (U∗ + 2).

Let p(z) := z(z − 2). Since U is Fredholm with i(U) = −1 and since U − 2 and U∗ + 2 are both
invertible, it follows that T and T − 2 are Fredholm with indices −1 and 1, respectively. Therefore
T and T − 2 are both B-Fredholm but T is not B-Weyl. On the other hand, it follows from the
index product theorem that

i(p(T )) = i(T (T − 2)) = i(T ) + i(T − 2) = 0,

hence p(T ) is Weyl. Thus 0 /∈ σBW (p(T )), whereas 0 = p(0) ∈ p(σBW (T )).

M. Berkani and M. Sarih have shown in [10] that the spectral mapping theorem holds for the
Drazin spectrum. We give here an alternative proof using Theorem 2.5.

Theorem 2.7. Let T ∈ B(X ) and let f ∈ H(σ(T )). Then

σD(f(T )) = f(σD(T )).

Proof. Suppose that µ /∈ f(σD(T )) and set

h(λ) := f(λ)− µ.

Then h has no zeros in σD(T ). Since σD(T ) = σBF (T ) ∪ acc σ(T ) by Theorem 2.5, we conclude
that h has finitely many zeros in σ(T ). Now we consider two cases.

Case I. Suppose that h has no zeros in σ(T ). Then h(T ) = f(T ) − µ is invertible, and so
µ /∈ σD(f(T )).

Case II. Suppose that h has at least one zero in σ(T ). Then

h(λ) ≡ c0(λ− λ1)(λ− λ2) · · · (λ− λn)g(λ),

where c0, λ1, λ2, . . . , λn ∈ C and g(λ) is a nonvanishing analytic function on an open neighborhood.
Therefore

h(T ) = c0(T − λ1)(T − λ2) · · · (T − λn)g(T ),
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where g(T ) is invertible. Since µ /∈ f(σD(T )), λ1, λ2, . . . , λn /∈ σD(T ). Therefore T − λi is Drazin
invertible, and hence each T−λi is B-Weyl (i = 1, 2, . . . , n). But each λi is an isolated point of σ(T ),
hence it follows from [7, Theorem 2.3] that each λi is a pole of the resolvent of T . Therefore T − λi

has finite ascent and descent (i = 1, 2, . . . , n), so (T − λ1)(T − λ2) · · · (T − λn) has finite ascent and
descent by [23, Theorem 7.1]. Since g(T ) is invertible, h(T ) has finite ascent and descent. Therefore
h(T ) is Drazin invertible, and so 0 /∈ σD(h(T )). Hence µ /∈ σD(f(T )). It follows from Cases I and
II that σD(f(T )) ⊆ f(σD(T )).

Conversely, suppose that λ /∈ σD(f(T )). Then f(T )− λ is Drazin invertible. We again consider
two cases.

Case I. Suppose that f(T ) − λ is invertible. Then λ /∈ σ(f(T )) = f(σ(T )), and hence λ /∈
f(σD(T )).

Case II. Suppose that λ ∈ σ(f(T )) \ σD(f(T )). Write

f(T )− λ ≡ c0(T − λ1)(T − λ2) · · · (T − λn)g(T ),

where c0, λ1, λ2, . . . , λn ∈ C and g(T ) is invertible. Since f(T )− λ is Drazin invertible, f(T )− λ =
c0(T −λ1)(T −λ2) · · · (T −λn)g(T ) has finite ascent and descent. Hence T −λi has finite ascent and
descent for every i = 1, 2, . . . , n by [23, Theorem 7.1]. Therefore each T − λi is Drazin invertible,
and so λ1, λ2, . . . , λn /∈ σD(T ).

We now wish to prove that λ /∈ f(σD(T )). Assume not; then there exists a µ ∈ σD(T ) such that
f(µ) = λ. Since g(µ) 6= 0, we must have µ = µi for some i = 1, ..., n, which implies µi ∈ σD(T ), a
contradiction. Hence λ /∈ f(σD(T )), and so f(σD(T )) ⊆ σD(f(T )). This completes the proof. �

Let T ∈ B(X ) and let f ∈ H(σ(T )), where H(σ(T )) is the space of functions analytic in an open
neighborhood of σ(T ). It is well known that ω(f(T )) ⊆ f(ω(T )) holds. The following corollary
shows that a similar result holds for the B-Weyl spectrum with some additional condition.

Corollary 2.8. Let T ∈ gB and let f ∈ H(σ(T )). Then

σBW (f(T )) ⊆ f(σBW (T )). (2.1)

Proof. Since T ∈ gB, it follows from Theorem 2.1 that σBW (T ) = σD(T ). By Theorem 2.7 we have

σBW (f(T )) ⊆ σD(f(T )) = f(σD(T )) = f(σBW (T )).

Thus σBW (f(T )) ⊆ f(σBW (T )). �

We obtain the following theorem, which extends a result in [13].

Theorem 2.9. Let S, T ∈ B(X ). If T has SVEP and S ≺ T , then f(S) ∈ gB for every f ∈ H(σ(S)).
In particular, if T has SVEP then T ∈ gB.

Proof. Suppose that T has SVEP. Since S ≺ T , it follows from the proof of [13, Theorem 3.2] that
S has SVEP. We now show that S ∈ gB. Let λ ∈ σ(S) \ σBW (S); then S − λ is B-Weyl but not
invertible. Since S−λ is B-Weyl, it follows from [6, Lemma 4.1] that S−λ admits the decomposition
S − λ = S1 ⊕ S2,where S1 is Weyl and S2 is nilpotent. Since S has SVEP, S1 and S2 also have
SVEP. Therefore Browder’s theorem holds for S1, and hence ω(S1) = σb(S1). Since S1 is Weyl, S1

is Browder. Hence λ is an isolated point of σ(S). It follows from Theorem 2.1 that S ∈ gB.
Now let f ∈ H(σ(S)). Since S has SVEP, it follows from [20, Theorem 3.3.6] that f(S) has SVEP.

Therefore f(S) ∈ gB, by the first part of the proof. �

We now recall that the generalized Weyl’s theorem may not hold for quasinilpotent operators, and
that it does not necessarily transfer to or from adjoints.
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Example 2.10. On X ≡ `p let

T (x1, x2, x3, · · · ) := (
1
2
x2,

1
3
x3,

1
4
x4, · · · ).

Then
σ(T ∗) = σBW (T ∗) = {0}

and
π0(T ∗) = ∅.

Therefore T ∗ ∈ gW. On the other hand, since σ(T ) = ω(T ) = π00(T ), T /∈ W. Hence T /∈ gW.

However, the generalized Browder’s theorem performs better.

Theorem 2.11. Let T ∈ B(X ). Then the following statements are equivalent:
(i) T ∈ gB;
(ii) T ∗ ∈ gB.

Proof. Recall that
σ(T ) = σ(T ∗) and σBW (T ) = σBW (T ∗).

Therefore,
acc σ(T ) ⊆ σBW (T ) ⇐⇒ acc σ(T ∗) ⊆ σBW (T ∗).

It follows from Theorem 2.1 that T ∈ gB if and only if T ∗ ∈ gB. �

3. Operators Reduced by Their Eigenspaces

Let H be an infinite dimensional separable Hilbert space and suppose that T ∈ B(H) is reduced
by each of its eigenspaces. If we let

M :=
∨
{N(T − λ) : λ ∈ σp(T )},

it follows that M reduces T . Let T1 := T |M and T2 := T |M⊥. By [4, Proposition 4.1] we have:
(i) T1 is a normal operator with pure point spectrum;
(ii) σp(T1) = σp(T );
(iii) σ(T1) = clσp(T1) (here cl denotes closure);
(iv) σp(T2) = ∅.

In [4, Definition 5.4], Berberian defined

τ(T ) := σ(T2) ∪ acc σp(T ) ∪ σpi(T );

we shall call τ(T ) the Berberian spectrum of T . Berberian proved that τ(T ) is a nonempty compact
subset of σ(T ). In the following theorem we establish a relation amongst the B-Weyl, the Drazin
and the Berberian spectra.

Theorem 3.1. Suppose that T ∈ B(H) is reduced by each of its eigenspaces. Then

σBW (T ) = σD(T ) ⊆ τ(T ). (3.1)

Proof. Let M be the closed linear span of the eigenspaces N(T − λ) (λ ∈ σp(T )) and write

T1 := T |M and T2 := T |M⊥.

From the preceding arguments it follows that T1 is normal, σp(T1) = σp(T ) and σp(T2) = ∅. Toward
(3.1) we will show that

σBW (T ) ⊆ τ(T ) (3.2)
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and
σD(T ) ⊆ σBW (T ). (3.3)

To establish (3.2) suppose that λ ∈ σ(T ) \ τ(T ). Then T2 − λ is invertible and λ ∈ π0(T1). Since
σpi(T ) ⊆ τ(T ), we see that λ ∈ π00(T1). Since T1 is normal, it follows from [6, Theorem 4.5] that
T1 ∈ gW. Therefore λ ∈ σ(T1) \ σBW (T1), and hence T − λ is B-Weyl. This proves (3.2).

Toward (3.3) suppose that λ ∈ σ(T )\σBW (T ). Then T−λ is B-Weyl but not invertible. Observe
that if H1 is a Hilbert space and an operator R ∈ B(H1) satisfies σBW (R) = σBF (R), then

σBW (R⊕ S) = σBW (R) ∪ σBW (S), (3.4)

for every Hilbert space H2 and S ∈ B(H2). Indeed, if λ /∈ σBW (R)∪σBW (S), then R−λ and S−λ
are both B-Weyl. Therefore R− λ and S − λ are B-Fredholm with index 0. Hence R− λ⊕ S − λ
is B-Fredholm; moreover,

i((R− λ)⊕ (S − λ)) = i(R− λ) + i(S − λ) = 0.

Therefore R ⊕ S − λ is B-Weyl, and so λ /∈ σBW (R ⊕ S), which implies σBW (R ⊕ S) ⊆ σBW (R) ∪
σBW (S). Conversely, suppose that λ /∈ σBW (R ⊕ S). Then R ⊕ S − λ is B-Fredholm with index
0. Since i(R ⊕ S − λ) = i(R − λ) + i(S − λ) and i(R − λ) = 0, we must have i(S − λ) = 0.
Therefore R − λ and S − λ are both B-Weyl. Hence λ /∈ σBW (R) ∪ σBW (S), which implies
σBW (R) ∪ σBW (S) ⊆ σBW (R ⊕ S). Since T1 is normal, we can now apply (3.4) to T1 in place of
R to show that T1 − λ and T2 − λ are both B-Weyl. But since σp(T2) = ∅, we see that T2 − λ is
Weyl and injective. Therefore T2−λ is invertible, and so λ ∈ σ(T1) \σBW (T1). Since T1 is normal,
it follows from [6, Theorem 4.5] that T1 ∈ gW, which implies λ ∈ π0(T1). Hence λ is an isolated
point of σ(T1) and T2 − λ is invertible. Now observe that if H1 and H2 are Hilbert spaces then the
following equality holds with no other restriction on either R or S:

σD(R⊕ S) = σD(R) ∪ σD(S), (3.5)

for every R ∈ B(H1) and S ∈ B(H2). Indeed, if λ /∈ σD(R) ∪ σD(S), then R − λ and S − λ are
both Drazin invertible. It follows that each of R − λ and S − λ can be written as the direct sum
of an invertible operator and a nilpotent operator, and the same is therefore true of the direct sum
(R − λ) ⊕ (S − λ) ≡ R ⊕ S − λ. Thus, λ /∈ σD(R ⊕ S), and hence σD(R ⊕ S) ⊆ σD(R) ∪ σD(S).
Conversely, suppose that λ /∈ σD(R⊕ S). It follows from Theorem 2.5 that (R− λ)⊕ (S − λ) is B-
Fredholm and λ is an isolated point of σ(R⊕S). Since σ(R⊕S) = σ(R)∪σ(S), it follows that R−λ
and S−λ are both B-Fredholm, and λ is an isolated point of σ(R) and σ(S), respectively. It follows
from Theorem 2.5 that R− λ and S − λ are both Drazin invertible. Therefore λ /∈ σD(R) ∪ σD(S),
and hence σD(R) ∪ σD(S) ⊆ σD(R⊕ S). We have thus established (3.5).

Now, by Theorem 2.5 and (3.5) we have λ /∈ σD(T ). This proves (3.3) and completes the proof
of the Theorem. �

In [21], Oberai showed that if T ∈ B(X ) is isoloid and if T ∈ W then for any polynomial p,
p(T ) ∈ W if and only if ω(p(T )) = p(ω(T )). We now show that a similar result holds for the
generalized Weyl’s theorem. We begin with the following two lemmas, essentially due to Oberai
[21]; we include proofs for the reader’s convenience.

Lemma 3.2. Let T ∈ B(X ) and let f ∈ H(σ(T )). Then

σ(f(T )) \ π0(f(T )) ⊆ f(σ(T ) \ π0(T )).

Proof. Suppose that λ ∈ σ(f(T )) \ π0(f(T )). By the spectral mapping theorem, it follows that
λ ∈ f(σ(T )) \ π0(f(T )). We consider two cases.
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Case I. Suppose that λ is not an isolated point of f(σ(T )). Then there exists a sequence
{λn} ⊆ f(σ(T )) such that λn → λ. Since λn ∈ f(σ(T )), λn = f(µn) for some µn ∈ σ(T ). By the
compactness of σ(T ), there is a convergent subsequence {µnk

} such that µnk
→ µ ∈ σ(T ). It follows

that f(µnk
) → λ, and therefore λ = f(µ). But µ ∈ σ(T )\π0(T ), whence λ = f(µ) ∈ f(σ(T )\π0(T )).

Case II. Suppose now that λ is an isolated point of f(σ(T )). Since λ ∈ π0(f(T )) by assumption,
it follows that λ cannot be an eigenvalue of f(T ). Let

f(T )− λ = c0(T − λ1)(T − λ2) · · · (T − λn)g(T ), (3.6)

where c0, λ1, . . . , λn ∈ C and g(T ) is invertible. Since f(T ) − λ is injective, and the operators on
the right-hand side of (3.6) commute, none of λ1, λ2, . . . , λn can be an eigenvalue of T . Therefore
λ ∈ f(σ(T ) \ π0(T )).

From Cases I and II we obtain the desired conclusion. �

Lemma 3.3. Let T ∈ B(X ) and assume that T is isoloid. Then for any f ∈ H(σ(T )) we have

σ(f(T )) \ π0(f(T )) = f(σ(T ) \ π0(T )).

Proof. In view of Lemma 3.2 it suffices to prove that f(σ(T )\π0(T )) ⊆ σ(f(T ))\π0(f(T )). Suppose
that λ ∈ f(σ(T ) \ π0(T )). Then by the spectral mapping theorem, we must have λ ∈ σ(f(T )).
Assume that λ ∈ π0(f(T )). Then clearly, λ is an isolated point of σ(f(T )). Let

f(T )− λ = c0(T − λ1)(T − λ2) · · · (T − λn)g(T ),

where c0, λ1, . . . , λn ∈ C and g(T ) is invertible. If for some i = 1, ..., n, λi ∈ σ(T ), then λi would
be an isolated point of σ(T ). But T is isoloid, hence λi would also be an eigenvalue of T . Since
λ ∈ π0(f(T )), such λi would belong to π0(T ). Thus, λ = f(λi) for some λi ∈ π0(T ), and hence
λ ∈ f(π0(T )), a contradiction. Therefore λ /∈ π0(f(T )), so that λ ∈ σ(f(T )) \ π0(f(T )). �

Theorem 3.4. Suppose that T ∈ B(X ) is isoloid and T ∈ gW. Then for any f ∈ H(σ(T )),

f(T ) ∈ gW ⇐⇒ f(σBW (T )) = σBW (f(T )).

Proof. (=⇒) Suppose f(T ) ∈ gW. Then σBW (f(T )) = σ(f(T )) \ π0(f(T )). Since T is isoloid,
it follows from Lemma 3.3 that f(σ(T ) \ π0(T )) = σ(f(T )) \ π0(f(T )). But T ∈ gW, hence
σBW (T ) = σ(T ) \ π0(T ), which implies f(σBW (T )) = f(σ(T ) \ π0(T )). Therefore

f(σBW (T )) = f(σ(T ) \ π0(T ))
= σ(f(T )) \ π0(f(T )) = σBW (f(T )).

(⇐=) Suppose that f(σBW (T )) = σBW (f(T )). Since T is isoloid, it follows from Lemma 3.3 that
f(σ(T ) \ π0(T )) = σ(f(T )) \ π0(f(T )). Since T ∈ gW, we have σBW (T ) = σ(T ) \ π0(T ). Therefore

σBW (f(T )) = f(σBW (T ))
= f(σ(T ) \ π0(T )) = σ(f(T )) \ π0(f(T )),

and hence f(T ) ∈ gW. �

As applications of Theorems 3.1 and 3.4 we will obtain below several corollaries.

Corollary 3.5. Suppose that T ∈ B(H) is reduced by each of its eigenspaces. Then f(T ) ∈ gB for
every f ∈ H(σ(T )). In particular, T ∈ gB.

Proof. Since T is reduced by each of its eigenspaces, T −λ has finite ascent for each λ ∈ C. Therefore
T has SVEP, and hence by [20, Theorem 3.3.6] f(T ) has SVEP for each f ∈ H(σ(T )). It follows
from Theorem 2.9 that f(T ) ∈ gB. �
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In Example 2.10 we already noticed that the generalized Weyl’s theorem does not transfer to or
from adjoints. However, we have:

Corollary 3.6. Suppose that T ∈ B(H) is reduced by each of its eigenspaces, and assume that σ(T )
has no isolated points. Then T, T ∗ ∈ gW. Moreover, if f ∈ H(σ(T )) then f(T ) ∈ gW.

Proof. We first show that T ∈ gW. Since T is reduced by each of its eigenspaces, it follows from
Theorem 3.4 that T ∈ gB. By Theorem 2.1, σ(T ) \ σBW (T ) ⊆ π0(T ). But iso σ(T ) = ∅, hence
π0(T ) = ∅, which implies σBW (T ) = σ(T ). Therefore, T ∈ gW. On the other hand, observe that

σ(T ∗) = σ(T ), σBW (T ∗) = σBW (T ),

and
π0(T ∗) = π0(T ) = ∅.

Hence T ∗ ∈ gW. Let f ∈ H(σ(T )). Since T is reduced by each of its eigenvalues, T has SVEP. It
follows from [20, Theorem 3.3.6] that f(T ) has SVEP. Therefore, by Theorems 2.1 and 2.7,

σBW (f(T )) = σD(f(T )) = f(σD(T )) = f(σBW (T )).

Thus σBW (f(T )) = f(σBW (T )). But σ(T ) has no isolated points, hence T is isoloid. It follows from
Theorem 3.4 that generalized Weyl’s theorem holds for f(T ). �

For the next result, we recall that an operator T is called reduction-isoloid if the restriction of T to
every reducing subspace is isoloid; it is well known that hyponormal operators are reduction-isoloid
[22].

Corollary 3.7. Suppose that T ∈ B(H) is both reduction-isoloid and reduced by each of its eigenspaces.
Then f(T ) ∈ gW for every f ∈ H(σ(T )).

Proof. We first show that T ∈ gW. In view of Theorem 3.4, it suffices to show that π0(T ) ⊆
σ(T ) \ σBW (T ). Suppose that λ ∈ π0(T ). Then, with the preceding notations,

λ ∈ π0(T1) ∩ [iso σ(T2) ∪ ρ(T2)].

If λ ∈ iso σ(T2), then since T2 is isoloid we have λ ∈ σp(T2). But σp(T2) = ∅, hence we must have
λ ∈ π0(T1) ∩ ρ(T2). Since T1 is normal, T1 ∈ gW. Hence T1 − λ is B-Weyl and so is T − λ, which
implies λ ∈ σ(T ) \ σBW (T ). Therefore π0(T ) ⊆ σ(T ) \ σBW (T ), and hence T ∈ gW. Now, let
f ∈ H(σ(T )). Since T is reduced by each of its eigenspaces, it follows from the proof of Corollary
3.6 that f(σBW (T )) = σBW (f(T )). Therefore f(T ) ∈ gW by Theorem 3.4. �

4. Applications

In [6] and [7], the authors showed that the generalized Weyl’s theorem holds for normal operators.
In this section we extend this result to algebraically M -hyponormal operators and to algebraically
paranormal operators, using the results in Sections 2 and 3. We begin with the following definition.

Definition 4.1. An operator T ∈ B(H) is said to be M -hyponormal if there exists a positive real
number M such that

M ||(T − λ)x|| ≥ ||(T − λ)∗x|| for all x ∈ H, λ ∈ C.

We say that T ∈ B(H) is algebraically M -hyponormal if there exists a nonconstant complex polyno-
mial p such that p(T ) is M -hyponormal.

11



The following implications hold:

hyponormal =⇒ M -hyponormal =⇒ algebraically M -hyponormal.

The following result follows from Definition 4.1 and some well known facts about M -hyponormal
operators.

Lemma 4.2. (i) If T is algebraically M -hyponormal then so is T − λ for every λ ∈ C.
(ii) If T is algebraically M -hyponormal and M⊆ H is invariant under T , then T |M is algebraically
M -hyponormal.
(iii) If T is M -hyponormal, then N(T − λ) ⊆ N(T − λ)∗ for every λ ∈ C.
(iv) Every quasinilpotent M -hyponormal operator is the zero operator.

In [2], Arora and Kumar proved that Weyl’s theorem holds for every M -hyponormal operator.
We shall show that the generalized Weyl’s theorem holds for algebraically M -hyponormal operators.
To do this, we need several preliminary results.

Lemma 4.3. Let T ∈ B(H) be M -hyponormal, let λ ∈ C, and assume that σ(T ) = {λ}. Then
T = λ.

Proof. Since T is M -hyponormal, T − λ is also M -hyponormal. Since T − λ is quasinilpotent, (iv)
above implies that T − λ = 0. �

Lemma 4.4. Let T ∈ B(H) be a quasinilpotent algebraically M -hyponormal operator. Then T is
nilpotent.

Proof. Let p be a nonconstant polynomial such that p(T ) is M -hyponormal. Since σ(p(T )) =
p(σ(T )), the operator p(T ) − p(0) is quasinilpotent. It follows from Lemma 4.3 that c Tm(T −
λ1) · · · (T − λn) ≡ p(T ) − p(0) = 0. Since T − λi is invertible for every λi 6= 0, we must have
Tm = 0. �

It is well known that every M -hyponormal operator is isoloid. We can extend this result to the
algebraically M -hyponormal operators.

Lemma 4.5. Let T ∈ B(H) be an algebraically M -hyponormal operator. Then T is isoloid.

Proof. Let λ be an isolated point of σ(T ). Using the spectral projection P := 1
2πi

∫
∂B(µ− T )−1dµ,

where B is a closed disk of center λ which contains no other points of σ(T ), we can represent
T as the direct sum T = T1 ⊕ T2, where σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ}. Since T is
algebraically M -hyponormal, p(T ) is M -hyponormal for some nonconstant polynomial p. Since
σ(T1) = {λ}, σ(p(T1)) = p(σ(T1)) = {p(λ)}. Therefore p(T1)− p(λ) is quasinilpotent. Since p(T1)
is M -hyponormal, it follows from Lemma 4.3 that p(T1) − p(λ) = 0. Put q(z) := p(z) − p(λ).
Then q(T1) = 0, and hence T1 is algebraically M -hyponormal. Since T1 − λ is quasinilpotent
and algebraically M -hyponormal, it follows from Lemma 4.4 that T1 − λ is nilpotent. Therefore
λ ∈ σp(T1), and hence λ ∈ σp(T ). This shows that T is isoloid. �

Lemma 4.6. Let T ∈ B(H) be an algebraically M -hyponormal operator. Then T has finite ascent.
In particular, every algebraically M -hyponormal operator has SVEP.

Proof. Suppose p(T ) is M -hyponormal for some nonconstant polynomial p. Since M -hyponormality
is translation-invariant, we may assume p(0) = 0. If p(λ) ≡ a0λ

m, then N(Tm) = N(T 2m) because
M -hyponormal operators are of ascent 1. Thus we write p(λ) ≡ a0 λm(λ− λ1) · · · (λ− λn) (m 6= 0;
λi 6= 0 for 1 ≤ i ≤ n). We then claim that

N(Tm) = N(Tm+1). (4.1)
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To show (4.1), let 0 6= x ∈ N(Tm+1). Then we can write

p(T )x = (−1)n a0 λ1 · · ·λn Tmx.

Thus we have

|a0λ1 · · ·λn|2||Tmx||2 = (p(T )x, p(T )x)

≤ ||p(T )∗p(T )x|| ||x||
≤ M ||p(T )2x|| ||x|| (because p(T ) is M -hyponormal)

= M ||a2
0 (T − λ1I)2 · · · (T − λnI)2T 2mx|| ||x||

= 0,

which implies x ∈ N(Tm). Therefore N(Tm+1) ⊆ N(Tm) and the reverse inclusion is always true.
Since every algebraically M -hyponormal operator has finite ascent, it follows from [19, Proposition
1.8] that every algebraically M -hyponormal operator has SVEP. �

Theorem 4.7. Let T ∈ B(H) be an algebraically M -hyponormal operator. Then f(T ) ∈ gW for
every f ∈ H(σ(T )).

Proof. We first show that T ∈ gW. Suppose that λ ∈ σ(T ) \ σBW (T ). Then T − λ is B-Weyl
but not invertible. Since T is algebraically M -hyponormal, there exists a nonconstant polynomial p
such that p(T ) is M -hyponormal. Since every algebraically M -hyponormal operator has SVEP by
Lemma 4.6, T has SVEP. It follows from Theorem 2.9 that T ∈ gB. Therefore σBW (T ) = σD(T ).
But σD(T ) = σBF (T )∪ acc σ(T ) by Theorem 2.5, hence λ is an isolated point of σ(T ). Since every
algebraically M -hyponormal operator is isoloid by Lemma 4.5, λ ∈ π0(T ).

Conversely, suppose that λ ∈ π0(T ). Then λ is an isolated eigenvalue of T . Since λ is an isolated
point of σ(T ), using the Riesz idempotent E := 1

2πi

∫
∂D(µ − T )−1dµ, where D is a closed disk of

center λ which contains no other points of σ(T ), we can represent T as the direct sum T = T1 ⊕ T2,
where σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ}. Since T is algebraically M -hyponormal, p(T ) is M -
hyponormal for some nonconstant polynomial p. Since σ(T1) = {λ1}, we have σ(p(T1)) = p(σ(T1)) =
{p(λ)}. Therefore p(T1) − p(λ) is quasinilpotent. Since p(T1) is M -hyponormal, it follows from
Lemma 4.3 that p(T1) − p(λ) = 0. Define q(z) := p(z) − p(λ). Then q(T1) = 0, and hence T1

is algebraically M -hyponormal. Since T1 − λ is quasinilpotent and algebraically M -hyponormal, it
follows from Lemma 4.4 that T1 − λ is nilpotent. Since T − λ = (T1 − λ) ⊕ (T2 − λ) is the direct
sum of an invertible operator and a nilpotent operator, T −λ is B-Weyl. Hence λ ∈ σ(T )\σBW (T ).
Therefore σ(T ) \ σBW (T ) = π0(T ), and hence T ∈ gW.

Now let f ∈ H(σ(T )). Since T is algebraically M -hyponormal, it has SVEP. Therefore σBW (f(T )) =
f(σBW (T )). Since every algebraically M -hyponormal operator is isoloid by Lemma 4.5, it follows
from Lemma 3.3 that σ(f(T )) \ π0(f(T )) = f(σ(T ) \ π0(T )). Hence,

σ(f(T )) \ π0(f(T )) = f(σ(T ) \ π0(T ))
= f(σBW (T )) = σBW (f(T )),

which implies that f(T ) ∈ gW. �

Definition 4.8. An operator T ∈ B(H) is said to be paranormal if

||Tx||2 ≤ ||T 2x|| for all x ∈ H, ||x|| = 1.

We say that T ∈ B(H) is algebraically paranormal if there exists a nonconstant complex polynomial
p such that p(T ) is paranormal.

13



The following implications hold:

hyponormal =⇒ p-hyponormal
=⇒ paranormal =⇒ algebraically paranormal.

The following facts follow from Definition 4.8 and some well known facts about paranormal operators.

Lemma 4.9. (i) If T ∈ B(H) is algebraically paranormal then so is T − λ for every λ ∈ C.
(ii) If T ∈ B(H) is algebraically paranormal and M ⊆ H is invariant under T , then T |M is
algebraically paranormal.

In [14] we showed that if T is an algebraically paranormal operator then f(T ) ∈ W for every
f ∈ H(σ(T )). We can now extend this result to the generalized Weyl’s theorem. To prove this we
need several lemmas.

Lemma 4.10. Let T ∈ B(H) be B-Fredholm. The following statements are equivalent:
(i) T does not have SVEP at 0;
(ii) a(T ) = ∞;
(iii) 0 ∈ acc σp(T ).

Proof. Suppose that T is B-Fredholm. It follows from [5, Theorem 2.7] that T can be decomposed
as

T = T1 ⊕ T2 (T1 Fredholm, T2 nilpotent).

(i)⇐⇒(ii): Suppose that T does not have SVEP at 0. Since T2 is nilpotent, T2 has SVEP. Therefore
T1 does not have SVEP. Since T1 is Fredholm, it follows from [1, Theorem 2.6] that a(T ) = ∞.

Conversely, suppose that a(T ) = ∞. Since T2 is nilpotent, T2 has finite ascent. Therefore
a(T1) = ∞. But T1 is Fredholm, hence T1 does not have SVEP by [1, Theorem 2.6].

(i)⇐⇒(iii): Suppose that T does not have SVEP at 0. Then T1 does not have SVEP. Since T1

is Fredholm, it follows from [1, Theorem 2.6] that 0 ∈ acc σp(T1). Therefore 0 ∈ acc σp(T ).
Conversely, suppose that 0 ∈ acc σp(T ). Since T2 is nilpotent, 0 ∈ acc σp(T1). But T1 is

Fredholm, hence T1 does not have SVEP by [1, Theorem 2.6]. Therefore T does not have SVEP. �

Corollary 4.11. Suppose that T ∈ B(H) is B-Fredholm with i(T ) > 0. Then T does not have
SVEP at 0.

Proof. Suppose that T is B-Fredholm with i(T ) > 0. Then by [5, Theorem 2.7], T can be decomposed
by

T = T1 ⊕ T2 (T1 Fredholm, T2 nilpotent).

Moreover, i(T ) = i(T1). But i(T ) > 0, hence i(T1) > 0. Since T1 is Fredholm, it follows from [15,
Corollary 11] that T1 does not have SVEP at 0. Therefore T does not have SVEP at 0. �

Theorem 4.12. Suppose that T ∈ B(H) is B-Fredholm. Then

T ∗ does not have SVEP at 0 ⇐⇒ d(T ) = ∞.

Moreover, if T and T ∗ have SVEP at 0 then T is B-Fredholm with index 0.

Proof. Since T is B-Fredholm, T can be decomposed by

T = T1 ⊕ T2 (T1 Fredholm, T2 nilpotent).

But T1 is Fredholm if and only if T ∗1 is Fredholm, hence T is B-Fredholm if and only if T ∗ is B-
Fredholm. Since T1 is Fredholm, a(T1) = d(T ∗1 ). Also, since T2 is nilpotent, a(T2) = d(T2) =
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a(T ∗2 ) = d(T ∗2 ). It follows from [23, Theorem 6.1] that

a(T ∗) = a(T ∗1 ⊕ T ∗2 )

= max{a(T ∗1 ), a(T ∗2 )}
= max{d(T1), d(T2)}
= d(T1 ⊕ T2)

= d(T ).

Therefore by Lemma 4.10,

T ∗ does not have SVEP at 0 ⇐⇒ a(T ∗) = ∞⇐⇒ d(T ) = ∞.

Moreover, suppose that T and T ∗ have SVEP at 0. Then by Lemma 4.10, a(T ) = d(T ) < ∞, and
hence T is B-Fredholm with index 0. �

Lemma 4.13. ([14, Lemmas 2.1, 2.2, 2.3]) Let T ∈ B(H) be an algebraically paranormal operator.
Then
(i) If σ(T ) = {λ}, then T = λ;
(ii) If T is quasinilpotent, then it is nilpotent;
(iii) T is isoloid.

Theorem 4.14. Let T ∈ B(H) be an algebraically paranormal operator. Then f(T ) ∈ gW for
every f ∈ H(σ(T )).

Proof. We first show that T ∈ gW. Suppose that λ ∈ σ(T )\σBW (T ). Then T−λ is B-Weyl but not
invertible. Since T is an algebraically paranormal operator, there exists a nonconstant polynomial
p such that p(T ) is paranormal. Since every paranormal operator has SVEP, p(T ) has SVEP.
Therefore T has SVEP. It follows from Theorem 2.9 that T ∈ gB. Therefore σBW (T ) = σD(T ).
But σD(T ) = σBF (T )∪ acc σ(T ) by Theorem 2.5, hence λ is an isolated point of σ(T ). Since every
algebraically paranormal operator is isoloid by Lemma 4.13, λ ∈ π0(T ).

Conversely, suppose that λ ∈ π0(T ). Let P := 1
2πi

∫
∂D(µ − T )−1dµ be the associated Riesz

idempotent, where D is an open disk of center λ which contains no other points of σ(T ), we can
represent T as the direct sum T = T1 ⊕ T2, where σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ}. Now we
consider two cases:

Case I. Suppose that λ = 0. Then T1 is algebraically paranormal and quasinilpotent. It follows
from Lemma 4.13 that T1 is nilpotent. Therefore T is the direct sum of an invertible operator and
nilpotent, and hence T is B-Weyl by [6, Lemma 4.1]. Thus, 0 ∈ σ(T ) \ σBW (T ).

Case II. Suppose that λ 6= 0. Since T is algebraically paranormal, p(T ) is paranormal for
some nonconstant polynomial p. Since σ(T1) = {λ1}, we have σ(p(T1)) = p(σ(T1)) = {p(λ)}.
Therefore p(T1) − p(λ) is quasinilpotent. Since p(T1) is paranormal, it follows from Lemma 4.13
that p(T1) − p(λ) = 0. Define q(z) := p(z) − p(λ). Then q(T1) = 0, and hence T1 is algebraically
paranormal. Since T1 − λ is quasinilpotent and algebraically paranormal, it follows from Lemma

4.13 that T1 − λ is nilpotent. Since T − λ =
(

T1 − λ 0
0 T2 − λ

)
is the direct sum of an invertible

operator and nilpotent, T − λ is B-Weyl. Therefore λ ∈ σ(T ) \ σBW (T ). Thus T ∈ gW.
Let f ∈ H(σ(T )). Since T is algebraically paranormal, it has SVEP. Therefore σBW (f(T )) =

f(σBW (T )). Also, since T is algebraically paranormal, it follows from Lemma 4.13 that T is isoloid.
Therefore by Lemma 3.3,

σ(f(T )) \ π0(f(T )) = f(σ(T ) \ π0(T )).
15



Hence
σ(f(T )) \ π0(f(T )) = f(σ(T ) \ π0(T )) = f(σBW (T )) = σBW (f(T )),

which implies that f(T ) ∈ gW. �
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