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SUMMARY

Meshfree discretizations construct approximate solutions to partial differential equation based on
particles, not on meshes, so that it is well suited to solve the problems on irregular domains. Since
the nodal basis property is not satisfied in meshfree discretizations, it is difficult to handle essential
boundary conditions. In this paper, we employ the Lagrange multiplier approach to solve this problem,
but this will result in an indefinite linear system of a saddle point type. We adapt a variation of the
smoothed aggregation AMG method of Vaněk, Mandel & Brezina to this saddle point system. We
give numerical results showing that this method is practical and competitive with other methods with
convergence rates that are ∼ c/ log N . Copyright c© 2003 John Wiley & Sons, Ltd.
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1. Introduction

Meshfree methods produce approximate solutions of elliptic partial differential equations using
basis functions constructed from particles, without the need for a conventional mesh. Of the
many meshfree schemes, Reproducing Kernel Particle Methods (RKPM) [10] are used in this
paper. For an overview of many of the different kinds of meshfree schemes, see [2]. In RKPM,
solving a problem with essential boundary conditions is a difficult task because the basis
functions it constructs do not satisfy the nodal basis property: Ψi(xj) = 1 if i = j and zero if
i 6= j. There has been some work on modifying the basis function to satisfy nodal basis property
such as the singular basis function method. But the singular basis loses some smoothness at
the basis nodes [9]. In [13], the essential boundary conditions were enforced by making the
correction function, or kernel functions, vanish at the boundary nodes. An alternative approach
to deal with essential boundary conditions is the Lagrange Multiplier Method, but this results
in indefinite symmetric or unsymmetric semidefinite linear systems.
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We propose an Algebraic Multigrid (AMG) scheme for solving this indefinite system. AMG
methods have been developed for solving linear systems posed on large, unstructured grids
because they do not require geometric grid information, and thus are appropriate for meshfree
discretizations. Classical AMG was targeted at linear systems with symmetric, positive definite
M -matrices [5]. Recently, many new AMG approaches are developed to solve more general
linear systems [6, 1]. In this paper we develop a variant of the smoothed aggregation method
of Vaněk, Mandel and Brezina [17, 18] and adapted to the saddle point problem we obtained
from the Lagrange Multiplier Method and meshfree discretizations.

In AMG methods, finding the set of coarse-grid points is always a difficult but crucial task.
Assume we have a set of grid points Ω = {1, 2, · · · , n}. In many AMG methods, including
classical AMG, the set of coarse-grid points Ωc is obtained by partitioning Ω into a set of
coarse-grid points Ωc and a set of fine-grid points Ωf such that Ωc ∪Ωf = Ω and Ωc ∩Ωf = ∅.
Other versions of AMG assume that Ωf = Ω and the set of coarse-grid points Ωc is obtained
by aggregating fine-grid points in Ωf . A simple interpolation operator for this coarsening
scheme is based solely on aggregation. It is simple to implement, but usually shows slow
convergence [12, 3]. We introduce a new AMG approach for our indefinite systems which
is based on the latter type of coarsening, but our interpolation operator is constructed by
using both aggregation and neighborhood information. Incorporating information about the
boundaries, we designed an AMG method which works quite well for the indefinite system
generated from meshfree discretizations with essential boundary conditions. When our AMG
method is employed as a preconditioner for the well-known Krylov subspace method GMRES,
our numerical results show that our AMG preconditioner is very effective, and scales well as
the problem size increases.

This paper is organized as follows: RKPM is reviewed in Section 2. In Sections 3 and 4,
we introduce our model problem and construct the symmetric indefinite linear system using a
Lagrange multiplier method for handling essential boundary conditions. The general framework
of AMG method is reviewed in Section 5. Our new AMG approach and its modification for
indefinite linear systems are introduced in Sections 6 and 7. In Section 9, we briefly discuss
preconditioning using our AMG preconditioner. Finally, the numerical results are presented in
Section 10.

2. Reproducing Kernel Particle Methods (RKPM)

Many problems arising in computational mechanics are not well suited to conventional mesh-
based methods, such as finite element and finite difference methods. The objective of meshfree
methods is to eliminate at least part of this dependence by constructing the approximation
entirely in terms of nodes or “particles” without the need for a triangulation or other mesh.
It then becomes possible to solve large classes of problems which are awkward for mesh-based
methods. In this section, Reproducing Kernel Particle Methods (RKPM) will be reviewed.

We denote {xI}NP
I=1 as the set of points, which are called “particles”, where NP stands for

the number of these “particles”. There is one basis function ΨI for each “particle”, which is
constructed as follows. We begin with a a so-called kernel function Φa(x− xI), which should
be a smooth function with compact support. These functions can be chosen for convenience
or ease of computation. Typical choices include radial basis functions, and tensor products
of B-splines: Φa(z) = Φ(z1/a)Φ(z2/a) · · ·Φ(zd/a). The dilation parameter a > 0 is chosen to
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control the size of the support set, and usually Φa(z) = Φ1(z/a).
Since the approximation properties of the kernel functions {Φa(x − xI) }NI=1 are often not

very good, we construct new basis functions {ΨI }NI=1 in order to have better approximation
properties, while maintaining the smoothness and small support of the Φa functions. To achieve
this, we put

ΨI(x) = C(x;x− xI) Φa(x− xI) (1)
where C(x;x− xI) is a suitable correction function. This correction function is determined so
that the basis reproduces a certain family of low-order polynomials xα, |α| ≤ p for some p.
Note that here we are using a multi-index notation where α = (α1, α2, . . . , αd) is a vector of
non-negative integers, and xα = xα1

1 xα2
2 · · ·x

αd

d . Also, let |α| = α1 +α2 + · · ·+αd. The desired
discrete “reproducing kernel” property is that whenever |α| ≤ p,

xα =
∑

I

ΨI(x)xα
I (2)

for all x ∈ Rd. We can construct the correction function C(x;x− xI) by

C(x;x− xI) = H(x− xI)
T b(x) = H(x− xI)

T M̃(x)−1H(0), (3)

where H(s) = [ sα | |α| ≤ p ], and M̃(x) =
∑NP

I=1 H(x− xI)H(x− xI)
T Φa(x− xI). The basis

functions ΨI(x) are obtained from equation (1):

ΨI(x) = H(x− xI)
T M̃(x)−1H(0)Φa(x− xI). (4)

Note that from this formula we can obtain the derivatives (∂Ψi/∂xi)(x), and also higher-order
derivatives if necessary [10].

In our numerical experiment, we employed a cubic spline function as the kernel function.
The one dimensional kernel function is defined as follows:

Φ(zi) =


2
3 − 4z2

i + 4|zi|3 if 0 ≤ |zi| ≤ 1
2 ;

4
3 − 4|zi|+ 4z2

i − 4
3 |z

3
i | if 1

2 ≤ |zi| ≤ 1;
0 otherwise.

(5)

where zi = (x−xi)/a. The support of Φa(x−xi) is [xi− a, xi + a] and the dilation parameter
a is used in Φa to control the size of the support. Then a multi-dimensional kernel function
can be obtained from the one dimensional kernel function as follows:

Φa(x− xI) = Πd
i=1Φ((xi − (xI)i)/ai), (6)

where ai is the dilation parameter in the ith dimension of the kernel function Φa(x− xI). In
RKPM, the support of Φa(x− xI) is selected to be a small area such that the basis function
ΨI(x) associated with node I intersects only a small group of surrounding support sets for
computational efficiency. Also, note that ΨI(x) does not satisfy the nodal basis property,
ΨI(xJ) 6= δIJ . The smoothness of the shape function ΨI(x) is determined by the smoothness
of the kernel function Φa(x).

Some characteristics of the stiffness matrix generated by RKPM are as follows:

1. Sparseness: If the support sets of node I and J do not overlap, i.e., supp(ΨI)∩supp(ΨJ) =
∅, then KIJ = 0. This implies that most of the matrix entries KIJ are zero.

2. Symmetry: Interchanging I and J in the integral expression for KIJ does not change the
value calculated, so that KIJ = KJI and thus the stiffness matrices are symmetric.

We will see that while the matrices are sparse, they are less sparse than the matrices from
conventional finite element method.
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Figure 1. Domain

3. Model Problem and Variational Formulation

Consider a second-order partial differential equation defined on a domain Ω contained in R2: −∇2u(x) = f(x), x ∈ Ω
u(x) = g(x), x ∈ ΓD

(∂u/∂n)(x) = h(x), x ∈ ΓN .
(7)

where ΓD∪ΓN is the boundary of Ω. Assume that the domain Ω is (0, 1)×(0, 1) in 2 dimensions
(see Fig 1).

Denote by Hs(Ω) the Sobolev space on Ω of order s. Consider the spaces

V := H1(Ω), Q := H−1/2(ΓD).

with norms ‖ · ‖V and ‖ · ‖Q respectively. The weak form of (7) can written using the bilinear
forms a(·, ·) on V × V and b(·, ·) on V ×Q given by

a(u, v) =
∫
Ω
∇vT∇u dx,

b(u, q) =
∫
ΓD

uq ds.
(8)

Then the a(·, ·) defines a linear continuous operator A : V → V ′ by

〈Au, v〉V ′,V = a(u, v), ∀v ∈ V, ∀u ∈ V,

and b(·, ·) defines B : V → Q′, and its transpose BT : Q→ V ′ by

〈Bv, q〉Q′,Q = 〈v,BT q〉V ′,V = b(v, q), ∀v ∈ V, ∀q ∈ Q.

To handle essential boundary conditions, we employ a Lagrange Multiplier approach. Then
the model problem can be rewritten as the following weak form: find (u, λ) ∈ V ×Q such that

a(u, v) + b(v, λ) = f̃(v), ∀v ∈ V,
b(u, q) = g̃(q), ∀q ∈ Q,

(9)
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where f̃(v) =
∫
Ω

fv dx +
∫
ΓN

hv ds and g̃(q) =
∫
ΓD

gq ds. The natural conditions on the
data are that f ∈ H−1(Ω), h ∈ H−1/2(ΓN ) and g ∈ H1/2(ΓD). In order to find conditions
implying the existence and uniqueness of solutions of this problem, the following Babuška-
Brezzi condition should be satisfied [8, 15].

Remark 3.1. The Babuška–Brezzi condition.
There exists a constant β > 0 such that

sup
v∈V, v 6=0

|b(v, q)|
‖v‖V

≥ β‖q‖Q/ ker(BT ) for all q ∈ Q,

where ‖q‖Q/ ker(BT ) = infq0∈ker(BT ) ‖q − q0‖Q.

It has been shown via the Babuška–Brezzi condition that our model problem (7) has a
unique solution and is well-posed [7].

4. Meshfree Discretizations

In this section, we present the meshfree discretizations of continuous problem (9). We construct
two finite dimensional subspaces,

V h ⊂ V, Qh ⊂ Q

where h denotes an appropriate mesh parameter. To approximate (9), we pose it over subspaces
of V and Q respectively: find (uh, λh) ∈ V h ×Qh such that

a(uh, vh) + b(vh, λh) = f̃(vh), ∀vh ∈ V h,
b(uh, qh) = g̃(qh), ∀qh ∈ Qh.

(10)

Similarly, the discrete Babuška-Brezzi condition (Remark 4.1) should also be satisfied to
guarantee the convergence of solutions of the discrete problem to the solution of the original
problem [15].

Remark 4.1. The discrete Babuška-Brezzi condition
There exists a constant β > 0 (independent of h) such that

sup
v∈Vh, v 6=0

|b(vh, qh)|
‖vh‖V h

≥ β ‖qh‖Qh/ ker((Bh)T ). (11)

The discrete Babuška–Brezzi condition (Remark 4.1) can easily fail for the meshfree method
if our basis functions for Qhare simply restrictions of the basis functions for V h restricted to
ΓD. (This is what would happen if we took the standard penalty approach and took the penalty
parameter to its limit.) Assume we have constructed the basis functions for Ω and the basis
functions for the boundary are simply restrictions to ΓD as shown in Figure 2. In this Figure,
we assume xi ≈ xj and yi 6≈ yj . Suppose that the kernel functions

Φi(x, y) = Φr((x, y)− (xi, yi)) = (1/r2)Φ((x− xi)/r)Φ((y − yi)/r), ∀i
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Figure 2. Case when Babuška-Brezzi condition fails

On ΓD, we have

Φi(x, y∗) = (1/r2)Φ((x− xi)/r)Φ((y∗ − yi)/r)
∼= (1/r2)Φ((y∗ − yi)/r)/Φ((y∗ − yj)/r)Φ((x− xj)/r)Φ((y∗ − yj)/r)
= const · Φj(x, y∗)

(12)

This means the basis functions Ψi and Ψj can be nearly linearly dependent on ΓD even
though they are far from being linearly dependent as functions on Ω. With the near linear
dependency, the discrete Babuška-Brezzi condition (Remark 4.1) fails, which means we can’t
prove convergence of the numerical solutions. As a remedy for this problem, we create new
and independent kernel functions Φ̃i’s for the boundary ΓD separate from the Φi’s, but using
the same RKPM process.

Now, we want to build the meshfree linear system Kx = F , where K is a stiffness matrix
and F is a load vector. The meshfree linear system Kx = F generated is[

A BT

B 0

] [
u
λ

]
=

[
c
d

]
(13)

where Aij =
∫
Ω
((∇Ψi)T∇Ψj + ΨiΨj) dx, Bij =

∫
ΓD

Ψ̃iΨjds, ci =
∫
Ω

fΨi dx +
∫
ΓN

hΨi ds,

and di =
∫
ΓD

gΨ̃i ds. Note that stiffness matrix K :=
[

A BT

B 0

]
in (13) is symmetric but

indefinite, but the submatrix A is symmetric positive semi-definite.

5. Basic framework of AMG

We begin introducing the basic framework of AMG. In Sections 5 and 6, we only consider the
symmetric positive definite linear system. Solving an indefinite linear system will be dealt with
in Section 7. Consider a symmetric positive definite linear system Au = b

Au = b (14)

where A is n × n matrix. Since AMG does not require the access of physical grids of
problems, “grids” will mean sets of indexes of the variables. Hence the grid set for (14) is
Ω = {1, 2, · · · , n}. The main idea of AMG is to remove the smooth error by coarse grid
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Algorithm 1 AMG two-grid correction cycle:
vf ← AMG(vf , bf )

1. Repeat ν1 times: vf ← vf + Rf (bf −Afvf ) where Rf is the fine-grid smoother.
2. compute the fine-grid residual rf ← bf − Afvf , and restrict to the coarse grid by

rc ← Ic
frf .

3. Solve Acec = rc for ec (on coarse grid Ωc).
4. Interpolate coarse-grid error to the fine grid by ef ← If

c ec and correct the fine-grid
approximation by vf ← vf + ef .

5. Repeat ν2 times: vf ← vf + Rf (bf −Afvf ).

correction, where smooth error is the error not eliminated by relaxation on the fine grid, which
also can be characterized by small residuals, i.e., Ae ≈ 0.

In order to develop the multi-grid algorithm, we consider first a pair of grids. The coarse-grid
level is denoted by c and fine-grid level by f . Equation (14) can be written as Afuf = bf .
Assume that we have defined a relaxation scheme, a set of coarse-grid points Ωc, a coarse-grid
operator Ac, and inter-grid transfer operators Ic

f (restriction) and If
c (interpolation). With

this information, we can perform a two-grid AMG cycle as shown in Algorithm 1. Note that
the operation vf ← vf +Rf (bf −Afvf ) may be implemented as a linear iterative scheme such
as Jacobi, Gauss–Seidel or SOR without necessarily breaking it down into the three steps of
computing bf −Afvf , multiplication by Rf , and addition to vf .

Having defined the two-grid correction algorithm, we can define other multigrid AMG cycles.
For example, to create V-cycle algorithm, we simply replace the direct solution of the coarse-
grid problem with a recursive call to AMG on the next coarsest grid, except for the coarsest
grid, where we use a direct solver.

In this paper we use the common approach of setting the restriction operator Ic
f to be the

transpose of the interpolation operator If
c , i.e., Ic

f = (If
c )T and the coarse grid operator Ac is

constructed from the fine grid operator Af by the Galerkin approach:

Ac = Ic
f Af If

c , (15)

so that AMG satisfies the principle that the coarse-grid problem needs to provide a good
approximation to fine-grid error in the range of interpolation [5].

Thus to specify a particular AMG algorithm we just need to specify for each coarse level
the interpolation operator If

c and the smoother used. The interpolation operator for A is
constructed according to the scheme in Sections 6 and adapted to the saddle point system
in 7, while the smoother is described in Section 8. The resulting AMG method is then used as
a preconditioner for GMRES, as discussed in Section 9.

6. Smoothed aggregation AMG

One of the main tasks in AMG consists of finding suitable coarsening strategies. Consider the
symmetric positive matrix A in (14). A node in the graph of the matrix A is associated with
each row. If matrix entry aij is nonzero, there is an edge from node i to node j in the graph.



AMG FOR MESHFREE DISCRETIZATIONS 7

Table I. Matrix data

(NΩ, NΓD
) particle radius (NQΩ, NQΓD

) # of Nonzeros Condition #
(25, 10) 0.4 (400, 20) 513 2.02E+03

(100, 20) 0.2 (400, 40) 3828 1.92E+04
(400, 40) 0.1 (1600, 80) 17,408 1.20E+05

(1600, 80) 0.05 (6400, 160) 73,968 6.38E+05
(6400, 160) 0.025 (25600, 320) 304,688 —

(25600, 320) 0.0125 (102400, 640) 1,236,528 —

Consider the following choice of edge weight ωij :

ωij =
∫

Ω

(ΨiΨj + (∇Ψi)T∇Ψj) dx, (16)

which is same as each aij entry value. Note that this edge weight depends greatly on the size
of overlapped regions of two particles i and j, not taking into account the size the particles.
Thus, in order to obtain accurate edge weights, we need to normalize them as follows:

ωij = |ωij |/
√

ωii · ωjj , (17)

At this point we use a combinatorial clustering algorithm using the normalized edge weights
ωij to construct a partition {C1, C2, . . . , CNc

} of {1, 2, . . . , nf}. Each Ci is called a cluster.
We employed two different strategies for forming clusters. The first was Heavy Edge Matching
(HEM) based on ω. This is a greedy algorithm which picks the edge (i, j) with the largest
value of ωij where i and j are unmatched nodes. Then the cluster or matched pair {i, j} is
added to the partition, and the process continues until there is no edge between unmatched
nodes. This was used for constructing aggregation-based multilevel preconditioners in [14] for
a class of eigenvalue problems. Unfortunately, attempting to improve the convergence rates
using smoothed aggregation methods where the aggregation is done using HEM results in poor
performance due to a severe loss of sparsity in the coarse-grid operators. (Pure aggregation
methods do not suffer from this problem, but have worse convergence rates.)

An alternative strategy is given in Vaněk, Mandel and Brezina [17], which also uses the
normalized edge weights ωij . The first step of their algorithm iterates through the nodes
i = 1, 2, . . . , nf , creating clusters { j | ωij ≥ ε } for a given tolerance ε > 0, provided no
node in { j | ωij ≥ ε } is already in a cluster. Nodes i and j where ωij ≥ ε are said to be
“strongly connected”. In the second step, unassigned nodes are assigned to a cluster from step
one to which the node is strongly connected, if any. In the third step, the remaining nodes are
assigned to clusters consisting of strong neighborhoods intersected with the set of remaining
nodes.

Suppose we obtain the partition {C1, C2, · · · , CNc} of the set of fine-grid points Ω =
{1, 2, · · · , nf} by aggregation. A simple interpolation operator, called Ef

c , can be defined by
the full rank nf×nc matrix whose elements are equal to zero or unity where nf is the number of
fine-grid points and Nc the number of coarse-grid points. The kth column of Ef

c corresponding
to a cluster Ck is given by

(Ef
c )ik =

{
1 if i ∈ Ck,
0 otherwise. (18)



8 K.H. LEEM, S. OLIVEIRA AND D.E. STEWART

For example, suppose the set of fine-grid points is Ω = {1, 2, 3, 4}. Assume we have two clusters
C1 = {1, 2} and C2 = {3, 4}. Then the interpolation operator Ef

c for these aggregations is given
by:

Ef
c =


1 0
1 0
0 1
0 1

 (19)

Again, the restriction operator Ec
f is defined by (Ef

c )T . Using Ef
c as the interpolation

operator and Ec
f = (Ef

c )T as the restriction operator with the coarse grid operator given
by Ac = Ec

fAfEf
c results in an AMG method we call a pure aggregation AMG method. These

pure aggregation AMG methods are easy to use, but display slow convergence. Many different
approaches have been introduced to obtain better convergence rates [3, 12, 17, 18]. In [17, 18],
Vaněk, Mandel and Brezina developed a smoothed aggregation AMG scheme, which is quite
close to what we do here. However, there are a number of pertinent differences.

In [17], the interpolation vectors are constructed by applying a damped Jacobi smoother to
the matrix Ef

c (see p. 185 of [17]). To obtain our smoothed aggregation scheme we instead
solve a “local” linear system to obtain an interpolation vector that interpolates a value for a
cluster onto its neighborhood. Second, we apply the method to a saddle point problem, which
is discussed in the next section.

For each cluster Ck, we have an associated interpolation vector pk, which is the kth column
of the interpolation operator If

c = [p1, p2, . . . , pm] where m is the number of clusters.
We define the neighborhood Nk of Ck as

Nk = {j 6∈ C | j connected to i, i ∈ Ck},

where j connects to i means that aij 6= 0. Denote AIJ = [ aij | i ∈ I, j ∈ J ] to be an |I| × |J |
matrix where I and J are sets of nodes. For a cluster Ck, its local matrix LCk

is given by

LCk
=

[
ACkCk

ACkNk

ANkCk
ANkNk

]
. (20)

Then the corresponding interpolation vector pk, the kth column of If
c , can be obtained by

solving the local linear system below:

LCk
pk = εCk

, (21)

where εCk
is the vector given by

(εCk
)i =

{
1 if i ∈ Ck,
0 otherwise. (22)

Now we can set If
c = [p1, p2, . . . , pm] where m is the number of clusters. Using Ic

f = (If
c )T and

Ac = Ic
fAfIf

c we have defined all components of the AMG method except for the smoothers.
In the next section we discuss how we construct the interpolation, restriction, and coarse grid
operators for the saddle point problem; in section 8, we describe the smoothers that we use
for the saddle point problem.
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7. Indefinite Linear System

Suppose the original linear system (13) on the fine grid is written as follows:[
Af BT

f

Bf 0

] [
uf

λf

]
=

[
bf

df

]
(23)

We can construct the coarse-grid operator Ac from the fine-grid operator Af by using the
scheme given in the previous section. To construct the coarse grid operator Bc, we propose a
separate coarsening process for the nodes on the boundary ΓD. For this process, we need to
know additional information from the matrix ω̃ given by

ω̃ij =
∫

ΓD

Ψ̃iΨ̃j ds. (24)

Then we separately perform aggregations of elements on ΓD based on the normalized edge
weights of ω̃. Using the aggregations based on these edge weights, we construct a separate
interpolation operator Ĩf

c for the nodes on the boundary ΓD using the local matrices as
described in the previous section. Using both Ic

f (the restriction operator for Ω) and Ĩf
c (the

interpolation operator for boundary ΓD), the coarse grid matrix Bc can be created using the
Galerkin approach:

Bc = Ĩc
f Bf If

c .

Thus [
Ac BT

c

Bc 0

]
=

[
Ic
f

Ĩc
f

] [
Af BT

f

Bf 0

] [
If
c

Ĩf
c

]
,

as we would expect from using a Galerkin approach.

8. A JOR smoother for indefinite systems

Another key element in AMG is to choose an appropriate relaxation scheme. As a relaxation
scheme for our indefinite linear systems, the Jacobi over-relaxation (JOR) method described
in [11] was employed as the relaxation scheme. Consider the splitting for matrix A in (23) as
follows:

A = M −N. (25)

Given an initial guess (u(0), λ(0)), then the iterations can be defined by[
M BT

B 0

] [
u(k)

λ(k)

]
=

[
N 0
0 0

] [
u(k−1)

λ(k−1)

]
+

[
b
d

]
(26)

Note that to implement this scheme, we need to compute λ(k) = (BM−1BT )−1[BM−1(b +
Nu(k−1))− d], which means solving the Schur complement system BM−1BT λ(k) = · · · . This
system is symmetric and positive definite if M is, and the matrix BM−1BT is easily computed,
but lacks sparsity.

Remark 8.1 below (which is proved in [11]) guarantees the convergence of the iteration
scheme (26).
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Remark 8.1. Assume that

(a) A is a real symmetric nonnegative definite matrix,
(b) BT is a real matrix with full column rank,
(c) A and BT have no nontrivial null vectors in common,
(d) A = D−L−LT where D is a nonsingular diagonal matrix and L is a strictly lower triangular

matrix.

Then the following iterative scheme (26) is convergent for the following choice of M and N :

M =
1
σ

D, N =
1− σ

σ
D + L + LT

with σ > 0 chosen small enough that 2D/σ −A is positive definite.

Table II shows the σ values used in our numerical experiments. We test our AMG V-cycle
on the linear system (23) from meshfree discretizations and the convergence results are shown
in next section.

9. AMG preconditioning

We employ our AMG scheme as a preconditioner for General Minimal Residual (GMRES)
method. To avoid preconditioning an indefinite system, our linear system (13) is modified to
the following unsymmetric but semidefinite linear system:[

A BT

−B 0

] [
u
λ

]
=

[
b
−d

]
(27)

10. Numerical Results

In this section we present numerical results illustrating the convergence of our method to show
its practicability and competitiveness with other methods. The matrices A and B are obtained
from the RKPM basis generated with kernel functions Φa(x) = B(x1/a) B(x2/a) where a = 2h
and B is the B-spline function given in 5. The centers chosen for the “particles” were on a
uniform two-dimensional grid with grid spacing h. Basic data on the matrices generated for the
saddle point problem are shown in Table I. Note that the matrices generated are substantially
less sparse than the standard 5-point stencil for Laplace’s equation. This is necessary for
meshfree methods because of a “sufficient covering” condition which must be satisfied, and so
the basis functions are substantially more “spread out”.

We used the combinatorial part of the smoothed aggregation method in Vaněk, Mandel
and Brezina (Algorithm 5.1 of [17]); we used the threshold ε = 0.1 for determining “strong
neighborhoods”; also since the matrices generated by meshfree methods tend to have a large
number of small entries, the neighborhoods Nk used in the construction of the interpolation
operators were restricted by incorporating another threshold ε∗:

Nk = { j | ωij ≥ ε∗ and i ∈ Ck }.

The value used was ε∗ = 0.01. This helped to reduce the number of non-zeros in the coarse
grid matrices.
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Table II. Values of σ for JOR smoother

N 25 100 400 1600 6400 25600
σ 1.1 0.49 0.49 0.47 0.47 0.47

The numerical results are indexed by N := NΩ, the number of basis functions for the domain
Ω. The values of N used were 25, 100, 400, 1600, 6400 and 25,600. The number of boundary
basis functions were respectively 10, 20, 40, 80, 160, and 320. All computations were done on a
Dell Optiplex GX260 with an Intel Pentium 4 CPU running at 3.1GHz and with 1GB of main
memory under Red Hat Linux 9. Meschach [16] was used as a matrix library to speed software
development. It was possible to solve the problem N = 102, 400 on this machine. However,
this was starting to thrash the machine.

For comparison, we also implemented a number of other preconditioners for GMRES:
the identity matrix (which is equivalent to no preconditioner), the JOR smoother as a
preconditioner, and an aggregation preconditioner (where the interpolation operator is Ef

c

and not If
c ). These were tested in the same way. The values of σused in the JOR smoother

(and preconditioner) are given in Table II.
First, even though the system we are dealing with is symmetric and indefinite

or unsymmetric and semi-definite, depending on the sign given to the second block
equation, the smoothed aggregation AMG method developed here shows good multigrid-like
convergence rates (see Figure 3 and Table III). The convergence rates computed were the
log(1/(convergence factor)) where the convergence factor is the geometric average of the ratios
of successive residual norms over all but a few of the starting iterations. The residual norms for
the first few iterates were ignored for these calculations as they showed initial transients that
would distort the long-term convergence rate estimates. Note that the number of iterations
needed for an accuracy of ε is asymptotically log(1/ε) divided by the convergence rate.

The results for no preconditioner for N equal to 6400 and 25600 were excluded because this
was taking excessive time. The results for the aggregation preconditioner was excluded for
N = 25600 because of excessive memory usage due to a memory leak.

The asymptotic estimate of the behavior convergence rate for the smoothed aggregation
AMG method of ≈ c/ log N was obtained by noting that the product of the observed
convergence rate and log N lay in the range 16 to 20, with most of the products being no
more than 17. Similarly, the convergence rate for the JOR preconditioner can be similarly
estimated to be ≈ cN−α with α ≈ 2/3.

Convergence histories for the smoothed aggregation AMG preconditioner (shown as AMG),
the JOR preconditioner, and the pure aggregation AMG preconditioner (labelled as the
aggregation preconditioner) are shown in Figure 4.

In terms of the number of iterations, the smoothed aggregation preconditioner with the
JOR relaxation is completely successful. However, the JOR preconditioner is simpler and
faster to apply. The times taken by the different methods are shown in Figure 5. This shows
the times per component of the solution against the dimension of the problem. This was done
to highlight the difference between the performance observed for the different methods and
the ideal behavior of O(N) time to obtain a solution to the desired accuracy.

If we compare the times, then the advantage of the AMG method is reduced but still quite
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Figure 3. Convergence rates for the different preconditioners (no preconditioner, JOR preconditioner,
pure aggregation AMG preconditioner (shown as aggregation preconditioner), and the smoothed

aggregation AMG preconditioner(shown as AMG preconditioner))

Table III. Convergence rates = log(1/(convergence factor)) as estimated from numerical data (no
preconditioner, JOR preconditioner, smoothed aggregation AMG preconditioner (shown as AMG)),

pure aggregation AMG preconditioner (shown as aggr’n).

preconditioner
N none JOR AMG agg’n
100 0.011 1.112 3.549 0.750
400 0.005 0.578 2.7181 0.989
1600 0.005 0.204 2.349 0.794
6400 — 0.069 2.282 0.485
25600 — 0.028 1.618 —
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Figure 4. Convergence histories for all preconditioners except the identity matrix.

(a) Smoothed aggregation AMG preconditioner

(b) JOR preconditioner

(c) Pure aggregation AMG preconditioner
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Figure 5. Times taken by the different preconditioners to solve the problem (no preconditioner, JOR
preconditioner, pure aggregation AMG preconditioner (shown as aggr’n precond’r), and the smoothed

aggregation AMG preconditioner(shown as AMG))

significant, especially for large problems. The “break-even” point for the AMG method against
the JOR method is at about N = 1600.

The times for single iterations are mainly controlled by the sparsity of the coarse-grid
matrices. This information is given in Table IV. While the method has given good performance,
it is clear that there is loss of sparsity occurring in the coarsening process. Improving this
process is a matter for future work.
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