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NEURAL TIMING IN HIGHLY CONVERGENT SYSTEMS∗

COLLEEN MITCHELL† AND MICHAEL REED‡

Abstract. In order to study how the convergence of many variable neurons on a single target
can sharpen timing information, we investigate the limit as the number of input neurons and the
number of incoming spikes required to fire the target both get large with the ratio fixed. We prove
that the standard deviation of the firing time of the target cell goes to zero in this limit, and we
derive the asymptotic forms of the density and the standard deviation near the limit. We use the
theorems to understand the behavior of octopus cells in the mammalian cochlear nucleus.
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1. Introduction. A fundamental question in neurobiology is to understand how
the central nervous system (CNS) can perform accurate and reliable calculations with
neurons that are intrinsically variable and unreliable devices. Three more concrete
versions of the question have received much attention: (1) How can network and/or
cellular properties sharpen timing information or create accurate coincidence detec-
tors? (2) How can synchronous activity in large groups of neurons be created and
maintained? (3) Under what circumstances can intrinsic noise improve information
processing capabilities?

The first question has long been studied in the auditory brainstem because it is
experimentally accessible and because cellular, behavioral, and psychoacoustic exper-
iments show that the auditory system can make extremely fine timing distinctions in
the microsecond (or even nanosecond) range, even though individual neurons in the
auditory nerve (AN) show latency standard deviations of approximately one millisec-
ond in repeated trials with the same sound [25, 10, 45, 33, 50]. Lord Rayleigh [34]
first proposed that the auditory system uses binaural timing distinctions to localize
sound, and Jeffress [21] proposed the first neural mechanism based on delay lines and
coincidence detection. Colburn [8] clearly formulated the question of how the audi-
tory system can detect small time differences, given the noise in the AN, and went on
to create some of the first mathematical models [9]. Important experimental studies
include those of Rhode and Smith [37, 38] and Goldberg and Brown [14].

All fibers of the AN synapse on cells of the cochlear nucleus (CN). There are
many different cell types in the CN that receive different numbers of AN synapses
and have different response properties. Two experimental properties have received
continuing attention from experimentalists and modelers. First, several CN cell types
show “onset” responses; that is, they fire a single spike shortly after the initiation of
the sound; the time lag is called the latency. The standard deviation of latency in
AN fibers under repeated trials is of the order of 1 msec, but the standard deviation
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of latency in some onset units of the CN is as much as an order of magnitude lower.
Second, AN fibers phase lock to low frequency sounds, and this phase locking is even
better in some CN units. Burkitt and Clark [4, 5] use numerical simulations of leaky
integrate-and-fire models to study how convergence of inputs effects both the onset
response and the increase in synchrony seen in target cells. Kalluri and Delgutte
[23, 24] have created a computational model using leaky integrate-and-fire for the CN
target cells and an adaptively filtered Poisson processes to model spike trains along
each of the convergent AN fibers. They are interested in determining what properties
of the target cell, the filtered Poisson process in AN fibers, the convergence from AN
fibers to the target, and adaptation in the hair cells cause the target neuron to have an
onset response with low spontaneous rate. Young, Rothman, and coworkers [51, 39, 40,
41, 42, 43] have conducted experiments and used numerical simulations of biophysical
models to investigate how the response properties of CN neurons depend on the details
of their channel kinetics. Similarly, Cai, Walsh, and McGee [6, 7] used simulations of
biophysical models to investigate the onset response of octopus cells in the CN using
the physiological properties discovered by Oertel and coworkers [15, 13, 32].

The overall goal of this computational modeling was to investigate how conver-
gence, detailed biophysics of CN neurons, and the known properties of auditory spike
trains give rise to onset responses, higher synchrony, and the sharpening of timing in
CN neurons. Their numerical computations suggest strongly that there is a connection
between the amount of convergence and the sharpening of timing information. How-
ever, their models are so elaborate and have so many parameters that it is difficult to
make precise the mechanisms by which convergence sharpens timing. For this reason,
we have been studying the much simpler model described below in which convergence
and the sharpening of timing are isolated as the objects of study. The simplicity of
the model allows us to use the tools of probability theory and mathematical statistics
to prove theorems that make precise the relationship between convergence and the
sharpening of timing. Their numerical modeling and our theorems contribute not
only to understanding the auditory brainstem but also address question (1) and by
implication question (2) if several of these systems are connected in series. In other
auditory brainstem work, Svirskis et al. [48] investigate through experiment and bio-
physical modeling the properties of medial superior olive neurons that make them
excellent coincidence detectors and propose that coincidence detection is improved in
some circumstances by a noisy background. Thus their work relates directly to the
ideas of stochastic resonance in neural systems put forward by Greenwood et al. [17]
and Stemmler [47] and so addresses question (3).

In our simple convergence model, there are n identical input neurons, and all
receive the same stimulus. Each fires a single action potential at a time selected
independently from a probability density f with standard deviation 1 msec. The
axons of the n neurons are of equal length and project to one target neuron that
fires a single action potential the first time that it has received m inputs in the
previous ε msec. Of course, the target neuron may not fire at all in response to a
particular stimulus. We denote the conditional density of the time of firing of the
target neuron, given that it fires, by gn,m,ε,f and its standard deviation by σn,m,ε,f ,
since both will depend on n, m, ε, and f . If σn,m,ε,f < 1 msec, then we say that
timing has been sharpened. A change of variables shows that there is a scaling law
σn,m,ε,f = sσn,m, ε

s ,fs , where fs(t) ≡ sf(st), so there is no loss in generality in taking
the standard deviation of the input density f to be 1 msec [35, 29].

Although the formulation of the problem is simple, it is difficult or impossible to
derive closed form expressions for gn,m,ε,f and σn,m,ε,f except in very special cases.
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Fig. 1. The basic model. The target cell receives n independently and identically distributed
inputs and fires the first time it receives m within ε msec.

Additionally, Monte Carlo simulations [35] show that, for n and f fixed, σn,m,ε,f

can have surprisingly complicated behavior as a function of m, the numbers of hits
required, and ε, the size of the time window. For example, even for simple choices
of f (uniform, exponential, normal) and n = 10, σn,m,ε,f is sometimes monotone and
sometimes nonmonotone as a function of either m or ε with the other held fixed. In
these circumstances, it is natural to ask whether the behavior of σn,m,ε,f is simpler in
certain asymptotic limits. As ε → ∞, the neuron will surely fire at the time of the mth
hit, so σn,m,∞,f is given by order statistics, which is well understood. In the literature
this model is called the (nonleaky) integrate-and-fire model. It is used by Marsalek,
Koch, and Maunsell [27], it is the simplest model used by Burkitt and Clark [4], and
it is the “analytic coincidence detector model” of Kalluri and Delgutte [23]. Thus
those models are a special case of our model. Mitchell [29, 30] considered the singular
asymptotic limit ε → 0, proved that

(1) gn,m,ε,f → fm∫
fm

independent of n, and derived an asymptotic form for gn,m,ε,f and σn,m,ε,f near the
limit.

In this paper, we study the limit as n → ∞, m → ∞ with the ratio m
n held

fixed. There are good theoretical and experimental reasons to think that this limit is
important. First, it is relatively easy to see (Theorem 2.1 below), under reasonable
hypotheses on f , that σn,m,ε,f → 0 as n → ∞ with m held fixed. That is, one
can sharpen up timing as much as one wants by assuming a model with n large, for
example by choosing m = 1, in which case the target always fires at first hit. Young,
Robert, and Schofner [51] already pointed out that if f is exponential and m = 1, then
σn,1,ε,f = 1

n . The trouble is that many neurons (in particular those in the auditory
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nerve) have high spontaneous firing rates, and so with high n and low m the target
cell will have a high spontaneous rate, which ruins its role as a neuron that measures
the time since the stimulus. Thus it is natural to ask whether taking both n and m
large can produce a system that sharpens timing dramatically but also has a very
low spontaneous rate. The approximate calculations of Burkitt and Clark [4] and the
numerical simulations of Kalluri and Delgutte [23] suggest strongly that there should
be a clean asymptotic limit as n → ∞ with m

n held fixed. Furthermore, there is good
reason to think that octopus cells in the cochlear nucleus operate near this asymptotic
limit. Oertel [32] has found that the octopus cells receive up to 100 inputs from AN
fibers and that between 20 and 50 hits within a small time window are required to
make them fire.

In section 2, we answer the above question by showing that σn,m,ε,f → 0 as
n → ∞, m → ∞, with m

n fixed. In section 3, we derive the asymptotic forms of
gn,m,ε,f and σn,m,ε,f near the limit. And in section 4, we apply the results to octopus
cells.

2. Limit theorems as n → ∞. Let {Xi}n
i=1 denote the n independently and

identically distributed random variables for the firing times of the inputs. Assume
that the Xi’s have density f(x), continuous distribution F (x), and finite mean and
standard deviation. We will use Tn to denote the random variable for the firing time
of the output (a formal definition is given in (6)). For some of the results below we
also assume that there is an xo so that

(2)
∫ xo

−∞
f(x) dx = 0 and

∫ x+a

xo

f(x) dx > 0 for all a > 0.

This is reasonable biologically since the input neurons cannot respond before the
stimulus (and perhaps not for some fixed delay afterwards).

We first consider the case where n → ∞ while m and ε are fixed.
Theorem 2.1. Let f be a given probability density satisfying (2), and let 0 <

ε ≤ ∞ and m be fixed. Then, as n → ∞, the following hold:
(i) The probability that the target cell fires −→ 1.
(ii) gn,m,ε,f −→ δxo

; that is, Tn −→ T in distribution. Further, Tn converges in
probability to the point mass at xo.

(iii) If f has compact support, then σn,m,ε,f −→ 0.
Proof. Let a > 0 be given, and define γ ≡

∫ xo+a

xo
f(x) dx > 0. Let Yi be the

random variable with value 1 if xo ≤ Xi ≤ xo + a and zero otherwise. Then, for
each k,

P

{
n∑

i=1

Yi = k

}
= γk(1 − γ)n−k

(
n

k

)
,

so that

(3) P

{
n∑

i=1

Yi < m

}
=

m−1∑
k=0

γk(1 − γ)n−k

(
n

k

)
≤ Cβn,

where β satisfies 1 − γ < β < 1. The constants β and C depend on m and γ but not
on n, and so

(4) P

{
n∑

i=1

Yi ≥ m

}
→ 1 as n → ∞.
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Let S denote the event that the target cell fires and Tn be the time of firing. If we
choose a = ε, then

P{S} ≥ P{S ∩ {xo ≤ Tn ≤ xo + ε}} = P{
∑n

i=1Yi ≥ m},

so (i) follows from (4). For all 0 < a ≤ ε,

(5) P{{xo ≤ Tn ≤ xo + a}|S} = P{S ∩ {xo ≤ Tn ≤ xo + a}}/P{S} → 1

as n → ∞, which proves (ii).
To prove (iii) without assuming compact support, we would need to prove a

uniform integrability condition. We will prove such a condition in the case of the main
theorem of this section (Theorem 2.3) but omit it here. If we assume that f does have
compact support, which is a reasonable hypothesis from a biological perspective, then
it is easy to check that E(Tn|S) → xo and E(T 2

n |S) → x2
o as n → ∞, which gives (iii).

Theorem 2.1 shows, as expected, that if it takes a fixed number of hits in an ε
time window to fire the target cell, then one can achieve any improvement in accuracy
one wants by taking n large enough. This confirms the general belief in the literature
[51, 4, 23] that greater convergence sharpens timing information. However, notice the
important hypothesis that m is held fixed. Example 2.1 shows that if m is not fixed,
then increasing convergence may make timing worse. Example 2.2 shows that, given a
firing mechanism at the target cell, the answer to the question of whether timing gets
better of worse depends on f . Thus one should be very careful about drawing general
conclusions from simulations, since the results may depend on the form chosen for the
noise.

Example 2.1. If m = n, ε = ∞, and f is exponential, the standard deviation of
the firing times is monotone increasing. This is because the cell will fire when the last
(nth) hit arrives. For large n this will be somewhere out in the tail of the distribution.
See Table 1 for values. The final entry is computed using the asymptotic behavior
of the nth order statistic [44]. Note that this case is not covered by Theorem 2.2
below because ε = ∞. It is also not covered by Theorem 2.3 below because the set
{x |F (x) − F (x − ε) ≥ m

n } is empty.
Example 2.2. If m = n, ε = ∞, and f is uniform, the standard deviation of the

firing times is monotone decreasing. This is because the nth hit out of n will be likely

Table 1

Values of σ for different n.

n Exponential Uniform
1 1.000 msec 1.000 msec
2 1.118 msec 0.816 msec
3 1.166 msec 0.671 msec
4 1.193 msec 0.566 msec
5 1.210 msec 0.488 msec
6 1.221 msec 0.429 msec
7 1.230 msec 0.382 msec
8 1.236 msec 0.344 msec
9 1.241 msec 0.313 msec

10 1.245 msec 0.287 msec
15 1.257 msec 0.203 msec
20 1.263 msec 0.157 msec
30 1.270 msec 0.108 msec
∞ 1.283 msec 0.000 msec
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F(x) - F(x - ε)

x-ε x 

m
n = const.

f(x) 

Fig. 2. An example density to illustrate the derivation of T. T is the smallest value for x so
that the area under the density curve between x − ε and x is at least m

n
.

to be close to the right edge of the distribution. Note that this case is not covered by
Theorem 2.2 below because {x |F (x) − F (x − ε) ≥ m

n } is not empty. It is also not
covered by Theorem 2.3 below because F (x) − F (x − ε) is not increasing at T .

We now consider the more interesting case where n → ∞ with m
n fixed. To see

the intuition, consider the particular f depicted in Figure 2. For any x, we expect
that approximately the fraction F (x) − F (x − ε) of n selections from f should lie
in the interval [x − ε, x]. Thus if F (x) − F (x − ε) ≥ m

n , we expect that m or more
selections will lie in [x − ε, x], and thus x is certainly a candidate for the firing time
of the target cell. Recall that the cell fires the first time that it gets m hits in an ε
interval. Therefore, we define

T = inf
x

{
x |F (x) − F (x − ε) ≥ m

n

}

and expect that for large n the firing time should be close to T . Of course, depending
on f , there may be no points in the set {x |F (x) − F (x − ε) ≥ m

n }.
For the proofs below, we need to introduce some machinery. For each set of n

independent selections, {Xi}n
i=1, from f , we consider the sample distribution function

Fn(x) ≡ 1
n

n∑
i=1

I(Xi ≤ x),

where I is the indicator function taking value 1 if Xi ≤ x and 0 otherwise. We can
now define the random variable for the output firing time Tn in terms of Fn. Choose
any M > T , and define the random variable Tn to be

(6) Tn = inf
x

{
x |Fn(x) − Fn(x − ε) ≥ m

n

}

if the set is non empty and Tn = M otherwise.
For n large it is known that Fn(x) is a good approximation to F (x). This is

expressed via the Kolmogorov–Smirnov distance,

Dn ≡ sup
−∞<x<∞

|Fn(x) − F (x)|.
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The classical Glivenko–Cantelli lemma (for a proof, see [2]) states that Dn → 0 with
probability one.

Theorem 2.2. Suppose that 0 < ε < ∞ and 0 < m
n ≤ 1 are fixed and that the

set {x |F (x) − F (x − ε) ≥ m
n } is empty. Then the probability that the target cell fires

converges to zero as n → ∞.
Proof. Since F is continuous and {x |F (x)−F (x−ε) ≥ m

n } is empty, there exists
α > 0 so that

F (x) − F (x − ε) ≤ m

n
− α for all x.

Therefore,

P{target cell fires} = P{ at least m hits in [x − ε, x] for some x }
= P{ at least m hits in (x − ε, x] for some x }

= P
{

Fn(x) − Fn(x − ε) ≥ m

n
for some x

}
≤ P{Fn(x) − F (x) + F (x − ε) − Fn(x − ε) ≥ α) for some x}
≤ P{2Dn ≥ α)},

which converges to zero by the Glivenko–Cantelli lemma. Thus, the probability that
the target cell fires goes to zero as n → ∞.

Theorem 2.3. Suppose that the set {x |F (x)−F (x− ε) ≥ m
n } is nonempty, and

define T as above. Suppose that F (x) − F (x − ε) is strictly increasing at T and that
0 < ε ≤ ∞ and the ratio 0 < m

n ≤ 1 are fixed. Then, as n → ∞, the following hold:
(i) The probability that the target cell fires −→ 1.
(ii) gn,m,ε,f −→ δT ; that is, Tn −→ T in distribution. Further, Tn converges to

the point mass at T with probability one.
(iii) σn,m,ε,f −→ 0.
Proof. To prove (i), note that, by the strict monotonicity at T , the set {x |

F (x) − F (x − ε) ≥ m
n } is nonempty. Note that here we have used only that the set

is not empty, but we use the stronger monotonicity hypothesis for the proof of (ii).
Thus, there is an x̄ so that F (x̄) − F (x̄ − ε) ≡ γ > m

n . Let Yi be the random variable
that has value 1 if Xi is in [x̄−ε, x̄] and 0 otherwise. The Yi are independent Bernoulli
random variables with mean γ. Thus,

P{Y1 + · · · + Yn < m} = P

{
Y1 + · · · + Yn

n
− γ <

m

n
− γ

}
−→ 0

as n → ∞ by the weak law of large numbers. If there are m or more of the Xi in the
particular interval [x̄ − ε, x̄], the target cell fires, and so (i) is proved.

To prove (ii), let 0 < µ < M − T be given, where M is the constant from the
definition of Tn (6). We note that the continuity of F and the fact that F (x) → 0 as
x → −∞ imply that there is an α > 0 so that

(7) sup
x<T−µ

(F (x) − F (x − ε)) <
m

n
− α.

Further, by the continuity of F and monotonicity at T , there is a β > 0 so that

(8) sup
x<T+µ

(F (x) − F (x − ε)) >
m

n
+ β.
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We will show that P{|Tn − T | > µ} → 0 as n → ∞. First,

P{Tn < T − µ} = P
{

∃x < T − µ |Fn(x) − Fn(x − ε) ≥ m

n

}
≤ P{∃x < T − µ |Fn(x) − Fn(x − ε) − (F (x) − F (x − ε)) ≥ α}
≤ P{2Dn > α}.

Similarly,

P{Tn > T + µ} = P
{

Fn(x) − Fn(x − ε) <
m

n
∀x < T + µ

}
≤ P{F (x) − F (x − ε) − Fn(x) + Fn(x − ε) > β ∀x < T + µ}
≤ P{2Dn > β}.

In each case the probability converges to zero by the Glivenko–Cantelli lemma, which
proves (ii). Note that since Dn converges with probability one, so does Tn. This in
turn implies convergence in distribution.

To prove (iii) we need to show that the sequences {Tn} and {T 2
n} are uniformly

integrable (for a proof, see [44]), i.e., that limc→∞ supn

∫ ∞
c

xgn,m,ε,fdx = 0 and that
limc→∞ supn

∫ ∞
c

x2gn,m,ε,fdx = 0. We begin by bounding the density of Tn, gn,m,ε,f ,
which we will abbreviate gn(x). In [30] we derived an explicit integral formula for
gn(x). It is more convenient to write this expression in terms of the ordered inputs
known as the order statistics. Let Yi be the ith order statistic, i.e., the random variable
which is the ith smallest of the Xi’s. Let f{Yi|Tn=Yi}(x) denote the conditional density
of Yi given that Tn = Yi, and let Pi be the probability that Tn = Yi. The density
gn(x) of Tn is the normalized sum from m to n of these conditional densities:

(9) gn(x) =
∑n

i=m f{Yi|Tn=Yi}(x)Pi

P (success)
.

Using the joint density of the Yi’s, we can compute f{Yi|Tn=Yi}(x) by integrating over
the appropriate event:

f{Yi|Tn=Yi}(x)

=
1
Pi

n!f(x)
∫

Ω3

n∏
j=i+1

f(yj)
∫

Ω2

i−1∏
j=i−m+1

f(yj)
∫

Ω1

j=i−m∏
j=1

f(yj)
i−1∏
j=1

dyj

n∏
j=i+1

dyj ,(10)

where Ω1, Ω2, and Ω3 are the sets

Ω1 = {y1 < · · · < yi−m and yk < yk+m−1 − ε for k = 1, . . . , i − m},

Ω2 = {x − ε < yi−m+1 < · · · < yi−1 < x},

Ω3 = {x < yi+1 < · · · < yn}.

The sets Ω1, Ω2, and Ω3 correspond to the statements that the first i−1 arriving hits
do not fire the cell, that the ith does, and that the remaining times can be anything.

We can attain a bound on the integral by replacing Ω1 with the larger set

Ω1 = {y1 < · · · < yi−m and yi−m < x − ε}.

Next we can integrate explicitly to obtain the bound on the conditional density

f{Yi|Tn=Yi}(x) ≤ 1
Pi

n!f(x)
(1 − F (x))n−i

(n − i)!
(F (x) − F (x − ε))m−1

(m − 1)!
F (x − ε)i−m

(i − m)!
.
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Summing over i in (9) gives the bound

gn(x) ≤ 1
P (success)

n!
(1 − (F (x) − F (x − ε)))n−m

(n − m)!
(F (x) − F (x − ε))m−1

(m − 1)!
f(x).

For large c, F (x) − F (x − ε) goes to zero. We can make a straightforward calculation
using Stirling’s formula to show that n! (1−(F (x)−F (x−ε)))n−m

(n−m)!
(F (x)−F (x−ε))m−1

(m−1)! is uni-
formly bounded independent of n for F (x)−F (x−ε) sufficiently small. Specifically if
c is large enough so that F (x)−F (x−ε) < aa

(a−1)a−1 for all x > c, where a is the ratio
n/m, then there is a constant A so that gn(x) ≤ A

P (success)f(x) for all x > c. Since f

has a finite mean and standard deviation, this bound implies that {Tn} and {T 2
n} are

both uniformly integrable, and so E(Tn) → T and E(T 2
n) → T 2, which proves (iii).

Theorem 2.3 shows that if F (x) − F (x − ε) crosses m
n the first time it reaches

m
n , then the firing time will converge to the point mass at this time as n → ∞. The
following two examples show that while most sets of parameters will be covered in
the above theorems, we have not addressed what will happen if F (x) − F (x − ε) is
not increasing at T but rather reaches m

n and is constant for some time or reaches m
n

and immediately drops back down. This situation is unlikely in the biological context
but is of mathematical interest. Example 2.3 shows that if f is exponential, then
either Theorem 2.2 or 2.3 will apply unless F (xo +ε) is exactly m

n . In Example 2.4 we
discuss various cases in which the hypotheses of Theorem 2.3 are, or are not, satisfied.

Example 2.3. If f is exponential, then F (x)−F (x−ε) will be monotone increasing
from xo to xo+ε and monotone decreasing for x > xo+ε. If the value of F (x)−F (x−ε)
at its peak, namely F (xo + ε), is greater than m

n , then T will be less than ε and the
hypotheses of Theorem 2.3 will be satisfied, so the standard deviation will go to zero
(see Figure 3(A)). If, on the other hand, the value at the peak is less than m

n , then
the set {x |F (x) − F (x − ε) ≥ m

n } is empty and the hypotheses of Theorem 2.2 will
be satisfied, so the probability of firing will go to zero. It is of mathematical interest
to study what will happen in the borderline case where F (xo + ε) is exactly m

n .
Example 2.4. Let xo < x1 < yo < y1 and suppose that the support of the

density f consists of the two intervals [xo, x1] and [yo, y1]. In addition, suppose that
x1 −xo < ε, y1 −yo < ε, and yo −x1 > ε, so the intervals are small and well separated
compared to ε. Let p =

∫ x1

xo
f(x) dx and q =

∫ y1

yo
f(x) dx. There are several cases to

consider. If p > m
n , then xo < T < x1 and the “strictly increasing” hypothesis holds,

so the conclusions of Theorem 2.3 hold. If p < m
n and q < m

n , then the probability of
firing goes to zero as n → ∞ with m

n fixed by Theorem 2.2. If p < m
n and q > m

n , then
yo < T < y1 and again the “strictly increasing” hypothesis holds, so the conclusions
of Theorem 2.3 hold. Finally, suppose that m

n = 1
2 and that p = q = 1

2 . Then
T = x1 but the “strictly increasing” hypothesis does not hold. The number of hits
in the first region is given by the binomial B(n, p). Thus the probability of firing
in this first interval, P (B(n, p) ≥ m), converges to 1

2 as n → ∞ with m
n fixed. A

straightforward argument shows that the conditional density (conditioned on firing in
the first interval) converges to δx1 . The same arguments show that if the neuron does
not fire in the first interval, then it has probability 1

2 of firing in the second interval,
and the conditional density (conditioned on firing in the second interval) converges to
δy1 . Therefore, as n → ∞ with m

n fixed, the density (conditioned on firing) converges
to 2

3δx1 + 1
3δy1 . Thus, if the “strictly increasing at T” hypothesis does not hold, the

conclusions of Theorem 2.3 may not hold.



10 COLLEEN MITCHELL AND MICHAEL REED

3. The asymptotic form. We will now prove the asymptotic normality of Tn.
We will consider the case where, in addition to the left edge hypothesis (2) we assume
that T < x0 + ε. This means that there is more than m/n probability in the interval
(x0, x0 + ε), i.e., F (xo + ε) − F (xo) > m/n, and therefore that F (x − ε) = 0 for all
x < xo + ε.

Theorem 3.1. Suppose that T < x0 + ε; then Tn is asymptotically normal with
mean T and standard deviation

(11) σc =

(
m
n

(
1 − m

n

))1/2

f(T )n1/2 .

We call the standard deviation σc because it is a result of the convergence studied
in sections 1 and 2.

Proof. Fix t and let

Gn(t) = P

(
Tn − T

σn
≤ t

)
.

We wish to show that Gn(t) → Φ(t), where Φ is the cumulative distribution for the
standard normal. We begin by rewriting Gn(t) using the definition of Tn given in (6):

Gn(t) = P (Tn ≤ T + tσn)

= P
(
∃x ≤ T + tσn|Fn(x) − Fn(x − ε) ≥ m

n

)
.

Since σn → 0 as n → ∞ and T < x0 + ε, there is an n̄ such that for all n ≥ n̄,
T + tσn < x0 + ε. Therefore if n ≥ n̄ and x ≤ T + tσn, F (x − ε) = 0. Note that, by
the definition of Fn, if F (x − ε), then the probability of a hit before x − ε is zero and
Fn(x − ε) is also zero for all n. So, for n ≥ n̄,

Gn(t) = P
(
∃x ≤ T + tσn|Fn(x) ≥ m

n

)
= P

(
Fn(T + tσn) ≥ m

n

)
,

where we have used the monotonicity of Fn. Notice that since F (T − ε) = 0, the
value T is just the value of the m

n th quantile, which we will denote ξ. The m
n th

quantile is defined by ξ = inf{x : F (x) ≥ m
n }. The proof rests upon the asymptotic

normality of the sample m
n th quantile, ξn, defined by ξn = inf{x : Fn(x) ≥ m

n }. ξn

is asymptotically normal with mean ξ and standard deviation σn [44]. Now we can
write Gn in terms of the quantiles:

Gn(t) = P (ξn ≤ ξ + tσn).

Therefore the asymptotic normality of the sample quantile implies the asymptotic
normality of Tn.

It is the hypothesis that T < x0 + ε that makes the proof of Theorem 3.1 easy by
reducing the question to the asymptotic behavior of quantiles. Intuitively, the hypoth-
esis means that there is a lot of probability close to the initial point x0. Example 3.1
shows that this hypothesis is biologically reasonable. Example 3.2 shows what can
happen if this hypothesis is violated and gives a conjecture for the general case.

Example 3.1. For neurons, the density f looks like AN (translated, smoothed)
exponential [25, 51, 49] with standard deviation approximately 1 msec. In Figure 3(A)
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Fig. 3. Examples illustrate the importance of the hypothesis T < xo + ε in Theorem 3.1.
Panel (A) shows the density for the exponential as in Example 3.1. The shaded portion has area
m
n

, and one can see that T (2) = xo + ln 5
3 < xo + ε so that Example 3.1 satisfies the hypotheses of

Theorem 3.1. Similarly, the shaded portion in panel (B) has area m
n

, but in this case T = 1.7−
√

6 >
xo + ε so that Theorem 3.1 does not apply. Panel (C) compares results of Monte Carlo simulations
(data are the dots on the middle curve) to the predictions of Theorem 3.1, (bottom curve, σc). We
see that the theorem does not apply, but that our conjecture (top curve, σ̄c) for this more general
case is supported.

we show the exponential distribution (starting at x0) with standard deviation 1 msec.
It is easy to check that T = x0 + ln n

n−m . Consider three cases m1
n1

= .2, m2
n2

= .4,
and m3

n3
= .5, which will have corresponding T (1) = x0 + ln 5

4 , T (2) = x0 + ln 5
3 , and

T (3) = x0 + ln 2. Thus, if ε = 1 msec, which is reasonable for octopus cells [15, 32]
and many other neurons, we will have T (i) < x0 + ε in all three cases, so Theorem 3.1
applies.

Example 3.2. On the other hand, suppose that f is the piecewise linear “hat”
distribution (see Figure 3(B)). In order to have standard deviation 1 msec, the density
is supported on the interval [−

√
6
√

6] (so xo =
√

6). In all of the cases above T (i) >
xo + ε, and so Theorem 3.1 does not apply. For example if m

n = .2, then T =
−

√
6 + 1.7 ≈ −0.75. In this case the standard deviation does not converge to the

value σc given in Theorem 3.1 but instead to another higher value. We conjecture
that in this case Tn will be asymptotically normal with mean T and standard deviation

σ̄c =

(
m
n

(
1 − m

n

))1/2

(f(T ) − f(T − ε))n1/2 .

Figure 3(C) shows the values for σc (bottom curve), σ̄c (top curve), and the standard
deviation computed using Monte Carlo simulations as in [35] (middle curve; each dot
was computed using 100,000 trials). We can see that for large n the values do not
approach σc but rather σ̄c, supporting our conjecture.

4. Applications to octopus cells. The latency of a neuron in the auditory
system is the length of time between the start of a sound and the time of the first
action potential produced by the neuron. In mammals, AN neurons, which provide the



12 COLLEEN MITCHELL AND MICHAEL REED

input to the auditory brainstem, have latencies in the range 2 to 8 msec, with standard
deviations of approximately 1 msec under repeated trials [25]. The auditory system
must use group properties of these highly variable inputs to extract sharp timing
information so that the animal can make time distinctions in the low microsecond
range. According to Oertel et al. [32], much of this processing is done by octopus cells
in the cochlear nucleus that “detect coincident firing within populations of auditory
nerve fibers and convey acoustic information in precisely timed action potentials.” It
is estimated that octopus cells receive synapses from roughly 60 to 100 AN neurons
(i.e., 60 ≤ n ≤ 100) and require that 20% to 50% of these synapses be activated by
incoming action potentials within 1 msec in order fire an action potential (i.e., ε =
1 msec and 0.2 ≤ m

n ≤ 0.5) [32, 15]. It is therefore of interest to test whether the
predictions of the theorems in this paper are consistent with the observed in vivo and
in vitro behavior of octopus cells. For some parameter choices we can also make more
specific predictions for optimal values of m and n.

The histograms of latencies in AN neurons are quite variable but look roughly
like smoothed exponential distributions. Thus, we shall assume that f is exponential
with standard deviation 1 msec, and it follows that T = xo +log n

n−m . If ε ≥ T , which
holds for all cases considered below (see Example 3.1 above), then F (T − ε) = 0, and
the asymptotic formula (11) has the simple form

(12) σ2
c =

m
n

(1 − m
n )n

.

If we evaluate σc for n and m in the physiological ranges given above, we obtain
values in the range 0.05 msec to 0.13 msec (Table 2). Oertel et al. report that the
standard deviations of latencies of octopus cells in response to sounds are approxi-
mately 0.1 msec [32], so the formula (11) certainly predicts the order of magnitude
improvement of timing seen in vivo in octopus cells.

We can use (12) to explore a variety of questions about the physiology of octopus
cells. First we ask why n isn’t larger than the range 60–100. σc is the standard
deviation in the latency of the octopus cell due to the variation in firing times of the
inputs. However, there are other sources of variation. The AN neurons that synapse
on the octopus cell may have somewhat different axonal lengths and diameters, both
of which will affect arrival times. Second, due to such factors as the diffusion of
neurotransmitter across the synaptic cleft, the finite number of postsynaptic receptors,
and the variation in the local membrane chemistry, the integration of synaptic inputs
by the octopus cell will have variation under repeated trials even if the timing of the
inputs is the same. Assuming that these other factors are independent of the noise in
the firing times of the inputs, and denoting the corresponding standard deviation by
σother, we have σ2

o = σ2
c + σ2

other. Fortunately, the experiments in [15], where shocks
are applied to the nerve root, give a good estimate, σother = 0.05 msec. Figure 3
shows the behavior of σo as a function of n in two cases, m

n = 1
2 and m

n = 1
5 , that are

Table 2

Values of σc.

n m σc (msec)
100 20 0.05
100 33 0.07
100 50 0.10
60 30 0.13



NEURAL TIMING 13

Fig. 4. Predicted values of the standard deviation of the latency of octopus cells, σo, for different
values of n.

Fig. 5. Predicted values of the spontaneous rate of the octopus cell as a function of m with
n = 100 and four different assumptions about the spontaneous rate, r, of AN neurons.

the expected extremes for the ratio m
n . In both cases there is not much extra decrease

in σo after n = 60 and very little after n = 100.
Many AN neurons have high or very high spontaneous rates, even ranging as

high as 100 spikes/sec [25, 19]. If n is high and m is low, then many of the successful
firings of the octopus cell will be spontaneous, i.e., unrelated to input. However, it
is known that octopus cells have essentially no spontaneous rate [37, 38, 46]. Thus,
it is a natural question to ask how large m must be so that the spontaneous rate of
the octopus cell in our model is 1 spike/sec or less. Assume ε = 1 msec, and suppose
that each incoming AN neuron has a spontaneous rate of r spikes/msec. Then, the
probability that any particular AN neuron delivers a spike within a 1 msec interval is
approximately r. Assuming that the AN neurons are independent, the probability of
m or more incoming spikes within the 1 msec interval is approximately

(13) Prob{#incoming hits ≥ m} =
n∑

k=m

(
n

k

)
rk(1 − r)n−k,

and thus the spontaneous firing rate of the octopus cell in spikes/sec, denoted by
SR(r, n, m), will be approximately 1000 times the probability in (13). Figure 5 shows
the graphs of SR(r, n, m) as functions of m for n = 100 and for four different choices
of r. If the incoming AN fibers have spontaneous rates of r = .075 spikes/msec
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Fig. 6. The region of the (m
n

, n) plane for which σo ≤ 0.1 and the octopus cell has a spontaneous
firing rate ≤ 1 spike/sec is the region below the solid curve and above the dashed curve.

(75 spikes/sec), SR(.075, 100, m) does not go below 1 spike/sec until m = 18. Thus
the model, with n = 100, predicts that m is 18 or higher, which corresponds well with
the estimates of experimentalists [15, 32, 13].

We can also allow both m
n and n to be free and ask what is the region in the

(n, m
n ) plane that gives the observed physiological behavior. First, we require that the

standard deviation of the latency of the octopus cell satisfy σo ≤ 0.1 msec. Since σ2
o =

σ2
c + σ2

other, this is equivalent to the requirement that σ2
c ≤ .12 − .052. Equation (12)

can be rearranged to give a bound on m
n in terms of this maximum allowable standard

deviation:

(14)
m

n
≤ (σ2

c )n
1 + (σ2

c )n
.

Second, we require that the spontaneous firing rate of the octopus cell be less than the
maximum value rmax = .001 spike/msec or 1 spike/sec. Using (13) and the normal
approximation to the binomial gives

(15)
m

n
≥ Φ−1(1 − rmax)

√
r(1 − r)

n
+ r,

where Φ is the cumulative distribution function of the standard normal and r is
the spontaneous rate of the incoming neurons. The points below the solid curve in
Figure 6 satisfy (14), and the points above the dashed curve satisfy (15) in the case
r = .075 spikes/msec.

In Figure 6 we assumed that the standard deviation of f is 1 msec and that the
spontaneous rate of the AN neurons r = 75spikes/sec. For other assumptions the
curves are somewhat different. For example, instead of choosing σc = .0866, we could
recognize that it is not particularly beneficial to require that σc be smaller than σother.
In this case we require that σc be roughly the same as σother so that both are equal
to .05 msec and repeat the above calculations (shown in Figure 7), predicting a much
smaller region of possible values for m and n. In this case we require n ≥ 80 and that
m
n be between 18% and 20%. This is within the experimental estimates but suggests
a much smaller range of optimal values. From this calculation we can predict that
ideally n should be near the high end of its range, close to 100, and that m should be
near the low end of its range, close to 20.
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Fig. 7. The region of the (m
n

, n) plane for which σc ≤ 0.05 and the octopus cell has a sponta-
neous firing rate ≤ 1 spike/sec is the region below the solid curve and above the dashed curve. In
both Figures 6 and 7, we assume that the standard deviation of f is 1 msec and that the spontaneous
rate of the AN neurons r = 75 spikes/sec.

5. Discussion. The model given in Figure 1 was formulated to allow a math-
ematical investigation of how convergence (the number of incoming neurons, n) and
the number of hits required to make the target cell fire, m, affect the sharpening
of timing information when the firing times of the incoming neurons are noisy. The
main theorem (Theorem 2.3) shows that if n → ∞ and m → ∞ with m

n fixed, then
the standard deviation of the time of firing of the target cell goes to zero. The phys-
iological significance of the result is that timing can be sharpened by taking both
n large and m large (to avoid spontaneous firing of the target). That there should
be a theorem like this was suggested by the approximate calculations of Burkitt and
Clark [4] and the numerical simulations of Kalluri and Delgutte [23]. In section 3 we
derived approximate formulas for gn,m,ε,f and σn,m,ε,f near the limit. In section 4,
we used the asymptotic formula for σn,m,ε,f to study octopus cells of the mammalian
cochlear nucleus and saw that the predictions of the mathematical model correspond
quite well to experimental observations.

We hope that the theorems proved in this paper can be a first step in proving
theorems about more complicated and difficult neurophysiological questions. One such
question is the improved phase locking of CN neurons compared to the phase locking in
the AN [19, 22, 43, 4, 23], which is universally believed to occur because of convergence
of many AN fibers on CN target cells. The mathematical situation here is more
complicated, since typically one models the firing pattern in individual AN fibers by a
Poisson process whose parameter λ(t) depends on the sound; for example, λ(t) would
be periodic for a pure tone. The quantity of interest is the distribution of spike times
of the target cell modulo the nearest multiple of the period. For some cells the target
cell may fire at first hit, while for other cells many subthreshold hits in a small time
window may be necessary for firing. Because of the background noise caused by the
high spontaneous rates of many AN fibers, this may be an excellent use of the theory of
stochastic resonance [17, 47]. To prove such theorems one would need to represent the
noise as stochastic processes rather than making the simple approximations that we
have used in section 4. Another such question is how synchronous firing of large groups
of neurons in the CNS is created and maintained. Such firing has been proposed as
central to “binding” mechanisms in the visual system [12, 26, 28], the improvement
of coordination of motor systems in the cerebellum [20], and the creation of the γ
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rhythm [3]. The approximation theorem in section 3 is a natural starting point for
studying synfire chains [1, 11, 36, 18] that have both noise and high convergence
from level to level. Many of the models for these systems involve inhibition, so an
important step would be the extension of the results in [35, 30] and this paper to
include inhibitory neurons.

In applying our model to octopus cells we have simplified the biological situation
in several ways. First, AN neurons synapse serially on the large dendrites of octopus
cells, not directly on the cell body as in our model. Oertel has shown [32] that the
AN neurons that carry higher frequency sounds (they fire on average earlier) synapse
further out on the dendrite, and the AN neurons that carry lower frequency sounds
(they fire on average later) synapse closer to the cell body. Golding, Ferragamo, and
Oertel [16] conclude that this arrangement on the dendrite, as well as the thickness
of the dendrite and special channel properties, insure that the influence of each AN
neuron arrives (on average) at the cell body at the same time, which justifies our
assumption that all the AN neurons synapse directly on the cell body.

A much more serious simplification is that we have ignored the detailed biophysics
of synapses and the postsynaptic membrane. All the biophysics is contained in the
two parameters, ε, the time window, and m, the number of hits required in that
time window to fire the target cell. We believe that the results in section 4 show
conclusively that our model, with these two simple parameters, explains why octopus
cells improve the standard deviation of timing by one order of magnitude and why
octopus cells have no spontaneous rates. Of course, the values of these two parameters
arise from the detailed biophysics of the synapses and postsynaptic membrane.

Finally, it is reasonable to ask whether octopus cells, or indeed any neurons, have
sharp time windows as we assume in our model. Ferragamo and Oertel [13] have
conducted a detailed study of the potential of the postsynaptic membrane of octopus
cells. They showed that it is the rate of rise of the potential (dependent on the rate
of arrival of incoming spikes) that determines whether the octopus cell fires. This is
exactly what one would expect if the octopus cell had a sharp time window. If the
rate of rise is high enough, then there will be enough incoming spikes in the time
window, and if the rate of rise is too slow, then there will not be enough incoming
spikes in the time window. More generally, we have studied a number of frequently
used non-linear models for the biophysics of postsynaptic membranes and have shown
that, in reasonable parameter ranges, they have quite sharp time windows. These
results will appear in a subsequent publication [31].
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