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Stock Pricing Model

Recall our stochastic di�erential equation to model stock prices:

dS

S
= σdX + µdt

where

µ is known as the asset's drift , a measure of the average rate

of growth of the asset price,

σ is the volatility of the stock, it measures the standard

deviation of an asset's returns, and

dX is a random sample drawn from a normal distribution with

mean zero.

Both µ and σ are measured on a 'per year' basis.
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E�cient Market Hypothesis

Past history is fully re�ected in the present price, however this

does not hold any further information. (Past performance is

not indicative of future returns)

Markets respond immediately to any new information about an

asset.
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Markov Process

De�nition

A stochastic process where only the present value of a variable is

relevant for predicting the future.

This implies that knowledge of the past history of a Markov

variable is irrelevant for determining future outcomes.

Markov Process⇔E�cient Market Hypothesis
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Investigating the Random Variable

Consider a random variable, X , that follows a Markov stochastic

process.

Further assume that the variable's change (over a one-year time

span), dX , can be characterized by a standard normal distribution

(a probability distribution with mean zero and standard deviation

one, φ = ϕ(0,1)).
What is the probability distribution of the change in the value of

the variable (dX ) over two years?
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Investigating the Random Variable

Since X follows a Markov process, the two probability distributions

are independent. Thus, we can sum the distributions.

The two year mean is the sum of the two one-year means.

Similarily, the two year variance is the sum of the two one-year

variances.

However, the change is best represented by the standard deviation,

so the probability distribution that describes dX over two years is:

ϕ(0,
√
2).
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Investigating the Random Variable

Assumption

Changes in variance are equal for all identical time intervals.

For a six month period, the variance of change is 0.5 and the

standard deviation of the change is
√
0.5. The probability

distribution for the change in the value of the variable during

six months is ϕ(0,
√
0.5).

Similarily, dX over a three month period is ϕ(0,
√
0.25).

The change in the value of the variable during any time

period, dt, is ϕ(0,
√
dt)⇔ φ

√
dt.

This is because the variance of the changes in successive time

periods are additive, while the standard deviations are not.
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Wiener Process

The process followed by the variable we have been considering is

known as a Wiener process; A particular type of Markov stochastic

process with a mean change of zero and a variance rate of 1 per

year.

The change, dX during a small period of time, dt, is

dX = φ
√
dt

where φ = ϕ(0,1) as de�ned above.

The values of dX for any two di�erent short intervals of time,

dt, are independent.

Fact

In physics the Wiener process is referred to as Brownian motion

and is used to describe the random movement of particles.
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Wiener Statistics

Mean of dX , E[dX ] =
√
dtE[φ ] = 0

Variance of dX ,

Var[dX ] = E[(dX −0)2] = E[φ2dt] = dtE[φ2] = dt ·1 = dt

Standard deviation of dX =
√
dt
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The Pricing Model

dS

S
= σdX + µdt

Since we chose dX such that E[dX ] = 0 the mean of dS is:

E[dS ] = E[σSdX + µSdt] = µSdt

The variance of dS is:

Var [dS ] = E[dS2]−E[dS ]2 = E[σ2
S
2
dX

2] = σ
2
S
2
dt

Note that the standard deviation equals σS
√
dt, which is

proportional to the asset's volatility.
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Taylor's +

We need to determine how to calculate small changes in a function

that is dependent on the values determined by the above stochastic

di�erential equation. Let f (S) be the desired smooth function of S ;

since f is su�ciently smooth we know that small changes in the

asset's price, dS , result in small changes to the function f . Recall

that we approximated df with a Taylor series expansion, resulting in

df =
df

dS
dS +

1

2

d2f

dS2
dS2 + · · · ,

where dS = σSdX + µSdt =⇒

dS2 = (σSdX + µSdt)2 = σ
2S2dX 2 +2σ µS2dtdX + µ

2S2dt2
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dX
2→? as dt→ 0

Assumption

As dt→ 0, dX = O(
√
dt)⇔ dX/

√
dt = 1 and

dXdt = o(dt)⇔ dXdt = 0

Implies that

dS2 −→ σ
2S2dt as dt −→ 0

and results in

df =
df

dS
(σSdX + µSdt) +

1

2
σ
2S2

d2f

dS2
dt

= σS
df

dS
dX + (µS

df

dS
+

1

2
σ
2S2

d2f

dS2
)dt
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dX
2→? as dt→ 0

The integrated form of our stochastic di�erential equation to model

stock prices is

S(t) = S(t0) + σ

∫
t

t0

SdX + µ

∫
t

t0

Sdt

but how to handle
∫
t

t0
SdX ?
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Stochastic Calculus

For any function f ,

∫
t

t0

f (τ)dX (τ) = lim
n→∞

n−1

∑
k=0

f (tk)(X (tk+1)−X (tk))

where t0 < t1 < · · ·< tn = t is any partition (or division) of the

range [t0, t] into n smaller regions and X is the running sum of the

random variables dX .

Note

The value of the function, f , inside the summation is taken at the

left-hand end of the small regions (at t = tkand not at tk+1) �

e�ectively, this is where the Markov Property is incorporated into

the model!
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Stochastic Calculus

If X (t) were a smooth function the integral would be the usual

Stieltjes integral and it would not matter that f was evaluated at

the left-hand end. However, because of the randomness (which

does not go away as dt→ 0) the fact that the summation depends

on the left-hand value of f in each partition becomes important.

Example∫
t

t0
X (τ)dX (τ) = 1

2
(X (t)2−X (t0)2)− 1

2
(t− t0)

If X were smooth the last term would not be present.
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dX
2→ dt as dt→ 0

It can be shown (using stochastic integration) that

f (S(t)) = f (S(t0)) +
∫

t

t0

σS
df

dS
dX +

∫
t

t0

(µS
df

dS
+

1

2
σ
2S2

d2f

dS2
)dt

which when written in shorthand notation becomes

df = σS
df

dS
dX + (µS

df

dS
+

1

2
σ
2S2

d2f

dS2
)dt
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Further Generalization

Now consider f to be a function of both S and t. So long as we

are aware of partial derivatives, we can once again expand our

function (now f (S +dS , t +dt)) using a Taylor series

approximation about (S , t) to get:

df =
∂ f

∂S
dS +

∂ f

∂ t
dt +

1

2

∂ 2f

∂S2
dS2 + · · · ,

substituting in our past work, we end up with the following result:

df = σS
∂ f

∂S
dX + (µS

∂ f

∂S
+

1

2
σ
2S2

∂ 2f

∂S2
+

∂ f

∂ t
)dt
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Assumptions

The asset price follows a lognormal random walk

The risk-free interest rate r and the volatility of the underlying

asset σare known functions of time over the life of the option.

There are no associated transaction costs.

The underlying asset pays no dividends during the life of the

option.

There are no arbitrage opportunities.

Trading of the underlying asset can take place continuously.

Short selling is allowed (full use of proceeds from the sale is

permitted)

fractional shares of the underlying asset may be traded.
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Another Riskless Portfolio

Construct a portfolio, Π2 whose variation over a small time period,

dt is wholly deterministic.

Let

Π2 =−f + ∆S (1)

our portfolio is short one derivative security (we don't know or care

if it's a call or put) and long ∆of the underlying stock. ∆ is a given

number whose value (while not yet determined) is constant

throughout each time step.
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Another Riskless Portfolio

We are interested in how our portfolio reacts to small variations.

We observe that

dΠ2 =−df + ∆dS

=−σS
∂ f

∂S
dX − (µS

∂ f

∂S
+
1

2
σ
2S2

∂ 2f

∂S2
+

∂ f

∂ t
)dt +∆(σSdX + µSdt)

=−σS(
∂ f

∂S
−∆)dX − (µS(

∂ f

∂S
−∆) +

1

2
σ
2S2

∂ 2f

∂S2
+

∂ f

∂ t
)dt
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Choice of Delta

Choosing ∆ = ∂ f

∂S
we have:

dΠ2 =−(
∂ f

∂ t
+

1

2
σ
2S2

∂ 2f

∂S2
)dt (2)

this equation has no dependence on dX and therefore must be

riskless during time dt. Furthermore since we have assumed that

aribtrage opportunities do not exist, Π2 must earn the same rate of

return as other short-term risk-free securities over the short time

period we de�ned by dt. It follows that

dΠ2 = rΠ2dt

where r is the risk-free interest rate.
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Black-Scholes

Substituting the di�erent values of Π2 into the above equation we

have

(
∂ f

∂ t
+

1

2
σ
2S2

∂ 2f

∂S2
)dt = r(f − ∂ f

∂S
S)dt

which when simpli�ed gives us

∂ f

∂ t
+ rS

∂ f

∂S
+

1

2
σ
2S2

∂ 2f

∂S2
= rf (3)

the Black-Scholes partial di�erential equation. Under the stated

assumptions any derivative security whose value depends only on

the current value of the underlying asset S and on time t must

satisfy the above equation.
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Not just B-S

The Black-Scholes equation has many di�erent solutions; the

particular derivative that is obtained when the equation is

solved depends on the boundary conditions that are used. For

example if the derivative in question is a European call option

then the key associated boundary condition will be:

f = max(S−E ,0) when t = T

Equation (3) is not riskless for all time�it is only riskless for

the amount of time speci�ed by dt. This is because as S and t

change so does ∆ = ∂ f

∂S
, thus to keep the portfolio de�ned by

Π2 riskless we need to constantly update number of shares of

underlying held.
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Black-Scholes Solved

Consider the Black-Scholes equation (and boundary conditions) for

a European call with value C (S , t)

∂C

∂ t
+ rS

∂C

∂S
+

1

2
σ
2S2

∂ 2C

∂S2
− rC = 0

with

C (0, t) = 0, and C (S , t)∼ S as S → ∞

and

C (S ,T ) = max(S−E ,0)

Notice the similarities to the one-dimensional di�usion

equation; how can we use this observation?
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Substitutions

We need to get rid of the ugly S andS2 terms in the equation

above, so we make the following substitutions:

S = Eex

t = T − τ/1

2
σ2

C = Ev(x ,τ)
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Substitutions

The above substitutions result in the following equation

∂v

∂τ
=

∂ 2v

∂x2
+ (k−1)

∂v

∂x
−kv

where

k = r/
1

2
σ
2

and the initial condition becomes

v(x ,0) = max(ex −1,0)
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Closer

Note the above equation contains only one dimensionless

parameter, k , and is almost the di�usion equation. Consider the

following change of variable

v = eαx+βτu(x ,τ)

for some constants α and β to be determined later. Making the

substitution (and performing the di�erentiation) results in

βu +
∂u

∂τ
= α

2u +2α
∂u

∂x
+

∂ 2u

∂x2
+ (k−1)(αu +

∂u

∂x
)−ku

now if we choose β = α2 + (k−1)α−k with 0 = 2α + (k−1) we

return an equation with no u term and no ∂u

∂x
term.

NEED TO DO MORE!!!
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