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Abstract. A broad class of partitioned differential equations with possible algebraic constraints
is considered, including Hamiltonian and mechanical systems with holonomic constraints. For me-
chanical systems a formulation eliminating the Coriolis forces and closely related to the Euler–
Lagrange equations is presented. A new class of integrators is defined: the super partitioned additive
Runge–Kutta (SPARK) methods. This class is based on the partitioning of the system into different
variables and on the splitting of the differential equations into different terms. A linear stability and
convergence analysis of these methods is given. SPARK methods allowing the direct preservation
of certain properties are characterized. Different structures and invariants are considered: the man-
ifold of constraints, symplecticness, reversibility, contractivity, dilatation, energy, momentum, and
quadratic invariants. With respect to linear stability and structure-preservation, the class of s-stage
Lobatto IIIA-B-C-C∗ SPARK methods is of special interest. Controllable numerical damping can
be introduced by the use of additional parameters. Some issues related to the implementation of a
reversible variable stepsize strategy are discussed.
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1. Introduction. Recently much interest has been devoted to numerical inte-
gration preserving certain structures and invariants for different classes of differential
and differential-algebraic equations [11, 13, 25, 26, 30, 34, 42, 46, 50, 51, 53, 54, 58, 59,
60, 61, 62, 65, 67, 74, 76, 81]. This concerns mostly Hamiltonian systems, conservative
mechanical systems, reversible systems, integrable systems, and systems with periodic
solutions. Structure-preserving integrators do not only give numerical results which
are usually qualitatively better, but they may also possess better long-time properties
[11, 13, 25, 30, 34, 77]. On the other hand, a large effort has been spent during the
past decades toward the numerical solution of stiff differential equations (see, e.g.,
[35] and the references therein). Methods used for stiff systems typically possess a
numerical damping property. It is one of the goals of this article to present a class of
integrators which can handle different kinds of systems in a unified way without in-
troducing unnecessary numerical damping where it is not needed. Currently existing
methods are useful for certain specific classes of problems, but they usually do not
retain properties of other classes of problems. The class of partitioned Runge–Kutta

∗Received by the editors October 16, 1995; accepted for publication (in revised form) January
28, 1997; published electronically September 10, 1998. The work of this author was supported by
the Fonds National Suisse de la Recherche Scientifique, Switzerland. This work was also indirectly
sponsored in part by the Army High Performance Computing Research Center under the auspices
of the Department of the Army, Army Research Laboratory cooperative agreement DAAH04-95-2-
0003/contract DAAH04-95-C-0008, the content of which does not necessarily reflect the position or
the policy of the government, and no official endorsement should be inferred. This research was also
supported in part by National Science Foundation grant ASC-9523480.

http://www.siam.org/journals/sisc/20-2/29322.html
†Department of Computer Science, University of Minnesota, 4-192 EE/CS Bldg., 200 Union St.

S.E., Minneapolis, MN 55455-0159 (na.ljay@na-net.ornl.gov).

416



STRUCTURE PRESERVATION WITH SPARK METHODS 417

(PRK) methods introduced in [44, 46] suffers from a lack of stability for a certain
class of stiff oscillatory problems, which is another motivation to introduce a more
general class of methods.

In this article we consider a broad class of partitioned differential equations with
possible algebraic constraints and a splitting of the differential equations into dif-
ferent terms (see section 2). We are interested in numerical methods allowing the
preservation of certain properties when present in the system, namely, the manifold
of constraints, symplecticness, reversibility, contractivity, dilatation, energy, momen-
tum, and quadratic invariants. In section 3 Hamiltonian systems and mechanical
systems are analyzed. Hamiltonian systems arise in applications where dissipative
forces can be neglected [3], such as in conservative mechanical systems [6], astronomy
[80], electrodynamics, molecular dynamics [1, 2, 7, 8, 64, 78, 84], plasma physics, and
fluid dynamics [83]. Mechanical systems arise in many applications, e.g., in multi-
body dynamics of rigid and/or flexible bodies [36, 69, 70, 71], in structural dynamics
[14, 15, 17, 20, 37, 38, 39, 40, 55, 56], in real-time vehicle-systems simulation [57], in
aerospace applications [9], in biomechanics [48], and in robotics [43]. For mechanical
systems a formulation eliminating the Coriolis forces and closely related to the Euler–
Lagrange equations is presented. In section 4 the new class of SPARK methods is
defined taking advantage of the structure of the equations. Results about existence,
uniqueness, and convergence of SPARK methods are stated. A motivation for this
new class of integrators comes from the linear stability analysis of section 5. In sec-
tion 6 conditions on the coefficients of SPARK methods are given to preserve the
aforementioned properties. In section 7 we show how controllable numerical damping
can be introduced by the use of additional parameters. Within the class of SPARK
methods, the s-stage Lobatto IIIA-B-C-C∗ SPARK methods presented in section 8
are of special interest since they satisfy all requirements and desired properties. For
these methods superconvergence of order 2s− 2 is stated. In section 9 comments are
made related to the implementation of a reversible variable stepsize strategy. Finally,
in section 10 some numerical experiments are given.

To give an example of the application of a Lobatto IIIA-B-C-C∗ SPARK method,
we consider the following class of mechanical systems with constraints arising in struc-
tural dynamics:

q′ = v ,(1a)

Mv′ = F (t)− Cv −Kq −GTλ ,(1b)

0 = Gq − c ,(1c)

0 = Gv(1d)

where M , C, K, and G are the constant mass, damping, stiffness, and constraint
matrices, respectively; F (t) is the vector of applied forces; q is the vector of displace-
ments; v is the vector of velocities; and λ is the vector of Lagrange multipliers. One
step (q0, v0) 7→ (q1, v1) of the second-order Lobatto IIIA-B-C-C∗ SPARK method with
stepsize h can be applied to this system as follows:

Q1 = q0 + h

(
1

2
V1 − 1

2
V2

)
,

Q2 = q0 + h

(
1

2
V1 +

1

2
V2

)
,

MV1 = Mv0 − h
(

1

2
CV1 − 1

2
CV2

)
− h

(
1

2
KQ1 − 1

2
KQ2

)
− h

2
GTΛ1 ,
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MV2 = Mv0 + hF (t0)− h
(

1

2
CV1 +

1

2
CV2

)
− h

(
1

2
KQ1 +

1

2
KQ2

)
− h

2
GTΛ1 ,

q1 = q0 + h

(
1

2
V1 +

1

2
V2

)
,

0 = Gq1 − c ,
Mv1 = Mv0 + h

(
1

2
(F (t0)− CV1 −KQ1 −GTΛ1)

+
1

2
(F (t0 + h)− CV2 −KQ2 −GTΛ2)

)
,

0 = Gv1

The Lobatto IIIA coefficients are used for the constraints (1c). The velocities in (1a)
are treated with the Lobatto IIIC coefficients. The forces terms in (1b) are treated
differently: F (t) is treated with the Lobatto IIIC∗ coefficients, −Cv and −Kq with
the Lobatto IIIC coefficients, and −GTλ with the Lobatto IIIB coefficients. Different
alternatives are possible, however.

2. The system of equations. We consider more generally the following class
of partitioned differential-algebraic equations:

y′ = f(y, z) ,(2a)

M(y)z′ = k(y, z, u) ,(2b)

0 = g(y)(2c)

where y = (y1, . . . , yn)T ∈ Rn, z = (z1, . . . , zp)T ∈ Rp, u = (u1, . . . , um)T ∈ Rm

(m < n and 2m < n+ p), f : Rn ×Rp → Rn,M : Rn → Rp×p, k : Rn ×Rp ×Rm →
Rp, g : Rn → Rm. For the ease of presentation we will consider only autonomous
systems, although results can be easily extended to time-dependent systems. The
mass matrix M(y) is assumed to be invertible in a neighborhood of the solution (for
mechanical systems this assumption can be relaxed; see subsection 3.2). The variables
(y, z) are called the differential variables, and the variables u are called the algebraic
variables. Differentiating twice the holonomic constraints (2c) we obtain the following
additional constraints:

0 = gy(y)f(y, z) ,(2d)

0 = gyy(y)(f(y, z), f(y, z)) + gy(y)fy(y, z)f(y, z)(2e)

+gy(y)fz(y, z)M
−1(y)k(y, z, u) .

In the presence of constraints we suppose that the matrix

gy(y)fz(y, z)M
−1(y)ku(y, z, u) is invertible(3)

in a neighborhood of the exact solution. This implies that the above overdetermined
differential-algebraic system (2) is of differential and perturbation index one [44, p. 28]
since only one more differentiation of the constraints (2e) is required to express u′ as
a function of the differential variables (y, z). Such problems are well-posed, contrary
to higher index problems, e.g., index three problems such as (2a), (2b), (2c).

An alternative formulation to (2b) is given by

(M(y)z)′ = My(y)(f(y, z), z) + k(y, z, u) =: k̂(y, z, u) .(4)
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This may seem more costly because of the need to compute the term My(y)(f(y, z), z),
but for mechanical systems this is even less costly since the corresponding term (the
Coriolis forces) cancels out (see subsection 3.2). With the equations of mechanical
systems in mind, where different types of forces are present (see subsection 3.2), we
will consider in (2a) and (4) the decompositions

f(y, z) =

4∑
m=1

f (m)(y, z) ,(5a)

k̂(y, z, u) = k(1)(y, z) +
4∑

m=2

k(m)(y, z, u)(5b)

where the functions f (m) and k(m) are supposed to have distinct properties and can
therefore be numerically treated in a different way. We stress the point that any
ordinary differential system of the form y′ = f(y) or y′ = f(y, z), z′ = k(y, z) can be
seen as a particular case of (2). Hence, most of the ideas and of the results developed
in this paper remain valid in this situation, e.g., for the pure differential equations of
unconstrained Hamiltonian and mechanical systems.

3. Hamiltonian and mechanical systems. Two important classes of differen-
tial-algebraic systems enter into the class of (2): Hamiltonian and mechanical systems
with holonomic constraints. They are the subject of the forthcoming subsections.

3.1. Hamiltonian systems. The first class of equations are those of Hamilto-
nian systems with holonomic constraints

q′ = HT
p (q, p) ,(6a)

p′ = −HT
q (q, p)−GT (q)λ ,(6b)

0 = g(q) ,(6c)

0 = G(q)HT
p (q, p) ,(6d)

0 = Gq(q)(H
T
p (q, p), HT

p (q, p)) +G(q)HT
pq(q, p)H

T
p (q, p)(6e)

−G(q)HT
pp(q, p)H

T
q (q, p)−G(q)HT

pp(q, p)G
T (q)λ,

where G(q) := gq(q). The variables (q, p, λ) play the role of (y, z, u) in (2): q =
(q1, . . . , qn)T ∈ Rn are the generalized coordinates, p = (p1, . . . , pn)T ∈ Rn are the
generalized momenta, and λ = (λ1, . . . , λm)T ∈ Rm are the Lagrange multipliers. The
scalar function H(q, p) is called the Hamiltonian. Assumption (3) is read here as

G(q)HT
pp(q, p)G

T (q) is invertible .(7)

Four properties of Hamiltonian systems with holonomic constraints are the following:
1. Any solution must lie on the manifold of constraints

V =
{

(q, p) ∈ Rn ×Rn | 0 = g(q), 0 = G(q)HT
p (q, p)

}
.

2. The Hamiltonian is invariant along a solution, i.e., H(q(t), p(t)) = Const.
3. The flow φτ : (q(t), p(t)) 7→ (q(t+ τ), p(t+ τ)) is symplectic on the manifold

of constraints V , i.e., on V the 2-form dq ∧ dp =
∑n
i=1 dqi ∧ dpi is preserved by the

flow.
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4. The flow may be ρ-reversible, i.e., φτ = ρ−1 ◦ φ−1
τ ◦ ρ for some linear trans-

formation ρ of the variables (q, p). For example for conservative mechanical systems
in Hamiltonian form (see subsection 3.2), the Hamiltonian is given by H(q, p) =
T (q, p) + U(q), where T (q, p) = 1

2p
TM−1(q)p is the kinetic energy and U(q) is the

potential energy. The flow is ρ-reversible with respect to a reflection of the generalized
momenta ρ : (q, p) 7→ (q,−p).

3.2. Mechanical systems. The second class of equations are those of mechan-
ical systems with holonomic constraints

q′ = v ,(8a)

M(q)v′ = f(q, v, λ)−GT (q)λ ,(8b)

0 = g(q) ,(8c)

0 = G(q)v ,(8d)

0 = Gq(q)(v, v) +G(q)v′(8e)

where G(q) := gq(q), M(q) is the symmetric generalized mass matrix, and f(q, v, λ)
is the vector of generalized forces. The variables (q, v, λ) play the role of (y, z, u) in
(2): q = (q1, . . . , qn)T ∈ Rn are the generalized coordinates, v = (v1, . . . , vn)T ∈
Rn are the generalized velocities, and λ = (λ1, . . . , λm)T ∈ Rm are the Lagrange
multipliers. The above formulation is called the descriptor form and is referred in
classical mechanics as the Lagrange equations of the first kind. The importance of
this formulation lies in the fact that it is independent of the choice of the coordinates.
The generalized forces f(q, v, λ) contain the term

−Mq(q)(v, v),

which is referred to as the Coriolis forces. In (4) the term My(y)(f(y, z), z) corre-
sponds here exactly to the term Mq(q)(v, v); hence the computational work is reduced
by using, instead of (8b), the formulation

(M(q)v)′ = Mq(q)(v, v) + f(q, v, λ)−GT (q)λ ,(8f)

since the term corresponding to the Coriolis forces cancels out. If the generalized
mass matrix M(q) is invertible, then (8e) can be rewritten

0 = Gq(q)(v, v) +G(q)M(q)−1
(
f(q, v, λ)−GT (q)λ

)
,

and assumption (3) reads

G(q)M(q)−1(GT (q)− fλ(q, v, λ)) is invertible .(9)

In general the mass matrix M(q) may be singular, meaning that more constraints are
actually acting on the system. It can be supposed only that the matrix(

M(q) GT (q)
G(q) 0

)
is invertible .(10)

Nevertheless, under the assumption that(
M(q) GT (q)− fλ(q, v, λ)
G(q) 0

)
is invertible(11)
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we still have an overdetermined index one system, since we can implicitly express v′

and λ from (8b)–(8e) (explicitly if fλ(q, v, λ)) ≡ 0). We will discuss hereafter how
this situation can be treated.

Conservative mechanical systems are mechanical systems where the generalized
forces f(q, v, λ) are given by the sum of Coriolis forces −Mq(q)(v, v), of momental
(centrifugal) inertia forces 1

2 (vTM(q)v)Tq , and of conservative forces −UTq (q) (i.e.,
forces coming from a potential U(q)):

f(q, v, λ) = −Mq(q)(v, v) +
1

2
(vTM(q)v)Tq − UTq (q) .(12)

In this situation the dynamics (8) with (12) can also be derived from a constrained
Lagrange–Hamilton variational principle

q′ = v , min

∫ t1

t0

L(q(τ), v(τ))dτ , 0 = g(q),

where L(q, v) = T (q, v) − U(q) is the Lagrangian, T (q, v) = 1
2v
TM(q)v is the kinetic

energy, and U(q) is the potential energy. Necessary conditions for this variational
problem are given by the constrained Euler–Lagrange equations

q′ = v ,
d

dt

(
L
T

v (q, v, λ)
)

= L
T

q (q, v, λ) , 0 = g(q)

with L(q, v, λ) = L(q, v)− g(q)Tλ. We thus get

(M(q)v)′ =
1

2
(vTM(q)v)Tq − UTq (q)−GT (q)λ ,

showing that for conservative mechanical systems the formulation (8f) actually cor-
responds to the direct expression of the above Euler–Lagrange equations. If the
generalized mass matrix M(q) is invertible, then the equations can be rewritten in
Hamiltonian form by defining the generalized momenta p := M(q)v and by using
the Legendre transformation of the Lagrangian with respect to v given by H(q, p) =
pT v(q, p) − L(q, v(q, p)). Thus the properties of Hamiltonian systems can be trans-
fered to conservative mechanical systems. It can be easily shown that H = T +U , the
total energy of the system. More generally, under the assumption (10), e.g., when the
generalized mass matrix M(q) is noninvertible, a trick is to consider the augmented
system (

q′

r′

)
=

(
v
w

)
,(13a) (

M(q) GT (q)
G(q) 0

)(
v′

w′

)
=

(
f(q, v, λ)−GT (q)λ
−Gq(q)(v, v)− µ

)
,(13b) (

0
0

)
=

(
g(q)
r

)
,(13c) (

0
0

)
=

(
G(q)v
w

)
,(13d) (

0
0

)
=

(
Gq(q)(v, v) +G(q)v′

w′

)
.(13e)

This system possesses exactly the same structure as (8) by considering the augmented
variables Q = (q, r), V = (v, w), and Λ = (λ, µ). In this formulation the augmented
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mass matrix in (13b) is invertible by the assumption (10). The exact solution of
the augmented system satisfies trivially r = 0, w = 0, and µ = 0. Therefore, the
properties of Hamiltonian systems can still be transfered to conservative mechanical
systems with a noninvertible mass matrix. Hence, four properties of conservative
mechanical systems with holonomic constraints are the following:

1. Any solution must lie on the manifold of constraints

W = {(q, v) ∈ Rn ×Rn | 0 = g(q), 0 = G(q)v} .
2. The total energy is invariant along a solution, i.e., T (q(t), v(t)) + U(q(t)) =

Const.
Proof. The result is trivial when the mass matrix is invertible. The total energy

of the augmented system is given by

1

2

(
v
w

)T (
M(q) GT (q)
G(q) 0

)(
v
w

)
+ U(q) .

Because of w = 0 we get the desired result.
3. The flow ψτ : (q(t), v(t)) 7→ (q(t+ τ), v(t+ τ)) preserves the symplectic 2-

form dq ∧ d(M(q)v) on the manifold of constraints W .
Proof. When the mass matrix is invertible the result directly follows from the

preservation of dq ∧ dp in Hamiltonian form, where p = M(q)v. For the augmented
system we have

d

(
q
r

)
∧ d
((

M(q) GT (q)
G(q) 0

)(
v
w

))
is preserved .(14)

Since r = 0, w = 0, and G(q)v = 0, we get the desired result.
4. The flow is γ-reversible with respect to a reflection of the generalized veloci-

ties γ : (q, v) 7→ (q,−v), i.e., ψτ = γ−1 ◦ ψ−1
τ ◦ γ.

For more general mechanical systems we assume that the forces appearing on
the right-hand side of (8f) can be decomposed in classes modeling different physical
effects:

Mq(q)(v, v) + f(q, v, λ)−GT (q)λ = f (1)(q, v) +
4∑

m=2

f (m)(q, v, λ) .(15)

As mentioned before, the term Mq(q)(v, v) cancels out with its opposite contained
in f(q, v, λ). We do not pretend that the forces of any given system can be easily
decomposed, but we think that it is likely to be possible for many engineering prob-
lems of interest (see, e.g., the system (1)). The term f (2) should contain momental
(centrifugal) inertia forces 1

2 (vTM(q)v)Tq and conservative forces −UTq (q). The term
f (3) should contain dissipative forces, e.g., friction forces and forces due to the pres-
ence of dampers. The term f (4) should contain explosive forces, i.e., forces increasing
the energy of the system, e.g., forces due to external excitation. Similarly, for the
augmented system we can decompose the expression coming from (13b) and (4) as(

Mq(q)(v, v) +GTq (q)(v, w) + f(q, v, λ)−GT (q)λ
−µ

)
= F (1)(q, v, w)

+

4∑
m=2

F (m)(q, v, w, λ, µ) .(16)
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4. SPARK methods. When applying a numerical method, it will be seen in
the linear situation in section 5 that different types of terms (e.g., the force terms
for a mechanical system) require different numerical stability properties. As a unique
Runge–Kutta (RK) method possessing all these stability properties cannot exist, this
is one motivation of the forthcoming combination of different RK methods. Another
motivation comes from the preservation of diverse nonlinear structures and invari-
ants as described in section 6. Once again, there cannot exist a unique RK method
possessing all desired properties.

4.1. Definition of SPARK methods. The general definition of SPARK meth-
ods is as follows.

Definition 4.1. One step of an s-stage SPARK method applied to the overde-
termined partitioned differential-algebraic system (2) with decomposition (4)–(5), con-
sistent initial values (y0, z0, u0), and stepsize h is read as

Yi = y0 + h
4∑

m=1

s∑
j=1

a
(m)
ij f (m)(Yj , Zj) for i = 1, . . . , s ,(17a)

M(Yi)Zi = M(y0)z0 + h

s∑
j=1

a
(1)
ij k

(1)(Yj , Zj)(17b)

+ h

4∑
m=2

s∑
j=1

a
(m)
ij k(m)(Yj , Zj , Uj) for i = 1, . . . , s ,

0 = g

(
y0 + h

s∑
j=1

a
(1)
ij f(Yj , Zj)

)
for i = 1, . . . , s ,(17c)

y1 = y0 + h
4∑

m=1

s∑
i=1

b
(m)
i f (m)(Yi, Zi) ,(17d)

0 = g(y1) ,(17e)

M(y1)z1 = M(y0)z0 + h
s∑
i=1

b
(1)
i k(1)(Yi, Zi) + h

4∑
m=2

s∑
i=1

b
(m)
i k(m)(Yi, Zi, Ui) ,(17f)

0 = gy(y1)f(y1, z1) ,(17g)

0 = gyy(y1)(f(y1, z1), f(y1, z1)) + gy(y1)fy(y1, z1)f(y1, z1)(17h)

+gy(y1)fz(y1, z1)M−1(y1)k(y1, z1, u1) .

The coefficients (b
(m)
i , a

(m)
ij ) for m = 1, . . . , 4 are the coefficients of four RK methods.

Remark 4.2.
1. When the mass matrix M(y) is not constant, it is not equivalent in general

to apply a SPARK method using

z′ = M(y)−1k(y, z, u) =: k̃(y, z, u)

instead of (2b).
2. When the mass matrix M(q) in (8b) is invertible, it is not equivalent to apply

a SPARK method to the augmented system (13) instead of (8) since in general the
internal stages Wi correponding to the variables w do not vanish.

Using the new variables

Y := y , Z := M(y)z , U := u(18)
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and defining

F (Y,Z) := f(Y,M(Y )−1Z) ,

K(Y,Z, U) := k̂(Y,M(Y )−1Z,U) ,

G(Y ) := g(Y ) ,

the whole system (2) can be rewritten in an equivalent way:

Y ′ = F (Y,Z) ,(19a)

Z ′ = K(Y,Z, U) ,(19b)

0 = G(Y ) ,(19c)

0 = GY (Y )F (Y,Z) ,(19d)

0 = GY Y (Y )(F (Y,Z), F (Y,Z)) +GY (Y )FY (Y,Z)F (Y,Z)(19e)

+GY (Y )FZ(Y,Z)K(Y,Z, U) .

Hence, the definition of SPARK methods is such that it is invariant under the nonlin-
ear change of variables (18). It is by definition equivalent to formally apply a SPARK
method to the modified formulation (19) and then to rewrite it in terms of the original
variables (y, z, u). When the mass matrix M(y) is not constant, this simply means
that the numerical scheme is applied differently than the usual way by making use of
(4) instead of (2b), which is even less costly for mechanical systems (see subsection
3.2). The convergence analysis is also simplified since it can be assumed in the proofs
that the mass matrix M(y) is equal to Ip the identity matrix in Rp×p.

The words partitioned and additive for the above methods can be justified from the
fact that the partitioning and the splitting of the equations are taken into account in
the definition. Moreover, the components y in the constraints 0 = g(y) are integrated
differently than the differential equation (2a) for y itself, so strictly speaking the
method is not a pure additive and partitioned RK method which would impose 0 =
g(Yi) in the definition; this is one justification for the additional word super. The
idea of exploiting additivity by using different methods to treat different terms can be
found in [22, 23], where the goal of the authors was rather to take advantage of the
linearity of one term. Some general linear multistep implicit-explicit schemes treating
terms of different types differently are presented in [5]. The idea of exploiting the
partitioning in different variables for semiexplicit index three systems was introduced
in [44, 46].

In the following susbsections we analyze SPARK methods. We first give some
simplifying assumptions which are heavily used in results about existence, unique-
ness, and convergence of SPARK methods. The usual way to determine the order
of global convergence of RK type methods is to study the local error and then the
error propagation. For SPARK methods, the same techniques as those given in [44,
Chapter 5] for PRK methods can be applied. Only slight changes must be made
concerning the local error.

4.2. Simplifying assumptions. In this article, we consider SPARK methods
based on a unique quadrature formula, i.e.,

b
(m)
i = bi for m = 1, . . . , 4, i = 1, . . . , s ,(20a)

c
(m)
i = ci for m = 1, . . . , 4, i = 1, . . . , s .(20b)
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We also consider the following simplifying assumptions:

B(p) :

s∑
i=1

bic
k−1
i =

1

k
for k = 1, . . . , p ,

Cm(qm) :
s∑
j=1

a
(m)
ij ck−1

j =
cki
k

for i = 1, . . . , s and k = 1, . . . , qm ,

Dm(rm) :
s∑
i=1

bic
k−1
i a

(m)
ij =

bj
k

(
1− ckj

)
for j = 1, . . . , s and k = 1, . . . , rm ,

CmCn(Qmn) :
s∑
j=1

s∑
l=1

a
(m)
ij a

(n)
jl c

k−2
l =

cki
k(k − 1)

for i = 1, . . . , s and

k = 2, . . . , Qmn ,

DmDn(Rmn) :

s∑
i=1

s∑
j=1

bic
k−2
i a

(m)
ij a

(n)
jl =

bl
k
− blcl
k − 1

+
blc

k
l

k(k − 1)
for l = 1, . . . , s

and k = 2, . . . , Rmn ,

(Sm) : a
(m)
sj = bj for j = 1, . . . , s,

where m,n ∈ {1, . . . , 4}. From now on we denote the RK matrices A(m) := (a
(m)
ij )si,j=1

and the weight vector b := (b1, . . . , bs)
T .

4.3. Existence and uniqueness. Generally there does not exist a solution to
the nonlinear system of Definition 4.1 without any assumption on the coefficients of
the SPARK method. For SPARK methods satisfying the simplifying assumption (S1)
and

a
(1)
1j = 0 for j = 1, . . . , s ,(21a)

A(1)A(2) = A(1)A(3) = A(1)A(4) =:

(
0 . . . 0

N

)
,(21b)

rank

(
N
bT

)
= s ,(21c)

existence and uniqueness for the nonlinear system can be shown under some addi-
tional assumptions (see Theorem 4.3 below). Assuming (21a) and 0 = g(y0), (17c) for
i = 1 is automatically satisfied. By (20a) and the simplifying assumption (S1) we get
y1 = y0 + h

∑s
j=1 a

(1)
sj f(Yj , Zj). Therefore by (17c) for i = s (17e) is also automat-

ically satisfied. A very accurate value for u1 may be unnecessary. For a consistent
SPARK method by the simplifying assumption (S1) we have cs = 1. Hence, instead of
computing u1 by solving (17h), a fairly good choice is given by u1 := Us if one is not
interested to enforce the constraints (2e). The accuracy of the numerical u-component
does not influence the convergence of the (y, z)-components and the properties of the
SPARK method anyway.

Theorem 4.3. Suppose that

0 = g(y0) ,

O(h2) = gy(y0)f(y0, z0) ,

O(h) = gyy(y0)(f(y0, z0), f(y0, z0)) + gy(y0)fy(y0, z0)f(y0, z0)

+gy(y0)fz(y0, z0)M−1(y0)k(y0, z0, u0) ,
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(3) is satisfied in a neighborhood of (y0, z0, u0), the simplifying assumption (S1) and
(20)–(21) hold, and the simplifying assumptions C1Cn(2) are satisfied for n = 1, . . . , 4.
Then for h ≤ h0 there exists a locally unique SPARK solution of Definition 4.1 which
satisfies

Yi − y0 = O(h) for i = 1, . . . , s , y1 − y0 = O(h) ,

Zi − z0 = O(h) for i = 1, . . . , s , z1 − z0 = O(h) ,

Ui − u0 = O(h) for i = 1, . . . , s , u1 − u0 = O(h) .

Remark 4.4. If the mass matrix M(y) is not invertible, existence and uniqueness
of the SPARK solution cannot be shown in general.

The proof of this theorem is quite similar to that of [44, Theorem V.4.1] and is
therefore omitted. The condition (21b) is essential in order to use assumption (3) to
apply the implicit function theorem in the proof of Theorem 4.3.

4.4. Local and global error. For the local error of SPARK methods we have
the following result.

Theorem 4.5. Consider the overdetermined partitioned differential-algebraic sys-
tem of index one (2) satisfying (3) in a neighborhood of the exact solution, with consis-
tent initial values (y0, z0, u0) at t0, and a SPARK method with coefficients satisfying
the hypotheses of Theorem 4.3 and the simplifying assumptions B(p), (S1), Cm(qm)
and Dm(rm) for m = 1, . . . , 4, C1Cn(Q), and D1Dn(R) for n = 2, 3, 4. Then we
have

y1 − y(t0 + h) = O(hµ+1), z1 − z(t0 + h) = O(hν+1), u1 − u(t0 + h) = O(hν+1),

where

µ = min(p, 2q + 2, q + r + 2, κ+ 1, Q+ r′, 2Q− 1, Q+R) ,

ν = min(µ, 2Q− 2)

with q := min4
m=1 q

m, r := min4
m=1 r

m, κ := min4
m=1(qm + rm), r′ := min4

m=2 r
m. If

the function k(y, z, u) of (2b) is linear in u then the values 2Q − 1 in µ and 2Q − 2
in ν can be raised by one.

The proof of this theorem is rather long and technical, but it is similar to that
given in [44, Theorem V.4.3]. It makes use of a “rooted-tree type” theory about the
Taylor expansion of the exact and the numerical solutions. The most difficult part is
to estimate the local error of the z-component.

For the study of the error propagation we need a result on the influence of per-
turbations. This technical result and its proof are similar to [44, Theorem V.4.2] for
PRK methods, it is therefore omitted. For the global error of SPARK methods we
have then the following result.

Theorem 4.6. Under the same hypotheses stated in Theorem 4.5, the global error
of a SPARK method satisfies for tn − t0 = nh ≤ Const

yn − y(tn) = O(hν), zn − z(tn) = O(hν), un − u(tn) = O(hν) .

This result remains valid in case of variable stepsizes with h = maxi |hi|.
The proof of this theorem is identical to that of [44, Theorem V.4.6]. In the next

section we analyze the linear stability properties of SPARK methods. For nonlinear
systems a linear stability analysis is generally inadequate; therefore, in section 6
we look at the preservation of some nonlinear structures and invariants by SPARK
methods.



STRUCTURE PRESERVATION WITH SPARK METHODS 427

5. Linear stability. As mentioned in section 4, different types of forces in (15)
require different numerical stability properties. We discuss in the following subsections
three fundamental linear stability properties: L-stability, P-stability, and the new
concept of explosivity. Roughly speaking, it means that for Dahlquist’s test equation
[24]

z′ = λz ,(22)

three different situations are analyzed: Re(λ) < 0, Re(λ) = 0, and Re(λ) > 0, more
importantly when |Re(λ)| or |Im(λ)| is large. Since there cannot exist a unique RK
method possessing all desired stability properties in these three situations, this is one
of the main motivations of the definition of SPARK methods.

5.1. L-stability. We consider Dahlquist’s test equation (22). The exact solution
to this simple equation with initial value z0 at t0 is given by

z(t0 + h) = eµz0,(23)

where µ = λh. The application of a RK method with coefficients (bi, aij) to (22) leads
to

z1 = R(µ)z0,(24)

where R(µ) is the stability function of the RK method,

R(µ) = 1 + µbT (I − µA)−1Is,(25)

and Is is the s-dimensional vector (1, . . . , 1)T . For Re(µ) < 0 we have |eµ| < 1, and
for Re(µ)→ −∞ we obtain |eµ| → 0. Hence, it is desirable that the stability function
(25) possesses the same properties.

Definition 5.1 (see [35, Section IV.3]). An RK method is said to be A-stable if

|R(µ)| < 1 for Re(µ) < 0 .(26)

A-stable RK methods which additionally satisfy

|R(µ)| → 0 for Re(µ)→ −∞(27)

are called L-stable.
It is well known that RK methods for which the stability function R(µ) is equal

to Rj−1,j(µ) or Rj−2,j(µ), where Rkj(µ) is the (k, j)-Padé approximation to the ex-
ponential function are L-stable [35, sections IV.3 and IV.4] (see the Ehle conjecture
in [35, Theorem IV.4.12]). In the family of Lobatto methods, the stability function
of the s-stage Lobatto IIIC method is given by Rs−2,s(µ). Therefore, we have the
following well-known result.

Theorem 5.2. The Lobatto IIIC RK methods are L-stable.
In the decomposition (15) the term f (3)(q, v, λ) should contain dissipative forces

(∂f (3)/∂v(q, v, λ) negative definite), e.g., like −Cv in (1b) with C positive definite.
In order to take large stepsizes regardless the strength of the damping, L-stable coef-
ficients such as the s-stage Lobatto IIIC coefficients are the most appropriate to treat
such forces.
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5.2. P-stability. Highly oscillatory systems are systems with large eigenvalues
of the Jacobian matrix on or near the imaginary axis of the complex plane. A simple
model problem is given by the equations of the harmonic oscillator(

y′

z′

)
=

(
z
−λ2y

)
,(28)

where by definition λ ∈ R+. This is one of the simplest systems where the eigenvalues
of the Jacobian matrix (±λi) are purely imaginary. The exact solution to this problem
with initial values y0 and z0 at t0 is given by(

y(t0 + h)

z(t0 + h)

)
= DλΘ(µ)D−1

λ

(
y0

z0

)
, Θ(µ) =

(
cos(µ) sin(µ)

− sin(µ) cos(µ)

)
,(29)

where µ = λh and Dλ = diag(1, λ). The application of a PRK method with coeffi-
cients (bi, a

(m)
ij ) and (bi, a

(n)
ij ) to (28) yields(

y1

z1

)
= DλM(µ)D−1

λ

(
y0

z0

)
,

where the 2× 2 stability matrix M(µ) is given by

M(µ) = I2 + µ

(
O bT

−bT O

)(
Is −µA(m)

µA(n) Is

)−1( Is O
O Is

)
.(30)

We are interested in methods preserving the norm (equal to one) of the eigenvalues
of the rotation matrix Θ(µ) in (29) for all µ, motivating the following concept of
P-stability [16, 19, 29, 47].

Definition 5.3. For a PRK method, an interval I with {0} ⊂ I ⊂ R, is an
interval of periodicity if for all µ ∈ I the eigenvalues λi(µ) (i = 1, 2) of the stability
matrix M(µ) (30) satisfy |λi(µ)| = 1 (i = 1, 2) and if λ1(µ) = λ2(µ) = ±1, then
this eigenvalue must possess two distinct eigenvectors. A PRK method is said to be
P-stable if R is an interval of periodicity.

The following results are well known.
Theorem 5.4. Symmetric RK methods are P-stable.
Corollary 5.5. The Lobatto IIIA RK methods are P-stable.
Corollary 5.6. The Lobatto IIIB RK methods are P-stable.
However, the combination of the Lobatto IIIA and Lobatto IIIB methods leads

to this somehow surprising result [47].
Theorem 5.7. The Lobatto IIIA-B PRK methods are not P-stable.
For ODEs the trapezoidal rule (the 2-stage Lobatto IIIA RK method) and the

(Rattle–)Verlet algorithm (the 2-stage Lobatto IIIA-B PRK method) can be seen as
particular cases of the 2-stage Lobatto IIIA-B-C-C∗ SPARK method (see section 8 and
the coefficients in Table 1). For nonlinear highly oscillatory Hamiltonian and mechan-
ical systems and for sufficiently small amplitudes in the oscillations, both methods do
not converge when taking stepsizes larger than the shortest period of oscillation. For
the (Rattle–)Verlet algorithm this is because it is not P-stable according to Theorem
5.7, its interval of periodicity being equal to ] − 2, 2[. For the trapezoidal rule the
reason is less obvious; P-stability is not sufficient. The convergence of the method
is dictated by its behavior when applied to a nearby holonomically constrained sys-
tem, which is a differential-algebraic system of index three [31, 44, 47, 52]. That is
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the reason why the trapezoidal rule, although P-stable, fails when applied with large
stepsizes to these highly oscillatory systems, because it does not converge for index
three problems [47]. We emphasize the fact that the (Rattle–)Verlet algorithm and
the trapezoidal rule fail for large stepsizes even if the amplitudes of the oscillations
are negligible (smooth motion). To overcome these problems, we propose the use of
the s-stage P-stable Lobatto IIIA (s ≥ 3) or L-stable Lobatto IIIC (s ≥ 2) coeffi-
cients to treat the terms which are responsible of oscillations with high frequencies of
sufficiently small amplitude (ensuring existence and uniqueness of the numerical solu-
tion [52, Lemma 5.1]). L-stable methods are appropriate to damp out high-frequency
oscillations. Although these schemes suffer from some order reduction when applied
to highly oscillatory Hamiltonian and mechanical systems [31, 47], a common phe-
nomenon when stiffness is encountered, this order reduction is not drastic. An order
reduction can also be observed for other numerical methods like the Radau IIA RK
schemes [52] and also for other types of stiffness, e.g., in the B-convergence theory
[35, sections IV.15, V.8, and V.9].

5.3. Explosivity. We again consider Dahlquist’s test equation (22) (see subsec-
tion 5.1). For Re(µ) > 0 we have |eµ| > 1, and for Re(µ) → ∞ we get |eµ| → ∞.
Hence, it is desirable that the stability function (25) possesses the same properties.

Definition 5.8. A RK method is said to be explosive if

|R(µ)| > 1 for Re(µ) > 0 .(31)

Explosive RK methods which satisfy in addition

|R(µ)| → ∞ for Re(µ)→∞(32)

are called unconditionally explosive.
By symmetry with the L-stability concept it is trivial to show that a RK method is

unconditionally explosive if and only if its stability function R(µ) is equal to Rk,k−1(µ)
or Rk,k−2(µ), where Rkj(µ) is the (k, j)-Padé approximation to the exponential func-
tion. In the family of Lobatto methods, the stability function of the s-stage Lobatto
IIIC∗ method is given by Rs,s−2(µ) (see section 8). We call the Lobatto IIIC∗ methods
(a notation suggested by R. P. K. Chan) the RK schemes due to J. Butcher initially
known as the Lobatto III processes [10] (see also [33, section II.7]). Therefore, we
have the following result.

Theorem 5.9. The Lobatto IIIC∗ RK methods are unconditionally explosive.
Although explosivity is not a stability concept in the usual sense, it may be

of interest for systems where the exploding modes need not be resolved accurately.
From a shadowing perspective it is not important to solve these modes accurately
anyway because of their intrinsic instability. We quote from [68]: In the scenario
studied in numerical analysis textbooks it is assumed that when integrating problems
such as y′ = y, y(0) = 1, 0 ≤ t ≤ Tmax the goal is to accurately compute the value
of y(t), 0 ≤ t ≤ Tmax. Due to the exponential growth of the errors, this goal is not
realistic when Tmax is not small. Large stepsizes for exploding modes with explosive
methods can therefore be appropriate. Another justification for explosive methods
comes from the use of L-stable methods for stiff systems. Integrating in the forward
direction with L-stable RK coefficients is equivalent to integrate backward with their
adjoint explosive RK coefficients, and vice versa. Thus, explosive methods are as
much justified as L-stable methods from the viewpoint of backward error analysis.

In the decomposition (15) the term f (4)(q, v, λ) should contain exploding forces
(∂f (4)/∂v(q, v, λ) positive definite), i.e., forces increasing the energy of the system,



430 LAURENT O. JAY

e.g., like Lv with L positive definite. Unconditionally explosive RK coefficients can
be appropriate to treat such forces.

6. Structure preservation for nonlinear systems. Linear stability proper-
ties are usually not adequate for nonlinear systems. In this section we characterize
SPARK methods preserving different (generally nonlinear) structures (see section 3)
when they are present, namely, the manifold of constraints, symplecticness, reversibil-
ity, contractivity, dilatation, energy, momentum, and quadratic invariants. For me-
chanical systems, we emphasize that these properties can be preserved directly in
terms of generalized coordinates q and of generalized velocities v without reformulat-
ing the system using generalized momenta p.

6.1. Constraint preservation. By construction the numerical solution (y1,
z1) of the SPARK methods considered in Theorem 4.3 lies on the manifold of con-
straints

X = {(y, z) ∈ Rn ×Rp | 0 = g(y), 0 = gy(y)f(y, z)} .(33)

If one defines the numerical u-component u1 by (17h), then the constraint (2e) is also
enforced. However, as discussed in subsection 4.3, a very accurate value for u1 may
be unnecessary. A fairly good choice is given by u1 := Us.

The definition of SPARK methods and the convergence results of section 4 can
be extended to include the presence of nonholonomic constraints

0 = h(y, z) .

Such constraints do not derive from holonomic constraints. More precisely, there does
not exist a function `(y) such that h(y, z) = `y(y)f(y, z) with f of (2a). However,
when such constraints are present, the flow is, in general, nonsymplectic and may
possess no reversibility property.

6.2. Symplecticness. To preserve the symplecticness property of Hamiltonian
systems, we consider the decompositions (5) (see (6ab)) with f (1)(y, z) ≡ HT

p (q, p),
k(2)(y, z, u) ≡ −HT

q (q, p)−GT (q)λ, and the other terms identically zero.
For conservative mechanical systems, the symplecticness property can be pre-

served directly in terms of the variables (q, v) without explicitly reformulating the
system in Hamiltonian form. Another advantage is that the equation q′ = v is sim-
pler to integrate than q′ = M(q)−1p for a pure Hamiltonian formulation. When
the mass matrix is invertible, we consider the decompositions (5) (see (8)–(12)) with
f (1)(y, z) ≡ v, k(2)(y, z, u) ≡ 1

2 (vTM(q)v)Tq − UTq (q)−GT (q)λ, and the other terms
identically zero. Under the assumption (10) we consider similar decompositions for
the augmented system (see (13a), (13b))

f (1)(y, z) ≡
(

v
w

)
,(34a)

k(2)(y, z, u) ≡
(
GTq (q)(v, w) + 1

2 (vTM(q)v)Tq − UTq (q)−GT (q)λ
−µ

)
.(34b)

Theorem 6.1. With the above decompositions a SPARK method satisfying (20a)
is symplectic for Hamiltonian systems and conservative mechanical systems if

bia
(2)
ij + bja

(1)
ji − bibj = 0 for i, j = 1, . . . , s .(35)
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Remark 6.2.
1. The symplecticness condition (35) and the assumption (21a) imply a

(2)
i1 = b1

for i = 1, . . . , s.
2. The symplecticness condition (35) and the simplifying assumption (S1) imply

a
(2)
is = 0 for i = 1, . . . , s.

Proof. For Hamiltonian systems this theorem has been proved in [44, Theorem
V.3.1] and [46]. For conservative mechanical systems with an invertible mass matrix
the result comes directly from the definition of SPARK methods, because the ap-
plication of a SPARK method is equivalent to its application to the corresponding
Hamiltonian form with p := M(q)v and H = T + U . For the augmented system (13)
the same argument holds, and the 2-form in (14) is preserved. Since r1 = 0, w1 = 0,
and G(q1)v1 = 0, the 2-form dq ∧ d(M(q)v) is preserved.

The idea of applying indirectly a symplectic method to conservative mechan-
ical systems can be extended to other systems in nonstandard Hamiltonian form.
For example, if a 2-form dY (y, z) ∧ dZ(y, z) is preserved where the transformation
(y, z, u) 7→ (Y (y, z), Z(y, z), U(u)) is a diffeomorphism, a symplectic method can be
applied to the differential-algebraic system corresponding to (Y,Z, U) expressed in
terms of (y, z, u), thus allowing the direct preservation of the 2-form. This holds for
Lagrangian systems, and this gives rise to Lagrangian integrators [45]. For the simple
Lotka–Volterra system a different unconventional symplectic integrator is presented
in [66].

6.3. Reversibility. Reversibility of Hamiltonian systems and of conservative
mechanical systems has been mentioned in subsections 3.1 and 3.2. Here we consider
more generally the overdetermined partitioned differential-algebraic system (2) and
we assume that there exist three linear maps σy : Rn → Rn, σz : Rp → Rp, and
σu : Rm → Rm such that

(σyy)′ = −f(σyy, σzz) ,

M(σyy)(σzz)′ = −k(σyy, σzz, σuu) ,

and σ(y, z) := (σyy, σzz) ∈ X if (y, z) ∈ X (see (33)). Then the flow χτ : (y(t), z(t))
7→ (y(t+ τ), z(t+ τ)) is σ-reversible, i.e.,

χτ = σ−1 ◦ χ−1
τ ◦ σ .

Consequently, the time direction of the flow is reversed by the transformation σ. If we
denote by Φh the numerical flow induced by a SPARK method, by “linearity” of these
methods we have σ ◦ Φh = Φ−h ◦ σ. Therefore, a SPARK method preserves the σ-
reversibility of the flow if Φ−h = Φ−1

h ; i.e., the SPARK method must be symmetric. A
variable stepsize strategy preserving the reversibility property is discussed in section 9.

Theorem 6.3. Suppose that for m = 3, 4 we have f (m)(y, z) ≡ 0 and k(m)(y, z, u)
≡ 0 in (5). Then a SPARK method satisfying (20a) is symmetric if

a
(m)
s+1−i,s+1−j + a

(m)
ij = bj = bs+1−j for m = 1, 2 and i, j = 1, . . . , s .(36)

Remark 6.4.
1. The symmetry condition (36) for m = 1 and the simplifying assumption (S1)

imply (21a).
2. The symmetry condition (36) for m = 2 and the assumption a

(2)
is = 0 for

i = 1, . . . , s imply a
(2)
i1 = b1 for i = 1, . . . , s.
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Proof. We consider consistent initial values

0 = g(y0) ,

0 = gy(y0)f(y0, z0) ,

0 = gyy(y0)(f(y0, z0), f(y0, z0)) + gy(y0)fy(y0, z0)f(y0, z0)

+gy(y0)fz(y0, z0)M−1(y0)k(y0, z0, u0) .

Exchanging (y0, z0, u0) ↔ (y1, z1, u1) and h ↔ −h in Definition 4.1 and above, we
obtain the adjoint method (y∗1 , z

∗
1 , u
∗
1). Since by definition a symmetric method is

equal to its adjoint, the conclusion follows.
For the augmented system (13), since w = 0 it is possible to discard the expression

GTq (q)(v, w) in (16) (see also (34b)) to avoid extra computation. This does not destroy
the reversibility property, only the preservation of symplecticness.

It could be argued that symmetric schemes present a potential risk when applied
to differential-algebraic equations [4]. But here the situation is different. Symmetric
RK schemes are not used for terms destroying the reversibility property since there
is no advantage of doing so. We rather make use of nonsymmetric methods like the
Lobatto IIIC and Lobatto IIIC∗ methods to treat such terms (see sections 5 and 8
and the next subsection).

Even if the partitioned differential-algebraic system (2) does not possess any σ-
reversibility, its flow always possesses the time-reversibility property

χ−1
τ = χ−τ .

Obviously, this property is directly preserved under the assumptions of Theorem 6.3.
Nevertheless, using nonsymmetric methods has also several advantages, especially for
stiff problems. Unfortunately, the time-reversibility property cannot be preserved
directly with nonsymmetric SPARK methods. Although direct σ-reversibility preser-
vation is of importance, it is unclear whether direct time-reversibility preservation
does play a role or not. However, it might still be useful in practice to preserve
this property indirectly when integrating a system backward in time. To do so when
f (m)(y, z) 6≡ 0 or k(m)(y, z, u) 6≡ 0 for m = 3, 4 and the corresponding RK coefficients
(bi, a

(m)
ij ) are not symmetric, these two sets of coefficients should be symmetrically

conjugate, i.e.,

a
(3)
s+1−i,s+1−j + a

(4)
ij = bj = bs+1−j for i = 1, . . . , s, and j = 1, . . . , s .(37)

When reversing the time direction of integration, the RK coefficients (bi, a
(3)
ij ) and

(bi, a
(4)
ij ) should be exchanged, or equivalently for the terms f (3)(y, z), f (4)(y, z), and

k(3)(y, z, u), k(4)(y, z, u).

6.4. Contractivity and dilatation. A generalization of the concept of A-stabi-
lity to nonlinear systems is given by B-stability (see [35, Chapter IV] and the references
therein).

Definition 6.5. An RK method applied to z′ = k(z) is said to be B-stable if the
contractivity condition

〈k(z)− k(ẑ), z − ẑ〉 ≤ 0

implies that for all h ≥ 0

‖z1 − ẑ1‖ ≤ ‖z0 − ẑ0‖,
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where z1 and ẑ1 are the numerical approximations after one step starting with initial
values z0 and ẑ0, respectively, and ‖z‖ :=

√〈z, z〉.
A sufficient condition for B-stability is given by the criteria of algebraic stability.
Definition 6.6 (see [35, section IV.12]). If the RK coefficients satisfy the fol-

lowing:
1. bi ≥ 0 for i = 1, . . . , s,
2. the matrix (mij)

s
i,j=1 = (biaij + bjaji − bibj)si,j=1 is nonnegative definite,

then the method is called algebraically stable.
In the family of Lobatto methods we have the following well-known result.
Theorem 6.7 (see [35, Theorem IV.12.9]). The Lobatto IIIC RK methods are

algebraically stable.
In parallel with A-stability and explosivity, by symmetry with B-stability we can

consider the new concept of dilatation by simply reversing the inequality signs in
Definition 6.5. It is trivial to show that symmetrically conjugate methods to B-stable
methods preserve the dilatation property. Such methods can be called dilative. In the
family of Lobatto methods we thus have the following result.

Theorem 6.8. The Lobatto IIIC∗ RK methods are dilative.

6.5. Energy. It has been proved in [82] that symplectic integrators cannot pre-
serve energy exactly in general, unless the numerical flow is exact. Hence, for conserva-
tive systems the class of energy-momentum-conserving algorithms has been proposed
in [25, 28, 72, 73]. Such methods obviously cannot be symplectic. Another drawback
of such methods is that they may introduce an undesirable spurious coupling. This is
easily understandable when considering the theoretical case where a system is decou-
pled into several subsystems. Although the total energy of the whole system can be
preserved, the energy of each subsystem is in general not preserved, and an artificial
coupling is introduced between the different subsystems. An attempt to minimize the
effects of this drawback for this class of methods has been made in [62].

Nevertheless, with respect to energy preservation, symplectic methods can possess
good properties. Although they do not preserve energy exactly in general, they can
quasi preserve it over long-time intervals provided the energy surfaces of the system
are bounded in the phase space. This property is closely related to the preservation of
symplecticness by backward error analysis arguments [30]: for Hamiltonian systems,
symplectic methods can be interpreted as being exponentially close to the exact solu-
tion of a nearby perturbed Hamiltonian system. This result has been partly extended
to Hamiltonian systems with holonomic constraints in [63]. Moreover, unlike energy-
momentum conserving algorithms, for a system decoupled into subsystems they also
naturally quasi preserve the energy of each subsystem without any artificial coupling.
The numerical solution may be projected onto the correct energy surfaces in a post
processing step if desired, though the time integration should still be carried with the
unprojected values to keep the good long-time behavior of the method.

6.6. Momentum and quadratic invariants. Symplectic PRK methods pre-
serve also certain momentum maps [60] such as angular momentum [81]. It has been
proved in [21] that symplectic RK methods preserve exactly quadratic first integrals of
differential systems. By a simple generalization of another similar result in [60], it can
be seen that for the system (2), symplectic PRK methods preserve exactly quadratic
first integrals of the form yTSM(y)z = Const, where S is a matrix in Rn×p. More-
over, as in [49], it can be shown that for the system (2) the Lobatto IIIA-B PRK
methods even preserve quadratic weak invariants of the form yTTy = Const, where
T is a symmetric matrix in Rn×n.
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7. Numerical damping. In structural dynamics, linear systems of the form

q′ = v ,

Mv′ = F (t)− Cv −Kq
are usually considered (see also the introduction). Good methods in structural dy-
namics must introduce some controllable numerical dissipation to damp out spurious
high frequencies without affecting the low frequencies of the system and the accuracy
of the method. With this respect some methods have been proposed in the literature
for unconstrained linear structural dynamics systems: the Newmark method [55], the
Hilber–Hughes–Taylor α-method [37, 38, 40], the θ1-method of Hoff and Pahl [39],
the generalized α-method [20], and the SDIRK methods of Owren and Simonsen [56].
Most of these methods are of order two. For constrained systems few results have
been reported [14, 15].

SPARK methods can achieve certain goals of structural dynamics, especially for
constrained systems (1), and even go further. The main idea is that each term of each
component f jk(q, v, λ) entering in the forces (15) can be formally decomposed as

f jk(q, v, λ) =
4∑

m=1

βj,mk f jk(q, v, λ)

with
∑4
m=1 β

j,m
k = 1 and can be treated differently. More generally, for the system

(2)–(4)–(5), f il (y, z) entering in the ith component of (5a) and kjk(y, z, u) entering in
the jth component of (5b), we can consider the decompositions

f il (y, z) =

4∑
m=1

αi,ml f il (y, z) ,

kjk(y, z, u) =
4∑

m=1

βj,mk kjk(y, z, u)

with
∑4
m=1 α

i,m
l = 1 =

∑4
m=1 β

j,m
k (βj,1k = 0 if kjk(y, z, u) depends on u). According

to Definition 4.1 four RK schemes are used for each of these expressions. The RK
coefficients (bi, a

(1)
ij ) and (bi, a

(2)
ij ) will introduce no numerical damping since they will

be chosen to satisfy the symplecticness conditions (35) and the symmetry conditions
(36). The RK coefficients (bi, a

(3)
ij ) will introduce numerical damping since they will

be chosen to satisfy the L-stability condition (see Definition 5.1). The RK coefficients
(bi, a

(4)
ij ) will introduce no numerical damping but numerical explosivity since they

will be chosen to satisfy the unconditional explosivity condition (see Definition 5.8).
With this approach the numerical damping for each different term in each component
can be tuned with different coefficients αi,ml for each i, l, and m, and βj,mk for each j, k,
and m, without affecting the overall accuracy. Moreover, these coefficients controlling
the stability behavior of the numerical scheme may depend on the solution itself.
Therefore, they might be adjusted automatically via certain criteria to obtain certain
desired effects.

8. The Lobatto IIIA-B-C-C∗ SPARK methods. In this section we present
a class of SPARK methods based on the same underlying quadrature formula (see
(20)) and which satisfy all desired requirements: the simplifying assumption (S1),
the assumptions (21), the hypotheses of Theorem 4.3, the symplecticness conditions
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(35), the symmetry conditions (36)–(37), L-stability and algebraic stability for the RK
coefficients (bi, a

(3)
ij ), P-stability for the RK coefficients (bi, a

(1)
ij ), and unconditional

explosivity and the dilative property for the RK coefficients (bi, a
(4)
ij ). In a certain

sense such methods track the energy level of the system without introducing unnec-
essary numerical damping where it is not needed, whereas pure L-stable methods
introduce numerical damping and are therefore not suited for conservative systems,
especially for mid- and long-time integration. These methods are the s-stage Lobatto
IIIA-B-C-C∗ SPARK methods (s ≥ 2). The nodes ci of the Lobatto quadrature
formula of order 2s− 2 are the roots of the polynomial of degree s:

ds−2

dxs−2

(
xs−1(x− 1)s−1

)
.

The weights bi are chosen such that B(s) holds. For the coefficients a
(1)
ij we take

the coefficients of the s-stage Lobatto IIIA RK method defined by C1(s). For the
coefficients a

(2)
ij we take the coefficients of the s-stage Lobatto IIIB RK method defined

by D2(s). For the coefficients a
(3)
ij we take the coefficients of the s-stage Lobatto IIIC

RK method defined by C3(s− 1) and a
(3)
i1 = b1 for i = 1, . . . , s. For the coefficients

a
(4)
ij we take the coefficients of the s-stage Lobatto IIIC∗ RK method defined by
C4(s− 1) and a

(4)
is = 0 for i = 1, . . . , s. These SPARK methods satisfy the simplifying

assumptions B(2s− 2), (S1), C1(s), D1(s− 2), C2(s− 2), D2(s), (S3), C3(s− 1),
D3(s− 1), C4(s− 1), D4(s− 1), C1Cn(s), and D1Dn(s) for n = 2, 3, 4 (see [44,
Lemma V.5.3] and [46]). A detailed presentation of the construction of implicit RK
methods can be found in [35, Section IV.5].

Two conditions of Theorem 4.3 are shown in the following lemma.
Lemma 8.1. For the s-stage Lobatto IIIA-B-C-C∗ SPARK methods, the condi-

tions (21bc) on the RK matrices A(m) for m = 1, . . . , 4 hold.
Proof. The matrix equalities in (21b) can be proved by the use of the W-

transformation. For details about this transformation we refer the reader to [35,
Section IV.5] and [18, 27]. The aim here is to express the condition (21b) in term
of the transformed matrices X(m) := WTBA(m)W for m = 1, . . . , 4, where B =
diag(b1, . . . , bs) and the coefficients of the matrix W are given by wij = Pj−1(ci)
with Pj−1(x) the (j − 1)th shifted Legendre polynomial. These matrices for the
Lobatto IIIA, Lobatto IIIB, Lobatto IIIC, and Lobatto IIIC∗ coefficients are given
respectively by

X(1) =



1/2 −ζ1 O

ζ1 0
. . .

. . .
. . . −ζs−2

ζs−2 0 0
O ζs−1σ 0

 ,

X(2) =



1/2 −ζ1 O

ζ1 0
. . .

. . .
. . . −ζs−2

ζs−2 0 −ζs−1σ
O 0 0

 ,
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X(3) =



1/2 −ζ1 O

ζ1 0
. . .

. . .
. . . −ζs−2

ζs−2 0 −ζs−1σ
O ζs−1σ σ/(2s− 2)

 ,

X(4) =



1/2 −ζ1 O

ζ1 0
. . .

. . .
. . . −ζs−2

ζs−2 0 −ζs−1σ
O ζs−1σ −σ/(2s− 2)

 ,

where ζk = 1/
(
2
√

4k2 − 1
)

and σ =
∑s
i=1 biP

2
s−1(ci) = (2s−1)/(s−1). The condition

A(1)A(m) = A(1)A(n) can be expressed equivalently in term of their W-transforms by
X(1)(WTBW )−1X(m) = X(1)(WTBW )−1X(n). Here we have WTBW = diag(1, . . . ,
1, σ). Hence, since the last column of X(1) vanishes, we get X(1)(WTBW )−1 = X(1).
Thus, because X(2), X(3), and X(4) differ only in their last row, the matrix prod-
ucts X(1)(WTBW )−1X(m) give rise to the same matrix for m = 2, 3, 4. Because
of rank(A(1)) = s− 1 and rank(A(3)) = s, we necessarily have rank(N) = s − 1.
From a

(2)
is = 0 we get nis = 0; therefore, from bs 6= 0 we finally conclude that (21c)

holds.
It is easily seen that the Lobatto IIIC∗ methods are symmetrically conjugate to

the Lobatto IIIC methods; i.e., they satisfy (37), since the symmetrically conjugate
methods to the Lobatto IIIC methods must satisfy C4(s− 1), D4(s− 1), and

a
(4)
1j = bs+1−j − a(3)

s,s+1−j = 0 for j = 1, . . . , s ,

a
(4)
is = b1 − a(3)

s+1−i,1 = 0 for i = 1, . . . , s .

By symmetry with the Lobatto IIIC methods, the stability function of the Lobatto
IIIC∗ methods is given by the (s, s− 2)-Padé approximation to the exponential func-
tion Rs,s−2(µ) (see [35, Theorem IV.3.12 and Exercise IV.3.1]). Moreover, the sym-
plectically conjugate methods to the Lobatto IIIC schemes must satisfy C4(s − 1),
D4(s− 1), and

a
(4)
1j = bj

(
1− a

(3)
j1

b1

)
= 0 for j = 1, . . . , s ,

a
(4)
is = bs

(
1− a

(3)
si

bi

)
= 0 for i = 1, . . . , s .

These are again the Lobatto IIIC∗ methods. However, this additional property does
not seem to have any particular signification in our context.

We give in Tables 1 and 2 the coefficients of the 2-stage and 3-stage Lobatto IIIA-
B-C-C∗ SPARK methods respectively. For Lobatto IIIX schemes we use the Butcher
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Table 1
Coefficients of the 2-stage Lobatto IIIA-B-C-C∗ SPARK method.

0 0 0
1 1/2 1/2
A 1/2 1/2

0 1/2 0
1 1/2 0
B 1/2 1/2

0 1/2 −1/2
1 1/2 1/2
C 1/2 1/2

0 0 0
1 1 0
C∗ 1/2 1/2

Table 2
Coefficients of the 3-stage Lobatto IIIA-B-C-C∗ SPARK method.

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6
A 1/6 2/3 1/6

0 1/6 −1/6 0
1/2 1/6 1/3 0
1 1/6 5/6 0
B 1/6 2/3 1/6

0 1/6 −1/3 1/6
1/2 1/6 5/12 −1/12
1 1/6 2/3 1/6
C 1/6 2/3 1/6

0 0 0 0
1/2 1/4 1/4 0
1 0 1 0
C∗ 1/6 2/3 1/6

tableau notation

c1 a
(m)
11 . . . a

(m)
1s

...
...

. . .
...

cs a
(m)
s1 . . . a

(m)
ss

X b1 . . . bs

From Theorem 4.5 and Theorem 4.6 we have the following superconvergence re-
sult.

Corollary 8.2. For the s-stage Lobatto IIIA-B-C-C∗ SPARK methods applied to
the overdetermined partitioned differential-algebraic system of index one (2) satisfying
(3) in a neighborhood of the exact solution, with consistent initial values (y0, z0, u0)
at t0, the global error satisfies for tn − t0 = nh ≤ Const

yn − y(tn) = O(h2s−2), zn − z(tn) = O(h2s−2), un − u(tn) = O(h2s−2) .

This result remains valid in case of variable stepsizes with h = maxi |hi|.
8.1. Note on the Lobatto IIID coefficients. In [18] a one-parameter fam-

ily of symmetric and algebraically stable RK methods based on Lobatto quadrature
formulas is constructed. Within this family the s-stage Lobatto IIID methods are
of interest in our context. The RK coefficients of the s-stage Lobatto IIID method
are given by a

(5)
ij = (a

(3)
ij + a

(4)
ij )/2 where a

(3)
ij , a

(4)
ij are the coefficients of the s-stage

Lobatto IIIC and Lobatto IIIC∗ methods respectively. This comes directly from the
W-transform of the Lobatto IIID coefficients:

X(5) =



1/2 −ζ1 O

ζ1 0
. . .

. . .
. . . −ζs−2

ζs−2 0 −ζs−1σ
O ζs−1σ 0

 .



438 LAURENT O. JAY

Table 3
Coefficients of the 2-stage and 3-stage Lobatto IIID methods.

0 1/4 −1/4
1 3/4 1/4
D 1/2 1/2

0 1/12 −1/6 1/12
1/2 5/24 1/3 −1/24
1 1/12 5/6 1/12
D 1/6 2/3 1/6

Therefore, results for Lobatto IIIA-B-C-C∗ SPARK methods directly apply to include
the Lobatto IIID coefficients as well. These methods satisfy C5(s − 1), D5(s − 1),
C1C5(s), and D1D5(s). They are also symplectic [27] and dilative. We give in Table
3 the coefficients of the 2-stage and 3-stage Lobatto IIID methods.

9. Implementation of a reversible variable stepsize strategy. To preserve
the symplecticness property, symplectic methods must be essentially applied with
constant stepsizes [76]. The use of a standard variable stepsize strategy destroys this
property [12]. For reversible systems a constant-stepsize application of a reversible
method may be inefficient. The recent reversible variable stepsize strategy has been
proposed in [41, 76], which allows a symmetric method to preserve the reversibility of
the system and to keep its good long-time properties [11, 13, 34, 75]: the error growth
is linear with time for integrable systems and for problems with periodic solutions. A
reversible variable stepsize strategy is based on the construction of a symmetric error
estimator and of a symmetric stepsize function [41, 76]. We can use an embedded
method (̃bi, ci) of lower order p̃ to build an error estimator of the form

err(h) := ‖y1 − ỹ1‖+ ‖M(y1)z1 −M(ỹ1)z̃1‖(38)

=

∥∥∥∥∥h
s∑
i=1

(bi − b̃i)f(Yi, Zi)

∥∥∥∥∥+

∥∥∥∥∥h
s∑
i=1

(bi − b̃i)k̂(Yi, Zi, Ui)

∥∥∥∥∥ ,

Under the hypotheses of Theorem 6.3, this error estimator is symmetric provided
the coefficients ei := bi − b̃i are symmetric or antisymmetric, i.e., ei = es+1−i or
ei = −es+1−i for i = 1, . . . , s. A symmetric stepsize function can then be implicitly
defined by

err(h) = TOL,(39)

where TOL is the tolerance [76]. At each timestep we need to determine the stepsize
h such that this nonlinear equation is satisfied. This variable stepsize strategy clearly
does not destroy the reversibility property. In molecular dynamics a variable stepsize
strategy may be of importance when simulating phase transitions. The stepsizes
should be decreased to reproduce accurately all phenomena occuring during these
transformations. For example during a first-order phase transition, latent heat is
released in form of kinetic energy, and amplitudes and vibrational frequencies can
increase significantly [79].

For the starting values of the simplified Newton iterations, as pointed out in [32,

section 7], we can take Y
(0)
i := y0 + hcif(y0, z0) + O(h2) for i = 1, . . . , s, y

(0)
1 :=

y0 + hf(y0, z0) +O(h2), Z
(0)
i := z0 +O(h) for i = 1, . . . , s, z

(0)
1 := z0 +O(h), U

(0)
i :=

u0 +O(h) for i = 1, . . . , s, and u
(0)
1 := u0 +O(h). Every simplified Newton iteration

improves the approximation by a factor h in the norm ‖y‖+ h‖z‖+ h2‖u‖. The
equation (39) is a nonlinear equation for h which can be solved simultaneously to the
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nonlinear system (17). Starting with an initial guess h(0) by using for example the
previous stepsize or local extrapolation of previous stepsizes [76], after each simplified
Newton iteration we can use the following simple iteration [11]:

h(k+1) := h(k) ·
(

TOL

err(h(k))

)1/(p̃+1)

.

Moreover, after each simplified Newton iteration we also interpolate the values (Y
(k)
i ,

Z
(k)
i , U

(k)
i ) and (y

(k)
1 , z

(k)
1 , u

(k)
1 ) which are approximations to the solution at t0 + cih

(k)

and t0 + h(k), respectively, to obtain new approximations (Y
(k+1)
i , Z

(k+1)
i , U

(k+1)
i ) and

(y
(k+1)
1 , z

(k+1)
1 , u

(k+1)
1 ) to the solution at t0 + cih

(k+1) and t0 + h(k+1), respectively.
The convergence of these iterations is nearly as fast as the standard simplified Newton
iterations without modification of the stepsize [11]. A reversible variable stepsize
strategy is thus a natural choice for implicit methods, since this strategy is nearly no
more costly than a constant stepsize application of the method. This is an advantage
of implicit methods compared to explicit methods with this respect.

Now the question arises to know the minimal precision that the nonlinear sys-
tem (17) must be solved given a certain tolerance TOL for the local truncation er-
ror. It is clear that the error estimator (38) will be too pessimistic in general since
err(h) = O(hp̃+1) and the local truncation error is of size O(hp+1) with p > p̃. There-
fore, if we determine h by (39), then the local truncation error will be much smaller
than TOL as it will be of the order of TOL(p+1)/(p̃+1). Therefore, to have a local
truncation error of the order of TOL, we propose replacing (39) by

err(h) = TOL(p̃+1)/(p+1) .

We also get “tolerance proportionality” with such a modification. To maintain an
error of the order of TOL, the nonlinear system (17) must be solved at least at the
precision TOL (multiplied by a safety factor, e.g., 0.01). For long-time integration
more stringent conditions on the precision to solve the nonlinear system are given
in [34]. The given tolerance TOL and the precision to which the nonlinear system
of equations must be solved are thus related; this remark holds for any implicit in-
tegrator. Without such a modification, since the local truncation error would be of
the order of TOL(p+1)/(p̃+1), the nonlinear system should be solved at least at the
precision TOL(p+1)/(p̃+1). It is interesting to note that the order p̃ of the embedded
formula in (38) does not really play a significant role, low values of p̃ are fine.

10. Numerical experiments. For the numerical experiments, we first consider
a mechanical system consisting of seven rigid bodies, known in the literature as An-
drew’s squeezing mechanism. This system has six holonomic constraints. We do not
enter into the details of the model here, thorough descriptions of this mechanism can
be found in [69] and [35, section VI.9]. To illustrate the advantage of using the formu-
lation eliminating the Coriolis forces, we compare for this system the expressions of
the generalized forces with and without the presence of the Coriolis forces. Written as
FORTRAN statements the expression of the generalized forces f(q, v) entering into
M(q)v′ (see (8b)) containing the Coriolis forces is given as [35, p. 537]

f(1) = MOM(t) - M2*DA*RR*THP*(THP + 2*BEP)*SITH

f(2) = M2*DA*RR*BEP**2*SITH

f(3) = FX*(SC*COGA - SD*SIGA) + FY*(SD*COGA + SC*SIGA)

f(4) = M4*ZT*(E - EA)*DEP**2*COPH

f(5) = - M4*ZT*(E - EA)*PHP*(PHP + 2*DEP)*COPH
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Fig. 1. Energy error with constant stepsizes, no drive torque for t ≥ 0.02.

f(6) = - M6*U*(ZF - FA)*EPP**2*COOM

f(7) = M6*U*(ZF - FA)*OMP*(OMP + 2*EPP)*COOM ,
whereas for the expression Mq(q)(v, v) + f(q, v) entering into (M(q)v)′ eliminating
the Coriolis forces −Mq(q)(v, v) (see (8f)) we obtain

F(1) = MOM(t)

F(2) = M2*DA*RR*BEP*(BEP + THP)*SITH

F(3) = FX*(SC*COGA - SD*SIGA) + FY*(SD*COGA + SC*SIGA)

F(4) = M4*ZT*(E - EA)*DEP*(DEP + PHP)*COPH

F(5) = 0

F(6) = - M6*U*(ZF - FA)*EPP*(EPP + OMP)*COOM

F(7) = 0 .
Comparing the number of additions and multiplications (including exponentiations)
for these two expressions, we get 11 additions and 39 multiplications for the first one
and 8 additions and 21 multiplications for the second one. Thus for this system the
gain is drastic when using the second formulation.

To move the system a nonconstant drive torque MOM(t) = 0.033 · (1 − t/0.02) is
applied during the interval [0, 0.02], and then the system is let free to swing with no
drive torque applied. We have applied the 3-stage Lobatto IIIA-B SPARK method to
this system with constant stepsizes h = 5 · 10−5. In Fig. 1 we have plotted the energy
error on the interval [0.02, 0.1]. We clearly observe that this error remains bounded
with time and oscillates around 0, this is an illustration of the symplectic nature of
the integrator.

In Fig. 2 we have plotted the energy error using a reversible variable stepsize
strategy with a local error tolerance TOL = 10−8. It can be observed that the error
grows linearly with time, whereas in general for a standard variable stepsize strategy
the error growth is quadratic.

Applying a constant drive torque MOM(t) = 0.033 during the whole interval [0, 0.1],
we obtain the result given in Fig. 3 for the energy error versus time. This is an inter-
esting numerical experiment since, although the method is symplectic, reversible, and
applied with constant stepsizes, it can be observed that this error grows quadratically
with time (though still oscillating around 0). This might seem quite surprising since
in general for symplectic integrators the energy error remains bounded. Nevertheless,
this unboundedness can be explained by the fact that the energy surfaces are here
unbounded in the phase space, whereas this was previously not the case. The kinetic
energy roughly grows with time meaning that the mechanism is moving faster and
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Fig. 2. Energy error with a symmetric variable stepsize strategy, no drive torque for t ≥ 0.02.
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Fig. 3. Energy error with constant stepsizes, constant drive torque.
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Fig. 4. Total energy E, kinetic energy T , and potential energy U , constant drive torque.

faster. We have plotted in Fig. 4 the total energy E which is constant as the sum of
its kinetic part T and of its potential part U .

Finally, we consider a system composed of a rigid pendulum attached to a stiff
spring pendulum undergoing some dry friction. The stiff spring pendulum consists
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Fig. 5. Energy error for the rigid pendulum using the Lobatto IIIC coefficients.

of a mass point of unit mass suspended at a massless spring with a rest position of
unit length and a large Hooke’s constant 1/ε2. Its Cartesian coordinates are given
by (qx1

, qz1) and its corresponding velocities by (vx1
, vz1). The rigid pendulum is of

unit mass and of unit length. Its Cartesian coordinates are given by (qx2 , qz2) and its
corresponding velocities by (vx2 , vz2). The gravitational constant is equal to one unit
and the friction coefficient is denoted by γ. The equations of motion (8b) for this
system are given by

v′x1
= −γvx1 − qx1µ+ (qx2 − qx1)λ ,

v′z1 = −1− γvz1 − qz1µ+ (qz2 − qz1)λ ,

v′x2
= −(qx2 − qx1)λ ,

v′z2 = −1− (qz2 − qz1)λ ,

where

µ :=
1

ε2

(
1− 1√

q2
x1

+ q2
z1

)
,

and the holonomic constraint (8c) on the length of the rigid pendulum is given by

0 =
√

(qx2
− qx1

)2 + (qz2 − qz1)2 − 1 .

The constants 1/ε and γ are chosen large 1/ε = 108 and γ = 1012, so that the system
is stiff. With a stepsize h = 0.12, we have first applied the 3-stage Lobatto IIIC
coefficients to the differential equations, whereas the holonomic constraint is treated
with the Lobatto IIIA coefficients. The energy error related to the rigid pendulum is
plotted in Fig. 5. We observe that some undesirable numerical damping is introduced
by the method due to the damping property of the Lobatto IIIC coefficients.

Using the Lobatto IIIA-B coefficients for the differential equations correspond-
ing to the rigid pendulum, but still the Lobatto IIIC coefficients for the differential
equations corresponding to the stiff spring pendulum, we have plotted in Fig. 6 the
energy error for the rigid pendulum. This error remains now bounded with time and
illustrates a clear advantage of using a SPARK method.
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Fig. 6. Energy error for the rigid pendulum using the Lobatto IIIA-B coefficients.

11. Conclusion. We have considered a broad class of partitioned differential
equations with possible algebraic constraints, including Hamiltonian and mechanical
systems with holonomic constraints. For mechanical systems a formulation eliminat-
ing the Coriolis forces and closely related to the Euler–Lagrange equations has been
presented. A new class of integrators has been defined: the SPARK methods. Within
this class, the s-stage Lobatto IIIA-B-C-C∗ SPARK methods are of special interest.
They can allow the direct preservation of different invariants and structures when
present in the system, namely: the manifold of constraints, symplecticness, reversibil-
ity, contractivity, dilatation, momentum, and quadratic invariants. They can also
quasi preserve energy. The s-stage Lobatto IIIA-B-C-C∗ SPARK methods are super-
convergent with order 2s − 2, and they can possess good linear stability properties:
L-stability, P-stability, and unconditional explosivity. The underlying idea of the new
Lobatto SPARK methods is that diverse terms are treated by different coefficients of
the Lobatto family. Controllable numerical damping can be introduced by the use
of additional parameters. Some issues related to the implementation of a variable
stepsize strategy preserving the reversibility property have been discussed.
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