
Journal of Computational and Applied Mathematics 120 (2000) 197–213
www.elsevier.nl/locate/cam

An SQP method for the optimal control of large-scale
dynamical systems(

Philip E. Gilla, Laurent O. Jayb, Michael W. Leonardc, Linda R. Petzoldd ; ∗,
Vivek Sharmad

aDepartment of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, USA
bDepartment of Mathematics, The University of Iowa, Iowa City, IA 52242-1419, USA

cDepartment of Mathematics, University of California, Los Angeles, CA 90095-1555, USA
dDepartment of Computer Science, and Department of Mechanical and Environmental Engineering, University of

California, Santa Barbara, CA 93106-5070, USA

Received 6 July 1998; received in revised form 11 March 1999

Abstract

We propose a sequential quadratic programming (SQP) method for the optimal control of large-scale dynamical systems.
The method uses modi�ed multiple shooting to discretize the dynamical constraints. When these systems have relatively
few parameters, the computational complexity of the modi�ed method is much less than that of standard multiple shooting.
Moreover, the proposed method is demonstrably more robust than single shooting. In the context of the SQP method,
the use of modi�ed multiple shooting involves a transformation of the constraint Jacobian. The a�ected rows are those
associated with the continuity constraints and any path constraints applied within the shooting intervals. Path constraints
enforced at the shooting points (and other constraints involving only discretized states) are not transformed. The transfor-
mation is cast almost entirely at the user level and requires minimal changes to the optimization software. We show that
the modi�ed quadratic subproblem yields a descent direction for the ‘1 penalty function. Numerical experiments verify
the e�ciency of the modi�ed method. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Multiple shooting; Optimal control; Sequential quadratic programming

(This research was partially supported by National Science Foundation grants CCR-98-96198 and DMI-9424639 and
NSF Cooperative Agreement DMS-9615858, National Institute of Standards and Technology contract 60 NANB2D 1272,
Department of Energy grant FG03-98ER25354, with computational resources from the NSF San Diego Supercomputer
Center and DOE NERSC.

∗ Corresponding author.
E-mail address: petzold@engineering.ucsb.edu (L.R. Petzold).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00310-1

198 P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213

1. Introduction

We consider the ordinary di�erential equation (ODE) system

y′ = F(t; y; p; u(t)); y(t0) = y0;

where the control parameters p and the vector-valued control function u(t) must be determined such
that the objective function∫ tmax

t0
	(t; y(t); p; u(t)) dt is minimized

and some additional inequality constraints

G(t; y(t); p; u(t))¿0

are satis�ed. The optimal control function u∗(t) is assumed here to be continuous. In many appli-
cations the ODE system is large scale. Thus, the dimension ny of y is large. Often, for example,
the ODE system arises from the spatial discretization of a time-dependent partial di�erential equa-
tion (PDE) system. In many such problems, the dimensions of the control parameters and of the
representation of the control function u(t) are much smaller. To represent u(t) in a low-dimensional
vector space, we use piecewise polynomials on [t0; tmax], their coe�cients being determined by the
optimization. For ease of presentation we can therefore assume that the vector p contains both
the parameters and these coe�cients (we let np denote the combined number of these values) and
discard the control function u(t) in the remainder of the paper. Hence we consider

y′ = F(t; y; p); y(t0) = y0; (1a)
∫ tmax

t0
 (t; y(t); p) dt is minimized; (1b)

g(t; y(t); p)¿0: (1c)

There are a number of well-known methods for direct discretization of this optimal control problem
(1). The single shooting method solves the ODEs (1a) over the interval [t0; tmax], with the set of
controls generated at each iteration by the optimization algorithm. However, it is well-known that
single shooting can su�er from a lack of stability and robustness [1]. Moreover, for this method
it is more di�cult to maintain additional constraints and to ensure that the iterates are physical
or computable. The �nite-di�erence method or collocation method discretizes the ODEs over the
interval [t0; tmax] with the ODE solutions at each discrete time and the set of controls generated at
each iteration by the optimization algorithm. Although this method is more robust and stable than the
single-shooting method, it requires the solution of an optimization problem which for a large-scale
ODE system is enormous, and it does not allow for the use of adaptive ODE or (in the case that
the ODE system is the result of semi-discretization of PDEs) PDE software.
We thus consider the multiple-shooting method for the discretization of (1). In this method, the

time interval [t0; tmax] is divided into subintervals [ti; ti+1] (i=0; : : : ; N −1), and the di�erential equa-
tions (1a) are solved over each subinterval, where additional intermediate variables yi are introduced.
On each subinterval we denote the solution at time t of (1a) with initial value yi at ti by y(t; ti; yi; p).
Continuity between subintervals is achieved via the continuity constraints

Ci+1
1 (yi; yi+1; p) :=yi+1 − y(ti+1; ti; yi; p) = 0:

P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213 199

The additional constraints (1c) are required to be satis�ed at the boundaries of the shooting intervals

Ci
3(yi; p) := g(ti; yi; p)¿0; CN

3 (yN ; p) := g(tN ; yN ; p)¿0;

and also at a �nite number of intermediate times tik within each subinterval [ti; ti+1]

Cik
2 (yi; p) := g(tik ; y(tik ; ti; yi; p); p)¿0:

Following common practice, we write

�(t) =
∫ t

t0
 (�; y(�); p) d�;

which satis�es �′(t)= (t; y(t); p); �(t0)=0. This introduces another equation and variable into the
di�erential system (1a). The discretized optimal control problem becomes

minimize
y1 ;:::;yN ;p

�(tmax) (2)

subject to the constraints

Ci+1
1 (yi; yi+1; p) = 0; (3a)

Cik
2 (yi; p)¿0; (3b)

Ci
3(yi; p)¿0 and CN

3 (yN ; p)¿0: (3c)

This problem can be solved by an optimization code. We use the solver SNOPT [5], which incor-
porates a sequential quadratic programming (SQP) method. The SQP methods require a gradient
and Jacobian matrix that are the derivatives of the objective function and constraints with respect to
the optimization variables. We compute these derivatives via di�erential-algebraic equation (DAE)
sensitivity software DASPKSO [8]. Our basic algorithm and software for the optimal control of
dynamical systems are described in detail in [9].
This basic multiple-shooting type of strategy can work very well for small-to-moderate size ODE

systems, and has an additional advantage that it is inherently parallel. However, for large-scale ODE
systems there is a problem because the computational complexity grows rapidly with the dimension of
the ODE system. The di�culty lies in the computation of the derivatives of the continuity constraints
with respect to the variables yi. The solution of O(ny) sensitivity systems is required to form the
derivative matrix @y(t)=@yi for the multiple-shooting method. For the problems under consideration
ny can be very large (for example, for an ODE system obtained from the semi-discretization of a PDE
system, ny is the dimension of the semi-discretized PDE system). In contrast, the single-shooting
method requires the solution of O(np) sensitivity systems, although the method is not as stable,
robust or parallelizable.
The basic idea for reducing the computational complexity of the multiple shooting method for this

type of problem is to make use of the structure of the continuity constraints to reduce the number of
sensitivity solutions which are needed to compute the derivatives. To do this, we recast the continuity
constraints in a form where only the matrix-vector products (@y(t)=@yi)wj are needed, rather than the
entire matrix @y(t)=@yi. The matrix-vector products are directional derivatives; each can be computed
via a single sensitivity analysis. The number of vectors wj such that the directional sensitivities are
needed is small, of order O(np). Thus, the computational work of the modi�ed multiple shooting
computation is reduced to O(np) sensitivity solves, roughly the same as that of single shooting.

200 P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213

Unfortunately, the reduction in computational complexity comes at a price: the stability of the
modi�ed multiple shooting algorithm su�ers from similar limitations as single shooting. However,
for many dissipative PDE systems this is not an issue, and the modi�ed method is more robust for
nonlinear problems.
There are other considerations in addition to complexity. There may be many inequality constraints

in this type of optimal control problem. Any scheme for reducing the complexity of the derivative
calculations for the continuity constraints should not cause additional complexity in forming or com-
puting the derivatives of the inequality constraints. Whatever changes are made to the optimization
problem or the optimization method must result in an algorithm where the merit function is decreas-
ing. Finally, an optimization code such as SNOPT is highly complex. There is a strong motivation
to be able to adapt such an optimization code to our optimal control algorithm with a minimum of
changes to the optimizer. Our aim is not only to reduce the di�culties associated with writing and
maintaining separate optimization software for the dynamical systems problems, but also to make it
easier to adapt new optimization software and algorithms for these problems.
Although a number of papers have discussed algorithms related to the one proposed here, to our

knowledge, none has all of the desirable properties mentioned above. The stabilized march method
[1] for 2-point boundary value problems is closely related. The stabilized march method makes use
of the structure of the continuity constraints by solving them for the internal variables (at the multiple
shooting points) in terms of the unknown boundary conditions. This can be done e�ciently through
the use of directional derivatives. Schl�oder [12] generalizes this method to multipoint boundary value
problems from optimal control and parameter estimation. However, the method is not easily extended
to general inequality constraints, mainly because it is a problem to write these inequality constraints
in terms of the parameters in the optimization. Biegler et al. [2] present a reduced SQP method
used with collocation, which reduces the size of the optimization problem by solving the constraints
from the discretized ODE for the discretized state variables in terms of the optimization parameters.
Schultz [13] introduces partially reduced SQP methods used with collocation and multiple shooting
to overcome this limitation with respect to the inequality constraints. In the partially reduced SQP
methods, the inequality constraints are reduced on the kernel of the continuity constraints. The
method appears to require substantial modi�cation to existing optimization solvers. Steinbach et al.
[14] make use of the partially reduced SQP methods for mathematical optimization in robotics; the
inequality constraints are treated via slack variables.
The remainder of the paper is organized as follows. In Section 2 we present an SQP formulation

of the discretized optimal control problem (2)–(3). This leads to a discussion in Section 3 of the
SQP Jacobian and our proposed modi�cation of its structure. In Section 4, we discuss the resulting
modi�ed QP subproblem as well our choice of merit function for use with the altered QP. In
Section 5 we conclude with numerical results that demonstrate the e�ectiveness of the proposed
method.

2. Optimization problem for dynamical systems

The optimization problem (2)–(3) for dynamical systems can be rewritten in a more compact
form. The variable Ny is used to denote the number of discretized states (Ny=(N +1)(ny+1)). We
let x=(y; p)T denote the optimization vector in terms of the Ny discretized states and the parameters

P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213 201

(including discretized controls). We let c1(x) ∈ RNy denote the vector of continuity constraints, i.e.,

c1(x) = (C1
1 (y0; y1; p); C2

1 (y1; y2; p); : : : ; C
N
1 (yN−1; yN ; p))T

(here and throughout the paper we use the simpler notation (a; b)T to denote the column vector
(aT bT)T). The vectors of inequality constraints c2 and c3 are de�ned in a similar manner in terms
of their capitalized counterparts (c3 can include any constraints that involve only discretized states).
The objective function �(tmax) is denoted simply by f(x). The problem now takes the form

minimize
x

f(x); c1(x) = 0; c2(x)¿0; c3(x)¿0: (4)

We use an SQP method to solve this optimization problem. In SQP, a sequence of iterates (xk ; �k)
is generated converging to a point (x∗; �∗) satisfying the �rst-order Karush–Kuhn–Tucker (KKT)
conditions of optimality. Each iterate is the result of a “major” iteration that involves computing
the solution (x̂k ; �̂k) of a QP subproblem, performing a line search (discussed in Section 4.2) and
updating the QP Hessian Hk . The QP is derived from problem (4) and is written

minimize
x

f(xk) +3f(xk)T(x − xk) + 1
2(x − xk)THk(x − xk); (5a)

c1(xk) + J1(xk)(x − xk) = 0; (5b)

ci(xk) + Ji(xk)(x − xk)¿0; i = 2; 3: (5c)

The gradient 3f(x) is a unit vector in our formulation because the objective function is the value
of a state at tmax (see (2) and the preceding discussion). The matrices Ji(x); i = 1; 2; 3, each form
a block of the Jacobian matrix J (x) de�ned by J (x)= @c(x)=@x, where c(x) := (c1(x); c2(x); c3(x))T.
(For example, J1(x)=@c1(x)=@x.) The matrix Hk is a positive-de�nite approximation to 32Lk(xk ; �k),
where Lk(x; �k) is the modi�ed Lagrangian function

Lk(x; �k) :=f(x)− �Tk (c(x)− ck(x));

and ck(x) is the vector of linearized constraints ck(x) := c(xk) + J (xk)(x − xk).
The optimality conditions for a solution x̂ of the QP subproblem imply the existence of vectors

ŝ := (ŝ1; ŝ2; ŝ3)T and �̂ := (�̂1; �̂2; �̂3)T such that

3f(xk) + Hk(x̂ − xk) = J (xk)T�̂; �̂i¿0; i = 2; 3;

c(xk) + J (xk)(x̂ − xk) = ŝ; ŝ1 = 0;

�̂Tŝ= 0; ŝi¿0; i = 2; 3: (6)

The components of �̂ are the Lagrange multipliers of the subproblem, and are referred to as the QP
multipliers. Each component of ŝ can be regarded as a slack variable for the associated constraint
in c. In an active-set QP method, values (x̂; �̂; ŝ) satisfying (6) are determined using a sequence
of “minor” iterations, each one of which solves an equality-constrained QP where certain of the
linearized constraints are treated as “active” (equal to 0).

202 P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213

3. Structure and modi�cation of the linearized constraints

Since the complexity problem for the basic multiple shooting method results mainly from com-
putation of the derivative matrix J1 of the continuity constraints, we �rst examine the structure of
this matrix.
Linearizing the continuity constraints

Ci+1
1 (yi +�yi; yi+1 + �yi+1; p+�p) = 0

at (y0; y1; : : : ; yN ; p) (with �y0 = 0), we obtain

�yi+1 − @y(ti+1)
@p

�p− @y(ti+1)
@yi

�yi + Ci+1
1 (yi; yi+1; p) = 0;

where to simplify the notation y(ti+1) stands for y(ti+1; ti; yi; p). In matrix notation we have

(J1y J1p)
(
�y
�p

)
+ c1 = 0; (7)

where �y = (�y1;�y2; : : : ;�yN)T. The matrices J1y and J1p are @c1(x)=@y and @c1(x)=@p (so
J1 = (J1y J1p)) and satisfy explicitly

J1y =




I O O : : : O

−@y(t2)
@y1

I O : : : O

O −@y(t3)
@y2

I : : : O

...
...

...
. . .

...

O O : : : −@y(tN)
@yN−1

I




; J1p =




−@y(t1)
@p

−@y(t2)
@p
...

−@y(tN)
@p




(we have temporarily dropped explicit reference to xk).
The sensitivity matrices @y(t)=@yi are very costly to compute since the dimension of y is large.

The jth column of this matrix is given by the solutions on the interval [ti; ti+1] of the equations

s′ij =
@F
@y
(t; y; p)sij; sij(ti) = ej; (8)

where ej is the jth column of the identity. As an aside, we note that these equations can be
evaluated using automatic di�erentiation tools (see [3]), and solved via ODE or DAE sensitivity
analysis software (see [8]). They can also be evaluated using �nite di�erences

s′ij =
1
�ij
(F(t; y + �ijsij; p)− F(t; y; p));

where �ij is a small scalar. In the numerical example that we will consider, the matrix @F(t; y; p)=@y
is sparse and the products (@F(t; y; p)=@y)sij can be computed directly. In any case, each sensitivity
matrix requires ny “sensitivities”, which implies that J1y takes (N−1)ny sensitivities. Each column of
@y(t)=@p is de�ned similarly to the sensitivity (8) (see Maly and Petzold [8]) and takes approximately
the same amount of work. It follows that J1 requires approximately N (ny + np) sensitivities.

P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213 203

The matrix J−1
1y can be used to transform Eq. (7) so that the number of sensitivities is reduced.

Multiplying Eq. (7) by J−1
1y gives the equivalent system

(I J−1
1y J1p)

(
�y
�p

)
+ J−1

1y c1 = 0; (9)

which involves the “modi�ed” Jacobian (I J−1
1y J1p). The important feature of this matrix is that the

sensitivities associated with the identity block are available free of charge. The second block is the
solution of the matrix system J1y X =J1p. A short inductive argument proves that the computation of
X requires np(2N − 1) sensitivities. To make this argument, we partition X vertically into N blocks
each denoted by Xi. Clearly, X1 =−@y(t1)=@p, which requires np sensitivities. Assume now that Xi

has been computed. We �nd that

Xi+1 =
@y(ti+1)

@yi
Xi − @y(ti+1)

@p
;

which requires for 16i6N − 1 a total of 2np(N − 1) sensitivities (noting that the matrix–matrix
product (@y(ti+1)=@yi)Xi can be computed directly via np sensitivities). Adding np to this gives
the desired result, which completes the argument. The modi�ed system (9) also requires N − 1
sensitivities for J−1

1y c1. Hence, the total number needed is approximately N (2np + 1), which can
be substantially less than N (ny + np) when np�ny. (We should note that the actual numbers of
sensitivities for both systems (7) and (9) is less than we have written here because the controls
have been included in p.)
Next we examine the structure of the path constraints Cik

2 (16k6Ki) because these too can lead
to a large number of sensitivity calculations. Linearizing these constraints leads to a matrix system

(J2y J2p)
(
�y
�p

)
+ c2¿0; (10)

where J2y and J2p have the forms

J2y =




O O O : : : O
B1y O O : : : O
O B2y O : : : O
...

...
...

. . .
...

O O : : : B(N−1)y O




and J2p =




B0p
B1p
...

B(N−1)p


 : (11)

The matrices Biy and Bip satisfy

Biy =




@g(ti1)
@y(ti1)

@y(ti1)
@yi

@g(ti2)
@y(ti2)

@y(ti2)
@yi

...

@g(tiKi)
@y(tiKi)

@y(tiKi)
@yi




and Bip =




@g(ti1)
@y(ti1)

@y(ti1)
@p

+
@g(ti1)
@p

@g(ti2)
@y(ti2)

@y(ti2)
@p

+
@g(ti2)
@p

...

@g(tiKi)
@y(tiKi)

@y(tiKi)
@p

+
@g(tiKi)
@p




;

204 P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213

and require at most ny and np sensitivities respectively (a whole sensitivity is associated with inte-
gration across the entire interval [ti; ti+1]). It follows that J2 requires about N (ny + np) sensitivities,
the same number needed for J1.
The structure of J2 can also be modi�ed so that the number of sensitivities is reduced. However,

we cannot use the same technique we used to modify J1. Instead, we solve the continuity equations
(7) for �y and substitute the result into the path constraint system (10). This gives the matrix
system

(O J2p − J2y J−1
1y J1p)

(
�y
�p

)
− J2y J−1

1y c1 + c2¿0: (12)

Since J−1
1y J1p and J−1

1y c1 are already computed, this system requires approximately N (2np + 1) sen-
sitivities (the same number as the modi�ed continuity constraint system). Hence, we again obtain a
savings when np�ny.
Two comments are in order before we conclude this section. First, the substitution of �y in terms

of �p in the path constraint equations (10) does not eliminate y as an optimization variable, since
it still appears in the modi�ed continuity constraints. Second, the linearized constraints

c3(xk) + J3(xk)(x − xk)¿0; (13)

involving only discretized states, are left unmodi�ed since J3 involves no sensitivities.

4. Modi�ed QP subproblem

In Section 4.1 we will reformulate the QP subproblem in terms of the modi�ed constraints (9)
and (12). This leads to a complication in the line search, which we discuss in Section 4.2.

4.1. Reformulation of QP subproblem

The objective function for the modi�ed QP is the same as before (see Eq. (5a)). In terms of a
transformation matrix

M (x) :=


 J−1

1y O O
−J2y J−1

1y I O
O O I


 (14)

and transformed quantities �c(x)=M (x)c(x) and �J (x)=M (x)J (x), the constraints (9), (12) and (13)
can be written more simply as

�c1(xk) + �J 1(xk)(x − xk) = 0;

�ci(xk) + �J i(xk)(x − xk)¿0; i = 2; 3:

The optimality conditions for the modi�ed QP subproblem are

3f(xk) + Hk(�x − xk) = �J (xk)T ��; ��i¿0; i = 2; 3;
�c(xk) + �J (xk)(�x − xk) = �s; �s1 = 0;
��T �s= 0; �si¿0; i = 2; 3:

(15)

P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213 205

The next lemma shows that transformation by M does not fundamentally alter the solution of a
given subproblem.

Lemma 1. Consider a solution (�x; �s; ��) of the modi�ed QP (15). De�ne vectors ŝ and �̂ such that
�̂=M (xk)T �� and ŝ=M (xk)−1 �s; with M (xk) the transformation matrix (14). Then (�x; ŝ; �̂) satis�es
the conditions (6) and is therefore a solution of the unmodi�ed QP (5).

Proof. From the de�nition (14) of M we have

M (x)−1 =


 J1y O O

J2y I O
O O I


 : (16)

Forming the products ŝ=M (xk)−1 �s and �̂=M (xk)T ��, gives ŝ= �s and �̂i = ��i for i = 2; 3.
It remains to show that �x is feasible for (5). Multiplying the constraint equations in (15) by

M (xk)−1 gives

c(xk) + J (xk)(�x − xk) =M (xk)−1 �s= ŝ= �s; (17)

and the result follows from the optimality of �s in (15).

An SQP code capable of solving the problem (4) is necessarily complex. However, altering the
code to solve the modi�ed QP instead of the original QP is a simple matter of providing �c and �J
in place of c and J . The only complication is that �J is not the Jacobian of �c. In fact, the Jacobian
of �c is

M (x)J (x) +
@M (x)
@x

c(x) = �J (x) +
@M (x)
@x

c(x);

which means we are omitting the term (@M (x)=@x)c(x). This omission has an e�ect on the choice
of merit function, as we discuss in the next section.

4.2. The merit function

An important feature of SQP methods is that a merit function is used to force convergence from
an arbitrary starting point. The properties of a merit function may be discussed with respect to a
generic function M de�ned in terms of variables y. In general, y may include any of the variables
appearing in the QP subproblem, including the slacks and dual variables. If ŷ k computed from the
QP subproblem is an estimate of the solution y∗, a line search is used to �nd a scalar �k (0¡�k61)
that gives a su�cient decrease in M, i.e.,

M(yk + �k�yk)¡M(yk)− �kr(yk); (18)

where �yk = ŷ k −yk and r(y) is a positive function such that r(y)→ 0 only if y → y∗. If the line
search is to be successful, �yk must be a direction of decrease for M(y), i.e., there must exist a
� (0¡�61) such that the su�cient decrease criterion (18) is satis�ed for all � ∈ (0; �).
In the method of SNOPT, yk consists of the QP variables (xk ; sk ; �k) and the merit function is the

augmented Lagrangian function

M(x; �; s; �) = f(x)− �T(c(x)− s) + 1
2�‖c(x)− s‖22; (19)

206 P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213

where � is a nonnegative scalar penalty parameter. In this case, � is chosen at the start of the line
search to ensure that (�xk ;��k;�sk) is a direction of decrease for M. (For more information see,
e.g., [11,6].) The augmented Lagrangian is continuously di�erentiable, which allows � to be found
using safeguarded polynomial interpolation. These methods use M to de�ne a smooth function that
has a minimizer satisfying (18). Safeguarded quadratic or cubic interpolation may then be used to
generate a sequence (starting with �=1) that converges to this minimizer. The minimizing sequence
is terminated at the �rst value � that satis�es the su�cient decrease criterion (18). This procedure
is very e�cient, with only one or two function evaluations being required to improve the merit
function, even when far from the solution.
However, the multiplier vector � is not computed when solving the modi�ed QP, and it follows that

the augmented Lagrangian merit function (19) cannot be used in this situation. As an alternative, we
use a merit function based on the “exact” or l1 penalty function (see, e.g., [4]). Let v(x) denote the
vector of constraint violations at any point x; i.e., vi(x)=max[0;−ci(x)] for an inequality constraint
ci(x)¿0, and vi(x) = |ci(x)| for an equality constraint ci(x) = 0. The l1 penalty function is given by

M(x) = f(x) + �‖v(x)‖1;
where � is a nonnegative penalty parameter. (For simplicity, our notation for M suppresses the
dependence on �.) The main property of the l1 penalty function is that there exists a nonnegative
�∗ such that, for all �¿�∗, a solution of the original problem (4) is also a local minimizer of
M(x).
The function M(x) is not di�erentiable and therefore cannot be minimized e�ciently using smooth

polynomial interpolation. We use the popular alternative of a backtracking line search (see, e.g., [7,
pp. 100–102]). This line search determines a step �k for which the reduction in the merit function
is no worse than a factor � (0¡�¡ 1

2) of the reduction predicted by a model function based on a
linear approximation of f and c. The particular line-search model used is

Mk(x) = f(xk) +3f(xk)T(x − xk) + �‖vk(x)‖1; (20)

where vk(x) denotes the violations of the linearized constraints ck(x) := c(xk) + J (xk)(x − xk).
Let ! be any constant in the range 0¡!¡ 1 (often, != 1

2). The new SQP iterate is de�ned as
xk+1 = xk + �k�xk , where �k is the �rst member of the sequence �0 = 1; � j = !�j−1 such that

M(xk + �k�xk)6M(xk)− �(Mk(xk)−Mk(xk + �k�xk)) (21)

(cf. (18)). A standard result states that an interval of acceptable step lengths exists provided
�¿‖�̂‖∞, where �̂ are the QP multipliers of (6) (see, e.g., [10]). It remains to show that an
appropriate bound on � can be calculated from quantities de�ned by the modi�ed QP subproblem.

Theorem 2. Let �xk be a nonzero search direction such that �xk = �x − xk ; where �x satis�es the
conditions (15). Let �̂ denote the penalty value

�̂=max[0;− �c(xk)T ��=‖v(xk)‖1]:
Then for all �¿�̂; there exists a positive � such that the line search condition (21) is satis�ed for
all � ∈ (0; �).

P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213 207

Proof. First, we show that for � su�ciently large and all 0¡�61, the predicted reduction in M
is positive, i.e., Mk(xk)−Mk(xk + ��xk)¿ 0. Substituting directly from the de�nition (20) of the
model function yields

Mk(xk)−Mk(xk + ��xk) =−�3f(xk)T�xk + �(‖vk(xk)‖1 − ‖vk(xk + ��xk)‖1):
We derive a lower bound on ‖vk(xk)‖1−‖vk(xk+��xk)‖1 using the properties of the slack variables.
For any nonnegative slack vector s we have ‖v(xk)‖16‖c(xk) − s‖1, with equality for the vector
s0 with components (s0)i = max[0; ci(xk)] for a constraint ci(x)¿0, and (s0)i = 0 for a constraint
ci(x) = 0. Consider the vector �sk := �s− s0, where �s is the slack vector (15) computed by the QP.
The optimality conditions (15) for the modi�ed QP imply that �s is nonnegative, which allows us to
assert that s0 + ��sk¿0 for all 06�61. It follows that

‖vk(xk + ��xk)‖16 ‖ck(xk + ��xk)− (s0 + ��sk)‖1
= ‖ck(xk) + �J (xk)�xk − (s0 + ��sk)‖1:

Using the identity (17) and the fact that ck(xk) = c(xk), we have

‖vk(xk + ��xk)‖16(1− �)‖c(xk)− s0‖1
for all � such that 0¡�61. This inequality leads directly to the bound

‖vk(xk)‖1 − ‖vk(xk + ��xk)‖1¿ ‖c(xk)− s0‖1 − (1− �)‖c(xk)− s0‖1
= �‖c(xk)− s0‖1 = �‖v(xk)‖1: (22)

Finally, from (15), we have

−3f(xk)T�xk =�xTk Hk�xk −�xTk �J (xk)
T ��=�xTk Hk�xk + (�c(xk)− �s)T ��;

which may be simpli�ed to become

−3f(xk)T�xk =�xTk Hk�xk + �c(xk)T �� (23)

using the optimality condition �sT ��=0. Eqs. (22) and (23) allow us to write the reduction in M k as

M k(xk)−M k(xk + ��xk)¿�(�xTk Hk�xk + �c(xk)T ��+ �‖v(xk)‖1): (24)

As Hk is positive de�nite by assumption, we need only consider the term �c(xk)T �� + �‖v(xk)‖1.
If �c(xk)T ��¿0, we may choose �̂ = 0. Otherwise, if v(xk) 6= 0, it is su�cient to choose �̂ =
| �c(xk)T ��|=‖v(xk)‖1. If v(xk) = 0, it follows that c1(xk) = 0, c2(xk)¿0 and c3(xk)¿0. These com-
bined with the de�nition of �c(xk) and the nonnegativity of ��2 and ��3 imply that �c(xk)T ��¿0, so we
again can choose �̂= 0.
Next we show that

lim
�→0+

M(xk)−M(xk + ��xk)
M k(xk)−M k(xk + ��xk)

= 1: (25)

Since �¡ 1, this implies that there must exist a positive � such that (21) is satis�ed for all � ∈ (0; �).
The expression

1
�
(M(xk)−M(xk + ��xk)) (26)

208 P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213

can be written as
1
�
(f(xk)− f(xk + ��xk)) + �

1
�
(‖v(xk)‖1 − ‖v(xk + ��xk)‖1):

If we assume the existence of second derivatives for f, standard arguments give

lim
�→0+

1
�
(f(xk)− f(xk + ��xk)) =−3f(xk)T�xk :

Making the same assumption for c and using the relation v(xk) = vk(xk) + o(�) with (22) gives

lim
�→0+

1
�
(‖v(xk)‖1 − ‖v(xk + ��xk)‖1) = ‖v(xk)‖1:

These limits combined with (24) and (26) imply the desired result (25), which completes the proof.

Backtracking generally requires more evaluations of f and c than polynomial interpolation. How-
ever, this disadvantage can be o�set by the savings gained by the use of the modi�ed QP, as we
will see in Section 5.
At each iteration, a penalty parameter �k is used to estimate the quantity �∗ that ensures that x∗

a local minimizer of M. The value of �k is determined by retaining a “current” value, which is
increased if necessary to satisfy the lower bound of Theorem 2. For example, at iteration k, the
penalty parameter �k can be de�ned by �k = max{�̂k ; 2�k−1}, where �0 = 0 and �̂k is de�ned by
Theorem 2.

5. Numerical results

This section presents numerical solutions to an optimal control test problem using the proposed
algorithm. The results are compared with those obtained using the standard single shooting and
multiple shooting technique on the Cray C90 supercomputer.

5.1. Optimal control problem formulation

Consider the following optimal control problem of following a speci�ed temperature trajectory
over a given two-dimensional domain.
A rectangular domain in space is heated by controlling the temperature on its boundaries. It

is desired that the transient temperature in a speci�ed interior sub-domain follow a prescribed
temperature-time trajectory as closely as possible. The domain
 is given by

 = {(x; y) | 06x6xmax; 06y6ymax};
and the control boundaries are given by

@
1 = {(x; y) |y = 0} and @
2 = {(x; y) | x = 0}:
The temperature distribution in
, as a function of time, is controlled by the heat sources across
the boundaries, represented by control functions u1(x; t) on @
1, and u2(y; t) on @
2. The other two
boundaries (x = xmax and y = ymax) are assumed to be insulated, so that no energy
ows into or

P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213 209

out of
 along the normals to these boundaries. The objective is to control the temperature in the
sub-domain

c = {(x; y) | xc6x6xmax; yc6y6ymax}
so as to follow a speci�ed trajectory �(t); t ∈ [0; tmax].
We measure the di�erence between T (x; y; t) and �(t) on
c by the function

�(u) =
∫ tmax

0

∫ ymax

yc

∫ xmax

xc
w(x; y; t)[T (x; y; t)− �(t)]2 dx dy dt;

where w(x; y; t)¿0 is a speci�ed weighting function. The control functions u1 and u2 are determined
so as to

minimize
u

�(u);

subject to T (x; y; t) satisfying the following PDE, boundary conditions, and bounds

Tt = �(T)[Txx + Tyy] + S(T); (x; y; t) ∈
 × [0; tmax]
T (x; 0; t)− �Ty = u1(x; t); x ∈ @
1

T (0; y; t)− �Tx = u2(y; t); y ∈ @
2

Tx(xmax; y; t) = 0;

Ty(x; ymax; t) = 0;

06T (x; y; t)6Tmax:

The controls u1 and u2 are also required to satisfy the bounds

06u1; u26umax:

The initial temperature distribution T (x; y; 0) is a speci�ed function. The coe�cient �(T) = �=c(T),
where � is the heat conduction coe�cient and c(T) is the heat capacity. The source term S(T)
represents internal heat generation, and is given by

S(T) = Smaxe−�1=(�2+T)

where Smax; �1; �2¿0 are speci�ed nonnegative constants.
The PDE is semi-discretized in space via �nite di�erences. A uniform rectangular grid is con-

structed on the domain

xi = i�x; i = 0; 1; : : : ; m; �x = xmax=m;

yj = j�y; j = 0; 1; : : : ; n; �y = ymax=n:

Then let

Tij(t) = T (xi; yj; t); u1i(t) = u1(xi; t); �ij(t) = �(Tij(t));

Sij(t) = S(Tij(t)); u2j(t) = u2(yj; t):

The PDE is then approximated in the interior of
 by the following system of (m−1)(n−1) ODEs
dTij

dt
=

�ij

�x2
[Ti−1; j − 2Tij + Ti+1; j] +

�ij

�y2
[Ti; j−1 − 2Tij + Ti; j+1] + Sij; (27)

210 P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213

for i = 1; 2; : : : ; m − 1; j = 1; 2; : : : ; n − 1. Each of the 2(m + n) boundary points also satis�es a
di�erential equation similar to (27). These will include values outside
, which are eliminated by
using the boundary conditions. Speci�cally, we use

Ti;n+1 = Ti;n−1; i = 0; 1; : : : ; m;

Tm+1; j = Tm−1; j j = 0; 1; : : : ; n;

to approximate the conditions Ty = 0 and Tx = 0.
The �nite-di�erence approximations to the boundary conditions on @
1 and @
2 are given by

Ti0 − �
2�y

(Ti1 − Ti;−1) = u1i ; i = 0; 1; : : : ; m; (28a)

T0j − �
2�x

(T1j − T−1; j) = u2j; j = 0; 1; : : : ; n: (28b)

These relations are used to eliminate the values Ti;−1 and T−1; j from the di�erential equations (as
in (27)), for the functions Tij on @
1 and @
2. As a result, the control functions u1i and u2j are
explicitly included in these di�erential equations, giving 2(m + n) additional di�erential equations.
Together with the (m− 1)(n− 1) ODEs given by (27), this gives a total of (m+ 1)(n+ 1) ODEs
for the same number of unknown functions Tij(t).

5.2. Solution

The numerical solution was obtained by solving the semi-discretized PDE in time via DASPKSO
(using RTOL = 10−6 and ATOL = 10−6) using (1) single shooting, (2) multiple shooting, and (3)
modi�ed multiple shooting. For all cases, the PDE parameters were assumed to be constant, with
the values �=1:0; �1 = 0:2; �2 = 0:05; �= c=0:5; Smax = 0:5; Tmax = 0:7. The solutions correspond
to tmax = 2:0; xmax = 0:8; ymax = 1:6; umax = 1:0; xc = 0:6, and yc = 0:6. Controls on the boundaries
are given by

u1(x; t) =




u(t); 06x60:2;(
1− x − 0:2

1:2

)
u(t); 0:26x60:8;

u2(x; t) =




u(t); 06y60:4;(
1− y − 0:4

2:4

)
u(t); 0:46y61:6:

The initial conditions for states and controls are T (0)=0; u(0)=0. For the control parameterization,
the time integration interval was divided into 20 equally spaced subintervals where the control
function u(t) is represented by a quadratic polynomial

uj(t) = uj0 + uj1(t − tj) + uj2(t − tj)2: (29)

Continuity in time was enforced at the extremities of each control subinterval among all uj(t) and
their derivative u′j(t).

P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213 211

Table 1
Number of iterations and CPU time (in s), with np = 60, for single shooting (SS), multiple
shooting (MS), and modi�ed multiple shooting (MMS)

Problem size Major itns Computation time

Mesh ny SS MS MMS SS MS MMS

4× 4 25 12 8 12 214 141 188
4× 8 45 14 12 13 446 577 376
8× 8 81 7 6 15 566 1264 970
4× 16 85 14 6 15 1132 1382 1023
8× 16 153 15 7 20 2818 5306 3072
16× 16 289 20 6 11 1 3551 24789 6283

The target trajectory �(t) was given by

�(t) =




1:25(t − 0:2) if 0:2¡t60:6;

0:5 if 0:6¡t61:0;

0:5− 0:75(t − 1:0) if 1:0¡t61:4;

0:2 if 1:4¡t62:0;

0 otherwise:

The weight function w(x; y; t) was taken to be 1 in the interior of
c; 0:5 in the interior of the
boundary lines of
c; 0:25 on the corners of the boundary of
c, and 0 elsewhere.
The optimizers were started with initial guess for states and controls as constant over the entire

time interval, equal to their values at t=0. The feasibility and optimality tolerance for convergence
were taken as 10−3 and 10−4, respectively.
Performance results for the three methods on the test problem are given in Table 1. This test

problem has the property that the size of the optimization problem can be increased by simply using
a �ner spatial grid. This readily permits the dependence of solution time on problem size to be
observed. Fig. 1 shows optimal solutions computed using single shooting for increasing mesh size.
The other methods yielded virtually indistinguishable results for this problem.
In general, the single-shooting technique requires more iterations as compared to the other tech-

niques. During the process of obtaining optimal trajectories, we con�rmed the lack of robustness of
single shooting with respect to the initial guess and bounds on optimizing variables. For instance,
the method failed to converge unless the control was constrained to be nonnegative.
For multiple shooting, the total time interval was divided into 10 equal shooting intervals. The

computation times were signi�cant and increased rapidly as the mesh became �ner.
The modi�ed multiple shooting has two important advantages over the other two techniques. (1) It

is more robust than single shooting with respect to initial guess, and (2) the increase in computation
time for �ner mesh size (np�ny) is less than that in the case of multiple shooting.

212 P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213

Fig. 1. Optimal solutions for increasing mesh size. Solid line: �(t). Dashed line: u(t). Dash-dot lines: Tij(t) in
c.

References

[1] U.M. Ascher, R.M.M. Mattheij, R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary
Di�erential Equations, Classics in Applied Mathematics, Vol. 13, Society for Industrial and Applied Mathematics
(SIAM) Publications, Philadelphia, PA, 1995, ISBN 0-89871-354-4.

[2] L.T. Biegler, J. Nocedal, C. Schmid, A reduced Hessian method for large-scale constrained optimization, SIAM J.
Optim. 5 (1995) 314–347.

[3] C. Bischof, A. Carle, G. Corliss, A. Griewank, P. Hovland, ADIFOR — generating derivative codes from Fortran
programs, Sci. Programming 1 (1992) 11–29.

[4] R. Fletcher, ‘1 penalty method for nonlinear constraints, in: P.T. Boggs, R.H. Byrd, R.B. Schnabel (Eds.), Numerical
Optimization 1984, SIAM, Philadelphia, PA, 1984, pp. 26–40.

P.E. Gill et al. / Journal of Computational and Applied Mathematics 120 (2000) 197–213 213

[5] P.E. Gill, W. Murray, M.A. Saunders, SNOPT: an SQP algorithm for large-scale constrained optimization, Numerical
Analysis Report 97-2, Department of Mathematics, University of California, San Diego, La Jolla, CA, 1997.

[6] P.E. Gill, W. Murray, M.A. Saunders, M.H. Wright, Some theoretical properties of an augmented Lagrangian merit
function, in: P.M. Pardalos (Ed.), Advances in Optimization and Parallel Computing, North-Holland, Amsterdam,
1992, pp. 101–128.

[7] P.E. Gill, W. Murray, M.H. Wright, Practical Optimization, Academic Press, London, 1981, ISBN 0-12-283952-8.
[8] T. Maly, L.R. Petzold, Numerical methods and software for sensitivity analysis of di�erential-algebraic systems,

Appl. Numer. Math. 20 (1996) 57–79.
[9] L. Petzold, J.B. Rosen, P.E. Gill, L.O. Jay, K. Park, Numerical optimal control of parabolic PDEs using DASOPT,

in: L. Biegler, T. Coleman, A. Conn, F. Santosa (Eds.), Large Scale Optimization with Applications, Part II: Optimal
Design and Control, IMA Volumes in Mathematics and its Applications, Vol. 93, 1997, pp. 271–300.

[10] M.J.D. Powell, Variable metric methods for constrained optimization, in: A. Bachem, M. Gr�otschel (Eds.),
Mathematical Programming: The State of the Art, Springer, London, 1983, pp. 288–311.

[11] K. Schittkowski, NLPQL: a Fortran subroutine for solving constrained nonlinear programming problems, Ann. Oper.
Res. 11 (1985=1986) 484–500.

[12] J.P. Schl�oder, Numerische methoden zur behandlung hochdimensionaler aufgaben der parameteridenti�zierung, Ph.D.
Dissertation, University of Bonn, 1988.

[13] V.H. Schulz, Reduced SQP methods for large-scale optimal control problems in DAE with application to path
planning problems for satellite mounted robots, Ph.D. Dissertation, University of Heidelberg, 1996.

[14] M.C. Steinbach, H.G. Bock, G.V. Kostin, R.W. Longman, Mathematical optimization in robotics: towards automated
high speed motion planning, Preprint SC 97-03, Konrad-Zuse Zentrum f�ur Informationstechnik Berlin, 1997.

