WSSIAA 2(1993) pp. 213-224
©World Scientific Publishing Company

IMPLICIT RUNGE-KUTTA METHODS FOR HIGHER INDEX
DIFFERENTIAL-ALGEBRAIC SYSTEMS

E. HAIRER and L. JAY

Section de Mathématigues, Université de Genéve
Case posiale 240, CH-1211 Genéve 24, Switzerland

ABSTRACT

' This article considers the numstical treatment of differential-algebraic

systems by implicit Runge-Kutta methods. The perturbation index of a problem
is discussed and its relation to the numerical solution is explained. Optimal
convergence results of implicit Runge-Kutta methods for problems of index 1, 2,
. ’ and 3 in Hessenberg form are then surveyed and completed. Their importance in
the study of convergence for singular perturbation problems is shown and some
comments on the numerical treatment of stiff Hamiltonian systems are given.

1. Introduction

The subject of this paper is the numerical treatment of nonlinear differential-
algebraic equations (DAEs) of the form

0= F(u,u") (1)
where u and F are of the same dimension. The matrix 8F/8u! may be singular but

is assumed to have constant rank. An important special case is the situation where
the components can be separated in differential and algebraic parts as follows

¥ = f(y,2), 0=g(y,2). {2)
Differential-algebraic equations arise in a variety of applications, ¢.g., constrained
mechanical systems, robotics, simulation of electrical networks and control engi-
neering. They are also obtained as the limit of singular perturbation problems.

There are several ways for solving numerically the above problem. All of -
them have their own advantages:

~ Indez reduction with projection. Differentiate analytically the algebraic con-
siraints and do some algebraic manipulations until an ordinary differential equation
(ODE) is obtained. This ODE can then be solved by any ODE method (explicit

or implicit, one-step or multistep). In order to avoid a “drift off” from the original
algebraic consiraints, it is recommended to combine this approach with certain—
projections onto the manifolds where the exact solution lies. e

- Durect approach. Embed the original problem into a singular .val:-.vmaou_ prob-
lem (e.g., ¥.= f(y,2), £2' = g(y, z)} for Eq. 2), apply formally an ODE method and
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consider the limit £ — 0. This approach is restricted to implicit methods whose
stability function is bounded by cre at infinity. However, i{ provides much insight
into the numerical solution of stiff and singular perturbation problems.

- Special methods. They are adapted to the particular problem. Usunally one applies
some explicit ODE method to the differential part of the DAE and some nonlinear
equation solver to the algebraic part.

In this article we restrict ourselves to the direct approach combined with
the use of implicit Runge-Kutta methods. For further results on the numerical
treatment of DAEs we refer the reader to the monographs of Griepentrog and
Marz5, Brenan, Campbell and Petzold?, and Hairer, Lubich and Roche’.

Consider the DAE of Eq. 1 and assume that consistent initial values are
given (up is consistent if a function u(t) exists which satisfies Eq. 1 and u(2g) = ug).
For an s-stage implicit Runge-Kutta method with coefficients a;;,b;, the direct

350
approach yields!?
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The first line of Eq. 3 represents a nonlinear system for U;, U}, i = 1,...,s, and
u; 15 the numencal approximation for the solution at £y + k. Due {o the wide
variety of problems included in the formulation of Eq. 1, there is no hope for a
unified convergence theory. There exist perfectly meaningful DAEs which cause
difficulties to every numerical methed. Fortunately, the problems arising in practice
have some additional structures and permit a successful application of the above
method.

This paper is organized in the following way. We begin with a classifi-
cation of DAEs (perturbation index) which measures how strong the problem is
ill-conditioned. For several important problems in Hessenberg form (of index 1,
2, and 3) we then present optimal convergence results for implicit Runge-Kutta
methods. These are used to give some insight into the numerical solution of sin-
gular perturbation problems. As an example, the numerical treatment of stiff
Hamiltonian systems is discussed.

2. Influence of Perturbations

For ordinary differential equations ' == f(u) it follows from the lemma
of Gronwall that the difference between the exact solution »(#) and a perturbed
solution #(t) with defect §(t) := #'(¢) ~ f(@(t)) can be estimated as

&
() - w0 < =9 (jfato) - ulto) + max || [ 8(r) drf)). (1)
(L]

& fg<a<t
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Working on 2 bounded interval (¢ < £ < T') this means that small perturbations in
the data of the problem cause small perturbations in the sclution. For differeatial-
algebraic equations the situation may be completely different.

Indez 1 problems. We consider the DAE of Eq. 2 ao.monran with a perturbed
version :

¥ = QA? Nv. § = ._A@u mv + mpﬂsu-
Q"QA@.NV. 0 "hﬁw.wpv.._r&.u@v. ’ ﬁmv
and assume that :
g: 1is invertible (6)

in a neighbourhood of the solution (g. denotes the derivative of g with respect
to z). Using the implicit function theorem we can solve the algebraic relations in
Eq. 5 for z (resp. ). Inserted into the differential equation of Eq. 5 this yields an
ODE for y (resp. §) and the estimate of Eq. 4 can be used to obtain

() - 5 < C(11§(t0) - 3ol + h 6z(s)llds + max | \“c fi(r)dr),
12(2) - ()1 < C (U5 (E) -y + Ka(2)])-

Again, the problem is in general well-conditioned.

Indez 2 problems. An example where the condition of Eq. 6 is violated is

¥ = fly,2), ¥ = f(§,2)+ &1),

0= gl), 0= g(3) +0(¢). (1)
It represents a typical control problem where z acts as a control variable and forces
the solution y to stay on the manifold defined by 0 = g(y). The essential idea is to
differentiate the algebraic constraints with respect to t. This yields 0 = g,(y)f(y, 2)
and a similar relation for the perturbed system. If we assume that

gy fz is invertible (8)

in a neighbourhood of the solution, the differentiated constraint can be solved for .
We thus obtain, as for the index 1 example, the estimates’

t
15 9O < C(15(t0) - v(to)l + | (BN + 1E'()) o),
I7(2) — 2()) < © (ko) ~ plto)l + maax IS(s) + quax 1)) (9)
Although the estimate for the y-component can be slightly improved?, the depen-

dence on #'{t) cannot be suppressed in general. Therefore, small perturbations in
Eq. 8 may lead to large perturbations in the solution.

Indez 3 problems. The equations of motion of nonmanm.msnﬂ.‘amnrmam& 8ys-
»annmbcoiumﬁmbmuwwoﬁgs ..

¥ = f(y,2), 7 = f(3,2) + 8(2),
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2= k(y,z,u), : = k(§,2,3) + uit),
0= g(y), 0 = g(g) +6(¢), (10)

where typically & depends linearly on u. H we differentiate twice the algebraic
constraint, the assumption

gy fzku  is invertible (11)

allows to express u in terms of y,z, and estimates for §(2) — y(¢),... can be ob-
tained. These estimates will depend on 8"(t),# (£}, and on #(t), so that this
problem is even more ill-conditioned than the previous ome. However, in some

important situations (e.g., f(v,2) = fo(¥) + £i(¥)2, k(y, z,4) = koly,2) + ks1(y)u)
the differences §{t) - y(t), (¢} ~ z(¢) (but not #(t) - u(t)) are independent of §"(£)
and &(t).

These examples motivate the following definition of the index.

Definition’. Eq. 1 has perturbation index m along a solution u{t) on [tg, T,
if m is the smallest integer such that, for all functions #(t) having a defect

F(a(t),a(8)) = &(¢),

there exists on [tp,T] an estimate

I(t) — ()il C (IRlto) ~w(ta)ll + max I6(s)lI+ .. + max 15tm=s)i)

whenever the expression on the right-hand side is sufficiently small.

It is also of interest to study the influence of perturbations in the Runge-
Kutta equations (Eq. 3) on the numerical solution. Let us explain this at the
example of the index 2 problem (Eq. 7). The internal stages of the Runge-Kutta
method satisfy

Yai Qan_u_mMUQS nj’ wﬂ._.“ .‘..HKS.,NE.Y

NEIN:+.@MP.._ i
i=1

and the numerical approximation at ¢,,.; =1y + {r + 1)k is given by

s
Ynt+1 |@_=+.-M& i Zati ”N:.._umNM”@_.N
=1 i=1

0= hﬁw\ﬂmv.

If we eliminate the variables Y},

¥1 @..:..T.J.Mu&d% ni1 au.v.

F=1

Yn+1 = Yn + h M F..%ﬁ%.:.-._ N..:.-.V. Zntl = PIn + M F.E@.Nﬁ.ﬂ.. :.Mwuw

1=1 o ti=1

Z) ; we obtain the equivalent formulas

DHQAN,:.V_ (12a)
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where

p= i- M @-.E-.u. C.ww

ij=1

(wij) = (ay5)™ and

(of course, we have assumed that A = Aa..u..v is invertible; p is the value of the
stability function at infinity). Eq. 12a represents a nonlinear system for Y;, Z.;,
i=1,...,s, and the numerical solution after one step is then explicitly given by
Eq. 12b.

We next compare Eq. 12 to the perfurbed Runge-Kutta method

2
Yoii=Fn-th MU ae.u..w.mm‘vau; Na..__.w + hé,;, 0= @Amva.v + @i, Athu
i=1
. 2 3
@..I.w =¥t h MU F..w.c\q:._ N._:.u + m.m:_a+7 m=+m =pZ + M @...E&_.wau A.Tpvv
=1 1,j=1

with the aim of estimating the differences Ayn = ¥n — yn and Azn = %, — z,. Since
the nonmlinear systems do not depend on the initial values of the z-component, it
is possible to derive the estimates for Ay, independently of those for Azp.

Substracting Eq. 12 from Eq. 14 we obtain by linearization that?

Byni1 = Palys + pQuiyn + O(R||Aynli + hén + ) (15)
where
, P, = Qnﬂ..ue%uvlumav@a.nav, On=1I-Fo
are suitable projectors and
bn = .Iw.....~+u __m..:__. 0, = ..ﬁw..u.n...__ma___

(we have implicitely used the fact that h,és,0, and Ayn are sufficiently small
and that gy, is sufficiently close to consistent initial values, so that the numerical
solution exists). We next assume that |pj < 1 and deduce from Eq. 15 that

N-1
HAwxl < C(IPoluoll + (ot + AYIQuAsal +5 3 (6 +52))  (160)

n=0
for Nk < Const. Similarly one gets for the z-component

N
W82yl < C(IPoByoll + (oY +B)IQoAyoll + _max  Snt max Hi (16b)

Eq. 16 is the numerical analogue of Eq. 9. We observe that the derivativein Eq. 9
becomes a division by the stepsize h in Eq. 16.
These estimates can be exploited in several ways. If one replaces §,,%, by

values on the exact solution, one can obtain convergence results of the methed:™ ™

Furthermore, it is possible to interpret the perturbations as round-off ‘errors or
errors in the iterative solution of the nonlinear systems. Eq. 16 shows how such
errors can affect the numerical solution. The ill-conditioning of the problem is
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reflected by the factor 1/% in front of the perturbations f,. Therefore, one has to
take care of the above-mentioned errors when the stepsize is very small.

Estimates similar to Eq. 16 can be derived also for the index 1 and index 3
problems of the beginning of this section. However, similar results for general
DAEs, having perturbation index m, are not yet known.

3. Convergence Results

The above investigations make it clear that there is no unified convergence
theory of Runge-Kutta methods for general DAEs, and that one has to treat sep-
arately all different types of problems. The first resulis (for linear inhomogeneous
DAEs with constant coefficients, but of arbitrary index) have been obtained by
Petzold!?, In this section we collect convergence results for nonlinear semi-explicit
problems of index 1, 2, and 3. For nearly all Runge-Kutta methods the estimates
are optimal in the sense that the exponent of & carnot be improved without re-
stricting the class of problems.

For the presentation of the convergence results we need the following ab-
breviations:

B(p): MF_&THHW for k=1,...,p

i=1
2 n%

C(q): Mum:éwluuﬂw for i=1,...,8; k=1,...,q
j=1

L]
b.
D(r): .vap.nwl_n&ﬂﬂu?lnwv for 7=1,...,8 k=1,...,r;
1=

(5): a,=b for i=1
The assumptions B(p), C(q), D(r) have been introduced by Butcher? and play a
crucial role in the construction of implicit Runge-Kutta methods*8®, The con-
dition (S) means that the method is “stiffly accurate”. Throughout this section
we shall assume that the Runge-Kutta matrix A = (a;;) is invertible and we shall
denote by p the value defined in Eq. 13. The integer g of condition C{g) is called

the “stage order”. We always assume that p> q.

1i-es 8.

Theorem (index 1). Consider the index 1 problem (Eg. 5, Eq. 6) and
assume that the initial values are consistent. If the Runge-Kutta method satisfies
B(p), C(g), D(r), and |p| < 1, then the global error satisfies for hn < Const

y(tn) — yn = O(R"), 2(ta) — 24 = O(RS),
where n =min(p, 29 +2,9+r + 1) and .
7 if (S) holds,
(=qemin(p,g+1) if -1<p<i,
min(p-1,9) o if p=1.
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The proof of this theorem is based on the foliowing idea: due to Eq. 6, the
algebraic constraint 0 = g(y, z) can formally be written as z = G(y). Inserted into
the differential equation of Eq. 5 we get the ODE ' = f(y, G(y)). Convergence for
the y-component now follows from the fact that the numerical solution, obtained
from Eq. 3, is identical to the approximation of the Runge-Kutta method applied
to 3 = f(y,G(y)). Hence the results from the ODE theory can be applied™®.

The above estimates are valid for a constant stepsize application of the
method. For variable stepsizes the same estimates hold with kb = max, ks (with
the exception of the case p = —1 where the results become those of the case p =
+1). The order reduction in the z-component can be avoided, if one computes the
approximation 2, from g(yn,%s) = 0. Similar remarks can be made also for the
subsequent theorems.

Theorem (index 2). Consider the index 2 problem (Eq. 7, Eq. 8) and
assume that the initial values are consistent. If the Runge-Kutie method satisfies
B(p), C(q), D(r), and |p} < 1, then the global error satisfies for kn < Const

y(tn) - yn = O(A7), #(tn) - 20 = O(KS),

here min(p,20,4-+7+1)  if () holds
= { min(p,q + 1) if —1<p<i,
q if p=1,
q if ol <1,
{(=4¢-1 i p=-1,
q-2 if p=1.

The proof of this theorem needs the sindy of the local etror (using rooted
trees, elementary differentials, ...) and of the error propagation (see Eq. 15). De-
tails are given in Hairer, Lubich and Roche’.

Optimal convergence results for the index 3 problem have been obtained
only very recently!® under the assumption (5). In view of the application to
Hamiltonian systems (section 4) we also include new results for the case |p| = L.

Theorem (index 3). Consider the indez 3 problem (Egq. 10, EFg. 11} and
assume that the initial values are consistent. If the Runge-Kulta method satisfies
B(p), C{q), D(r), and |p| < 1, then the global error salisfies for hn < Const

#(tn) — yn = O(RT), 2(tn) — 2o = O(RS), ufts) - un = O(hY),

where

min(p,2¢ - 2,4+ r) if (S) holds,
7= { min(p,q+1) if -1<p<1,r21, ¢2>38,

q else, e
q if |pl <1, g-1  if |p| <1,

(=<(g-1 if p=-1, v=4g-3 if p=_1,
g-2 i p=1, ¢g-4 if p=1
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In the above two theorems the stage order g has to be sufficiently large such
that the numerical solution remains close to the exact solution. Otherwise the
nonlinear system may not have a solution.

4. Singular Perturbation Problems

As mentioned in the introduction, the direct approach for solving DAEs pro-
vides much insight into the numerical solution of singular perturbation problems.
Let us illustrate this at two examples.

Consider first the probilem
¥ = f(v, %),
ez' = gy, 2),
where f and g are sufficiently differentiable. Under suitable assumptions on g {e.g.,

(9(y, z)v,v) € —fjv|?) and on the initial values, the sclution of Eq. 17 possesses an
asymptotic expansion of the form

y(t) =wo(t) +em(t) +’ya(t) +...,  2(t) = z{t) +en(t) + e z(t) +. ...
Inserting these expansions inte Eq. 17 and collecting equal powers of ¢ we obtain

Yo = f(yo0. %)

0= g(vo, 20) (18a)
¥ = Fulyo, 20)n + f2(30, 20)21
zp = gy(v0, 20)¥1 + 92(30, 20} 21 - (18b)

We see that Eq. 18a constitutes an index 1 problem (Eq. 5) for yo(t),zo(t). The
Eqs. 18a and 18b together are an index 2 problem (Eq. 7) with (yp, 25,3, ) in the
role of ¥ and z; in the role of z.

The main point is row that the numerical solution of a Runge-Kutta method
applied to Eq. 17 also has an expansion of the form59

Yo =vntevntelyE+., m=mtengtelngt+.,

and the coefficients y2, 23, . . . are exactly the numerical solution of the Runge-Kutta
method wmwrnm to m..._.u. 18. Consequently, the convergence results for the index 1
vu..o_u_ma Sm—.ﬁ_ an estimate for yo(tn)— 92, zp(#n) - 22, those for the index 2 problem
yield an estimate for 4,(¢n) — ¥}, (s} — 21, etc. Since the higher order terms

in the asymptotic expansions can be neglected5?, this leads to sharp convergence
statements for the singular perturbation problem of Eq. 17.

As a second example we consider the problem?!?

— _ 1
Qm|muf ﬁm||”&.#\$ﬂi_ﬁm+nwluv.

!

@ = pa, =L @ ([ 1) _
h = P2 Py .w.“a\zﬁ mu+m~u Hv i, A“—wV

O<exl ?d.
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which describes a stiff spring pendulum (mass point suspended at a massless spring
with Hooke’s constant 1/£2, 0 < & < 1). If we introduce the new variable A by

&2 = yai+as-1
- ]
Vi + &

& =P, P =~

% =r2 Py=-@pA- L
The so obtained system is a DAE of index 1 if ¢ > 0, and it is of index 3 for the
limit case £ = 0 ((g1,92) corresponds to y, (p3,p2) to 2z, and X to u in Eq. 10).
Since the Runge-Kutta method (direct approach) is invariant under the above
transformation, we expect that for small £ the numerical method behaves similarly
as for an index 3 problem. A rigorous analysis of this fact in a more general context
has been presented by Lubich!!.

The following numerical experiment illustrates this behaviour for the s-stage

methods GAUSS and RADAU 1A, whose coefficients satisfy the fellowing conditions:

GAUSS B(2s), C(s), D(s), p=(-1)",
RADAU ITA B(2s-1), C(s), D{a-1), (5), p=0.
We put £ = 0.001, take the initial values’
q1(0) =1-3¢* + o(c*), g2(0) = 0,
n(0)= Gﬁmwv. 72(0) =0, (20)
and integrate Eq. 19 on the interval [0,0.5] with several different constant stepsizes.
The initial values are chosen such that the solution of Eq. 19 does not contain

highly oscillatory terms {smooth motion!!). This allows the use of stepsizes which
are significantly lazger than e.

Fig. 1 shows the global errors as & function of . Since we have used a
double logarithmic scale, a function Ch™ appears as a straight line with slope r.
We see that for the RADAU I1s method the errors behave like 0(k?), 0(h?), O(A°)
for the components A, py, g3, respectively. For the GAUSS method they behave like
o(h9),0(h?) for the components A,pp (at least for sufficiently large k). The error
of the position coordinate g, oscillates around a line of slope 4, indicating a o(k4)-
behaviour. The errors for ¢;,p; behave similarly. to those for ¢a,p; and are not
plotted. This experiment confirms the results predicted by the theorem {index 3)
of the previous section. As a consequence, methods satisfying condition (5) (like
RADAU 1IA) are preferred. However, for a long time integration the situation may
be different.

Eq. 19 becomes

Eq. 19 represents a Hamiltonian system

BT (21)
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Fig. 1. Global error as a function of the stepsize for Eq, 19, h = 0.5/n, n = 1,2,3,...

with Hamiltonian function

m@,aanwiw mwﬁ,\&:w-afé.

Recently, much research has been devoted to the numerical integration of such
systems (see, for example, the survey article by Sanz-Sernal?). In order to retain
the qualitative properties of the flow of Eq. 21, it is important for the numerical
scheme to be sympleciic. For implicit Runge-Kutta methods this means that the
coeficients have to satisfy!3
F.F.u. + &u.nu.m. - F.F.. =0 for all 1,7. Amwv

It is known that the GAUSS methods satisfy Eq. 22, whereas the RADAU {1A methods
do not. One can prove (multiply Eq. 22 by w;w;; and sum over all indices) that
Eq. 22 implies |p| = 1, a rather undesirable property for the integration of index 3
problems. .

In our second experiment we integrate Eq. 19 (¢ = 0.001) with the initial
values of Eq. 20 and with constant stepsize b = 0.05 over a long interval [0,26]
(about 3 periods). The Hamiltonian function for the numerical solution, obtained
by the GAUSS and RADAU I1A methods with s = 3, is plotted in Fig. 2 (for the
exact solution the Hamiltonian is constant and equals 4.5¢® + 0(c?)). We observe
that it remains between tolerable bounds for the GAUSS method, but drifts away
from the exact value for the RADAU IIA method. This experiment demonstrates
the different behaviour of symplectic and non symplectic integrators.

* It should be mentioned that for “stiff’ Hamiltonian systems, such as Eq. 19,
the use of explicit integration methods is not recommended, because they require
small stepsizes (usually not larger than €). If one uses implicit symplectic inte-
grators, such as GAUSS, the stage order ¢ has to be sufficiently large, so that the
numerical solution is precise enough (see index 3 theorem of section 3).
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Fig. 2. Numerical Hamiltonian for Eq. 13
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