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Abstract. The application of modified Newton iterations to the solntiof SPARK methods applied to a large class of
overdetermined differential-algebraic equations (ODpEslescribed in some details. These ODAEs include the ftation
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1. INTRODUCTION

We consider the following class of systems of implicit, garhed, additive, and overdetermined differential-ddgec
equations (ODAES)
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The variable € R is the independent variablge R™ andz € R™ are thedifferential variablesA € R™ andy € R

are thealgebraic variables. The initial valuegyo, z) atty are assumed to be given and consistent, i.e., the constraint
in (1) must be satisfied. Sufficient differentiability of thenctionsy, p, f,r, g,k are also assumed to ensure existence
and uniqueness of a solution. The ODAEs (1) include the féation of mechanical systems with mixed constraints of
holonomic, nonholonomic, scleronomic, and rheonomic$ypemechanics the quantitigs, p represent respectively
certain coordinates, their velocities, and their momettta;right-hand side of the second equations in (1) contains
forces acting on the system; the corresponding ODAESs caetieed from the Lagrange-d’Alembert principle;and

Y are Lagrange multipliers associated respectively to thertwonic constraints €= g(t,y), 0= g (t,y) +gy(y)v(t,y,2)

and to the nonholonomic constraintsk(t, y, z).

2. (s,5)-SPARK METHODS

One step of aifs, s)-SPARK method applied to the system of ODAE4) with consistent initial value§yp, zp) attp and
stepsizeh is given as follows
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where
t1 :=to+h, Tii=tg+ch fori=1,....s Ti:=tg+Gh fori=0,1,...,s

For Lobatto coefficients a similar definition was proposeflir?]. The definition given here is more general as it can

also include for example Gauss and Radau coefficients. Wefbav sets of coefficientd;, a;j, ci), (Bj &), (bj, &),
(&j,Ci), where we have defined
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We assume thapj = O for j = 1,...,s which implies that/p = yo, G = 0, To = to, and 0= g(fo,%) = g(to,yo) is
thus automatically satisfied. We also assume tpat= b; for j = 1,...,s which implies thatYs = y1, & = 1, and
Ts=1t,. Hence, from G= g(ﬁ,\?s) the condition C=g(t1,y1) is also automat|cally satisfied. Notice that the coeffident
(bj,c; )15:1 and(Bj ,Cj )Js:o generally correspond to two distinct quadrature formuldsassume; # 0, ¢; # ¢ fori # |,
and the matrixA to be invertible. We use the following notatiohs := (1,1,...,1)T € RS, 0s:= (0,0,...,0)T € RS,
esi1:=(0,0,...,0,1)T € RS*1, Is:=diag1,1,...,1) € RS, C:=diag(cy,Cy,...,Cs) € RS, and we define

a= ( t;b'\r > e RIS G = ( €r > e RS g = ( féo.‘r ) € REH)x(sH),

We assume that is invertible. We also define

Qi=(1 0s)+AM 15( —bTAL 1)eRSEH
where we assume that
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M := , € R%® isinvertible.
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which satisfies the orthogonality conditiong™ a = 0. We define the invertible matri® by

Q:= ( VQ; ) ER(SH)X(S—H)



and the matrixQ by

where we assume that

A= Lo € R¥® isinvertible

and thateLlQa = 0, for example by havin@ = a. More details can be found in [3, 4, 5].

2.1. Reformulation of (s,s)-SPARK methods

To solve the nonlinear system of equations fgrs)-SPARK methods we consider the application of modified
Newton methods. In order to obtain an efficient implemeatatequiring only the decomposition of the 2 matrices in
(2) and (3) we reformulate the nonlinear system of equatidris, s)-SPARK methods equivalently as follows
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2.2. Modified Jacobian and modified Newton iterations

The modified Jacobian of the nonlinear system of equatiop&4(6)-(7) can be taken as

lsy1®@1n, O o) o)
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where the partial derivativesy, fy,r,, 0y, ks, V; are evaluated for exampletgtyo, 2o, Ao, Yo. We consider intermediate
guantities to solve the linear systems of the modified Nevitenations. First we can obtain a block diagonal linear
system withs matrix blocks (2) of dimension; + ny + ny for

DA
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0z R _ Y B AR, Ay R AW,
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By invertibility of 66 we obtain the valueAW,, ..., AW from
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AW n¢
We also obtain a linear system of dimensigr+ ny with matrix (3) for
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By invertibility of Q anda we then obtain the valué¥Z, ... ,AZs,Azy andA/N\o,A/N\L ... ,A/N\S from
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