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Abstract. The application of modified Newton iterations to the solution of SPARK methods applied to a large class of
overdetermined differential-algebraic equations (ODAEs) is described in some details. These ODAEs include the formulation
of systems in mechanics with holonomic and nonholonomic constraints.
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1. INTRODUCTION

We consider the following class of systems of implicit, partitioned, additive, and overdetermined differential-algebraic
equations (ODAEs)

d
dt

y = v(t,y,z),
d
dt

p(t,y,z) = f (t,y,z,ψ)+r(t,y,λ ), 0= g(t,y), 0= gt(t,y)+gy(y)v(t,y,z), 0= k(t,y,z) (1)

where we assume that



pz −rλ − fψ

gyvz O O
kz O O



 is nonsingular, (2)

and that
(

pz −rλ
gyvz O

)
is nonsingular. (3)

The variablet ∈ R is the independent variable,y ∈ R
ny andz ∈ R

nz are thedifferential variables,λ ∈ R
nλ andψ ∈ R

nψ

are thealgebraic variables. The initial values(y0,z0) at t0 are assumed to be given and consistent, i.e., the constraints
in (1) must be satisfied. Sufficient differentiability of thefunctionsv, p, f ,r,g,k are also assumed to ensure existence
and uniqueness of a solution. The ODAEs (1) include the formulation of mechanical systems with mixed constraints of
holonomic, nonholonomic, scleronomic, and rheonomic types. In mechanics the quantitiesy,v, p represent respectively
certain coordinates, their velocities, and their momenta;the right-hand side of the second equations in (1) contains
forces acting on the system; the corresponding ODAEs can be derived from the Lagrange-d’Alembert principle;λ and
ψ are Lagrange multipliers associated respectively to the holonomic constraints 0= g(t,y), 0= gt(t,y)+gy(y)v(t,y,z)
and to the nonholonomic constraints 0= k(t,y,z).

2. (s,s)-SPARK METHODS

One step of an(s,s)-SPARK method applied to the system of ODAEs(1) with consistent initial values(y0,z0) att0 and
stepsizeh is given as follows

Yi = y0 + h
s

∑
j=1

ai jv(Tj,Yj,Z j) for i = 1, . . . ,s,



p(Ti,Yi,Zi) = p(t0,y0,z0)+ h
s

∑
j=1

âi j f (Tj,Yj,Z j,Ψ j)+ h
s

∑
j=0

ãi jr(T̃j,Ỹj, Λ̃ j) for i = 1, . . . ,s,

Ỹi = y0 + h
s

∑
j=1

ai jv(Tj,Yj,Z j) for i = 0,1, . . . ,s,

0 = g(T̃i,Ỹi) for i = 0,1, . . . ,s,

0 =
s

∑
j=1

b jc
i−1
j k(Tj,Yj,Z j) for i = 1, . . . ,s−1,

y1 = y0 + h
s

∑
j=1

b jv(Tj,Yj,Z j),

p(t1,y1,z1) = p(t0,y0,z0)+ h
s

∑
j=1

b̂ j f (Tj,Yj,Z j,Ψ j)+ h
s

∑
j=0

b̃ jr(T̃j,Ỹj, Λ̃ j),

0 = g(t1,y1),

0 = gt(t1,y1)+ gy(t1,y1)v(t1,y1,z1),

0 = k(t1,y1,z1)

where

t1 := t0 + h, Ti := t0 + cih for i = 1, . . . ,s, T̃i := t0 + c̃ih for i = 0,1, . . . ,s.

For Lobatto coefficients a similar definition was proposed in[1, 2]. The definition given here is more general as it can
also include for example Gauss and Radau coefficients. We have four sets of coefficients(b j,ai j,ci), (b̂ j, âi j), (b̃ j, ãi j),
(ai j, c̃i), where we have defined

ci :=
s

∑
j=1

ai j for i = 1, . . . ,s, c̃i :=
s

∑
j=1

ai j for i = 0,1, . . . ,s.

We assume thata0 j = 0 for j = 1, . . . ,s which implies that̃Y0 = y0, c̃0 = 0, T̃0 = t0, and 0= g(T̃0,Ỹ0) = g(t0,y0) is
thus automatically satisfied. We also assume thatas j = b j for j = 1, . . . ,s which implies that̃Ys = y1, c̃s = 1, and
T̃s = t1. Hence, from 0= g(T̃s,Ỹs) the condition 0= g(t1,y1) is also automatically satisfied. Notice that the coefficients
(b j,c j)

s
j=1 and(b̃ j, c̃ j)

s
j=0 generally correspond to two distinct quadrature formulas.We assumebi 6= 0,ci 6= c j for i 6= j,

and the matrixA to be invertible. We use the following notation,1s := (1,1, . . . ,1)T ∈ R
s, 0s := (0,0, . . . ,0)T ∈ R

s,
es+1 := (0,0, . . . ,0,1)T ∈ R

s+1, Is := diag(1,1, . . . ,1) ∈ R
s×s, C := diag(c1,c2, . . . ,cs) ∈ R

s×s, and we define

α :=

(
A
bT

)
∈ R

(s+1)×s
, α̂ :=

(
Â
b̂T

)
∈ R

(s+1)×s
, α̃ :=

(
Ã
b̃T

)
∈ R

(s+1)×(s+1)
.

We assume that̃α is invertible. We also define

Q̃ :=
(

I 0s
)
+ AM−11s

(
−bT A−1 1

)
∈ R

s×(s+1)

where we assume that

M :=




bT

bT −bT A
...

bT − (s−1)bTCs−2A


 ∈ R

s×s is invertible.

We define
γT =

(
γ̃T γs+1

)T
:= γs+1

(
−bT A−1 1

)
6= 0∈ R

s+1

which satisfies thes orthogonality conditionsγT α = 0. We define the invertible matrixQ by

Q :=

(
Q̃
γT

)
∈ R

(s+1)×(s+1)



and the matrixQ̌ by

Q̌ := Q

(
Ǎ−1 0s

0T
s 1

)
∈ R

(s+1)×(s+1)

where we assume that

Ǎ :=




a11 · · · a1s
...

. . .
...

as1 · · · ass


 ∈ R

s×s is invertible

and thateT
s+1Qα̂ = 0s, for example by havinĝα = α. More details can be found in [3, 4, 5].

2.1. Reformulation of (s,s)-SPARK methods

To solve the nonlinear system of equations for(s,s)-SPARK methods we consider the application of modified
Newton methods. In order to obtain an efficient implementation requiring only the decomposition of the 2 matrices in
(2) and (3) we reformulate the nonlinear system of equationsof (s,s)-SPARK methods equivalently as follows

0 =




Y1
...

Ys
y1


−1s+1⊗ y0−h(α ⊗ Iny)




v(T1,Y1,Z1)
...

v(Ts,Ys,Zs)


 , (4)

0 = (Q⊗ Inz)







p(T1,Y1,Z1)
...

p(Ts,Ys,Zs)
p(t1,y1,z1)


−1s+1⊗ p(t0,y0,z0)−h(α̂ ⊗ Inz)




f (T1,Y1,Z1,Ψ1)
...

f (Ts,Ys,Zs,Ψs)


 (5)

−h(α̃ ⊗ Inz)




r(T̃1,Ỹ1, Λ̃1)
...

r(T̃s,Ỹs, Λ̃s)





 ,

0 = (Q̌⊗ Inλ )




1
h g

(
T̃1,y0 + h∑s

j=1a1 jv(Tj,Yj,Z j)
)

...
1
h g

(
T̃s,y0 + h∑s

j=1as jv(Tj,Yj,Z j)
)

gt(t1,y1)+ gy(t1,y1)v(t1,y1,z1)




, (6)

0 = (Q̃⊗ Inψ )




k(T1,Y1,Z1)
...

k(Ts,Ys,Zs)
k(t1,y1,z1)


 (7)

where 


Ỹ0

Ỹ1
...

Ỹs


 := 1s+1⊗ y0−h(A⊗ Iny)




v(T1,Y1,Z1)
...

v(Ts,Ys,Zs)


 .



2.2. Modified Jacobian and modified Newton iterations

The modified Jacobian of the nonlinear system of equations (4)-(5)-(6)-(7) can be taken as



Is+1⊗ Iny O O O
O Q⊗ pz −hQα̃ ⊗ rλ −hQα̂ ⊗ fψ
O Q⊗gyvz O O
O Q̃⊗ kz O O




where the partial derivativespz, fψ ,rλ ,gy,kz,vz are evaluated for example att0,y0,z0,λ0,ψ0. We consider intermediate
quantities to solve the linear systems of the modified Newtoniterations. First we can obtain a block diagonal linear
system withs matrix blocks (2) of dimensionnz + nλ + nψ for




∆z
1
...

∆z
s


 := (Q̃⊗ Inz)




∆Z1
...

∆Zs
∆z1


 ,




∆λ
1
...

∆λ
s


 := h(Q̃α̃ ⊗ Inλ )




∆Λ̃0

∆Λ̃1
...

∆Λ̃s


 ,




∆ψ
1
...

∆ψ
s


 := h(Q̃α̂ ⊗ Inψ )




∆Ψ1
...

∆Ψs


 .

By invertibility of Q̃α̂ we obtain the values∆Ψ1, . . . ,∆Ψs from




∆Ψ1
...

∆Ψs


 =

1
h
((Q̃α̂)−1⊗ Inψ )




∆ψ
1
...

∆ψ
s


 .

We also obtain a linear system of dimensionnz + nλ with matrix (3) for

∆z
s+1 := (γT ⊗ Inz)




∆Z1
...

∆Zs

∆z1


 , ∆λ

s+1 := h(γT α̃ ⊗ Inλ )




∆Λ̃0

∆Λ̃1
...

∆Λ̃s


 .

By invertibility of Q andα̃ we then obtain the values∆Z1, . . . ,∆Zs,∆z1 and∆Λ̃0,∆Λ̃1, . . . ,∆Λ̃s from




∆Z1
...

∆Zs
∆z1


 = (Q−1⊗ Inz)




∆z
1
...

∆z
s

∆z
s+1


 ,




∆Λ̃0

∆Λ̃1
...

∆Λ̃s


 =

1
h
((Qα̃)−1⊗ Inλ )




∆λ
1
...

∆λ
s

∆λ
s+1


 .
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