
Advances in Water Resources 53 (2013) 23–32
Contents lists available at SciVerse ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier .com/ locate/advwatres
An asynchronous solver for systems of ODEs linked by a directed tree structure

Scott J. Small a,⇑, Laurent O. Jay b, Ricardo Mantilla a, Rodica Curtu b, Luciana K. Cunha a, Morgan Fonley b,
Witold F. Krajewski a

a IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242, USA
b Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA
a r t i c l e i n f o

Article history:
Received 10 February 2012
Received in revised form 14 September
2012
Accepted 22 October 2012
Available online 31 October 2012

Keywords:
Asynchronous integrator
Tree structure
Hillslope-link river basin model
Distributed memory
Asynchronous communication
0309-1708/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.advwatres.2012.10.011

⇑ Corresponding author. Tel.: +1 319 335 5956; fax
E-mail address: scott-small@uiowa.edu (S.J. Small)
a b s t r a c t

This paper documents our development and evaluation of a numerical solver for systems of sparsely
linked ordinary differential equations in which the connectivity between equations is determined by a
directed tree. These types of systems arise in distributed hydrological models. The numerical solver is
based on dense output Runge–Kutta methods that allow for asynchronous integration. A partition of
the system is used to distribute the workload among different processes, enabling a parallel implemen-
tation that capitalizes on a distributed memory system. Communication between processes is performed
asynchronously. We illustrate the solver capabilities by integrating flow transport equations for a
�17,000 km2 river basin subdivided into 305,000 sub-watersheds that are interconnected by the river
network. Numerical experiments for a few models are performed and the runtimes and scalability on
our parallel computer are presented. Efficient numerical integrators such as the one demonstrated here
bring closer to reality the goal of implementing fully distributed real-time flood forecasting systems sup-
ported by physics based hydrological models and high-quality/high-resolution rainfall products.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Consider an initial-value problem for a general system of ordin-
ary differential equations (ODEs) of the form

dy
dt
¼ f ðt; yÞ; ð1aÞ

yðt0Þ ¼ y0; ð1bÞ

where y 2 Rd is a vector and f is a vector valued function. Numerical
integrators for systems of ODEs are plentiful, and numerical analy-
sis textbooks typically contain a chapter on them. A common exam-
ple is offered by the family of explicit Runge–Kutta methods, with
various orders of approximations, which can be applied directly to
(1) in order to obtain a numerical solution. However, truly efficient
solvers oftentimes utilize particular properties of the specific sys-
tem under consideration.

For instance, if the system of ODEs exhibits stiffness, an explicit
method can be a poor choice of integrator, whereas an implicit
Runge–Kutta method would allow for larger step sizes and im-
proved efficiency. If discontinuities are present in the derivatives
of the right-hand side function f then low order integrators could
result in fewer computations without compromising the order of
the solution’s approximation. If high order methods are desired,
ll rights reserved.

: +1 319 335 5238.
.

then spending CPU time locating these discontinuities may be war-
ranted. When the system (1a) can be decomposed into the form

dy1

dt
¼ f1ðt; y1Þ; ð2aÞ

dy2

dt
¼ f2ðt; y1; y2Þ; ð2bÞ

the first equation (2a) can be solved independently of (2b), which
requires solving two smaller systems of ODEs, with the numerical
solution of (2a) used as an input to the other system (2b). This
can be quite beneficial to implicit solvers, as the size of the corre-
sponding nonlinear systems to be solved is reduced.

In this paper, we focus on systems of ODEs in which the linkage
between equations is determined by a sparse directed tree struc-
ture. This kind of linkage structure arises in distributed hydrologi-
cal models in which a river network of interconnected streams
provides a natural tree-like connecting structure (see Fig. 1). Under
the assumption that the model for the flow of water through a sin-
gle stream can be written as a system of ODEs, the equations from
every stream in the entire network can be viewed as one large sys-
tem of ODEs (e.g., [1,2]). In general, hydrological models that use a
semi-discrete approximation of flow transport of the Saint–Venant
equations or the Muskingum method fall into this category [3].
Although this application is of principal importance to the authors
(see [1,4–6]), the results in this paper are more general and extend
to other types of physical problems where the connectivity

http://dx.doi.org/10.1016/j.advwatres.2012.10.011
mailto:scott-small@uiowa.edu
http://dx.doi.org/10.1016/j.advwatres.2012.10.011
http://www.sciencedirect.com/science/journal/03091708
http://www.elsevier.com/locate/advwatres


Fig. 1. Partitioning schemes in distributed hydrological models that lead to a global system of ODEs. Sub-watershed partitioning on the left and square pixel partitioning on
the right.

24 S.J. Small et al. / Advances in Water Resources 53 (2013) 23–32
between equations is determined by a directed tree structure.
Thus, the problem and algorithms will make no assumptions about
the underlying application, except for the presence of
discontinuities.

We offer a description of an efficient solver for systems of ODEs
linked by a directed tree structure. Section 2 briefly introduces the
system of ODEs that arise in solving flow transport on a hillslope-
link based river basin model. Section 3 covers the problem state-
ment and some basic definitions on directed tree structures. Sec-
tion 4 considers the actual implementation of the solver, while
the approach taken for parallelizing the solver is discussed in Sec-
tion 5. Numerical examples from the river basin model are pre-
sented in Section 6. This paper ends with some conclusions in
Section 7.

2. Flow transport on a hillslope-link based river basin model

We consider the link-hillslope decomposition of a river basin
described by Mantilla and Gupta [1]. Equations for each link follow
the general form described by Mantilla [7] that has been applied in
other contexts of self-similar trees by Menabde [8]. The topology of
a river network can be described as a directed tree structure under
the assumption that no loops are present in the network and no
channel splits (e.g., braided streams) are considered. For each link
(i.e., river segment between two junctions), a differential equation
can be written for water discharge by describing the link as a non-
linear reservoir. Index each link in the basin, and let U i be the col-
lection of the indices of each link with channel flowing directly into
the link with index i. Then, for link i, the discharge qði; tÞ of water
(in m3/s) from the channel and the depth of water (in m) ponded
on the channel’s surrounding hillslope spði; tÞ at time t (measured
in minutes) can be modeled by the system of ODEs
Table 1
Description of the constants used in the river basin model. Typical values are given
under the last column.

Constant Description Range

AhðiÞ Area of the surrounding hillslope at link i ð0;5� km2

AðiÞ Sum of the Ah ’s for all links upstream from i ½0:01;106� km2

LðiÞ Length of link i ½10;1000�m
SðiÞ Average slope of hillslope surrounding i ½0:0;0:5�
gðiÞ Manning coefficient at link i ½0:1;0:8�
vr Reference flow velocity ½0:2;1:0�m/s
RC Runoff coefficient ð0:0;1:0�
k1 Exponent for flow velocity discharge ½0:0;0:7�
k2 Exponent for flow velocity upstream area ½�0:4;�0:05�
dq
dt
ði; tÞ ¼ 1

s qði; tÞk1
X
j2U i

qðj; tÞ � qði; tÞ þ c1spði; tÞ5=3

 !
; ð3aÞ

dsp

dt
ði; tÞ ¼ c2pði; tÞ � c3spði; tÞ5=3

; ð3bÞ

where the values s, c1, c2, and c3 are constants at each link and are
given by

s ¼ ð1� k1ÞLðiÞ
60v rAðiÞk2

; ð4aÞ

c1 ¼
2LðiÞ
0:6
� SðiÞ

1=2

gðiÞ ; ð4bÞ

c2 ¼
10�3

60
RC; ð4cÞ

c3 ¼
2LðiÞ

0:6AhðiÞ
� SðiÞ

1=2

gðiÞ ð60 � 10�6Þ: ð4dÞ

These constants also handle unit conversion. The parameters that
appear in (4) are described in Table 1. The constants v r , RC, k1,
and k2 are universal amongst the entire system. The term c1s5=3

p in
Eq. (3a) can be interpreted as the flow of water from the surround-
ing hillslope into the channel, and pði; tÞ is a known function for the
precipitation at link i measured in mm/s.

3. Problem description and definitions

We consider initial-value problems for systems of ODEs

dy
dt
¼ f ðt; yÞ; ð5aÞ

yðt0Þ ¼ y0: ð5bÞ

The function yðtÞ 2 Rd is the unknown and the variable t 2 ½t0; tf � is
the independent variable, referred to as time. For this paper, we
consider f ðt; yÞ in (5a) as additionally having a tree structure, i.e.,
the system satisfies the following definition.

Definition 3.1. The initial-value problem (5) is said to have a tree
structure if

1. The unknown yðtÞ and function f ðt; yÞ are of the form
yðtÞ ¼ y1ðtÞ; y2ðtÞ; . . . ; yNðtÞ½ �;
f ðt; yÞ ¼ f1ðt; yÞ; f2ðt; yÞ; . . . ; fNðt; yÞ½ �;

ð6Þ
with each vector yiðtÞ; fiðt; yÞ 2 Rni , for i ¼ 1; . . . ;N, and d ¼
PN

i¼1ni.



Fig. 3. Tree representation for the explicit example. The edge labeled 1 corresponds

to the system dy1
dt ¼ f1ðt; y1; y2; y3Þ, the edge labeled 2 corresponds to the system

dy2
dt ¼ f2ðt; y2Þ, etc. The vertices of the tree have been suppressed. The edges are
directed down.

S.J. Small et al. / Advances in Water Resources 53 (2013) 23–32 25
2. There exists a directed rooted tree T with labeled edges
1;2; . . . ;N such that every fi is a function restricted to yi and
to all yj with edge j being a parent of edge i in T.

The root of the tree corresponds to the unique yi that is not an
argument of any fj, except when j ¼ i. Every fi is a function of yi, and
every yi can be an argument of at most one function fj, for j – i. A
system of ODEs satisfying the above definition can be represented
graphically as a directed tree T, as demonstrated in the next
example.

3.1. A simple example

As a simple example, consider the linear system of ODEs of the
form dy

dt ¼ Ay, where the matrix A and unknown vector y are given
by Fig. 2. This system is of the form (5) with d ¼ 10 and the right-
hand side function f ðt; yÞ ¼ f ðyÞ ¼ Ay. This system also satisfies
condition 1 from Definition 3.1, with N ¼ 5, ni ¼ 2 for all i, and

yiðtÞ ¼ x2i�1ðtÞ x2iðtÞ½ �; i ¼ 1; . . . ;5;
yðtÞ ¼ y1ðtÞ y2ðtÞ . . . y5ðtÞ½ �;
f ðyÞ ¼ f1ðyÞ f 2ðyÞ . . . f 5ðyÞ½ �:

ð7Þ

Further, condition 2 is satisfied by the tree given in Fig. 3, as the
functions fi satisfy

f1ðyÞ ¼ f1ðy1; y2; y3Þ; f 2ðyÞ ¼ f2ðy2Þ;
f3ðyÞ ¼ f3ðy3; y4; y5Þ; f 4ðyÞ ¼ f4ðy4Þ;
f5ðyÞ ¼ f5ðy5Þ:

ð8Þ

In addition, the variable y1 is an argument only to the function f1,
while each yi with i – 1 is an argument of some fj with j – i. Each
edge in Fig. 3 represents one of the systems with right-hand side
function fi.

3.2. Conceptualization and definitions

In light of the tree representation of problem (5) with Definition
3.1, the system of ODEs can be viewed as N systems of ni-dimen-
sional ODEs. The system dyi

dt ¼ fiðt; yÞ will be referred to as link i
(or edge i), for i ¼ 1; . . . ;N. In accordance with the language of
graph theory (see for example [13]), each link i that depends only
upon yi is referred to as a leaf, and a link j is called a root if it is the
only link with yj as an argument of the right-hand side function fj.
For instance, in the example of Section 3.1, link 1 is the root, and
links 2, 3, and 5 are leaves.

Link j is a parent of link i – j if fi is a function of yj. In this situ-
ation, link i is called the child of link j. Every root has no child, and
Fig. 2. The matrix A and unknown y for the explicit example.
every non-root link has exactly one child. A link has no parents if
and only if it is a leaf. This terminology is clear when the system
is viewed graphically.

Although we focus on problems with a tree structure, the tech-
niques in this paper are easily generalized to systems of ODEs with
a forest structure; i.e., systems with multiple, independent trees.
More precisely, the system (5) has a forest structure if it contains
more than one root. Clearly, for a forest structure, multiple trees
must be allowed in Definition 3.1.

The system of ODEs that results from considering the river basin
model in Section 2 is a system of ODEs with a tree structure, with
ni ¼ 2 for all i and N denoting the number of channels in the river
basin.

4. Solving the system

An intuitive solution for systems of ODEs with a tree structure
involves finding the solution for external leaves and propagating
the solution inwards into the internal tree links. However, care
must be taken when selecting step sizes and with memory
management.

Suppose we wish to solve the system (5) having a tree struc-
ture from an initial time t0 to a final time tf . Our procedure is to
first integrate the leaves a few steps. Now, all links with only
leaves as parents may be integrated up to the time in which
their parents have been integrated. This procedure is repeated
for any link with every parent that is integrated a few steps until
a solution at the root is computed. The leaves are now integrated
a few more steps, and the procedure is repeated. This whole pro-
cess can be carried out concurrently on various subtrees. Using
this incremental procedure, we can reduce memory usage (see
Section 4.4).

4.1. Synchronous vs. asynchronous integration

The solution of the leaves does not depend upon the solutions of
any other link. Therefore, these equations are free to be solved
anytime using a numerical integration technique (for example, a
Runge–Kutta method) from an initial time t0 to some intermediate
time ti 6 tf . Once the equations for the leaves have been solved,
some links in the system have only parents that have been inte-
grated to at least ti (all their parents are leaves). We can thus inte-
grate each of these links, using the solutions computed for the
leaves, through time ti. The procedure can then be repeated, inte-
grating any links whose parents have been integrated to at least
time ti, until a numerical solution is calculated for every link to
at least time ti. The root of the tree will be the last link to be inte-
grated. An example of this procedure is given in Fig. 4.

Care must be taken when each equation is to be solved in this
manner. To demonstrate, consider a link i with two parents, p
and q (see Fig. 5). The solution of link i is known at time 0; the solu-
tion of link p has been approximated at times 0 and 0.1; and the
solution of link q has been approximated at times 0 and 0.2. In this



Fig. 4. An example of how to integrate a system. All links start at time t0 ¼ 0:0. (a)
All leaves can be integrated, for example, to time s ¼ 1:0. (b) Each parent of link 3
has been integrated, so link 3 can now be integrated to time s ¼ 1:0. (c) Link 1 can
now be integrated out to time s ¼ 1:0.

Fig. 5. If links p and q have been integrated at two different times, then their
numerical solutions must be interpolated to generate data for link i.

26 S.J. Small et al. / Advances in Water Resources 53 (2013) 23–32
situation, link i can only be solved to, at most, time 0.1. But to inte-
grate link i at time 0.1, the solution of q at time 0.1 is needed. There
are two methods to deal with such situations.

1. Avoid this situation entirely by synchronizing the time steps at
each link so that whenever link i needs information about the
solution of a link j at a time t, that information will be available.
In other words, the numerical solver at every link will take the
same time steps and all equations are solved concurrently. This
has the advantage that no solution history is required to be
stored. Such a scheme is called a synchronous integration scheme.

2. Allow the numerical solvers for each link to have different step
sizes. Whenever link i needs information about the solution of a
link j at a time t, that information can be interpolated from
other computed values of the solution. The equations are not
solved concurrently and the history of the solution must be par-
tially stored. Such a scheme is called an asynchronous integra-
tion scheme.

We opt for the second approach. Although a synchronous approach
is simpler to implement, there is a disadvantage when using error
control techniques. Note that when a uniform step size is taken,
the smallest step size that guarantees a desired error tolerance
amongst all the links must be used to integrate at every link. This
can lead to some links taking much smaller time steps than neces-
sary, which creates inefficiencies. However, with an asynchronous
integration approach, each link can be integrated independently
with an appropriate step size.
Fig. 6. Coefficients for the dense output RK4 method.
4.2. Numerical methods

In our implementation, we use the so-called dense output
Runge–Kutta methods. These methods have a built-in mechanism
to obtain a continuous solution between two time steps, allowing
the aforementioned asynchronous integration approach.

Consider a general system (5). A dense output Runge–Kutta
method applied to this problem is defined as follows.

Definition 4.1. One step of an s-stage dense output Runge–Kutta
method with step size h applied to the general system of ODEs (5)
is a formula of the form
ki ¼ f t0 þ cih; y0 þ h
Xs

j¼1

aijkj

 !
; i ¼ 1; . . . ; s; ð9aÞ

uðhÞ ¼ y0 þ h
Xs

i¼1

biðhÞki ð9bÞ
with each aij; ci 2 R, and 0 6 h 6 1. The coefficients biðhÞ are polyno-
mials so that uðhÞ is an approximation to the exact solution yðtÞ of
(5) at time t0 þ hh.

For h ¼ 1, we obtain uð1Þ ¼ y1 � yðt0 þ hÞ. Many such methods
exist in the literature. We give the dense output for the RK4
method in Fig. 6, with coefficients listed in a Butcher tableau.
The dense output of this method gives an order 3 approximation
between steps. Another example is the dense output of the Dor-
mand & Prince method, see, for example ([9], Section II.6). This
method is of order 5 and has a dense output approximation of
order 4. The order of dense output methods is discussed, for
example, in [10]. In general, the order of the dense output should
be at least equal to the order of the integrator minus 1. Other-
wise the numerical solution used by the downstream links will
be reduced in order to that of the dense output. Certainly, if stiff-
ness of the system is a consideration, implicit RK methods with
dense output may be used. For our implementation, we apply
dense output Runge–Kutta methods to the system of ODEs at
each link.

Note that we need not solve all links with the same integration
method. For instance, using higher order numerical methods on
the leaves could lower error propagated through the entire sys-
tem, or implicit solvers could be used at stiff links while explicit
solvers could be used at nonstiff links. The order of convergence
of the numerical solver at a link can be affected by the asynchro-
nous integration scheme if integrators of lower order are used at
upstream links. Although we do not discuss the exact nature of
this here, the numerical integration order can be obtained
through a variation of parameters type argument (see, for exam-
ple, [9]).



S.J. Small et al. / Advances in Water Resources 53 (2013) 23–32 27
4.3. Discontinuities

Care should also be taken if the right-hand side function f is dis-
continuous or has discontinuous derivatives. Ignoring these dis-
continuities can result in loss of error control and increased
runtimes from numerous step rejections. A discussion on disconti-
nuities in ODEs can be found in ([9], Section II.6). For general func-
tions f, discontinuities can be located using dense output methods
(see [9,11]), for example (9). For example, a model problem that
incorporates reservoirs will introduce derivative discontinuities
(see, for example, [12]). The discontinuities introduced by the
model considered in Section 2, however, are only time dependent
and are known in advance.

More specifically, in the river basin model (3), the function
pði; tÞ representing precipitation is specified by a piecewise con-
stant function where the precipitation rate is constant over a set
interval of time at each link. To integrate these systems efficiently,
the integrators must take care to ‘‘step’’ on any times where a
change in precipitation occurs.

Suppose link i has been integrated to a time tm, and the step size
is hm. Suppose further that at time t� with tm < t� < tm þ hm, the
function pði; tÞ has a jump discontinuity. We would therefore re-
duce the step size hm to t� � tm. For the numerical solver, we take
for the value of pði; t�Þ its limit from the left when computing the
numerical solution s�p of (3b) at time t�. But we use the limit from
the right when using s�p to compute numerical solutions at times
greater than t�. This will allow the solver to control the error
regardless of the discontinuities.

Another consideration is the propagation of discontinuities
through the system of differential equations. Discontinuities in
the function pði; tÞ in the Eqs. (3) manifest themselves as discon-
tinuities in the derivative of spði; tÞ and discontinuities in the sec-
ond derivative of qði; tÞ. If j is the child link of i, then a
discontinuity in pði; tÞ becomes a discontinuity in the second
derivative of the differential equations at link j. If k is the child
link of j, then this discontinuity becomes a discontinuity in the
third derivative at k, and so on down to the root link. An example
of this is given in Fig. 7. To improve efficiency, these discontinu-
ities should be tracked.

In our implementation, this tracking process is done by storing
at every link a list of the times in which a discontinuity in the right-
hand side function or one of its derivatives occurs. Note however
that this propagation need not be tracked throughout the entire
system. Once the order of the derivative in which a discontinuity
occurs is greater than the order of the highest order integrator used
in the system, tracking can stop.
Fig. 7. A demonstration of how discontinuities propagate through the river basin
model (3). The right-hand side function of the differential equation at the link
labeled Dis is discontinuous in time, the right-hand side function of the differential
equation at the link labeled C1 has a continuous derivative, the right-hand side
function at the link labeled C2 has a continuous second derivative, etc. All unlabeled
links have no discontinuities in the corresponding right-hand side function. For
simplicity, a change in rainfall is assumed to occur only at the link labeled Dis.
4.4. Memory management

Solving a system of ODEs in a tree structure using an asynchro-
nous integration scheme does not require that we store the entire
history of every link. For a link i, we must store a time tj and the
corresponding kl for l ¼ 1; . . . ; s in Definition 4.1, so that other
links can use appropriate approximate solutions of link i. For sim-
plicity, we denote the collection of s vectors kl for link i at time tl as
Vi

l. For each link, we will have in memory a list of the form

Li :¼ fti
l;V

i
l; t

i
lþ1;V

i
lþ1; . . . ; ti

m;V
i
mg: ð10Þ

Each pair ti
j, Vi

j represents a computed step of the numerical meth-
od. Similarly, if link j is a parent of link i, then link j will have a list

Lj :¼ ftj
q;V

j
q; t

j
qþ1;V

j
qþ1; . . . ; tj

r ;V
j
rg: ð11Þ

We can assume initially that ti
m < tj

q. Link i will use the list Lj to fur-
ther its calculations to a time ti

n > tj
q. This time will fall between

times tj
p and tj

pþ1 in the list Lj. Once the calculations for link i have
been performed for the numerical solution at time ti

n, all data stored
in Lj for times before tj

p can be freed, as they will no longer be
needed in any further calculations. This will leave the list Lj as

Lj ¼ ftj
p;V

j
p; t

j
pþ1;V

j
pþ1; . . . ; tj

r;V
j
rg; ð12Þ

which will contain less data than the list (11). By using this ap-
proach, we limit the amount of stored data to that which may still
be needed and remove any unneeded data. This approach will use
much less memory than storing all computations.
5. Parallel implementation

To implement the above algorithm, we propose a parallel
implementation to improve performance. We focus here on a dis-
tributed architecture. Our approach is to partition the edges of the
tree corresponding to the system of ODEs amongst the processes,
creating a partition of the entire system. Ideally, we want to parti-
tion the links into p clusters (one for each process) with an equal
number of links. Further, if link i is the parent of link j, and link i
is assigned to a cluster A while link j is assigned to a different clus-
ter B, then communication must occur. We would further like to
minimize the number of links with children in other clusters and
reduce the time in which the processes remain idle.

To summarize, the most ideal partitioning algorithm partitions
the system into p clusters with a process assigned to each cluster
so that

1. each cluster has the same number of links,
2. the number of links assigned to cluster A with a child link in a

different cluster B is minimized,
3. the amount of time a process spends waiting for data from

other processes is minimized.

The first two conditions give a special case of the graph-partition-
ing problem. The general graph partitioning problem is well known
to be NP-complete [13]. However, heuristic approaches for solving
the problem exist (see for example [14,15]). For graphs that are
trees, the partitioning problem is still NP-complete [16]. Polyno-
mial time algorithms have been proposed for the graph partition-
ing problem for trees using slightly different restrictions for the
clusters [16]. These algorithms are designed to distribute workload
on shared memory systems. [17] proposes a linear time algorithm
with both conditions 1 and 2 above but requires the number of
clusters to be variable.

We propose a heuristic approach for partitioning the system.
Assuming there are p processes indexed from 1; . . . ; p, the



28 S.J. Small et al. / Advances in Water Resources 53 (2013) 23–32
algorithm is given in Algorithm 1. Recall that N is the number of
links and M is the number of leaves.

An example of this algorithm with three processes is given in
Fig. 8. The idea of step 1 is that if a link has parents that are leaves
each parent will appear consecutively in this list. Graphically, this
can be viewed as listing the leaves ‘‘from left to right.’’ For example,
in Fig. 3, the leaves would be listed as 2, 4, and 5. In step 2, the first
process receives the first L leaves in the list; the second receives
the next L leaves; etc. Any unassigned leaves (because p may not
divide M) are assigned to the last process p.

While solving the system, if a link i is assigned to a process a
and one of its parents j is assigned to process b (a – b), then com-
munication will occur between processes a and b, as link i needs
Fig. 8. An example of how to partition the system amongst three processes. Labels
on the links represent process assignment: (a) first assign the leaves from left to
right (the results of a depth-first search), (b) assign the links to process 1 starting
from the leaves assigned to process 1, (c) repeat for the leaves assigned to processes
2 and 3.
information about the solution of link j to be integrated. The main
idea of the assignment scheme given in the algorithm above is that
communication is expensive and should be minimized. The depth-
first search of step 1 is designed to try to keep the parents of each
edge with the same process assignment as much as possible.

The runtime of a depth-first search of a tree is linear with re-
spect to the number of links. So the runtime of step 1 in Algorithm
1 is OðNÞ. In step 2, each leaf will be assigned to a process, which
results in a runtime of OðMÞ. In step 3, each link is visited once
for its assignment. However, a total of M � 1 links will also be vis-
ited again from the terminating condition of the while loop. There-
fore, the runtime of step 3 is OðN þMÞ. The overall runtime for
Algorithm 1 is the sum of the runtimes of the three steps, which
gives OðN þM þ N þMÞ ¼ OðNÞ. So the partitioning algorithm is
linear with respect to the number of links in the system.

For a given problem, partitioning the system needs to occur
only once and is dependent only upon the arguments of each fi

and not upon any parameters, integration times, or numerical
methods. For long integration times, the partitioning algorithm re-
quires a small amount of time compared to the integration time.

We also note that partitioning the basin evenly will not in gen-
eral lead to a perfectly balanced workload amongst the different
processes. Some links may require more computational time as a
result of the differential equation used at that link. For instance,
more work must be performed at links with varying rainfall rates.

6. Numerical experiments

To demonstrate our algorithms, we have created an implemen-
tation in the C programming language. Communication between
processes is done using the Message Passing Interface (MPI) (see
[18]). All experiments are run on a cluster with 200 nodes, and
each node has Dual Quad Core Intel (R) Xeon (R) CPU X5550 @
2.67 GHz processors with 24 Gb DDR3 1333 MHz memory and
1 Tb of storage.

6.1. Verification of numerical results

To verify our implementation, we apply the algorithms pre-
sented here to a particular case of the parameters for which a
closed form of the solution of (3) is known. We consider water
flows on a Peano network using only the transport equation (3a).
Assuming constant velocity (i.e., k1 ¼ k2 ¼ 0:0), v r ¼ 1:0 m/s, and
LðiÞ ¼ 500 m for every link i. In physical terms, this corresponds
to a case in which runoff from an instantaneous and uniform storm
has made it into the channels of the river network and flows freely
downstream. The constant velocity assumption treats each channel
link as a linear reservoir. The exact solution at the root node has
been recently given by [19] as

qXðtÞ ¼ q0e�
t
s
X2X�1

k¼1

3bk t
s

� �k�1

ðk� 1Þ! ; ð13Þ

where X is the Horton order of the root link in the Peano tree and
the sequence bk takes the integer k into the number of 1’s appearing
in the binary representation of k (so bð1Þ ¼ 1, bð3Þ ¼ 2, bð11Þ ¼ 3,
etc). We have taken the discharge at time 0 in each link to have
the same value, q0. Again, this corresponds to runoff from an instan-
taneous and uniform pulse of rainfall that instantaneously moves
into the channel.

For the experiment, we use the Peano network with a root link
having Horton order X ¼ 10. This system has a total of
N ¼ 49 ¼ 262;144 links. The initial discharge is taken as
q0 ¼ 1:0 m3/s. For the numerical methods, we apply the 7-stage
dense output Dormand and Prince method of order 5 to the ODE
at each leaf and the dense output Runge–Kutta method of order



Table 2
Runtimes for our implementation versus the DOPRI5 solver.

Relative tol Our implementation DOPRI5

Runtime (min) Max error Runtime (min) Max error

10�2 47.45 1.594598 1020.38 0.838145
�3 54.00 0.199336 1028.52 0.103745

S.J. Small et al. / Advances in Water Resources 53 (2013) 23–32 29
4 from Fig. 6 to all other links. The step sizes are chosen to be the
same at each link, and the simulation is run using multiple fixed
step sizes. The true solution and numerical errors at the outlet at
the final time of 5000 min for the various step sizes are given in
Fig. 9. The order of the numerical solution at the root is seen to
be 4. This is expected as 4 is the lowest integration order used.
10

10�4 68.02 0.020997 993.48 0.282850

10�5 98.05 0.016246 1007.52 0.020642

10�6 148.07 0.013581 965.63 0.010159

6.2. Effectiveness of implementation

To test the effectiveness of our implementation, we compare its
runtime with that of a standard numerical implementation. For the
test problem, we use the full model (3), with vr ¼ 0:64 m/s,
RC ¼ 0:5, k1 ¼ 0:24 and k2 ¼ �0:12. The constants specific to each
link are again taken from measurements for the 16,878 km2 basin
formed by the Cedar River basin located in Eastern Iowa. The 30-
meter resolution digital elevation model (DEM) was obtained from
the National Elevation Dataset [20,21]. A 30-meter resolution dig-
ital elevation model (DEM) was used to determine geometrical and
topological parameters for the river network and adjacent hill-
slopes. The corresponding system of ODEs has a directed tree
structure with N ¼ 305;352 links. Initial inputs of qði;0Þ ¼ 1 m3/s
and spði;0Þ ¼ 0:0 m are used for every link i in the system.

We apply our implementation to this problem as well as the DO-
PRI5 routine provided in [9]. The latter solves the problem as one
large system of N ODEs using the Dormand and Prince method of or-
der 5. The DOPRI5 solver is written in the Fortran programming lan-
guage. For our implementation, we also use the same Runge–Kutta
method at each link. The solution is computed for 10 days. The run-
times for varying relative error tolerances are given in Table 2, and
the error tolerances are for all components. An absolute tolerance of
0 500 1000 1500 2000 25
0

500

1000

1500

2000

Time 

D
is

ch
ar

ge
 (m

3 /s
)

10−1 1
10−10

10−8

10−6

10−4

10−2

100

Step Si

G
lo

ba
l D

is
ch

ar
ge

 E
rro

r (
m

3 /s
)

a

b

Fig. 9. Exact solution and numerical error for the simulate
10�20 is also used at each link for instances when a hillslope or
channel is nearly empty. The runtimes presented include only the
time to calculate the numerical solutions at each time step as well
as the time to read the rainfall data from disk. All other operations,
including partitioning the basin and initializing the system, are
independent of implementation and tolerance and took an average
of 7 s. The error is computed every five minutes of integration time
with respect to a numerical solution with a small relative error tol-
erance (10�8). The maximum of these errors is given in Table 2. The
solution at the outlet of the basin is given in Fig. 10. The results
show that our implementation requires significantly less time than
the standard DOPRI5 solver. However, the maximum errors of each
implementation are comparable in size.

6.3. Effects of parallelization

We implemented the algorithms described in this paper using
the model presented for a river basin in Section 2. We ran experi-
ments assuming only transport in the channels (i.e., (3a) only), the
00 3000 3500 4000 4500 5000
(mins)

00 101

ze (mins)

d discharge of the Peano network of Horton order 10.



0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

D
is

ch
ar

ge
 (m

3 /s
)

Time (days)

Fig. 10. Simulated discharge at the outlet of the Cedar River basin over 10 days for
the comparison with DOPRI5. An initial discharge of 1.0 m3/s and no initial hillslope
ponding applied at each link.

1 2 4 8 16 32 64 128 256
10−1

100

101

102

Processes

R
un

tim
e 

(m
in

s)

Discharge Only
Discharge with Hillslope

(a)

(b)

Fig. 11. Runtimes for the discharge only and discharge with hillslope models. All
times are measured in minutes.

Time (hours)

D
is

ch
ar

ge
 (m

3 /s
)

0 10 20 30 40 50
0

2x103

4x103

6x103

8x103

10x103

12x103

Fig. 12. Simulated discharge at the outlet of the Cedar River basin over two days
using only channel discharge in the model. Initial channel discharge is taken as
30.0 m3/s at each link.

30 S.J. Small et al. / Advances in Water Resources 53 (2013) 23–32
model (3) without precipitation, and finally the full model with
precipitation. For these experiments, we used the values
v r ¼ 0:64 m/s, RC ¼ 0:5, k1 ¼ 0:24 and k2 ¼ �0:12. The constants
specific to each link are again taken from measurements for the ba-
sin formed by the Cedar River basin located in Eastern Iowa. The
precipitation product used to force the hydrological model is a
4-km resolution NEXRAD data provided by the NCDC. The error
tolerance for the dense output Runge–Kutta methods is set to a rel-
ative tolerance of 10�4 for all components of all links. The Dormand
and Prince method of order 5 is applied to each link, and the initial
time step size at each link is set to 0.1 min. A more comprehensive
description of the basin is given by Cunha et al. [22].

Once again, the runtimes presented in this section include only
the time to calculate the numerical solutions at each time step as
well as time to read the rainfall data from disk. All other operations
are roughly independent of the number of processes used and
again required an average of 7 s.

6.3.1. River basin model without precipitation
The runtimes and speedups for the river basin model using only

the discharge equation (3a) are given in Fig. 11. The numerical solu-
tion is given in Fig. 12. The speedup of p processes is defined to be
the ratio of the runtime for one process to the runtime for p pro-
cesses. This gives a measure of the scalability of the implementa-
tion. The ponding depth sp is assumed to be equal to zero for all
times, and the integration time is taken to be 20 days. At each link,
we assume an initial discharge of 30 m3/s. The runtimes decrease
by a factor of about 1.5 as the number of processes is doubled.

The runtimes and speedups for the river basin model using (3)
with hillslope is also given in Fig. 11, assuming no precipitation
(pði; tÞ ¼ 0 for all t and links i). The numerical solution is given in
Fig. 13. The integration time is again taken to be 20 days. Each link
is assumed to have an initial hillslope ponding depth of
spði;0Þ ¼ 0:1 m, and the initial discharge is again qði;0Þ ¼ 30 m3/s.
The runtimes drop by almost a factor of around 1.5 as the number
of processes is doubled.

Ideally, the speedups should be linear with p processes (i.e.,
equal to p) for very good scalability. The speedups from both
experiments in Fig. 11 are much less than p, especially when p is
large. This demonstrates a need for improved load balancing.

6.3.2. River basin model forced by a radar-derived precipitation
product

The full model (3) is tested assuming continuous rainfall.
The rainfall product for the year 2008 was obtained from
Hydro-NEXRAD [23]. The data is provided as hourly rates in mm/h
with a spatial resolution of 4 km. Therefore, the function pði; tÞ from
(3b) can be viewed as a step function. For the measured data, for
most links, the value of pði; tÞ tends to be 0 for most times t. Because
step functions are discontinuous, we must not integrate across any
jumps, as this will destroy all error controls.

We assume that there is initially no water present on the hill-
slope of each link (spði;0Þ ¼ 0:0 m). We also assume a small initial
discharge of 1 m3/s at each link (qði; 0Þ ¼ 1 m3/s). Rainfall measure-
ments taken over the state of Iowa during the spring-summer-fall
of 2008 are used for the function pði; tÞ. The total integration time is
264 days. The hydrograph is given in Fig. 14 and the runtimes are
given in Fig. 15. The speedups for low numbers of processes are
very good, but deviate substantially from the ideal case when the



Time (hours)

D
is

ch
ar

ge
 (m

3 /s
)

0 10 20 30 40 50
0

2x104

4x104

6x104

8x104

10x104

12x104

Fig. 13. Simulated discharge at the outlet of the Cedar River basin over two days
with no rainfall forcing using the channel discharge with hillslope model. Initial
channel discharge is taken as 30.0 m3/s and an initial ponding depth is taken as
0.1 m at each link.

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

16000

Time (days)

D
is

ch
ar

ge
 (m

3 /s
)

Fig. 14. Simulated discharge at the outlet of the Cedar River basin with radar-
derived rainfall forcing using the channel discharge with hillslope model.

1 2 4 8 16 32 64 128 256
101

102

103

104

Processes

R
un

tim
e 

(m
in

s)

(a) (b)

Fig. 15. Runtimes for the river basin model with precipitation using the channel
discharge with hillslope model. Runtimes are given in minutes.

S.J. Small et al. / Advances in Water Resources 53 (2013) 23–32 31
number of processes increases. Although this does suggest a need
for improved load balancing, I/O considerations also affect the sca-
lability. In this implementation, the rainfall data is read from disk
by each process at roughly the same time. Thus, using more pro-
cesses creates more reads from the rainfall data.

7. Conclusion

We have described a numerical solver for systems of ODEs with
a directed tree structure. An important application of these
systems appears in distributed hydrologic models of river basins.
We have discussed the use of dense output Runge–Kutta methods
to allow for an asynchronous integrator. A partition of the system
is used to distribute the links amongst different processes, allowing
for a parallel implementation. The communication between pro-
cesses is performed asynchronously.

In addition to the experiments presented in Section 6, we have
performed tests on the full river basin model presented in [22].
This model includes soil dynamics, resulting in a system of 4 ODEs
(ni ¼ 4) at each link, and is analogous to the problem of Section
6.3.2. With 128 processes, our implementation can solve this sys-
tem in less than 17 min on our parallel computing system.

Other authors have investigated similar problems for river ba-
sins. The work of Apostolopoulos and Georgakakos [24] solves a
system of ODEs having a directed tree structure which also in-
cludes soil dynamics and evapotranspiration. Using their computer
architecture, a maximum speedup of around 2.25 was achieved
using 9 processors. Their work performed simulations on a
21 km2 basin.

A second point of comparison is the results by Vivoni et al. [25]
for a triangular element-based hydrological river basin model.
Their problem differs from ours mathematically due to the consid-
eration of subsurface flow among neighboring elements, which
provides connectivity between elements not described by a direc-
ted tree structure. Further, a grid model is used to describe the flow
of water through a hillslope. However, their problem shares some
similarities because the connectivity between control volumes is
still sparse. Their results for an 808 km2 basin gave a best speedup
of around 35 for 64 processes for their architecture. As in our work,
a static partition of the basin is used. The partitioning algorithm in
Vivoni et al. [25] groups geographical sub-watersheds, followed by
a standard solution to the graph-partitioning problem on the smal-
ler number of sub-watersheds. Their speedup results, along with
the results presented in this paper, suggests that the problem of
load balancing is not trivial for these problems and is worthy of
further investigation.

Efficient numerical integrators such as the one demonstrated
here bring closer to reality the goal of implementing fully distrib-
uted flood real-time forecasting systems supported by physics
based hydrological models and high-quality/high-resolution rain-
fall products. In addition, it opens the door to more comprehensive
Monte-Carlo based studies of parameter sensitivity in complex
hydrological models, ensemble simulations for data assimilation
studies and estimation of long term flood frequencies under realis-
tic physical conditions.
Acknowledgements

We thank the reviewers for their helpful remarks. Research for
this paper was supported by the National Science Foundation grant
DMS-1025483.
References

[1] Mantilla R, Gupta VK. A GIS Framework to Investigate the Process Basis for
Scaling Statistics on River Networks. Geosci Remote Sens Lett, IEEE
2005;2(4):404–8.

[2] Qu Y, Duffy CJ. A semidiscrete finite volume formulation for multiprocess
watershed simulation. Water Resour Res 2007;43(8).

[3] Kampf SK, Burges SJ. A framework for classifying and comparing distributed
hillslope and catchment hydrologic models. Water Resour Res 2007;
43:W05423.

[4] Mandapaka PV, Krajewski WF, Mantilla R, Gupta VK. Dissecting the effect of
rainfall variability on the statistical structure of peak flows. Adv Water Resour
2009;32(10):1508–25. ISSN 0309-1708.

[5] Mantilla R, Gupta VK, Troutman BM. Scaling of peak flows with constant flow
velocity in random self-similar networks. Nonlinear Process Geophys
2011;18(4):489–502.



32 S.J. Small et al. / Advances in Water Resources 53 (2013) 23–32
[6] Cunha L, Krajewski W, Mantilla R. A framework for flood risk assessment under
nonstationary conditions or in the absence of historical data. J Flood Risk
Manage 2011;4(1):3–22. ISSN 1753-318X.

[7] Mantilla R. Physical basis of statistical scaling in peak flows and stream flow
hydrographs for topologic and spatially embedded random self-similar
channel networks. PhD thesis, University of Colorado, 2007.

[8] Menabde M, Sivapalan M. Linking space-time variability of river runoff and
rainfall fields: a dynamic approach. Adv Water Resour 2001;24:1001–14.

[9] Hairer E, Nørsett S, Wanner G. Solving Ordinary Differential Equations I,
Nonstiff Problems. New York: Springer; 2000.

[10] Shampine LF. Interpolation for Runge-Kutta Methods. SIAM J Numer Anal
1985;22:5.

[11] Enight WH, Jackson KR, Nørsett SP, Thomsen PG. Effective Solution of
discontinuous IVPs using a Runge-Kutta formula pair with interpolants. Appl
Math Comput 1988;27:313–35.

[12] Jeppson R. Open channel flow. CRC Press; 2011.
[13] Kleinberg J, Tardos E. Algorithm Design. Pearson Education Inc.; 2006.
[14] Kernighan B, Lin S. An Efficient Heuristic Procedure for Partitioning Graphs.

Bell Syst Tech J 1970;49(2):291–307.
[15] Talbi E-G, Bessière P. A parallel genetic algorithm for the graph partitioning

problem. In: Proceedings of the 5th international conference on supercomputing,
ICS ’91. ACM, New York, NY, USA, ISBN 0-89791-434-1, 1991. p. 312–20.

[16] Ray S, Jiang H. Improved algorithms for partitioning tree and linear task graphs
on shared memory architecture. In: Distributed computing systems, 1994,
Proceedings of the 14th International Conference on, 1994. p. 363–70.
[17] Lukes JA. Efficient algorithm for the partitioning of trees. IBM J Res Devel
1974;18(3):217–24. ISSN 0018-8646.

[18] Pacheco P. Parallel programming with MPI. Morgan Kaufmann Publishers, Inc.;
1997.

[19] Mantilla R, Navarro W, Ramirez JM. Analytic solution of the IUH for a river
basin partitioned into hillslopes and channel links. Unpublished results.

[20] Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M, Tyler D. The national
elevation dataset. Photogr Eng Remote Sens 2002;68(1):5–11.

[21] Gesch D. The national elevation dataset. In: Maune D, editor. Digital elevation
model technologies and applications: the DEM users manual, 2nd ed.
American Society for Photogrammetry and Remote Sensing, 2007. p. 99–118.

[22] Cunha LK, Mandapaka PV, Krajewski WF, Mantilla R. Impact of rainfall error
structure on estimated flood magnitude across scales: an investigation based
on a parsimonious distributed hydrological model. Water Resour Res, vol. 48,
2012.

[23] Krajewski WF, Kruger A, Smith JA, Lawrence R, Gunyon C, Goska R, Seo B-C,
Domaszczynski P, Baeck ML, Ramamurthy MK, Weber J, Bradley AA, DelGreco
SA, Steiner M. Towards better utilization of NEXRAD data in hydrology: an
overview of Hydro-NEXRAD. J Hydroinform 2011;13(2):255–66.

[24] Apostolopoulos TK, Georgakakos KP. Parallel computation for streamflow
prediction with distributed hydrologic models. J Hydrol 1997;197:1–24.

[25] Vivoni ER, Mascaro G, Mniszewski S, Fasel P, Springer EP, Ivanov VY, Bras RL.
Real-world hydrologic assessment of a fully-distributed hydrological model in
a parallel computing environment. J Hydrol 2011;409:483–96.


	An asynchronous solver for systems of ODEs linked by a directed tree structure
	1 Introduction
	2 Flow transport on a hillslope-link based river basin model
	3 Problem description and definitions
	3.1 A simple example
	3.2 Conceptualization and definitions

	4 Solving the system
	4.1 Synchronous vs. asynchronous integration
	4.2 Numerical methods
	4.3 Discontinuities
	4.4 Memory management

	5 Parallel implementation
	6 Numerical experiments
	6.1 Verification of numerical results
	6.2 Effectiveness of implementation
	6.3 Effects of parallelization
	6.3.1 River basin model without precipitation
	6.3.2 River basin model forced by a radar-derived precipitation product


	7 Conclusion
	Acknowledgements
	References


