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ABSTRACT
A recently developed parallel asynchronous solver for sys-
tems of ordinary differential equations (ODEs) is used to
simulate flows along the channels in a river network. In our
model, precipitation is applied over the hillslopes adjacent
to the river network links and water movement from hill-
sope to link and along the river network is represented as a
system of ODEs. The numerical solver is based on dense
output Runge-Kutta methods that allow for asynchronous
integration. A static partition method is used to distribute
the workload among different processes, enabling a paral-
lel implementation that capitalizes on a distributed memory
system. Communication between processes is performed
asynchronously. We illustrate the solver capabilities by in-
tegrating flow transport equations for a ∼32,000 km2 river
basin subdivided into 574,000 sub-watersheds that are in-
terconnected by the river network. We show that the run-
time for an eight month-long simulation forced by 1-km
resolution NEXRAD rainfall is completed in under 4 min-
utes using 64 computing nodes. In addition, we include
equations to simulate small reservoirs spread throughout
the river network and estimate changes in hydrographs at
multiple locations. Our results provide a firm theoretical
basis for the concept of distributed flood control systems.
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1 Introduction

In recent work Small et al. (2012) introduced a paral-
lel implementation of an efficient asynchronous integra-
tion method for systems of ordinary differential equations
(ODEs) of the form

dy

dt
= f(t, y) (1a)

y(t0) = y0. (1b)

in which the linkage between equations is determined by a
directed tree structure. This kind of linkage structure arises

Figure 1: Partitioning schemes in distributed hydrologi-
cal models that lead to a global system of ODEs. Sub-
watershed partitioning on the left and square pixel parti-
tioning on the right.

in distributed hydrological models in which a river network
of interconnected streams provides a natural tree-like con-
necting structure (see Figure 1). Under the assumption that
the model for the flow of water through a single stream
can be written as a system of differential equations, the
equations from every stream in the entire network could be
viewed as one large system of differential equations (e.g.
Mantilla and Gupta (2005); Qu and Duffy (2007)). In gen-
eral, hydrological models that use a semi-discrete approx-
imation of flow transport of the Saint-Venant equations or
the Muskingum method fall in this category (Kampf and
Burges, 2007). This type of application is relevant to hy-
drology of floods (see Mantilla and Gupta (2005); Man-
dapaka et al. (2009); Mantilla et al. (2011); Cunha et al.
(2011)), but the numerical methods developed by Small
et al. (2012) are more general and can be extend to other
types of physical problems where the connectivity between
equations is determined by a directed tree structure.

In this paper we present several cases of application of
the algorithm including (1) simulating flows on an artificial
river network for which the analytical solution is known,
(2) simulating flows along the channels of the Cedar River
network in eastern Iowa, that drains an area of ∼32,000
km2, and finally (3) results of simulating the effect of dis-
tributed reservoirs in the flows at the outlet of a 250 km2

basin. First, In section 2 we present the equations used to
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simulate flows and to simulate the behavior of small reser-
voirs created by small earth dams. Second, in section 3 we
give details of the implementation for the cases mentioned
above and finally in section 4 we discuss our results.

2 Flow transport on a hillslope-link based
river basin model

We consider the link-hillslope decomposition of a river
basin described by Mantilla and Gupta (2005). Equations
for each link follow the general form described by Man-
tilla (2007) that has been applied in other contexts of self-
similar trees by Menabde and Sivapalan (2001). The topol-
ogy of a river network can be described as a directed tree
structure under the assumption that no loops are present in
the network and no channel splits (e.g. braided streams) are
considered. For each link (i.e., river segment between two
junctions), a differential equation can be written for water
discharge by describing the link as a non-linear reservoir.
Thus, for link i, the discharge q(i, t) of water (in m3/s)
from the channel, the depth of water (in m) ponded on the
channel’s surrounding hillslope sp(i, t), and the volume of
water in the hilllslope soil matrix sg(i, t) at time t (mea-
sured in minutes) can be modeled by the system of ODEs

dq

dt
(i, t) =

1

τ
qλ1

∑
j→i

q(j, t) − q(i, t) + c1s
5/3
p

 (2a)

dsp
dt

(i, t) = c2p(i, t) − c3s
5/3
p (2b)

dsg
dt

(i, t) = c4p(i, t) − c5sg (2c)

where the values τ , c1, c2, c3, and c4 are constants at each
link and are given by

τ =
(1 − λ1)L(i)

60vrA(i)λ2
(3a)

c1 =
2L(i)

0.6
· S(i)1/2

η(i)
(3b)

c2 =
10−3

60
RC (3c)

c3 =
2L(i)

0.6Ah(i)
· S(i)1/2

η(i)
(60 · 10−6) (3d)

c4 =
10−3

60
(1 −RC) (3e)

c5 = Ksat. (3f)

These constants also handle unit conversion. The sum
in equation (2a) is taken over all links “flowing” into link
i. The parameters that appear in (3) are described in Table
1. The constants vr, RC , λ1, and λ2 are universal amongst
the entire system. The c1s

5/3
p term in equation (2a) can

be interpreted as the flow of water from the surrounding

hillslope into the channel, and p(i, t) is a known function
for the precipitation at link i measured in mm/s.

In addition to the equations describing flow in natu-
ral conditions we also include equations to describe mass
continuity and flow release for water storage in a reservoir.
This equation can be expressed as

dV

dt
=
∑
j→i

q(j, t) − qR(t, V ) (4)

where V is the volume of water stored in the reservoir;∑
j→i q(j, t) represent inflows into the reservoir as a func-

tion of time; and qR(t, V ) is the outflow from the reservoir,
which is determined by the storage volume that is itself a
function of the water level in the reservoir. The relation-
ship between the outflow and storage is non-linear and is
described by the following set of equations for the outflow,

qR(t, V ) = c6Ac
√

2gh (5)

if h ≥ Hspill and,

qR(t, V ) = c6Ac
√

2gh+ c7L(h−Hspill)
3/2 (6)

if Hspill < h ≤ Hdam. Here c6 is the orifice coefficient;
Ac is the orifice cross-sectional area; h is the water level
in the reservoir; Hspill is the reservoir spill level; Hdam

is the total dam height; c7 is the weir coefficient; andL is
the length of the weir crest. We assumed the outflow to be
equal to the inflow when the reservoir is full.

3 Numerical experiments

In this section we present several applications of the asyn-
chronous algorithm implemented in the C programming
language. Communication between processes is done us-
ing MPI (see Pacheco (1997)). All experiments are run on a
cluster with 200 nodes, and each node has Dual Quad Core
Intel(R) Xeon(R) CPU X5550 @ 2.67GHz processors with
24 Gb DDR3 1333MHz memory and 1Tb of storage.

3.1 Validation of numerical results

We apply the algorithm to a particular case of the param-
eters for which an closed form of the solution of (2) is
known. We consider water flows on a Peano network using
only the transport equation (2a). Assuming constant veloc-
ity (i.e. λ1 = λ2 = 0.0), vr = 1.0 m/s, and L(i) = 500
m for every link i. In physical terms, this corresponds to
a case in which runoff from an instantaneous and uniform
storm has made it into the channels of the river network and
flows freely downstream. The constant velocity assumption
treats each channel link as a linear reservoir. The exact so-
lution at the root node has been recently given by Mantilla
et al. (2012) as
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Constant Description Range
Ah(i) Area of the surrounding hillslope at link i (0, 5] km2

A(i) Sum of the Ah’s for all links upstream from i [0.01, 106] km2

L(i) Length of link i [10, 1000] m
S(i) Average slope of hillslope surrounding i [0.0, 0.5]
η(i) Manning coefficient at link i [0.1, 0.8]
vr Reference flow velocity [0.2, 1.0] m/s
RC Runoff coefficient (0.0, 1.0]
Ksat Saturated Hydraulic conductivity of the soil
λ1 Exponent for flow velocity discharge [0.0, 0.7]
λ2 Exponent for flow velocity upstream area [−0.4,−0.05]

Table 1: Description of the constants used in the river basin model. Typical values are given under the last column.

qΩ(t) = q0e
− t
τ

2Ω−1∑
k=1

3bk
(
t
τ

)k−1

(k − 1)!
(7)

where Ω is the Horton order of the root link in the Peano
tree and the sequence bk takes the integer k into the num-
ber of 1’s appearing in the binary representation of k (so
b(1) = 1, b(3) = 2, b(11) = 3, etc). We have taken the
discharge at time 0 in each link to have the same value,
q0. Again, this corresponds to runoff from an instantaneous
and uniform pulse of rainfall that instantaneously moves
into the channel.

For the experiment, we use the Peano network with a
root link having Horton order Ω = 10. This system has a
total of N = 49 = 262, 144 links. The initial discharge
is taken as q0 = 1.0 m3/s. For the numerical methods,
we apply the 7-stage dense output Dormand and Prince
method of order 5 to the ODE at each leaf and the dense
output Runge-Kutta method of order 4 to all other links.
The true solution and numerical errors from this experi-
ment are given in Figure 2. In these figures, the absolute
error tolerance for the local error is progressively reduced
by a factor of 10. The numerical solution converges as the
tolerance is reduced.

3.2 Effectiveness of implementation

To test the effectiveness of our implementation, we com-
pare its runtime with that of a standard numerical imple-
mentation. For the test problem, we use the full model
(2), with vr = 0.64 m/s, RC = 0.5, λ1 = 0.24 and
λ2 = −0.12. The constants specific to each link are again
taken from measurements for the 32,375 km2 basin formed
by the Iowa River basin located in Eastern Iowa. Details of
the river basin location and locations where streamflow is
gauged is shown in Figure 3. The 30-meter resolution digi-
tal elevation model (DEM) was obtained from the National
Elevation Dataset (Gesch et al., 2002; Gesch, 2007). A 30-
meter resolution digital elevation model (DEM) was used
to determine geometrical and topological parameters for
the river network and adjacent hillslopes. The correspond-
ing system of ODEs is a tree structure with N = 574,780
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Figure 2: Exact solution and numerical error for the Peano
network of Horton order 10.

links. Initial inputs of q(i, 0) = 1 m3/s and sp(i, 0) = 0.0
m are used.

We apply our implementation to this problem as well
as the DOPRI5 routine provided in Hairer et al. (2000).
The latter solves the problem as one large system of N
ODEs using the Dormand and Prince method of order 5.
The DOPRI5 solver is written in the Fortran programming
language. For our implementation, we also use the same
Runge-Kutta method at each link. The solution is com-
puted for up to 264 days. The runtimes for varying ab-
solute error tolerances are given in Table 2, and the error
tolerances are for all components. The runtimes presented
include only the time to calculate the numerical solutions
at each time step as well as the time to read the rainfall data
from disk. All other operations, including partitioning the
basin and initializing the system, are independent of imple-
mentation and tolerance and took an average of 7 seconds.
The results show that our implementation requires signif-
icantly less time than the standard DOPRI5 solver. Note
that although our implementation has many more step re-
jections than the DOPRI5 algorithm, a rejection for our im-
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Figure 3: The Iowa River basin including information on
radar coverage and streamflow gauging sites

plementation occurs at a single link. Because the DOPRI5
algorithm solves the large system at once, the solution at
ALL links must be either accepted or rejected. We also ob-
serve that the runtimes of both implementations fluctuate
as the tolerance decreases. This results from the fluctua-
tions in the number of rejections that occur balanced with
decreases in the step sizes.

3.3 River basin model forced by a radar-derived pre-
cipitation product

The full model (2) is tested assuming continuous rainfall.
The rainfall product for the year 2008 was obtained from
Hydro-NEXRAD (Krajewski et al., 2011) combining in-
formation from nearby radars shown in Figure 3. The data
is provided as hourly rates in mm/hr with a spatial reso-
lution of 4 km. Therefore, the function p(i, t) from (2b)
can be viewed as a step function. For the measured data,
for most links, the value of p(i, t) tends to be 0 for most
times t. Because step functions are discontinuous, we must
not integrate across any jumps, as this will destroy all error
controls.

We assume that there is initially no water present on
the hillslope of each link (sp(i, 0) = 0.0 m). We also
assume a small initial discharge of 1 m3/s at each link
(q(i, 0) = 1 m3/s). Rainfall measurements taken over the
state of Iowa during the spring-summer-fall of 2008 are
used for the function p(i, t). The total integration time is

Figure 4: The Iowa River basin including information on
radar coverage and streamflow gauging sites

264 days. Hydrographs calculated at the location of the 13
gauging sites are shown in Figures 4 and 5.

The runtimes are given in Figure 6 and decrease by
about a factor of 1.5 as the processes are doubled, except
for 128 processes. The increase in runtime is a result of the
large number of processes reading rainfall data from disk.

3.4 Simulation of the effect of nested reservoirs in out-
let hydrograph

As a final application case we studied the effect of 40
nested reservoirs. In our simulation each reservoir is de-
signed to be able to hold 132,000 m3. We assumed a small
circular orifice at the bottom of the dam with 0.75 m in
diameter. Dam height and spillway height are chosen to
achieve the desired retention volume. Figure 7 shows the
location of the 40 reservoirs (top) and the effect that those
have on a hydrograph generated by a 100 mm/h event with
a duration of 15 minutes. This rainfall amount roughly cor-
responds with the 100-year storm for this basin. As it can
be seen the peak of the hydrograph is reduced by more than
half. The values selected here are realistic providing initial
evidence on the theoretical feasibility a flood control dis-
tributed reservoir system.
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Our Implementation DOPRI5
Tolerance Runtime Rejections Runtime Rejections

10−1 35.30 mins 13,263,336 531.12 mins 6,739
10−2 40.12 mins 13,323,396 631.65 mins 6,066
10−3 35.52 mins 12,290,500 619.58 mins 5,666
10−4 36.55 mins 10,028,964 534.27 mins 5,183
10−5 40.35 mins 11,069,859 612.85 mins 4,433
10−6 41.45 mins 12,048,629 503.48 mins 3,892

Table 2: Runtimes for our implementation versus a standard Dormand and Prince order 5 Runge-Kutta solver. The error
tolerances are absolute.

Figure 7: Location of simulated reservoirs (top) and modification of the hydrograph at the basin outlet due to the presence of
the reservoirs
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Figure 5: The Iowa River basin including information on
radar coverage and streamflow gauging sites

4 Conclusion

We have used a numerical solver for systems of ODEs with
a tree structure. The runtimes for these applications give
good scalability and load balancing as the number of pro-
cesses increases. Our results are a great improvement over
those of Apostolopoulos and Georgakakos (1997), whose
problem is essentially the same as our river basin model
of Section 2. Our model presented here does not account
for variables such as soil dynamics and evapotranspiration,
however, Apostolopoulos and Georgakakos (1997) does
solve an ODE having a directed tree structure. The speedup
for their model achieved a maximum of around 2.25 using
9 processes compared to up to 25.3 for the algorithm pre-
sented here. In addition, using the computing architecture
that was available at the time Apostolopoulos and Geor-
gakakos (1997) reported their results, the typical runtimes
were about 43 hours for the calculations on a 21 km2 basin
compared to the 16,878 km2 implemented in this paper.

Efficient numerical integrators such as the one
demonstrated here bring closer to reality the goal of im-
plementing fully distributed flood forecasting systems sup-
ported by physics based hydrological models and high-
quality/high-resolution rainfall products. In addition, it
opens the door to more comprehensive Monte-carlo based
studies of parameter sensitivity in complex hydrological
models, ensemble simulations for data assimilation studies
and estimation of long term flood frequencies under realis-
tic physical conditions.
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Runtimes for Hillslope with Rainfall

(a)

Procs Runtime Speedup
1 38.55 –
2 25.00 1.54
4 14.30 2.70
8 10.52 3.67
16 6.50 5.93
32 5.13 7.51
64 4.13 9.33

128 9.73 3.96

(b)

Figure 6: Runtimes for the river basin model with precipi-
tation. Runtimes are given in minutes.
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The results presented in this paper bring closer to re-
ality the ability of running spatially explicit rainfall runoff
models for forecasting of floods. Traditionally simulations
of flood hydrograph have relied in simplified or lumped
models to be able to provide timely predictions. Our re-
sults indicate that the computational efficiency illustrated
here can serve to deploy such forecasting models and to
operate networks of small reservoirs to maximize the re-
duction of flood peaks at desired locations throughout the
river network.
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