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Michael Berry, summarizing for the Bulletin his recent AMS Gibbs Lecture [2],
observes:

Nowhere are the intimate connections between mathematics and
physics more immediately apparent than in optics; with our own
eyes, we can see through physical phenomena almost directly to
the conceptual structures underlying them. Risking the wrath of
philosophers, I use the term mathematical phenomena to describe
these structures.

Once in a while a new trend in mathematics comes along. The skeptics would
call it a new fad, and ask what all the fuss is about. Those who are convinced will
get on the wagon and drop the infinite series they are working on. Others will be
looking for the lost remainder terms. Wavelet analysis is in a sense a new trend, but
it started with Alfred Haar’s paper [6] almost a hundred years ago. The significance
of Haar’s original construction was perhaps not fully understood until much later
in the mid-1980’s. Some of the reasons for the wavelet craze [a favorite term of the
skeptics!] have to do with the need for fast algorithms, brought about by our better
understanding of connections from wavelets to signal processing, to optics, to data
compression, turning fingerprints into digital data files, subdivision algorithms in
graphics, digital cameras, high-resolution television, and the JPEG 2000 encod-
ing of images. As a mathematical subject, the theory of wavelets draws on tools
from mathematics itself, such as harmonic analysis and numerical analysis. But
in addition there are exciting links to areas outside mathematics. The connections
to electrical and computer engineering, and to image compression and signal pro-
cessing in particular, are especially fascinating. These interconnections of research
disciplines may be illustrated with the two subjects (1) wavelets and (2) subband
filtering [from signal processing]. While they are quite different, and have distinct
and independent lives, and even have different aims, and different histories, they
have in recent years found common ground. It is a truly amazing success story:
Advances in one area have helped the other: Subband filters are absolutely essential
in wavelet algorithms, and in numerical recipes used in subdivision schemes, for ex-
ample, and especially in JPEG 2000—an important and extraordinarily successful
image-compression code. It uses nonlinear approximations and harmonic analysis
in spaces of signals of bounded variation. Similarly, new wavelet approximation

2000 Mathematics Subject Classification. 41A15, 42A16, 42A65, 43A65, 46L60, 47D25.
We are pleased to thank Brian Treadway for excellent typsetting, and helpful suggestions.
Work supported in part by the U.S. National Science Foundation under grants DMS-9987777

and DMS-0139473(FRG).

1



2 BOOK REVIEWS

techniques have given rise to the kind of data-compression which is now used by
the FBI [via a patent held by two mathematicians] in digitizing fingerprints in the
U.S. It is the happy marriage of the two disciplines, signal processing and wavelets,
that enriches the union of the subjects, and the applications, to an extraordinary
degree. While the use of high-pass and low-pass filters has a long history in sig-
nal processing, dating back more than fifty years, it is only relatively recently, say
the mid-1980’s, that the connections to wavelets have been made. Multiresolutions
from optics are the bread and butter of wavelet algorithms, and they in turn thrive
on methods from signal processing, in the quadrature mirror filter construction, for
example. The effectiveness of multiresolutions in data compression is related to the
fact that they are modelled on the familiar positional number system: the digital,
or dyadic, representation of numbers. Wavelets are created from scales of closed
subspaces of the Hilbert space L2 (R) with a scale of subspaces corresponding to
the progression of bits in a number representation. While oversimplified here, this
is the key to the use of wavelet algorithms in digital representation of signals and
images. The digits in the classical number representation in fact are quite anal-
ogous to the frequency subbands that are used both in signal processing and in
wavelets. There is a strong need for more interdisciplinary books along these lines.
David Walnut’s lovely book fills a need, but the questions, the applications and
the interconnections are manifold: Most authors know one or more of the relevant
subjects well, but probably not all. This is reflected in the well acknowledged but
frustrating fact that the diverse subjects even have quite different languages, and
different terminology; resulting in a communications gap. Other recent textbooks
on wavelets such as [10] and [3] have taken a direct and focused approach to the
issue of communicating across traditional boundaries; [3] even has a dictionary of
terms used in (1) mathematics, in (2) engineering, and in (3) quantum physics, in
particular in quantum computing algorithms (QCA). Not surprisingly, the quantum
algorithms have proved effective in wavelet-data compression, as they are based on
the same kind of multiresolution analysis as described above. Also in quantum
theory, it is the same kind of scales of closed subspaces of a Hilbert space, now
called resolutions, which form the basis for the algorithms. While these methods
originate with engineering and physics, their use has now become widespread in
mathematics.

Some skeptics in mathematics departments might say that this is all very well,
but applications like that are usually left to the engineers. True!—some of it, but
what is unique here is that the new fashionable applications involve a number of core
ideas from mathematics, such as classical concepts of transform theory, including
discrete versions of Fourier transforms, matrix factorization (used both in the fast
Fourier transform (FFT) and in some of the more effective wavelet algorithms),
function spaces, geometry of Hilbert space, the Calderón atomic decomposition,
operator theory, spectral theory, the classical symbiotic interconnections between
harmonic analysis and probability theory. And of more direct relevance to math
departments is the fact that the engineering applications generate a need for new
service courses for engineering students, or at least a rethinking of what we offer in
our math courses for engineers, and for other needs which are dictated by applica-
tions. This is where the book of David Walnut, and other course books on wavelets,
come in. Yes, the past ten years have seen a number of such new book offerings:
see, for example, [1] for books that appeared before Walnut’s, and [3] after.
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The ten books in the combined list of [1] include books that are primers (C. Blat-
ter, Chui–Chan–Lin), case studies such as signal analysis (Chui), statistical estima-
tion (Härdle), Fourier methods and filtering (Gasquet–Witomski), image processing
and the multiscale approach (Starck–Murtagh–Bijaoui), comprehensive mathemat-
ical treatises (Resnikoff–Wells and Wojtaszczyk), and the signal processing view-
point by one of the pioneers, Stéphane Mallat [7].

The first of these books which really caught on was Daubechies’s [4], but the
subject has branched out since then, and many new trends have materialized. This
is perhaps one of the reasons why the fairly large number of recent wavelet books
for the classroom in fact have not been overlapping as much as some might have
thought. David Walnut’s book is aimed at upper-level undergraduate students who
have had advanced calculus, but not much more. As a result, he has included
a number of preliminary topics such as Fourier series. These are topics that can
also be found elsewhere, but they are given a twist in Walnut’s presentation which
is directly aimed at the needs later in the book. Since they are not relegated to
appendices, this means that readers will not get to the wavelets until around page
110. But the presentation of Shannon’s sampling theorem and the fast Fourier
transform is couched in terms that make very natural the fundamental ideas that
go into the pyramid algorithms of wavelet analysis. At the outset, Walnut does
not present these fundamental ideas axiomatically, but instead introduces them
through the Haar systems, which are both clear and intuitive. At the same time,
Haar’s method has implicit in it the multiresolution idea. For example, the two
functions

ϕ (x) =

{
1 0 ≤ x < 1
0 elsewhere

and ψ (x) =




1 0 ≤ x < 1
2

−1 1
2 ≤ x < 1

0 elsewhere

-

6 ϕ

-

6 ψ

Father function Mother function
(a) (b)

(1)

capture in a glance the refinement identities

ϕ (x) = ϕ (2x) + ϕ (2x− 1) and ψ (x) = ϕ (2x)− ϕ (2x− 1) .

The two functions are clearly orthogonal in the inner product of L2 (R), and the
two closed subspaces V0 and W0 generated by the respective integral translates

{ϕ ( · − k) : k ∈ Z} and {ψ ( · − k) : k ∈ Z}(2)

satisfy

UV0 ⊂ V0 and UW0 ⊂ V0(3)
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where U is the dyadic scaling operator Uf (x) = 2−1/2f (x/2). The factor 2−1/2

is put in to make U a unitary operator in the Hilbert space L2 (R). This version
of Haar’s system naturally invites the question of what other pairs of functions ϕ
and ψ with corresponding orthogonal subspaces V0 and W0 there are such that the
same invariance conditions (3) hold. The invariance conditions hold if there are
coefficients ak and bk such that the scaling identity

ϕ (x) =
∑
k∈Z

akϕ (2x− k)(4)

is solved by the father function, called ϕ, and the mother function ψ is given by

ψ (x) =
∑
k∈Z

bkϕ (2x− k) .(5)

A fundamental question is the converse one: Give simple conditions on two se-
quences (ak) and (bk) which guarantee the existence of L2 (R)-solutions ϕ and ψ
which satisfy the orthogonality relations for the translates (2). How do we then
get an orthogonal basis from this? The identities for Haar’s functions ϕ and ψ of
(1)(a) and (1)(b) above make it clear that the answer lies in a similar tiling and
matching game which is implicit in the more general identities (4) and (5). Clearly
we might ask the same question for other scaling numbers, for example x→ 3x or
x→ 4x in place of x→ 2x. Actually a direct analogue of the visual interpretation
from (1) makes it clear that there are no nonzero locally integrable solutions to the
simple variants of (4),

ϕ (x) =
3
2
(ϕ (3x) + ϕ (3x− 2))(6)

or

ϕ (x) = 2 (ϕ (4x) + ϕ (4x− 2)) .(7)

There are nontrivial solutions to (6) and (7), to be sure, but they are versions of
the Cantor Devil’s Staircase functions, which are prototypes of functions which are
not locally integrable.

Since the Haar example is based on the fitting of copies of a fixed “box” inside
an expanded one, it would almost seem unlikely that the system (4)–(5) admits
finite sequences (ak) and (bk) such that the corresponding solutions ϕ and ψ are
continuous or differentiable functions of compact support. The discovery in the
mid-1980’s of compactly supported differentiable solutions, see [4], was paralleled
by applications in seismology, acoustics [5], and optics [8], as discussed in [9], and
once the solutions were found, other applications followed at a rapid pace: see, for
example, the ten books in Benedetto’s review [1]. It is the solution ψ in (5) that
the fuss is about, the mother function; the other one, ϕ, the father function, is only
there before the birth of the wavelet. The most famous of them are named after
Daubechies, and look like the graphs in Figure 1. With the multiresolution idea,
we arrive at the closed subspaces

Vj := U−jV0, j ∈ Z,(8)

as noted in (2)–(3), where U is some scaling operator. There are extremely ef-
fective iterative algorithms for solving the scaling identity (4): see, for example,
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Figure 1. Daubechies wavelet functions and series of cascade approximants

[3, Example 2.5.3, pp. 124–125]1, [4], and [10], and Figure 1. A key step in the
algorithms involves a clever choice of the kind of resolution pictured in (13), but
digitally encoded. The orthogonality relations can be encoded in the numbers (ak)

1See an implementation of the “cascade” algorithm using Mathematica, and a “cartoon” of
wavelets computed with it, at http://www.math.uiowa.edu/˜jorgen/wavelet motions.pdf .
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and (bk) of (4)–(5), and we arrive at the doubly indexed functions

ψj,k (x) := 2j/2ψ
(
2jx− k

)
, j, k ∈ Z.(9)

It is then not difficult to establish the combined orthogonality relations∫
R

ψj,k (x)ψj′,k′ (x) dx =
〈
ψj,k | ψj′,k′

〉
= δj,j′δk,k′(10)

plus the fact that the functions in (9) form an orthogonal basis for L2 (R). This
provides a painless representation of L2 (R)-functions

f =
∑
j∈Z

∑
k∈Z

cj,kψj,k(11)

where the coefficients cj,k are

cj,k =
∫

R

ψj,k (x) f (x) dx =
〈
ψj,k | f〉

.(12)

What is more significant is that the resolution structure of closed subspaces of
L2 (R)

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·(13)

facilitates powerful algorithms for the representation of the numbers cj,k in (12).
Amazingly, the two sets of numbers (ak) and (bk) which were used in (4)–(5), and
which produced the magic basis (9), the wavelets, are the same magic numbers
which encode the quadrature mirror filters of signal processing of communications
engineering. On the face of it, those signals from communication engineering re-
ally seem to be quite unrelated to the issues from wavelets—the signals are just
sequences, time is discrete, while wavelets concern L2 (R) and problems in math-
ematical analysis that are highly non-discrete. Dual filters, or more generally,
subband filters, were invented in engineering well before the wavelet craze in math-
ematics of recent decades. These dual filters in engineering have long been used in
technology, even more generally than merely for the context of quadrature mirror
filters (QMF’s), and it turns out that other popular dual wavelet bases for L2 (R)
can be constructed from the more general filter systems; but the best of the wavelet
bases are the ones that yield the strongest form of orthogonality, which is (10), and
they are the ones that come from the QMF’s. The QMF’s in turn are the ones
that yield perfect reconstruction of signals that are passed through filters of the
analysis-synthesis algorithms of signal processing. They are also the algorithms
whose iteration corresponds to the resolution sytems (13) from wavelet theory.

While Fourier invented his transform for the purpose of solving the heat equa-
tion, i.e., the partial differential equation for heat conduction, the wavelet transform
(11)–(12) does not diagonalize the differential operators in the same way. Its effec-
tiveness is more at the level of computation; it turns integral operators into sparse
matrices, i.e., matrices which have “many” zeros in the off-diagonal entry slots.
Again, the resolution (13) is key to how this matrix encoding is done in practice.

I take it as a healthy sign when there is a burst of new books in a sub-area of
mathematics. In wavelet analysis and its applications, we have seen a number of
recent books arrive to university bookstores. Surprisingly there doesn’t in fact seem
to be much of an overlap of subject or scope, from one book to the next. The subject
is infinite in many directions, for example the kind of student it is aimed at, the
level, the specialized area within mathematics itself, and the kind of application it
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is stressing. D. Walnut’s lovely book aims at the upper undergraduate level, and so
it includes relatively more preliminary material, for example Fourier series, than is
typically the case in a graduate text. It goes from Haar systems to multiresolutions,
and then the discrete wavelet transform, starting on page 215. The applications to
image compression are wonderful, and the best I have seen in books at this level.
I also found the analysis of the best choice of basis, and wavelet packet, especially
attractive. The later chapters include MATLAB codes. Highly recommended!
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