Results from MathSciNet: *Mathematical Reviews* on the Web © Copyright American Mathematical Society 1999

99m:22013 22E45

Jorgensen, Palle E. T. (1-IA); Ólafsson, Gestur (1-LAS) Unitary representations of Lie groups with reflection symmetry. (English. English summary)

J. Funct. Anal. 158 (1998), no. 1, 26-88.

Let G be a real Lie group with a nontrivial involutive automorphism τ . A unitary representation π of G on a Hilbert space H is said to be reflection symmetric if there exists an involutive unitary operator J on H such that $\pi(\tau(g)) = J\pi(g)J, g \in G$. Denote $H = G^{\tau}$. The Lie algebra \mathfrak{g} of G admits the decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q}$, where \mathfrak{q} is the eigenspace of $d\tau$ corresponding to -1. Assume a closed Hinvariant convex cone $C \subset \mathfrak{q}$ to be given such that: $C^{\circ} \neq \emptyset$; adY is **R**-semisimple for all $Y \in C^{\circ}$; $S(C) = H \exp C$ is a closed semigroup, and $H \exp C^{\circ}$ is diffeomorphic to $H \times C^{\circ}$; there is a closed S(C)invariant subspace $0 \neq K_0 \subset H$ satisfying $\langle v | J(v) \rangle \geq 0$ for all $v \in K_0$. Let G^c denote the simply connected Lie group with the Lie algebra $\mathfrak{g}^c = \mathfrak{h} \oplus i\mathfrak{q}$. The main result of the paper is a construction of a unitary representation π^c of G^c acting on a quotient of K_0 such that $d\pi^c(X)$ is induced by $d\pi(X)$ for $X \in \mathfrak{h}$ and $id\pi^c(Y)$ is induced by $d\pi(iY)$ for $Y \in \mathfrak{h}$ C. This construction applies to the case when G is semisimple and G/H is a non-compactly causal symmetric space and, in particular, a Cayley-type space, the representation π^c being an irreducible unitary highest weight representation. Finally, the semidirect products G =HN, where N is normal and abelian, are considered.

A. L. Onishchik (RS-YAR)