Results from MathSciNet: *Mathematical Reviews* on the Web © Copyright American Mathematical Society 1999

97c:46091 46L99 28A75 42B10
Jorgensen, P. E. T. (1-IA);
Pedersen, S. [Pedersen, Steen] (1-WRTS)
Harmonic analysis of fractal measures. (English. English summary)

Constr. Approx. 12 (1996), no. 1, 1–30.

The article continues previous work by the authors [J. Funct. Anal. 125 (1994), no. 1, 90-110; MR 95i:47067]. Here they consider affine systems in \mathbf{R}^n constructed from quadruples (R, B, L, K) where R is an invertible integral matrix, B and L are finite subsets of \mathbf{R}^n having the same cardinality N, and K is a lattice in \mathbb{R}^n . The associated affine system is defined by $\sigma_b(x) = R^{-1}x + b$ for b in B and x in \mathbf{R}^n . Under suitable assumptions, there exists a unique probability measure μ on \mathbf{R}^n satisfying $\mu = |B|^{-1} \sum_b \mu \circ \sigma_b^{-1}$ and supported on a suitable "fractal" set \overline{X} . It turns out that when the matrix $U = (e^{i2\pi b \cdot l})_{b,l}$ satisfies $U^*U = UU^* = NI_N$, one gets a pair of representations (S_b) and (T_l) of the Cuntz algebra O_N acting on $L^2(\mu)$ such that $S_h^*T_l$ is a multiplication operator for all b and l. This is a substitute for the classical harmonic analysis problem which consists in finding a subset Λ of \mathbf{R}^n such that the exponentials $(e^{i\lambda \cdot x})_{\lambda,\Lambda}$ form an orthonormal basis for $L^2(\mu)$. The paper also contains examples of affine systems for $N \leq 4$ including graphic illustrations of the corresponding sets \overline{X} . Paul Jolissaint (CH-NCH)