Results from MathSciNet: *Mathematical Reviews* on the Web © Copyright American Mathematical Society 2001

 $2001b{:}46086 \quad 46L05 \quad 46L30 \quad 46L60 \quad 82B10$

Bratteli, O. (N-OSLO); Jorgensen, P. E. T. (1-IA);

Kishimoto, A. (J-HOKK); Werner, R. F. (D-BRNS-MP)

Pure states on \mathbb{O}_d . (English. English summary)

J. Operator Theory 43 (2000), no. 1, 97–143.

This paper contains a variety of results on states and representations of the Cuntz algebras O_d , building on the earlier work by two of the authors [O. Bratteli and P. E. T. Jorgensen, J. Funct. Anal. 145 (1997), no. 2, 323–373; MR 98c:46128]. In particular, if $S_i, 1 \leq i \leq$ d, are the generators of O_d represented on a Hilbert space H, then subspaces K invariant under each of the S_i^* are considered. If P is the orthogonal projection from H onto K and $V_i = PS_i = PS_iP$, then a completely positive map $\sigma: B(K) \to B(K)$ is defined by $\sigma(X) =$ $\sum V_i X V_i^*$, and interesting results on the structure of the restriction of the representation to the gauge-invariant UHF algebra UHF_d are obtained when O_d is represented irreducibly and B(K) possesses a normal σ -invariant state. Applications to finitely correlated states on one-dimensional quantum spin chains are also obtained.

P. J. Stacey (5-LTRB)