Homework 4: Solutions

Calculate the following for all i for the simplicial complex from class:
Figure 1: Simplicial complex from class.

1. Find C_{i}, B_{i}, Z_{i}.

Note that C_{i}, B_{i}, Z_{i} and H_{i} are all vector spaces with \mathbb{Z}_{2} coefficients. A vector space is determine by its basis. Thus one can find C_{i}, B_{i}, Z_{i} and H_{i} by finding bases for these vector spaces. The rank of a finite-dimensional vector space is the number of elements in a basis for that vector space.

Recall the maps $\partial_{i}: C_{i} \rightarrow C_{i-1}$ are boundary operators.
Recall also that ∂_{i} is a linear map: $\partial_{i}\left(\Sigma_{j} n_{j} \sigma_{j}\right)=n_{j} \Sigma_{j} \partial_{i}\left(\sigma_{j}\right)$ where $\Sigma_{j} n_{j} \sigma_{j}$ is an i-chain $=$ a linear combination of i-dimensional simplices. Thus to understand ∂_{i}, we just need to know how it acts on a simplex, σ_{j}.
(a) $C_{i}=$ set of i-dimensional chains $=$ set of all linear combination of i dimensional simplices $=$ the vector space where the basis is the set of i-dimensional simplices.

- $C_{0}=\mathbb{Z}_{2}\left[v_{1}, v_{2}, v_{3}, v_{4}\right]=<v_{1}, v_{2}, v_{3}, v_{4}>$
- $C_{1}=\mathbb{Z}_{2}\left[e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right]=<e_{1}, e_{2}, e_{3}, e_{4}, e_{5}>$
- $C_{2}=\mathbb{Z}_{2}[f]=<f>$
- $C_{i}=\{0\}$ for all $i>2$ because there are no i-dimensional simplices in this simplicial complex for $i>2$.
(b) $Z_{i}=\left\{\Sigma_{j} n_{j} \sigma_{j}\right.$ in $\left.C_{i} \mid \partial_{i}\left(\Sigma_{j} n_{j} \sigma_{j}\right)=0\right\}$
- Determine Z_{0}.

Method 1: $Z_{0}=\left\{\Sigma_{i} n_{i} v_{i}\right.$ in $\left.C_{0} \mid \partial_{0}\left(\Sigma_{i} n_{i} v_{i}\right)=0\right\}=<v_{0}, v_{1}, v_{2}, v_{3}>=$ C_{0} since ∂_{0} takes all the vertices (and thus all 0-chains) to 0 .

Method 2: Using matrices. From question 2: $\left.M_{0}=\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 0 & 0 & 0\end{array}\right)$ $Z_{0}=$ null space of $M_{0}=<v_{1}, v_{2}, v_{3}, v_{4}>$

- Determine Z_{1}.

Method 1: $Z_{1}=\left\{\Sigma_{i} n_{i} e_{i}\right.$ in $\left.C_{1} \mid \partial_{1}\left(\Sigma_{i} n_{i} e_{i}\right)=0\right\}$.
$\partial_{1}\left(\Sigma_{i} n_{i} \sigma_{i}\right)=0$ implies $\partial_{1}\left(n_{1} e_{1}+n_{2} e_{2}+n_{3} e_{3}+n_{4} e_{4}+n_{5} e_{5}\right)=0$.
By linearity, $n_{1} \partial_{1}\left(e_{1}\right)+n_{2} \partial_{1}\left(e_{2}\right)+n_{3} \partial_{1}\left(e_{3}\right)+n_{4} \partial_{1}\left(e_{4}\right)+n_{5} \partial_{1}\left(e_{5}\right)=0$.
Thus, $n_{1}\left(v_{1}+v_{2}\right)+n_{2}\left(v_{2}+v_{3}\right)+n_{3}\left(v_{3}+v_{4}\right)+n_{4}\left(v_{1}+v_{4}\right)+n_{5}\left(v_{1}+v_{3}\right)=0$
Hence, $\left(n_{1}+n_{4}+n_{5}\right) v_{1}+\left(n_{1}+n_{2}\right) v_{2}+\left(n_{2}+n_{3}+n_{5}\right) v_{3}+\left(n_{3}+n_{4}\right) v_{4}=0$.
This implies $n_{1}+n_{4}+n_{5}=0, n_{1}+n_{2}=0, n_{2}+n_{3}+n_{5}=0, n_{3}+n_{4}=0$.
Hence, $n_{1}=n_{2}, n_{3}=n_{4}$ and $n_{5}=n_{1}+n_{4}=n_{2}+n_{3}=0$.
Thus $\Sigma_{i} n_{i} e_{i} \in Z_{1}$ iff $\Sigma_{i} n_{i} e_{i}=n_{1} e_{1}+n_{1} e_{2}+n_{4} e_{3}+n_{4} e_{4}+\left(n_{1}+n_{4}\right) e_{5}$ $=n_{1}\left(e_{1}+e_{2}+e_{5}\right)+n_{4}\left(e_{3}+e_{4}+e_{5}\right)$

Thus a 1-chain is in Z_{1} iff
it is a linear combination of the 1-chains $\left(e_{1}+e_{2}+e_{5}\right)$ and $\left(e_{3}+e_{4}+e_{5}\right)$.
Thus $\left\{\left(e_{1}+e_{2}+e_{5}\right),\left(e_{3}+e_{4}+e_{5}\right)\right\}$ is a basis for Z_{1}.
Thus, $Z_{1}=\left\{\Sigma_{i} n_{i} e_{i}\right.$ in $\left.C_{1} \mid \partial_{1}\left(\Sigma_{i} n_{i} e_{i}\right)=0\right\}$
$=\left\{\Sigma_{i} n_{i} e_{i}\right.$ in $\left.C_{1} \mid n_{1}+n_{4}+n_{5}=0, n_{1}=n_{2}, n_{3}=n_{4}\right\}=<e_{1}+e_{2}+e_{5}, e_{3}+e_{4}+e_{5}>$
Method 2: Using matrices. From question 2:

$$
\begin{aligned}
& \rightarrow \begin{array}{ccccc}
\\
v_{1} \\
v_{1} & e_{2} & e_{3} & e_{3}+e_{4}+e_{5} & e_{1}+e_{2}+e_{5} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right) \\
& Z_{1}=\text { null space of } M_{1}=<e_{1}+e_{2}+e_{5}, e_{3}+e_{4}+e_{5}>
\end{aligned}
$$

- Determine Z_{2}

Method 1: $Z_{2}=\left\{\Sigma_{i} n_{i} f_{i}\right.$ in $\left.C_{2} \mid \partial_{2}\left(\sum_{i} n_{i} f_{i}\right)=0\right\}=\{0\}$ since $\partial_{2}(f)=$ $e_{1}+e_{2}+e_{5} \neq 0$.

Alternatively, note that $C_{2}=\{0, f\}$. Since ∂_{2} is a linear map, $\partial_{2}(0)=$ 0 . Thus $0 \in Z_{2}$. $\partial_{2}(f)=e_{1}+e_{2}+e_{5} \neq 0$. Thus $f \notin Z_{2}$. Thus $Z_{2}=$ kernel of $\partial_{2}=\left\{x\right.$ in $\left.C_{2} \mid \partial_{2}(x)=0\right\}=\{0\}$

Method 2: Using matrices. From question 2: $\left.M_{2}=\begin{array}{c}f \\ e_{1} \\ e_{2}\left(\begin{array}{l}1 \\ e_{3} \\ e_{4} \\ e_{5}\end{array}\right) \\ e^{2} \\ 0 \\ 1\end{array}\right)$
$Z_{2}=$ null space of $M_{2}=\{0\}$.

- Determine Z_{i} for $i>2$.
$Z_{i}=\{0\}$ for all $i>2$ since $C_{i}=\{0\}$ for all $i>2$.
(c) Determine $B_{i}=$ image of ∂_{i+1}
- Determine B_{0}

Method 1: $B_{0}=$ image of $\partial_{1}=<\partial\left(e_{1}\right), \partial\left(e_{2}\right), \partial\left(e_{3}\right), \partial\left(e_{4}\right), \partial\left(e_{5}\right)>$

$$
=<v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}, v_{4}+v_{1}, v_{1}+v_{3}>.
$$

Note, $v_{1}+v_{3}=\left(v_{1}+v_{2}\right)+\left(v_{2}+v_{3}\right)$.
Thus the last generator of $\left.<v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}, v_{4}+v_{1}, v_{1}+v_{3}\right\rangle$ is a linear combination of the first two generators. Thus $\left\{v_{1}+v_{2}, v_{2}+\right.$ $\left.v_{3}, v_{3}+v_{4}, v_{4}+v_{1}, v_{1}+v_{3}\right\}$ is NOT a linearly independent set.

Also, $v_{4}+v_{1}=\left(v_{1}+v_{2}\right)+\left(v_{2}+v_{3}\right)+\left(v_{3}+v_{4}\right)$
Since the last two generators are linear combinations of the first 3 generators,
$<v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}, v_{4}+v_{1}, v_{1}+v_{3}>=<v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}>$
Note that $\left\{v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}\right\}$ is a linearly independent set and thus this set forms a basis for B_{0}.

Thus $B_{0}=<v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}>$.

Method 2: Using matrices. From question 2:

$$
\begin{aligned}
& \rightarrow \begin{array}{c}
e_{1} \\
e_{2}
\end{array} e_{3} \quad e_{1}+e_{2}+e_{3}+e_{4} \quad e_{1}+e_{2}+e_{5},
\end{aligned}
$$

$B_{0}=$ the image of the column space of $M_{1}=<v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}>$.

- Determine B_{1}

Method 1: $B_{1}=$ image of $\left.\partial_{2}=<\partial_{2}(f)>=<e_{1}+e_{2}+e_{5}\right\rangle$
Alternatively, note that $C_{2}=\{0, f\}$. Since ∂_{2} is a linear map, $\partial_{2}(0)=$ 0 . Thus $0 \in B_{1}$. $\partial_{2}(f)=e_{1}+e_{2}+e_{5}$. Thus $e_{1}+e_{2}+e_{5} \in B_{1}$.

Thus $B_{1}=$ image of $\partial_{2}=\left\{0, e_{1}+e_{2}+e_{5}\right\}=<e_{1}+e_{2}+e_{5}>$
Method 2: Using matrices. From question 2: $M_{2}=\begin{array}{cc}e_{1} \\ e_{2} & \left.\begin{array}{l}1 \\ e_{3} \\ 1 \\ e_{4} \\ 0 \\ 0 \\ e_{5}\end{array}\right)\end{array}$
$B_{1}=$ the image of the column space of $M_{2}=<e_{1}+e_{2}+e_{5}>$

- Determine B_{i} for $i \geq 2$
$B_{2}=$ image of ∂_{3} where $\partial_{3}: C_{3} \rightarrow C_{2}$. Since $C_{3}=\{0\}, B_{2}=\{0\}$.
Similarly $B_{i}=\{0\}$ for $i>2$. Thus $B_{i}=\{0\}$ for $i \geq 2$.

2. Find the matrix corresponding to each boundary map (from C_{i} to C_{i-1}).
(a) Let M_{0} be the matrix corresponding to the boundary map $\partial_{0}: C_{0} \rightarrow 0$. Then, ∂_{0} takes every vertex to 0 .

Thus $\left.M_{0}=\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 0 & 0 & 0\end{array}\right)$
(b) Let M_{1} be the matrix corresponding to the boundary map $\partial_{1}: C_{1} \rightarrow C_{0}$. Since $\operatorname{rank}\left(C_{1}\right)=5$ and $\operatorname{rank}\left(C_{0}\right)=4, M_{1}$ is a 4×5 matrix. Also, $a_{i j}$ is nonzero iff $a_{i j}=1$ iff the vertex corresponding to row i is in the boundary of the edge corresponding to column j. For example, we have that $\partial\left(e_{1}\right)=$ $v_{1}+v_{2}$; hence we have a 1 as an entry in both the first and second rows of the first column. The remaining entries in the first column are zero.
$M_{1}=\begin{gathered}e_{1} \\ v_{1} \\ v_{2} \\ v_{2} \\ v_{3} \\ v_{4}\end{gathered}\left(\begin{array}{ccccc}1 & 0 & 0 & e_{4} & e_{5} \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$
(c) Let M_{2} be the matrix corresponding to the boundary map $\partial_{2}: C_{2} \rightarrow C_{1}$.

Since $\operatorname{rank}\left(C_{2}\right)=1$ and $\operatorname{rank}\left(C_{1}\right)=5, M_{2}$ is a 5×1 matrix. Since $\partial(f)=e_{1}+e_{2}+e_{5}$, we have a 1 as an entry in the rows corresponding to those edges.

$$
M_{2}=\begin{gathered}
f \\
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{gathered}\left(\begin{array}{l}
1 \\
1 \\
e_{5}
\end{array}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right.
$$

3. Find $H_{i}=\frac{Z_{i}}{B_{i}}$.

Recall that $\partial_{i+1}\left(\partial_{i}(c)\right)=0$ for any c in C_{i+1}. Hence we get the inclusion $B_{i} \subset Z_{i}$. By modding out Z_{i} by B_{i}, we are taking all the elements in Z_{i} that are also in B_{i} and setting them equal to 0 .
(a) $H_{0}=Z_{0} / B_{0}=\frac{\left\langle v_{1}, v_{2}, v_{3}, v_{4}\right\rangle}{\left\langle v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}\right\rangle}$

$$
=<v_{1}, v_{2}, v_{3}, v_{4} \mid v_{1}+v_{2}=0, v_{2}+v_{3}=0, v_{3}+v_{4}=0>=<\left[v_{1}\right]>
$$

where $\left[v_{1}\right]=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a representative of the set containing all the vertices. Since we are working with coefficients in \mathbb{Z}_{2}, we get that $\left\{v_{1}+v_{2}=0, v_{2}+v_{3}=0, v_{3}+v_{4}=0\right\}$ implies $v_{1}=v_{2}, v_{2}=v_{3}, v_{3}=v_{4}$. Thus $\left[v_{1}\right]=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$

Rank $H_{0}=\operatorname{Rank} Z_{0}-\operatorname{Rank} B_{0}=4-3=1$
(b) $H_{1}=Z_{1} / B_{1}=\frac{\left\langle e_{1}+e_{2}+e_{5}, e_{3}+e_{4}+e_{5}\right\rangle}{\left\langle e_{1}+e_{2}+e_{5}\right\rangle}$
$=<e_{1}+e_{2}+e_{5}, e_{3}+e_{4}+e_{5} \mid e_{1}+e_{2}+e_{5}=0>=<\left[e_{3}+e_{4}+e_{5}\right]>$
The cycle $e_{1}+e_{2}+e_{5}$ was filled by the face f and thus $e_{1}+e_{2}+e_{5}=0$ in H_{1}.

Rank $H_{1}=\operatorname{Rank} Z_{1}-\operatorname{Rank} B_{1}=2-1=1$
Sidenote: To determine H_{1}, we set every element in B_{1} equal to 0 .
Thus $\partial(f)=e_{1}+e_{2}+e_{5}=0$. Thus in H_{1},
$e_{3}+e_{4}+e_{5}=\left(e_{3}+e_{4}+e_{5}\right)+0=\left(e_{3}+e_{4}+e_{5}\right)+\partial(f)=\left(e_{3}+e_{4}+e_{5}\right)+$ $\left(e_{1}+e_{2}+e_{5}\right)=e_{1}+e_{2}+e_{3}+e_{4}$.

Thus $e_{1}+e_{2}+e_{3}+e_{4} \in\left[e_{3}+e_{4}+e_{5}\right]$ in H_{1}. This also means that $\left[e_{1}+e_{2}+e_{3}+e_{4}\right]=\left[e_{3}+e_{4}+e_{5}\right]$ and thus $H_{1}=<e_{3}+e_{4}+e_{5}>=<$ $e_{1}+e_{2}+e_{3}+e_{4}>$.

Hence $H_{1}=<e_{3}+e_{4}+e_{5}>$ and $H_{1}=<e_{1}+e_{2}+e_{3}+e_{4}>$ are both correct answers.
(c) $\left.H_{2}=Z_{2} / B_{2}=<0\right\rangle$ since $Z_{2}=\langle 0\rangle$.
(d) Similarly, $H_{i}=<0>$ for all $i>2$.

