Distance [?]

An extended pseudometric on a class X is a function $d: X \times X \rightarrow [0, \infty]$ with the following three properties:

Note that an extended pseudometric d is a metric if

• *d* is finite
•
$$d(x, y) = 0$$
 implies $x = y$.

distance = extended pseudometric.

Decorated Endpoints and Intervals

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2/28

Example: Real line

Objects: real numbers

Morphisms: $s \rightarrow t$ if $s \leq t$

Example: Vec

Objects: Vector spaces

Morphisms: Linear maps

Example: Persistence module $\mathbb V$ over $\mathbb R$ is a functor from the Real line into Vec

I.e., $\mathbb{V} = \{V_t \mid t \in \mathbb{R}\}$ with linear maps $\{v_t^s : V_s \to V_t \mid s \le t\}$

2.3 Module Categories [?]

Defn: Given **T**-persistent modules $\mathbb{U}, \mathbb{V} : \mathbf{T} \to \mathbf{Vec}$, a homomorphism $\phi : \mathbb{U} \Rightarrow \mathbb{V}$ consists of:

• a collection of linear maps $\{\phi_t : U_t \to V_t \mid t \in \mathbf{T}\}$

such that:

• for any morphism $s \leq t$ in \mathbb{U} , this diagram commutes:

 $Hom(\mathbb{U}, \mathbb{V}) = \{homomorphisms \ \mathbb{U} \Rightarrow \mathbb{V}\}$ $End(\mathbb{V}) = \{homomorphisms \ \mathbb{V} \Rightarrow \mathbb{V}\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Vect^R

Objects: Persistence modules i.e., functors from the **Real line** into **Vec**).

Morphisms: Natural transformations = homomorphisms.

2.4 Interval Modules [?]

Let **T** be a totally ordered set.

 $J \subset \mathbf{T}$ is an **interval** if $r, t \in J$ and if r < s < t, then $s \in J$.

The **interval module** $I = \mathbf{k}^{J}$ is the **T**-persistence module with vector spaces

$$I_t = \begin{cases} \mathbf{k} & \text{if } t \in J \\ 0 & \text{otherwise} \end{cases}$$

and linear maps

$$i_t^s = egin{cases} 1 & \textit{if } s,t \in J \ 0 & \textit{otherwise} \end{cases}$$

In informal language, \mathbf{k}^J represents a 'feature' which 'persists' over exactly the interval J and nowhere else.

I.e, \mathbf{k}^{J} represents a bar in the barcode.

イロト イロト イヨト イヨト 三日

Shift Functors

the shift functor $(\cdot)(\delta)$: Vect^R \rightarrow Vect^R

t

$$\mathbb{V} = (V_t, v_t^s) \rightarrow \mathbb{V}(\delta) = (V(\delta)_t = V_{t+\delta}, v_{t+\delta}^{s+\delta})$$

For a morphism $f \in \text{hom}(\text{Vect}^{\mathbf{R}})$ we define $f(\delta)$ by $f(\delta)_t = f_{t+\delta}$.

If a persistence module $\mathbb V$ indexed over $\mathbb R$ can be decomposed,

$$\mathbb{V} \cong \bigoplus_{\ell \in L} \mathbf{k} \langle p_{\ell}, q_{\ell} \rangle$$

hen $\mathbb{V}(\delta) \cong \bigoplus_{\ell \in L} \mathbf{k} (p_{\ell}^* - \delta, q_{\ell}^* - \delta)$

That is the barcode $\mathcal{B}_{M(\delta)}$ is obtained from \mathcal{B}_M by shifting all intervals to the left by δ , as in Fig. 1.

Figure: Corresponding intervals in \mathcal{B}_{M} and $\mathcal{B}_{M(\delta)}$.

Transition Morphisms

For V a persistence module and $\delta \ge 0$, let the

 δ -transition morphism $\varphi_{\mathbb{V}}^{\delta} : \mathbb{V} \Rightarrow \mathbb{V}(\delta)$ be the morphism whose restriction to V_t is the linear map $v_{t+\delta}^t$

That is $\varphi^\delta_{\mathbb V}$ consists of

• a collection of linear maps
$$\{v_{t+\delta}^t : V_t \to V_{t+\delta} \mid t \in \mathbb{R}\}$$

such that:

• for any morphism $s \leq t$ in \mathbb{U} , this diagram commutes:

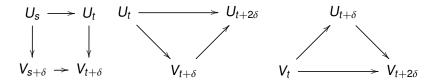
$$\begin{array}{c|c} V_{s} & \xrightarrow{v_{t}^{s}} V_{t} \\ \downarrow_{v_{s+\delta}^{s}} & \downarrow_{v_{t+\delta}^{t}} \\ V_{s+\delta} & \xrightarrow{v_{t}^{s}} V_{t+\delta} \end{array}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣。

We say that two persistence modules \mathbb{U} and \mathbb{V} are δ -interleaved if there exist morphisms $f : \mathbb{U} \to \mathbb{V}(\delta)$ and $g : \mathbb{V} \to \mathbb{U}(\delta)$ such that

$$egin{aligned} g(\delta) \circ f &= arphi_{\mathbb{U}}^{2\delta}, \ f(\delta) \circ g &= arphi_{\mathbb{V}}^{2\delta}. \end{aligned}$$

We refer to such *f* and *g* as δ -interleaving morphisms. The definition of δ -interleaving morphisms was introduced in [?].



If *L* and *M* are δ -interleaved, and *M* and *N* are δ' -interleaved, then *L* and *N* are $(\delta + \delta')$ -interleaved.

If $0 \le \delta \le \delta'$ and *M* and *N* are δ -interleaved, then *M* and *N* are also δ' -interleaved.

For *T* a topological space and functions $\gamma, \kappa : T \to \mathbb{R}$, let

$$d_{\infty}(\gamma,\kappa) = \sup_{y\in T} |\gamma(y) - \kappa(y)|.$$

Suppose $d_{\infty}(\gamma, \kappa) = \delta$, and let $S_t^{\gamma} = \{x \in T \mid \gamma(x) \le t\}$

Then for each $t \in \mathbb{R}$, we have inclusions

$$egin{aligned} \mathcal{S}^{\gamma}_t &\subseteq \mathcal{S}^{\kappa}_{t+\delta}, \ \mathcal{S}^{\kappa}_t &\subseteq \mathcal{S}^{\gamma}_{t+\delta}. \end{aligned}$$

Applying the *i*th homology functor with coefficients in *K* to the collection of all such inclusion maps yields a δ -interleaving between $H_i(S^{\gamma})$ and $H_i(S^{\kappa})$.

Define the interleaving distance

 $d_l : \operatorname{obj}(\operatorname{Vect}^{\mathbf{R}}) \times \operatorname{obj}(\operatorname{Vect}^{\mathbf{R}}) \to [0, \infty],$ by taking

 $d_l(M, N) = \inf \{ \delta \in [0, \infty) \mid M \text{ and } N \text{ are } \delta \text{-interleaved} \}.$

In addition, if M, M', and N are persistence modules with $M \cong M'$, then $d_l(M, N) = d_l(M', N)$.

Thus d_l descends to a distance on isomorphism classes of persistence modules.

Mch

Objects: Sets

Morphisms: matchings.

A matching from S to T (written as $\sigma : S \rightarrow T$) is a bijection $\sigma : S' \rightarrow T'$, for some $S' \subseteq S$, $T' \subseteq T$;

For matchings $\sigma : S \rightarrow T$ and $\tau : T \rightarrow U$,

$$\tau \circ \sigma = \{(s, u) \mid (s, t) \in \sigma, (t, u) \in \tau \text{ for some } t \in T\}.$$

Note that any injective function is a matching.

 $\operatorname{coim} \sigma = S'$ and $\operatorname{im} \sigma = T'$.

For \mathcal{D} a barcode and $\epsilon \geq 0$, let

 $\mathcal{D}^{\epsilon} = \{ \langle b, d \rangle \in \mathcal{D} \mid b + \epsilon < d \} = \{ l \in \mathcal{D} \mid [t, t + \epsilon] \subseteq l \text{ for some } t \in \mathbb{R} \}.$

Note that $\mathcal{D}^0 = \mathcal{D}$. We define a δ -matching between barcodes C and \mathcal{D} to be a matching $\sigma : C \rightarrow \mathcal{D}$ such that

•
$$C^{2\delta} \subseteq \operatorname{coim} \sigma$$
,
• $\mathcal{D}^{2\delta} \subseteq \operatorname{im} \sigma$,
• if $\sigma \langle b, d \rangle = \langle b', d' \rangle$, then
 $\langle b, d \rangle \subseteq \langle b' - \delta, d' + \delta \rangle$,

$$\langle b', d' \rangle \subseteq \langle b - \delta, d + \delta \rangle.$$

4 ロト 4 団ト 4 巨ト 4 巨ト 巨 の Q (*) 14/28

Matchings and the Bottleneck Distance [?]

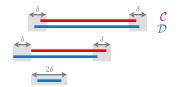


Figure: A δ -matching between two barcodes *C* and *D*. Endpoints of matched intervals are at most δ apart, and unmatched intervals are of length at most 2δ .

If $\sigma_1 : C \to \mathcal{D}$ is a δ_1 -matching, and $\sigma_2 : \mathcal{D} \to \mathcal{E}$ is a δ_2 -matching, then $\sigma_2 \circ \sigma_1 : C \to \mathcal{E}$ is a $(\delta_1 + \delta_2)$ -matching.

We define the bottleneck distance d_B by

 $d_B(C, \mathcal{D}) = \inf \{ \delta \in [0, \infty) \mid \exists a \ \delta \text{-matching between } C \text{ and } \mathcal{D} \}.$

The triangle inequality for d_B follows immediately from the composition above.

 d_B is the most commonly considered distance on barcodes in the persistent homology literature. This is in part because d_B is especially well behaved from a theoretical standpoint.

A persistence module M is said to be *pointwise finite dimensional* (*p.f.d.*) if each of the vector spaces M_t is finite dimensional.

[Isometry Theorem for p.f.d. Persistence Modules] Two p.f.d. persistence modules M and N are δ -interleaved if and only if there exists a δ -matching between \mathcal{B}_M and \mathcal{B}_N . In particular,

 $d_B(\mathcal{B}_M,\mathcal{B}_N)=d_I(M,N).$

[? ?] For any topological space *T*, functions $\gamma, \kappa : T \to \mathbb{R}$, and $i \ge 0$ such that $H_i(S^{\gamma})$ and $H_i(S^{\kappa})$ are p.f.d.,

$$d_{\mathcal{B}}(\mathcal{B}_{H_{i}(\mathcal{S}^{\gamma})},\mathcal{B}_{H_{i}(\mathcal{S}^{\kappa})}) \leq d_{\infty}(\gamma,\kappa).$$

▲□▶ ◆母▶ ▲ 国▶ ▲ 国▶ ▲ 国 ◆ ○ Q ペ 19/28

▲□▶ ◆ □▶ ▲ ■▶ ▲ ■▶ ▲ ■ ● ○ Q (~ 25/28)

▲□▶ ◆ □▶ ▲ ■▶ ▲ ■▶ ▲ ■ ● ○ Q (~ 27/28)