
Distance [? ]

An extended pseudometric on a class X is a function
d : X × X → [0,∞] with the following three properties:

1 d(x, x) = 0 for all x ∈ X ,
2 d(x, y) = d(y, x) for all x, y ∈ X ,
3 d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

Note that an extended pseudometric d is a metric if

1 d is finite
2 d(x, y) = 0 implies x = y.

distance = extended pseudometric.
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Decorated Endpoints and Intervals

t− t+ ∞

−∞ (−∞, t) (−∞, t] (−∞,∞)
s− [s, t) [s, t] [s,∞)
s+ (s, t) (s, t] (s,∞)

〈s , t〉 = (s∗, t∗)

2 / 28



2.1 Persistence Modules Over a Real Parameter [? ]

Example: Real line

Objects: real numbers

Morphisms: s → t if s ≤ t

Example: Vec

Objects: Vector spaces

Morphisms: Linear maps

Example: Persistence module V over R is a functor from the Real
line into Vec

I.e., V = {Vt | t ∈ R} with linear maps {vs
t : Vs → Vt | s ≤ t}
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2.3 Module Categories [? ]

Defn: Given T-persistent modules U,V : T→ Vec, a
homomorphism φ : U⇒ V consists of:

a collection of linear maps {φt : Ut → Vt | t ∈ T}

such that:

for any morphism s ≤ t in U, this diagram commutes:

Us
us

t //

φs

��

Ut

φt

��
Vs vs

t

// Vt

Hom(U,V) = {homomorphisms U⇒ V}

End(V) = {homomorphisms V⇒ V}
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VectR

Objects: Persistence modules
i.e., functors from the Real line into Vec).

Morphisms: Natural transformations = homomorphisms.
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2.4 Interval Modules [? ]

Let T be a totally ordered set.

J ⊂ T is an interval if r , t ∈ J and if r < s < t , then s ∈ J.

The interval module I = kJ is the T-persistence module with
vector spaces

It =

k if t ∈ J

0 otherwise

and linear maps

ist =

1 if s, t ∈ J

0 otherwise

In informal language, kJ represents a ’feature’ which ‘persists’ over
exactly the interval J and nowhere else.

I.e, kJ represents a bar in the barcode.
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Shift Functors

the shift functor ( ·)(δ) : VectR → VectR

V = (Vt , vs
t ) → V(δ) = (V(δ)t = Vt+δ, vs+δ

t+δ )

For a morphism f ∈ hom(VectR) we define f(δ) by f(δ)t = ft+δ.

If a persistence module V indexed over R can be decomposed,

V �
⊕

`∈L k〈p` , q`〉

then V(δ) �
⊕

`∈L k(p∗` − δ, q
∗
` − δ)

That is the barcode BM(δ) is obtained from BM by shifting all
intervals to the left by δ, as in Fig. 1.

Figure: Corresponding intervals in BM and BM(δ).
7 / 28



Transition Morphisms

For V a persistence module and δ ≥ 0, let the

δ-transition morphism ϕδV : V⇒ V(δ) be the morphism whose
restriction to Vt is the linear map v t

t+δ

That is ϕδV consists of

a collection of linear maps {v t
t+δ : Vt → Vt+δ | t ∈ R}

such that:

for any morphism s ≤ t in U, this diagram commutes:

Vs
vs

t //

vs
s+δ
��

Vt

v t
t+δ
��

Vs+δ vs
t

// Vt+δ
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Interleavings

We say that two persistence modules U and V are δ-interleaved if
there exist morphisms f : U→ V(δ) and g : V→ U(δ) such that

g(δ) ◦ f = ϕ2δ
U ,

f(δ) ◦ g = ϕ2δ
V .

We refer to such f and g as δ-interleaving morphisms. The definition
of δ-interleaving morphisms was introduced in [? ].

Us Ut

Vs+δ Vt+δ

//

�� ��
//

Ut Ut+2δ

Vt+δ

//

��

??
Ut+δ

Vt Vt+2δ

��
//

??
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If L and M are δ-interleaved, and M and N are δ′-interleaved, then L
and N are (δ+ δ′)-interleaved.

If 0 ≤ δ ≤ δ′ and M and N are δ-interleaved, then M and N are also
δ′-interleaved.
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For T a topological space and functions γ, κ : T → R, let

d∞(γ, κ) = sup
y∈T
|γ(y) − κ(y)|.

Suppose d∞(γ, κ) = δ, and let Sγt = {x ∈ T | γ(x) ≤ t}

Then for each t ∈ R, we have inclusions

S
γ
t ⊆ S

κ
t+δ,

Sκt ⊆ S
γ
t+δ.

Applying the ith homology functor with coefficients in K to the
collection of all such inclusion maps yields a δ-interleaving between
Hi(S

γ) and Hi(S
κ).
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The Interleaving Distance

Define the interleaving distance

dI : obj(VectR) × obj(VectR)→ [0,∞], by taking

dI(M,N) = inf {δ ∈ [0,∞) | M and N are δ-interleaved}.

In addition, if M, M′, and N are persistence modules with M � M′,
then dI(M,N) = dI(M′,N).

Thus dI descends to a distance on isomorphism classes of
persistence modules.
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Mch

Objects: Sets

Morphisms: matchings.

A matching from S to T (written as σ : S →| T ) is a bijection
σ : S′ → T ′, for some S′ ⊆ S, T ′ ⊆ T ;

For matchings σ : S →| T and τ : T →| U,

τ ◦ σ = {(s, u) | (s, t) ∈ σ, (t , u) ∈ τ for some t ∈ T }.

Note that any injective function is a matching.

coimσ = S′ and imσ = T ′.
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Matchings and the Bottleneck Distance [? ]

For D a barcode and ε ≥ 0, let

Dε = {〈b , d〉 ∈ D | b+ε < d} = {I ∈ D | [t , t+ε] ⊆ I for some t ∈ R}.

Note that D0 = D. We define a δ-matching between barcodes C
and D to be a matching σ : C →| D such that

1 C2δ ⊆ coimσ,
2 D2δ ⊆ imσ,
3 if σ〈b , d〉 = 〈b ′ , d′〉, then

〈b , d〉 ⊆ 〈b ′ − δ, d′ + δ〉,

〈b ′ , d′〉 ⊆ 〈b − δ, d + δ〉.
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Matchings and the Bottleneck Distance [? ]

Figure: A δ-matching between two barcodes C and D. Endpoints of
matched intervals are at most δ apart, and unmatched intervals are of
length at most 2δ.
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Matchings and the Bottleneck Distance [? ]

If σ1 : C →| D is a δ1-matching, and σ2 : D →| E is a δ2-matching,
then σ2 ◦ σ1 : C → E is a (δ1 + δ2)-matching.

We define the bottleneck distance dB by

dB(C,D) = inf {δ ∈ [0,∞) | ∃ a δ-matching between C and D}.

The triangle inequality for dB follows immediately from the
composition above.

dB is the most commonly considered distance on barcodes in the
persistent homology literature. This is in part because dB is
especially well behaved from a theoretical standpoint.
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The Isometry Theorem

A persistence module M is said to be pointwise finite dimensional
(p.f.d.) if each of the vector spaces Mt is finite dimensional.

[Isometry Theorem for p.f.d. Persistence Modules] Two p.f.d.
persistence modules M and N are δ-interleaved if and only if there
exists a δ-matching between BM and BN. In particular,

dB(BM ,BN) = dI(M,N).
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corollary

[? ? ] For any topological space T , functions γ, κ : T → R, and i ≥ 0
such that Hi(S

γ) and Hi(S
κ) are p.f.d.,

dB(BHi(Sγ),BHi(Sκ)) ≤ d∞(γ, κ).
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